Secure Multi-party Computation
What it is, and why you’d care

Manoj Prabhakaran
University of Illinois, Urbana-Champaign
SMC

- SMC conceived more than 30 years back
SMC

- SMC conceived more than 30 years back
- A very general concept that subsumes the bulk of theoretical cryptography
SMC

- SMC conceived more than 30 years back
- A very general concept that subsumes the bulk of theoretical cryptography
- Largely a well-kept secret
SMC: the question
SMC: the question

- Collaboration without trust?
SMC: the question

- Collaboration without trust?
- Collaboration: compute on collective data belonging to different parties
SMC: the question

- Collaboration without trust?
- Collaboration: compute on collective data belonging to different parties
 - e.g. query with me, database with you
SMC: the question

- Collaboration without trust?

- Collaboration: compute on collective data belonging to different parties
 - e.g. query with me, database with you
 - e.g. query with me, encrypted database with you, key with someone else
SMC: the question

- Collaboration without trust?
 - Collaboration: compute on collective data belonging to different parties
 - e.g. query with me, database with you
 - e.g. query with me, encrypted database with you, key with someone else
 - Goal: Nothing should be revealed “beyond the result”
SMC: the question

- Collaboration without trust?
 - Collaboration: compute on collective data belonging to different parties
 - e.g. query with me, database with you
 - e.g. query with me, encrypted database with you, key with someone else
 - Goal: Nothing should be revealed “beyond the result”
 - “Ideally”: Use a trusted third party
SMC: the question

- Collaboration without trust?
 - Collaboration: compute on collective data belonging to different parties
 - e.g. query with me, database with you
 - e.g. query with me, encrypted database with you, key with someone else
 - Goal: Nothing should be revealed “beyond the result”
 - “Ideally”: Use a trusted third party
 - “Really”: Can’t agree on a trusted party. So...
SMC: the answer
SMC: the answer

- SMC protocol: among mutually distrusting parties, to emulate the presence of a globally trusted party
SMC: the answer

- SMC protocol: among mutually distrusting parties, to emulate the presence of a globally trusted party
- Numerous protocols in literature for various functionalities, in various settings
SMC: the answer

- SMC protocol: among mutually distrusting parties, to emulate the presence of a globally trusted party
- Numerous protocols in literature for various functionalities, in various settings
- Tools: Verifiable secret-sharing, homomorphic encryptions, commitments, ZK proofs, oblivious transfer, ...
SMC: the answer

- SMC protocol: among mutually distrusting parties, to emulate the presence of a globally trusted party
- Numerous protocols in literature for various functionalities, in various settings
 - Tools: Verifiable secret-sharing, homomorphic encryptions, commitments, ZK proofs, oblivious transfer, ...
- Simpler protocols if some trust already present
SMC: the answer

- SMC protocol: among mutually distrusting parties, to emulate the presence of a globally trusted party
- Numerous protocols in literature for various functionalities, in various settings
 - Tools: Verifiable secret-sharing, homomorphic encryptions, commitments, ZK proofs, oblivious transfer, ...
- Simpler protocols if some trust already present
 - “Honest-but-curious”
SMC: the answer

- SMC protocol: among mutually distrusting parties, to emulate the presence of a globally trusted party
- Numerous protocols in literature for various functionalities, in various settings
 - Tools: Verifiable secret-sharing, homomorphic encryptions, commitments, ZK proofs, oblivious transfer, ...
- Simpler protocols if some trust already present
 - “Honest-but-curious”
 - “Honest-majority”
SMC: the answer

- SMC protocol: among mutually distrusting parties, to emulate the presence of a globally trusted party
- Numerous protocols in literature for various functionalities, in various settings
 - Tools: Verifiable secret-sharing, homomorphic encryptions, commitments, ZK proofs, oblivious transfer, ...
- Simpler protocols if some trust already present
 - “Honest-but-curious”
 - “Honest-majority”
 - Simple (offline) trusted sources
SMC in GENI?
SMC in GENI?

- Where privacy is needed
SMC in GENI?

- Where privacy is needed
 - e.g. Measurement archives held by a *virtual* trusted party
SMC in GENI?

- Where privacy is needed
 - e.g. Measurement archives held by a *virtual* trusted party
 - Secure distributed storage and computation (secure unless all servers corrupt)
SMC in GENI?

- Where privacy is needed
 - e.g. Measurement archives held by a virtual trusted party
 - Secure distributed storage and computation (secure unless all servers corrupt)
 - May use “honest majority” in a federation
SMC in GENI?

- Where privacy is needed
 - e.g. Measurement archives held by a virtual trusted party
 - Secure distributed storage and computation (secure unless all servers corrupt)
- May use “honest majority” in a federation
- Provide SMC as an “experiment support service”?
SMC in GENI?

- Where privacy is needed
 - e.g. Measurement archives held by a virtual trusted party
 - Secure distributed storage and computation (secure unless all servers corrupt)
- May use “honest majority” in a federation
- Provide SMC as an “experiment support service”?
- SMC offers a whole range of novel applications