GENI Security Configuration In a Box

Ehab Al-Shaer
Assurable Networking Recent Center (ARC)
School of Computing, DePaul University,
Chicago, IL, USA

NSF GENI Workshop
University of California Davis,
January 22, 2009
“Eighty percent of IT budgets is used to maintain the status quo.”, Kerravala, Zeus. “As the Value of Enterprise Networks Escalates, So Does the Need for Configuration Management.” The Yankee Group January 2004 [2].

“It is estimated that configuration errors enable 65% of cyber attacks and cause 62% of infrastructure downtime”, Network World, July 2006.

Recent surveys show Configuration errors are a large portion of operator errors which are in turn the largest contributor to failures and repair time [1].

“Management of ACLs was the most critical missing or limited feature, Arbor Networks’ Worldwide Infrastructure Security Report, Sept 2007.

GENI Challenges

- Distributed resources
- Distributed control
- Dynamic policy coordination, interaction/federation, adaptation
- But still the goal is to keep it programmable, usable, assurable, and consistent \(\Rightarrow \) complex configuration

- How to provide end-to-end security configuration assurability/provability?
- How to make security systems configuration usable: high-level, distribution transparency?
- How to measure and assess configuration in term of risk, privacy, flexibility and cost?
Putting GENI Configuration in a Box

- Define
- Verify
- Debug
- Assess

GENI Security

Configuration
Idea#1: ConfigChecker & ConfigLego—Automated Security Configuration Verification

Goals

- Global end-to-end unified verification across heterogeneous devices: unifying the representation of the security configurations of all network devices.
- Integrating network and host security configuration checking: having a single model that can analyze both network and application level devices and services is the main focus.
- Abstraction and Composability
- Scalability (10,000 of nodes)

Approaches

- Bottom-up
 - Modeling configuration semantic using Binary Decision Diagrams (BDD) gives canonical representation regardless of the syntax

- **ConfigChecker**: models the network as a giant sate machines and used model checker and CTL to query and verify security configuration
 - Modeling packet transformations is an increasingly hard task.
 - Problems on a network-wide scale are impossible to detect manually, and automated tools focus on a single device or devices of a single type.

- **ConfigLego**: allows for abstracting and composing portions of the network under-investigation
Modeling Access Control Policies

- **Single-trigger policy** is an access policy where only one action is triggered for a given packet. C_i is the 1st match leads to action a

 \[
P_a = \bigvee_{i \in \text{index}(a)} \neg C_1 \land \neg C_2 \land \ldots \land \neg C_{i-1} \land C_i
 \]

- **Multiple-trigger policy** is an access policy where multiple different actions may be triggered for the same packet. C_i is any match leads to action a

 \[
P_a = \bigvee_{i \in \text{index}(a)} \bigwedge_{j=1}^{i-1} \neg C_j \land C_i
 \]

where

\[
\text{index}(a) = \{ i \mid R_i = C_i \leadsto a \}\]
Intra-Policy Conflicts Formalization: Crypto-access List

- Policy expression \(S_a \) represents a policy that incorporates rule \(R_i \), and \(S'_a \) is the policy with \(R_i \) excluded. \(R_i \) may be involved in the following conflicts:

 - **Shadowing:**
 \[
 [(S'_{a_i} \Leftrightarrow S_{a_i}) = true] \text{ and } [(C_i \Rightarrow S'_{a_i}) = false]
 \]

 - **Redundancy:**
 \[
 [(S'_{a_i} \Leftrightarrow S_{a_i}) = true] \text{ and } [(C_i \Rightarrow S'_{a_i}) \neq false]
 \]

 - **Exception:**
 \[
 [(S'_{a_i} \Leftrightarrow S_{a_i}) \neq true] \text{ and } [(C_i \Rightarrow S'_{a_i}) = false]
 \]

 - **Correlation:**
 \[
 [(S'_{a_i} \Leftrightarrow S_{a_i}) \neq true] \text{ and } [(C_i \Rightarrow S'_{a_i}) \neq false]
 \]
IPSec Inter-Policy Conflicts Formalization: Crypto-access Lists

- Shadowing: upstream policy blocks traffic

\[[(S^u_{\text{discard}} \land \neg S^d_{\text{discard}}) \lor (S^u_{\text{protect}} \land \neg S^d_{\text{protect}})] \neq false \]

Traffic dropped
Diagnosing Unreachability Problems between Routers and Firewalls

- **Flow-level Analysis:** Is flow C_k forwarded by routers in L (each of routing tables BDD T^i_j for router i and port j) but Blocked due to conflict between Routing and FW Filtering:

 \[((C_k \Rightarrow \bigwedge_{(i,j) \in L} T^i_j) \land (C_k \Rightarrow \neg S^n_A)) \neq \text{false} \]

 - This shows that a traffic C_j is forwarded by the routing policy, T^i_j, from node i to n but yet blocked by the filtering policy, S^n_{discard}, of the destination domain.

- **Path-level Analysis:** Discovering Any Unreachability Conflicts between Routing and Filtering:

 \[\phi_k \leftarrow [\text{SAT} \left(\bigwedge_{(i,j) \in \text{path}(x)} T^i_j \land \neg S^n_A \land \neg (\bigwedge_{i=1,k-1} \phi_i) \right)] \neq \text{false} \]

 - For $\phi=1$, n misconfiguration examples, and $\phi(0) = \text{true}$

- **Network or Federated-level Analysis:** Spurious conflict between downstream d and upstream u ISP domains:

 \[((S^u_{\text{bypass}} \land \neg S^d_{\text{bypass}}) \lor (S^u_{\text{limit}} \land S^d_{\text{discard}})) \neq \text{false} \]

 - Notice that S_{discard}, S_{bypass}, and S_{limit} are filtering policies representations related to the filtering actions as described in [ICNP05, CommMag06].

© Ehab Al-Shaer
ConfigChecker Queries (Model Checker approach)

- **Q1: Reachability Soundness:**
 - From any source node ip_1 if there is a next-hop to destination ip_2, then there must be a way that eventually leads to ip_2 from ip_1.

 \[Q = (\text{loc}(ip_1) \land EX(\text{dest} = ip_2)) \rightarrow \text{loc}(ip_1) \land EF(\text{dest}(ip_2) \Leftrightarrow \text{loc}(ip_1)) \]

- **Q2: Discovering Broken End-to-end IPSec Tunnel:**
 - Given a specific flow, will it stay in a tunnel until the final destination? (assuming the IPSec gateways are a hop away from the source and destination)

 \[Q = (\text{src} = a_1 \land \text{dest} = a_2 \land \text{loc}(a_1) \land \text{IPSec(encrypt)}) \rightarrow AU((\text{IPSec(encrypt)} \lor \text{loc} \rightarrow G), \text{loc}(a_2)) \]

- **Q3: What nodes have access to the plain-text packet:**
 - Given a specific flow, which nodes will eventually have access to the packet without encryption?

 \[Q = AF_-(\text{flow}(ip_1, ip_2) \land \text{loc}(ip_1)) \land \neg \text{IPSec(encrypt)} \]
ConfigChecker Queries

Q4: Back-door access after route changes:

What is difference in the new configuration as compared with the ordinary original one. Is there any backdoor?

\[C_{org} \triangleq [\neg \text{multiroute} \land src = a1 \land dest = a2 \land \text{loc}(a1) \rightarrow AF(\text{loc}(a2) \land src = a1 \land dest = a2)] \]

\[C_{new} \triangleq [\text{multiroute} \land src = a1 \land dest = a2 \land \text{loc}(a1) \rightarrow AF(\text{loc}(a2) \land src = a1 \land dest = a2)] \]

Backdoors: \(\neg C_{org} \land C_{new} \)
Broken flows: \(\neg C_{new} \land C_{org} \)

More information on ConfigChecker: www.arc.depaul.edu
Idea#1: GENI ConfigChecker / ConfigLego

- GENI Admin Interface
- Logic Interface (LTL, CTL, FOL)
- Verification and Inspection Engine
- Security Configuration Abstraction (BDD)
- Security Network Devices
Policy Advisor Tool for Distributed Policy (Firewall & IPSec) Management

![Policy Advisor Tool Image](image)

Inter-Policy Conflict Analysis Report

<table>
<thead>
<tr>
<th>Device</th>
<th>Rule</th>
<th>Conflict description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSec1</td>
<td>A3</td>
<td>Access is totally spurious</td>
</tr>
<tr>
<td>IPSec1</td>
<td>A5</td>
<td>Access is partially spurious</td>
</tr>
<tr>
<td>IPSec2</td>
<td>A3</td>
<td>Access is totally spurious</td>
</tr>
<tr>
<td>IPSec2</td>
<td>A5</td>
<td>Access is partially spurious</td>
</tr>
<tr>
<td>IPSec1</td>
<td>A1</td>
<td>Access is totally shadowed</td>
</tr>
<tr>
<td>IPSec1</td>
<td>A2</td>
<td>Access is totally shadowed</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Transform is stronger than rule IPSec2/T2</td>
</tr>
</tbody>
</table>

IPSec2 Access Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>tcp</td>
<td>10.0.0.24/0</td>
<td>10.0.0.3/0</td>
<td>Accept</td>
</tr>
<tr>
<td>A2</td>
<td>tcp</td>
<td>10.0.0.0/24</td>
<td>10.0.2.0/0</td>
<td>Protect</td>
</tr>
<tr>
<td>A3</td>
<td>tcp</td>
<td>10.0.0.24/0</td>
<td>10.0.3.0/24</td>
<td>Accept</td>
</tr>
<tr>
<td>A4</td>
<td>tcp</td>
<td>10.0.3.0/24</td>
<td>10.0.1.0/0</td>
<td>Protect</td>
</tr>
<tr>
<td>A5</td>
<td>tcp</td>
<td>10.0.3.0/24</td>
<td>10.0.2.0/0</td>
<td>Accept</td>
</tr>
<tr>
<td>A6</td>
<td>tcp</td>
<td>10.0.0.0/24</td>
<td>10.0.0.0/0</td>
<td>Deny</td>
</tr>
</tbody>
</table>

IPSec2 Transform Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Transform</th>
<th>Tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>tcp</td>
<td>10.0.0.24/0</td>
<td>10.0.3.0/24</td>
<td>ESP-Transport</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>tcp</td>
<td>10.0.0.24/0</td>
<td>10.0.2.0/0</td>
<td>AH-Transport</td>
<td></td>
</tr>
</tbody>
</table>
Intra-Policy Advisor Tool is used by the following 43 companies and institutions as of November, 2006

- Lisle Technology Partners, USA;
- Phontech, Norway;
- Naval Surface Warfare Center, Panama City, USA;
- Cisco Systems, USA;
- AT&T, USA;
- Gateshead Council, UK;
- ISRC, Queensland University of Technology, Australia;
- Imperial College and UCL, London, UK;
- Danet Group, Germany;
- TNT Express Worldwide, UK Ltd, United Kingdom;
- Checkpoint, USA;
- FireWall-1, The Netherlands;
- UFRGS, Brasil;
- DataConsult, Lebanon;
- Rosebank Consulting, GB;
- Columbia University, USA;
- Mayer Consulting, USA;
- Panduit Corp, USA;
- UPMC Paris 5 University, France;
- Royal Institute of Science, Sweden;
- GE, US;
- Aligo, USA.
- Others not listed
Idea#2: Shadow Configurations for On-line Configuration Debugging

- Use Deployed Network
- Allow an additional shadow configuration on each router
 - Routing, ACLs, interface addresses, etc.
- Scalable and realistic (no modeling)
- Two key capabilities
 - Pre-deployment testing/debugging
 - Does not affect real traffic
Scenario: Config Changes

- Scenario: Change configuration parameters
 - Address performance/security issues
 - Deploy new services (e.g., filters, IDS probes and QoS)

- Operation
 1) Copy real traffic to shadow plan
 2) Change shadow and test
 3) Store and aggregate traces
 4) Debug, compare and isolate
 5) Commit real and shadow

- Prototype for Routing only
 (with Richard Wang, Yale) – see SIGCOMM 2008
Summary & Future Work

- GENI success will be greatly dependant on assurability and usability of security configuration: define, verify, evaluate/metrics and optimize

- Other Issues
 - How integrate application level and network level access control
 - How to build API and high-level user interfaces to help using the underlying configuration engines
 - Measuring security
 - Top-down approach: Balancing security, usability, privacy and cost
Thank You!!