Security for High-end CyberInfrastructure: Lessons Learned

Randy Butler, Roy Campbell, Himanshu Khurana, Adam Slagell, Von Welch
National Center for Supercomputing Applications
and
Information Trust Institute
University of Illinois
Lessons Learned from...

Open Science Grid

GENI Security Workshop (Jan 2009) Von Welch <vwelch@ncsa.uiuc.edu>
GENI and previous CI

• Some key differences.
 - Heavy use of VLANs and VMs.
 - Jobs are more "experimental" and "deeper" in nature.
 • e.g., the networking infrastructure itself is open to experimentation

• Many similar challenges and goals.
 - Multiple, distributed organizations.
 - Distributed user community.
 - Availability and Integrity of resources.
 - Keeping user “jobs” isolated.
Some Lessons GENI Can Build On

- Your biggest security problems are the ones you don’t own.

- The hackers don’t care about your software.
 - The hackers don’t take the time to read the manual either.
 - It’s all the usual stuff - Password theft, scans getting lucky, PHP, mySQL, kernel vulnerabilities, etc.
 - So far... the day may come, but it has been “coming” for a while.

- End user workstations are the biggest entry point for attacks.
Lessons

• Preparation and planning for incident response is critical.
 - Flowcharts.
 - Dry-runs and exercises.
 - Make sure you are doing the right logging and auditing.

• Plan for collaboration during an incident.
 - How will responders communicate with each other?
 - Who communicates with media? NSF? Users?
 - How do responders securely share data, correlate events, etc.
Lessons

• Getting agreement on security issues is hard
 - Need to include all the stakeholders.
 - Inevitably someone will have a problem with everything.

• Other Issues:
 - Handling software vulnerabilities is a constant distraction.
 - Don’t underestimate value of training.
 • Of users, administrators and management.
 - Centralization versus decentralization of control.
 • Often move to the former as trust grows.
Opportunities with Virtualization

• VMs:
 • Better job isolation and lower level monitoring.
 • Can suspend and capture suspicious jobs.

• VLANs:
 • Better isolation of job traffic from “Internet background noise” allowing for better IDS through reduced false positives.

• All require tighter integration of security tools with VM/VLAN technologies than is typical today.