Ingredients of an Early Design for Protecting the GENI Facility

GENI Distributed Services Working Group Tom Anderson, David Andersen, Mic Bowman, Frans Kaaskhoek, Rick McGeer, Vivek Pai, <u>Mike Reiter</u>, Mothy Roscoe, Ion Stoica, Amin Vahdat

Disclaimer

• This talk summarizes the early design of security mechanisms to protect against abuse of the GENI facility

Prior to establishment of BBN as GPO

- I have no knowledge of how this relates to the security facilities envisioned today for GENI
- In particular, I in no way speak for BBN or the current state of GENI on this matter

Some Topics We Considered

- Threat model
- Goals/requirements
- Access control
- Authentication and key management
- Auditing
- Intrusion detection

Threat model

Exploitation of a slice

- Runaway experiments
 - Unwanted Internet traffic
 - Exhausting disk space
- Misuse of experimental service by end users
 - E.g., to traffic in illegal content
- Corruption of a slice
 - Via theft of experimenter's credentials or compromise of slice software

Exploitation of GENI itself

- Compromise of host O/S
- DoS or compromise of GENI management plane

Requirements: Do no harm

- Explicit delegations of authority
 - Node owner \rightarrow GMC \rightarrow Researcher \rightarrow students $\rightarrow \dots$
- Least privilege
 - Goes a long way toward confining rogue activities
- Revocation
 - Keys and systems will be compromised
- Auditability
- Scalability/Performance
- Autonomy/Federation/Policy Neutrality
 - Control ultimately rests with node owners, can delegate selected rights to GMC

Access Control Requirements

- Arbitrarily flexible
 - Did not want to "hard code" policy into the system
- Dynamically extensible
- Verifiably sound and principled
 - Avoid ad hoc approaches
- Auditable
 - Must be able to determine why an access was granted, and who was responsible

Authorization Example

A Proof-Carrying Approach

- Encode access control decision procedure in a formal logic
 - Can be used to express groups, roles, delegations, and new constructs
 - Can encode other, specific access-control mechanisms
- Digitally signed statements (e.g., certificates) used to instantiate logical statements
- Client submits a <u>proof</u> that its request complies with access-control policy
- Reference monitor checks that the proof is a valid proof of required policy

A Tiny Example

Authentication and Key Management

- GENI would have a PKI (as a corollary of the authorization framework)
 - Every principal would have a public/private key
 - ► E.g., users, administrators, nodes
 - Certified by local administrator
 - Keys sign certificates to make statements in the authorization logic (identity, groups, authorization, delegation, ...)
- Private key compromise an issue
 - Encrypted with user's password? Off-line attacks
 - Smart card/dongle? Most secure, but less usable
 - Capture-resilient protocols: A middle ground
 - An (untrusted) capture-protection server can disable use of a key, e.g., when observing a password-guessing attack

Intrusion Detection

• Traditional intrusion detection methods may not suffice *for monitoring experiments*

Misuse detection Specify bad behavior and watch for it <u>(Learning-based) Anomaly detection</u> Learn "normal" behavior and watch for exceptions

Problem: Experiments do lots of things that look "bad"

Problem: Experiments may be too short-lived or ill-behaved to establish "normal" baseline

Intrusion Detection

- Specification-based intrusion detection is more appropriate for monitoring experiments
 - Fits in naturally with authorization framework, as well

Specification-based intrusion detection Specify good behavior and watch for violations

Audit Log Prototype: PlanetFlow

[Huang et al.]

- PlanetFlow: logs packet headers sent and received from each node to Internet
 - Enables operations staff to trace complaints back to originating slice
 - Notify experimenter; in an emergency, suspend slice
- All access control decisions can be logged and analyzed post-hoc
 - To understand why a request was granted (e.g., to give attacker permission to create a sliver)

Issues Left Open

- DoS-resistant GENI control plane
 - Initial control plane would employ IP and inherit the DoS vulnerabilities thereof
 - GENI experimentation may demonstrate a control plane that is more resistant
- Privacy of operational data in GENI
 - Could be a great source of research data
- Operational procedures and practices
 - Central to security of the facility