

Preventing Denial of Service Attacks on Quality of Service

Errin Fulp1, Zhi Fu2, Douglas S. Reeves2, S. Felix Wu3, and Xiaobing Zhang4

1 Dept. of Computer Science, Wake Forest University
2 Depts. of Computer Science and Electrical and Computer Engineering, N. C. State University

3 Dept. of Computer Science, U. of California at Davis
4 Ericsson

fulp@wfu.edu, {zfu, reeves}@eos.ncsu.edu, wu@cs.ucdavis.edu, xzhang2@eos.ncsu.edu

Abstract

Capabilities are being added to IP networks to
support Quality of Service (QoS) guarantees. These
guarantees are needed for many applications such as
voice and video transmission, real-time control, etc.
Little attention has been paid to making these
capabilities secure; in their present form they are
vulnerable to attack. The ARQoS project is examining
these vulnerabilities, and ways to prevent denial of
service attacks on Quality of Service capabilities. In
this paper, we describe two important parts of the
project.

The first part is the application of a pricing
paradigm to resource allocation. User acquisition of
network resources must be authorized, and the relative
amount of resources that can be requested is carefully
controlled. We present a distributed method of pricing
which is highly flexible and responsive to changing
conditions. Experimental results illustrate its
effectiveness.

The second part is the detection of TCP dropping
attacks by compromised routers. The detection occurs
at the end system and does not require any cooperation
from the network. We have enhanced a method of
statistically analyzing traffic patterns to detect dropping
attacks. The method has been implemented and tested
over the Internet; results are presented.

1. Introduction

Quality of service (QoS) is an emerging capability
for IP networks. The usual components of QoS are an
upper bound on the end-to-end delay and the delay
variation (or jitter), and an upper bound on the packet
loss or error rate. We believe that another dimension of
QoS should be security (prevention and/or detection of
attacks), which is the focus of the ARQoS project.
(ARQoS is a play on the name “Argus”, who was a

creature from Greek mythology assigned by the gods to
be a watchman.)

The addition of QoS will mean that IP networks can
support a much broader range of such applications as
voice and video transmission (both interactive and non-
interactive), real-time distributed simulation and
control, collection of data from sensors, and others.
There are powerful incentives for supporting these
applications and converging on a single networking
infrastructure, including efficiency and cost, ease of
management, accelerated deployment of the latest
commercial technology, and the potential for creating
applications that integrate communication and
computing. Many of these benefits are relevant in a
military environment.

Providing QoS requires network support at the
packet level, and at the connection level, where a
connection is the entire sequence of packets transmitted
by an application to a receiver or receivers. Packet-
level functions include scheduling / multiplexing, traffic
shaping or smoothing, policing, packet dropping, and
congestion control, while connection-level functions
include signaling, admission control, routing, and
resource reservation.[1] In our context, a network
resource can mean link or switch bandwidth, buffer
space, scheduling priority, server access, etc.

Figure 1 shows a typical IP network configuration
that might support QoS. In this figure, a distinction is
made between access networks, which have lower
bandwidths and traffic volumes, and core networks,
which have much higher bandwidths and must handle
much greater traffic volumes. Because of this
distinction, different protocols and technologies are
used in access and core networks. For access networks,
the Resource Reservation Protocol (or RSVP) [2] has
been proposed as the fundamental means of ensuring
QoS, while in the core networks, the major protocol is
Differentiated Services, or DiffServ.[3]. RSVP is a
means of reserving resources for individual connections
(also called microflows), and can provide very strong
guarantees of resource availability and QoS.

Figure 1: IP network supporting QoS

DiffServ aims to allocate resources and control QoS

for aggregations of connections (also called a flow), and
as such is considered to require less overhead and be
more scalable than RSVP.

The importance and accessibility of the network
infrastructure will soon make it a tempting target for
attack. In light of that, it is wise to regard any new or
proposed network capability as a potential vulnerability,
and to design in security at an early stage. This has not
been the case for QoS mechanisms, however, and must
now be addressed. We classify vulnerabilities and
attacks into two categories:
• Those acting at the connection level to interfere

with the functions mentioned above (signaling,
admission control, etc.). We refer to these as
attacks on the control flow.

• Those acting at the packet level to interfere with the
functions of scheduling, shaping, packet dropping,
etc. We refer to these as attacks on the data flow.
The methods for responding to attacks can be

categorized as prevention, detection, counter-attack, or
recovery. The goal of the ARQoS project is to prevent
and/or detect control and data flow attacks on QoS
mechanisms. Our target network technology is the
Internet. The project has many parts or sub-goals. In
this paper, we focus on two of those parts. One of them,
resource pricing, is intended to prevent attacks on the
control flow. The other, analysis of TCP dropping
attacks, is aimed at detecting attacks on the data flow.
These two major parts will illustrate the breadth of the
project, important ideas behind our work, and the
progress made so far.

2. Resource pricing

A necessary step in providing QoS is allocating

network resources to meet the needs of applications.
There are many ways in which this process can be
subverted. As an example, if there is no authorization

process in place, and no means for controlling the
allocation amount, any user may request and reserve
any amount of resources they wish. Another example is
to forge, delete, or illegally modify a reservation
message so that an unauthorized amount of resources is
received, or access is denied to an authorized user. In
this section, we address the first issue of authorizing and
controlling resource allocation via resource pricing.

A set of users wishes to share a resource (or
resources). The amount of the resource has been
previously fixed, and there may be an insufficient
quantity of the resource for every user to get as much as
desired. In this case, a method of allocating the
resource to satisfy some external goal must be devised.
To this end, a price per unit of resource is calculated and
made known to the users. Each user u has a fixed
budget bu with which a resource r at price pr per unit
can be purchased. The user can afford at most bu / pr
units of resource at this price. If resources cannot be
stored and sold at a later time, an obvious goal is to set
the price low enough such that as much of the resource
will be sold as possible at the time it is available. A
budget can be thought of simply as an indication of the
relative resource amounts that users may obtain; all
other things being equal, a user with twice as large a
budget as another will be able to obtain twice as much
resource. While the means of determining and
distributing user budgets is outside the scope of our
work, we note that it could be based on many factors,
including the ability to pay, urgency or importance of
function, degree of trust, etc.

Our method is based on the notion of demand-
based pricing. The components of the method are 1)
measurement of demand; 2) price calculation; and 3)
price distribution. Since resource demand is based on
price, and price is calculated from demand, a feedback
system results. This process can be iterated to reach an
equilibrium point that has desirable properties, such as
satisfying a target resource utilization. The iterative
measurement of demand, followed by computing a new

price, etc., until equilibrium is reached, is termed a
tatonnement process [4]. In our work, the tatonnement
process has the following form:

pr
i+1 = pr

i · dr
i / (a · sr)

where pr
i and pr

i+1 are the price of resource r in the ith
and i+1th iterations, respectively, dr

i is the measured
demand for resource r during the ith iteration, sr is the
supply of resource r, and a is a constant less than 1.
The purpose of a is to increase prices before utilization
reaches 100%. It can be shown that a tatonnement
process will result in an allocation that is Pareto-
optimal. An allocation is Pareto-optimal if no user can
get a greater amount of resource without another user
receiving a smaller amount of the resource.

When there is one user u with budget bu and one
resource r available in quantity sr, the simplest possible
case, the equilibrium result is a price pr such that
demand for the resource by that user equals the supply.
When a set of users U compete for a single resource r,
and each user u ∈U has budget bu, at equilibrium the
total demand equals the supply, and users are allocated
resource amounts in proportion to their budgets. The
budgets can be viewed as weighting factors in allocating
the resource among the users.

Now consider the case where the users desire
multiple resources. In our discussion, we assume that
user u demands the same amount of each resource. This
is the case for bandwidth allocation, for example, where
a connection requires the same bandwidth on every link
it traverses. Let R be the set of all resources, and Ru be
the set of resources demanded by user u ∈ U. Then a
tatonnement process may be executed independently for
each resource r to reach an equilibrium price for that
resource.

Let r’u be a resource in Ru whose equilibrium price
is greater than or equal to that of any other resource in
Ru. r’u is called a limiting resource for user u. Given
that the user has one budget bu, but faces |Ru| resource
prices, one for each resource it needs, how is the budget
to be allocated? The answer to this question determines
the type of fairness that the resource allocation policy
implements. One important form of fairness, frequently
advocated for network congestion control, is max-min
fair: users who are resource-limited by the same
resource will share in that resource equally. A more
general form of fairness is weighted max-min fair; if
users u and v have weights wu and wv respectively, and
r’ is a limiting resource for both u and v, then the ratio
of resources allocated to u and v is equal to wu / wv. We
can achieve both max-min fairness and weighted max-
min fairness with pricing, in the following way. Each
resource executes an independent tatonnement process
to compute its equilibrium price. A user u for which r’u
is a limiting resource is allocated bu / pr’ of every
resource r ∈Ru. Thus, the price charged to u is equal to

the price of the most expensive resource u requires, and
the amount of resource allocated is proportional to u’s
budget (i.e., its weight). Under these conditions, it can
be shown the system will result in a weighted max-min
fair allocation; when the budgets of all users are the
same, the allocation is simply max-min fair.

Another important form of fairness is proportional
fairness. Suppose the relative change for a user u
between one set of resource prices and another is equal
to the change in its allocation amount, divided by the
allocation amount (i.e. if u can afford 4 units of resource
under one set of prices and 5 units under another, the
relative change is (5-4)/4 = .25). Informally, a price
assignment is proportionally fair if the sum of the
relative changes for all users between this price
assignment and any other price assignment is less than
or equal to 0. Similar to max-min fairness, there is a
weighted version of proportional fairness. Proportional
fairness is important because, among other things, it is
the form of fairness exhibited by TCP congestion
control. If we compute prices for each resource
independently, but allocate resources such that user u is
allocated bu / (Σr ∈ Ru pr) then it can be shown that the
resulting allocation is weighted proportionally fair. A
formal statement of these properties, and their proofs,
may be found in [5].

A common notion in economics is the utility curve.
A utility curve is a function relating resource allocation
to the degree of utility or satisfaction experienced by the
user. There are many forms of utility, but a common
case is that utility is monotonically non-decreasing in
allocation amount. It is possible and even likely for
each user to have a unique utility curve representing that
user's particular valuation of resources. For example, a
user using a network for voice transmission would
normally be satisfied with a much lower resource
allocation than a user who was transmitting a video.
Two other forms of fairness may now be defined. An
allocation is equitable if users who are resource-limited
by the same resource enjoy the same degree of utility,
i.e., are equally satisfied with their allocation.
Secondly, an allocation is utility-maximizing if it results
in the maximum aggregate utility (sum of the utilities of
the users of the network) of all possible allocations. It
can be shown that our pricing method can accomplish
either of these fairness goals. Again, details may be
found in [5].

We have described above how prices are calculated.
Other important issues are how to measure demand,
since the tatonnement process uses that as an input, and
how to distribute prices to the users. The tatonnement
process itself is a simple computation, so the speed with
which equilibrium is achieved will depend mainly on
the number of iterations required, and the time required
to distribute prices and measure the change in demand.

Convergence time is important in an environment where
demands and/or resource availability can change
frequently and rapidly, which is the case in computer
networks. We address these issues below.

There are many benefits of the pricing approach
that has just been presented. Foremost among them is
flexibility. Using one mechanism for budget
assignment, price adjustment, demand measurement,
and price distribution, we can implement an abundance
of different allocation policies. Ours is the most flexible
method known in this regard. We believe this is a major
benefit for network operation in a variety of different
environments. In the section below on experimental
results, we demonstrate that our pricing method is also
fully distributed (scalable), is robust, adapts quickly to
changes, has low overhead, and results in efficient
resource usage.

Our work is based on results from microeconomics
[6]. There have been other proposals to apply
microeconomics to allocation of network resources,
including [7] [8] [9] [10] [11]. The differences of our
work with those include:
• Our method regards fairness as a policy; we present

a mechanism that can support a variety of fairness
goals, or policies.

• Our method is fully distributed and has been shown
to converge quickly under dynamic and realistic
network conditions.

• Our method makes no assumptions about the type
of traffic allowed, and supports a more general
model of user behavior.

• As discussed below, our model is the only one to
support both reserved and dynamic resource
pricing.

2.1. Implementation and experimental results

Pricing can be used to dynamically determine the

appropriate transmission rate for connections using a
network. For ATM networks, this is the purpose of
ABR rate control, while for IP networks, it is the
function of TCP congestion control. We simulated rate
control for ATM networks using our pricing
mechanisms; our implementations, and the results, are
presented here.

Traffic loads for the ATM ABR class may be
frequently changing as new connections start, old
connections stop, and the transmission requirements of
existing connections change (due, for instance, to the
variable bit rate output by a codec). A method of
pricing must converge quickly to an equilibrium value
under these circumstances. Our first experiment
simulated a set of 20 users competing for a single
resource. All user budgets were equal, but the user
demands were randomly and uniformly distributed.

Starting from an initial price, the tatonnement process
was executed until equilibrium was achieved. This
process was repeated 10,000 times; the results are
summarized in Figure 2. The x-axis in this figure
measures the ratio of the initial price to the equilibrium
price, and varies from .01 to 100. The y-axis indicates
the number of iterations required for convergence; the
average and 95% confidence intervals are shown. From
this example it may be seen that convergence occurs
very quickly, typically requiring only a few iterations.

Figure 2: Dependence of convergence time

on the initial price estimate

Our second experiment investigated the ability of

our pricing method to achieve fair allocations in a
complex network, with rapidly varying traffic
conditions. For an experimental network, we used a
benchmark proposed by the ATM Forum [12] for
investigating resource allocation methods. It models
substantial competition between users with differing
routes and widely varying propagation delays. The
traffic source for each user was taken from a set of
actual MPEG VBR video traces. There were two
groups of users; budgets for user group #1 were set to
twice the budgets of users in group #2. Traffic demand
on each link was measured and a new price computed
every 10 ms. Prices were distributed to the users using
ATM RM cells (already standardized for explicit rate
allocation). We are interested in the utilization of link
bandwidth, and the fairness of the allocation. The
fairness of the allocation is measured according to the
fairness index, which measures how far from optimally
fair an allocation is. A measurement of 1.0 indicates
complete fairness, while 0.99 has been proposed as the
appropriate definition of "fair".
The results are shown in Figure 3. In the first case, the
goal of the price computation was a weighted max-min

fair allocation; in the second case, the goal was a
weighted proportionally fair allocation. From these
results, it may be seen that utilization was very high,
and the allocation was always fair. These results are
extremely encouraging, given that they incorporate the
characteristics of real networks and actual traffic.
Details may be found in [5]. In summary, advantages
are:
• The price calculation and allocation is fully

distributed. This bodes well for scalability and
robustness. There is no synchronization among
users, or in the computation of resource prices.

• Overhead is low, involving demand measurement, a
simple iteration, and distribution of prices. The
distribution of prices in the example above would
require less than 1% of the bandwidth of the data
traffic.

• Efficient and fair resource utilization.
• Rapid adjustment to changing conditions.

Figure 3a: Weighted max-min allocation

Figure 3b: Proportionally fair allocation

2.2. Pricing of reserved resources

One shortcoming of the pricing method as

presented is that while utilization, fairness, and resource
access are stable, prices are not. This means the
allocation per user changes dynamically, as is normally
the case with reactive congestion control. Applications
desiring a stable resource allocation may not be able to
tolerate such fluctuations in price and resource
allocation amount.

To deal with this problem, prices must be computed
over longer intervals of time. A demand-based price
computation must then address the issue of predicting
demand over an interval. There are numerous bases for
predictions, including past measurements of demand
(possibly over long periods of time), current demand,
and auctions. Prediction of demand is outside the scope
of our project, but implementing stable pricing is within
scope. The result of fixed prices is that resources are
reserved for use once they are acquired. New users may
thus find they are denied admission to the network

because there are insufficient resources not already
reserved.

In our work, we are interested in a two-price model,
where one set of prices are based on predicted demand,
and another set of prices are based on current
(instantaneous, or immediate) demand. Prices of
resources whose demand is predicted will remain stable
for the specified interval, while those based on current
demand are free to vary. Users wishing to acquire
resources may do so from either pool. The preference
of users for resources with stable prices over resources
with varying prices can be expressed by means of an
indifference curve, a common concept in economics [6].
This allows optimization of resource allocation
according to the preferences of users. In general, it
should be expected that prices for reserved resources
will be higher than those for variably-priced resources.

We implemented the two-price model on the same
ATM network used in the previous experiment.
Reserved prices were computed based on predicted
demand, and any resource not actually purchased at the
reserved price was available at a price based on the
immediate (and varying) demand. Users were
categorized as those who prefer reserved prices, or
those who prefer cheaper prices. The results are shown
in Figure 4. From this figure, it may be seen that
utilization is high, the allocation method is responsive to
changing demands and reaches equilibrium quickly, and
the price of reserved resources is normally less than the
price of "spot" resources (those computed from
immediate demand).

Figure 4: The two-price model.

This version of pricing (that supports the two-price

model) supports users with varying preferences for
stability vs. maximum resource amount. We discuss
next an application in which reservations are desirable.

2.3. Application to RSVP

Pricing is an appropriate method of resource

allocation for individual connections when those
resources are reserved in advance. As mentioned,
RSVP is a well-known method of resource reservation
for individual connections. Figure 5 depicts a typical
configuration for an RSVP-enabled network. In this
diagram, a reservation message from source to
destination is transmitted using RSVP. At each router,
this message is intercepted and a policy request is made
using the COPS [13] protocol. The COPS request is
handled by a policy server and an admission control
decision is made by that server. If the decision is
positive, the response to the router indicates that
resources should be reserved for the requesting
connection, and the RSVP reservation message is
propagated onwards to the next router. If the decision is
negative, the response from the policy server is
propagated to the user to indicate that admission is
denied, and no reservation is established. The
vulnerability in this scheme is that there is no incentive
for users to limit their requests. The policy server lacks
the information needed to distinguish or discriminate
between users, and to allocate resources fairly when
they are scarce. The result is that reservations can
easily be used to acquire (and waste) resources
unnecessarily.

Figure 5: RSVP / COPS interaction

We propose to use pricing to improve this situation.

The protocol changes we are proposing and
implementing are illustrated in Figure 6.

Figure 6: RSVP/COPS and other infrastructure for pricing

The changes we propose are as follows:
1. A user wishing to reserve resources contacts an

authorization server to receive authorization. We
suggest the use of SIP (Session Initiation Protocol)
for this purpose. The authorization server responds
with a signed policy object that verifies the ability
of the user to pay a specific price.

2. This signed policy object is included in the RSVP
message by the sending application.

3. When the RSVP reservation message is intercepted,
the policy object is copied into the COPS request
message. The policy server can then consider this
information, and current resource prices, in making
the admission control decision.

4. The response to the user includes the price being
charged for the resource. The user can propagate
this information back to the authorization server if
desired.
The changes required are generation at the

connection server of signed policy objects, attachment
of the object to RSVP and COPS messages, and
attachment of the price to the policy server's response.
We are currently investigating which signature
mechanism is the best choice in terms of scalability and
security. The major benefit of the proposed approach is
that it allows a high degree of independence between
the connection server and the policy server.
Communication between them is conducted using
existing protocols, and neither must know the identity or
location of the other.

We believe the work done on pricing is a valuable
part of preventing denial of service on quality of service
mechanisms. The method we have presented is highly
flexible, and is practical to use in large networks. Most
importantly, perhaps, is that it gives incentives to users
to user resources responsibly, and provides
disincentives for fraudulent use of resources.

3. Detection of TCP packet dropping

attacks

Among the various types of denial of service (DoS)

attacks, the packet dropping attack is one of the most
difficult to handle. As part of the ARQoS project we
have studied the impact of packet dropping attacks on
network quality of service, and methods of detecting
such attacks. A compromised router (one which has
been hacked) can choose different dropping patterns to
degrade TCP service by varying degrees; selectively
dropping a very small number of packets can result in
severe damage to TCP performance. Three packet
dropping patterns have been investigated: periodic,
retransmission-based, and random. We describe a
statistical analysis module (a SAM) for the detection of

TCP packet dropping attacks. This analysis module
focuses on how to effectively distinguish normal packet
dropping (due to TCP behavior [15]) from malicious
dropping. The metrics of average packet delay (the
delay metric), the position or sequence number of
reordered packets (the position metric), and the number
of packets reordered (the number metric), have been
used for purposes of detection. We have evaluated and
compared the effectiveness of this approach through
experiments involving four FTP sites accessed across
the Internet.

3.1. Dropping Patterns

The victim under a particular dropping attack may

be any TCP connection; in our experiments, we have
studied only FTP connections. An FTP connection that
is attacked is called a victim connection, and packets
dropped by an attacker are called victim packets. We
classify packet dropping patterns as follows.
1. Periodic packet dropping (PerPD): Packets are

periodically dropped in a connection according to 3
parameters symbolized by K, I, and S. K is the total
number of victim packets in the connection. I is the
interval between two consecutive victim packets,
and S is the position of the first victim packet in the
connection. In this pattern, every packet is counted,
including retransmitted packets.

2. Retransmission packet dropping (RetPD): In this
attack, the attacker always drops the
retransmissions of a specific packet. Two
parameters K and S are defined for this pattern. S
denotes a specific victim packet. K denotes the
number of times this packet (including
retransmissions) is dropped. When a retransmitted
packet is dropped, TCP retransmits again only upon
expiration of the retransmission timer, and enters
the slow start phase of operation. For each
retransmission, the retransmission timeout value
(RTO) is doubled, with an upper limit of 64
seconds. This doubling is called exponential
backoff. We can infer that after a few consecutive
unsuccessful retransmissions, the sender has to wait
a long period of time before attempting a new
retransmission.

3. Random packet dropping (RanPD): Attackers
randomly choose up to K packets to drop in a
connection. Since this kind of attacks behaves more
like normal packet dropping in the Internet, it may
be expected that the fast retransmit and recovery
mechanism [15] of TCP will work effectively in
response to packet loss. From this point of view, we
would expect that random dropping has limited
impact on TCP’s performance, compared with other
dropping patterns.

3.2. Empirical study of impacts of packet

dropping attacks

In order to investigate the impact of packet

dropping attacks, we performed a series of experiments
using different dropping patterns. All experiments were
based on FTP bulk data transmission from servers to
clients. File transfers were conducted between 4 client-
server pairs in the Internet; the client was located in our
lab at N. C. State University, while the servers were
located in the U.S., Europe, and Asia (see Table 1). The
data file used for transfer was an identical, mirrored file
of size 5.5 MB.

Table 1: FTP sites used in the experiments

The client ran under Linux 2.0.36 with IP firewall

and divert socket support. In order to simulate an
attacker, a program named attack-agent was executed on
each client. For every arriving FTP data packet, the
attack-agent captured it through a divert socket, and
then released or dropped the packet according to a
predefined dropping pattern.

Figure 7: Connection delay for the NCU site
under three dropping patterns

Figure 7 evaluates the impacts of three dropping
patterns for the NCU site (National Central University
in Taiwan). Other sites show similar behavior under
these attacks. It is clear from the Figure 7 that given the
same number of victim packets, the retransmission
packet dropping attack interferes the most with TCP
performance.

3.3. Intrusion detection for malicious packet

dropping

In this section, we describe the design and

implementation of our statistics-based intrusion
detection tool. This tool runs at the FTP client site, to
determine whether a particular TCP flow is
experiencing a malicious dropping attack or not.

SRI’s NIDES/STAT [16] algorithm monitors a
subject’s (either a user or a software program) behavior
on a computer system, and raises alarm flags when the
subject’s current (short-term) behavior deviates
significantly from its expected behavior. The expected
behavior is described by its long-term profile. The
NIDES algorithm is based on a χ2-like test for
comparing the similarity between the short-term and
long-term profiles. We now briefly describe this
algorithm.

Let the current system behavior be a random
variable under the sample space S. Events, E1, E2 … En,
represent a partition of S, where these n events are
mutually exclusive and exhaustive. Let p1, p2 … pn be
the probabilities of occurrence corresponding to events
E1, E2 … En. The system behavior is sampled N times,
where N is a large number. Let Yi represent the number
of occurrences of event Ei in these N experiments. Thus,
we have pi=Yi/N, where 1

1
=∑ =

n

i ip .

A short-term profile is taken from a smaller number
of measurements N’. Yi’ is the number of occurrences
of event Ei in these N’ experiments, and NYp ii ′′=′ / .
To determine whether a short-term profile has a similar
probability distribution with the corresponding long-
term profile, the following hypothesis is tested [17]:

not true is :

21 ,:

01

0

HH

, ..., n, ippH ii ==′

Define Q to be a measure of similarity, as follows:

∑
= ×′

×′−′
=

n

i i

ii

pN
pNY

Q
1

2

)(

Intuitively, Q measures the closeness of the observed
(short-term) probability distribution to the expected
(long-term) distribution. A small Q favors the
hypothesis H0, while a large Q favors H1. If
independence is assumed between events Ei, and the
experiments are carried out independently, it has been

Name FTP Server / IP
Address

Location

Heidelberg ftp.uni-
heidelberg.de

129.206.100.134

Europe

NCU ftp.ncu.edu.tw
140.115.1.71

Asia

SingNet ftp.singnet.com.sg
165.21.5.14

Asia

UIUC ftp.cso.uiuc.edu
128.174.5.14

North
America

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35

Number of victim packets

S
es

si
on

 d
el

ay
 (s

)

PerPDA

RanPDA

RetPDA

proved that, for a large N’, Q has an approximate χ2

distribution with n-1 degrees of freedom. To get an
accurate approximation, it is suggested that N’ should
be larger than 50 and (N’ × pi) should be larger than 5.
Otherwise, several ‘rare’ events should be merged
together to form a new event such that (N’ × pnew) will
exceed 5, where pnew denotes the probability for the
merged event.

Let q be an instance of Q, and α be the desired
significance level of the test. If Prob(Q> q) < α , or

2
)1(, −> nq αχ , the hypothesis is rejected. In the context

of our application, it means that the short-term profile is
statistically significantly different from the
corresponding long-term profile, leading to the
conclusion that anomalous behavior has occurred. In
drawing this conclusion, two kinds of errors may occur.
A Type I error means that the hypothesis is true, but
was rejected according to the test. A Type II error
means that the hypothesis is false, but was accepted as
true by the test. The frequency of occurrence of Type I
errors is also referred to as the false positive rate, while
the frequency of occurrence of Type II errors is referred
to as the false negative rate.

In practice, however, the assumption of
independence between events may not hold true. As a
result, Q may not have a χ2 distribution. The
NIDES/STAT algorithm proposes to empirically
measure the probability distribution of Q. This
distribution of Q values for the short-term
measurements, along with the distribution of the
system’s long-term behavior (i.e., p1, p2 … pn), is
saved in a profile. This profile is updated per
UPDATE_PERIOD (24 hours in NIDES) in a real-time
operation.

Training is the process by which the statistical
component learns the normal behavior for a subject. In
NIDES/STAT, the long-term profile training consists of
three phases: Category training (learning the subject’s
expected behavior, i.e., the probabilities of events, Ei.),
Q training (learning the empirical distribution of Q
through a sequence of short -term measurements) and
threshold training (establishing an appropriate threshold
for detecting anomalous behavior).

3.4. Experiments

We implemented a method of detecting packet

dropping attacks which was based on the statistical
analysis methods of SRI’s NIDES/STAT. We call our
method TDSAM, for TCP dropping statistical analysis
module. In our method, three metrics  total ftp
connection delay, the position of packet reordering, and
the number of packet reorderings per connection 
were used as input to the statistical analysis model for

intrusion detection. We hypothesized that the
connection delay, the position and number of packet
reordering would all deviate significantly from their
corresponding normal patterns [18] under a dropping
attack. The reasons for using packet reordering rate vs.
packet loss rate are that (1) dropping packets usually
results in packet reordering, and (2) at the receiver side,
packet losses are difficult to measure reliably. While a
server (sender) can easily detect data packet loss by
noticing a retransmission of the packet, a client
(receiver) cannot be sure of a packet loss unless the
sender informs it of the transmission. In our experiment,
however, receivers did not have such information.

To detect an out-of-order packet, the receiver
records the sequence number of the last-received non-
reordered packet; this is denoted as Seqmax. For each
arriving packet, if its sequence number is larger than
Seqmax (with wrapping comparison), the packet is
considered non-reordered, and Seqmax is set to the
sequence number of this arriving packet. Otherwise, we
test if the arriving packet has been received before. If
not, it must be out of order. Otherwise, it is a redundant
retransmission, possibly caused by an ACK loss, coarse
feedback, or an invalid retransmission timeout. Note
that we do not count this as reordering in our
experiment. For instance, if 5 packets, P1, P2 … P5, are
sent in sequence and received in the order, P1, P2, P3, P5,
P4, then we say that P4 is an out-of-order delivery.

For each FTP site, an experiment was conducted,
consisting of 4 steps: (1) normal (non-attacked) long-
term profile establishment, (2) normal (non-attacked)
short-term Q distribution measurement, (3)
measurement of short-term profiles while under attack
(according to different dropping patterns), and (4)
intrusion detection using our statistical analysis module,
TDSAM. We now describe steps (1) and (2) in more
detail, using just the position metric as an example.
Long-term Profile Establishment: We formed the
long-term profile by running 20000 FTP connections
consecutively. For each FTP connection, the observing
window covered all data packets. The window was
evenly divided into n bins, numbered from 0 to n-1. For
example, if a connection transmitted 4000 packets and
n=5, then the observing window ranged from 1 to 4000
and the bin-width = 800 packets, with bin0 = [1, 800],
bin1 = [801, 1600], … and bin4 = [3201, 4000].

In each connection, the position of reordered
packets was measured. Let Counti represent the number
of out-of-order packets whose sequence number fell into
the ith bin. We summed up the Counti for all the FTP
connections and calculated the probability of each bin as
follows:

10 /
1

0
−≤≤= ∑

−

=
niCountCountp

n

k
kii

Q Distribution Measurement: A Q value was
calculated by comparing the short-term profile with the
long-term profile. The short-term data were collected
from 5000 FTP connections. Information about an FTP
connection was defined as a record, grouped into record
sets. Multiple consecutive records were accumulated
until a record set satisfied the requirements of a Q test.
These requirements included that (1) the total number of
records N’ in the set should be larger than 50; (2) for
each bin, the value, ipN ×′ , should be larger than 5. For
each such record set, a Q value was calculated.

Qmax was defined as the maximum Q value
calculated from any of the record sets. The distribution
of Q values from 0 to Qmax was divided into 32 intervals,
and the frequency of each interval was obtained. The
resulting Q distributions are shown in Figure 8, for the
case where 5 bins were used. We see that the last
several intervals in the Q distribution have small tail

probabilities. If a Q value falls into one of these
intervals, this means that the corresponding short-term
behavior deviates significantly from the normal
behavior.

3.5. Results

After establishing the long term profile and

measuring the Q distribution, we subjected the ftp
connections to attack using our attack agent. An
important value called the red threshold was defined for
the Q distribution. The value of this threshold was set to
.01 in our experiments. If a test generates a Q value
whose probability is less than this threshold, according
to the Q distribution, TDSAM will raise an alarm. This
alarm indicates that an attack has been detected.

In Tables 2, 3 and 4, due to limited space, we only
show the intrusion detection rate (DR). The “normal”
case is one in which no attack in fact occurred. In this
case, DR represents the false positive rate, and there are
no false negatives. The other cases are different
instances of attacks. In these cases, DR is the true
positive rate, and (1-DR) is the false negative rate.

Table 2 summarizes the intrusion detection results
using the position metric (position of reordered
packets), Table 3 shows the results using the number
metric (number of reordered packets), and Table 4
shows the results using the delay metric (average packet

Heidelberg

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35
Q bins

P
ro

ba
bi

lit
y

NCU

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35
Q bins

P
ro

ba
bi

lit
y

SingNet

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35
Q bins

P
ro

ba
bi

lit
y

UIUC

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35
Q bins

P
ro

ba
bi

lit
y

Figure 8: Q distribution for position measure, when nbin=5

delay). In these tables, the parameters of the periodic
(PerPD) attacks are the total number of dropped
packets, the spacing between dropped packets, and the
position of the first packet to be dropped. For the
retransmission (RetPD) attacks, the parameters are the
number of times one packet will be dropped, and the
position of that packet. For the random (RanPD)
attacks, the sole parameter is the total number of
dropped packets. The parameter nbin refers to the
number of bins used in the long-term measurement.

The results show that TDSAM has a high detection
rate for most periodic dropping attacks. This is because
normal packet reordering nearly uniformly distributes
across a connection, but periodic dropping attacks
usually generate an extremely different packet
reordering distribution. For instance, the long-term
profile of the Heidelberg site is: p1=0.194339,
p2=0.200759, p3=0.197882, p4=0.204260, p5=0.202760,
where nbin=5 and bin-width = 800. The PerPD (20, 4,
5) attack drops packets only in the first 85 packets,
resulting in a large number of occurrences of packet
reordering in the first bin. Under the attack, the
corresponding distribution reordering becomes:
p1=0.837264, p2=0.039390, p3=0.043192, p4=0.041045,
p5=0.039109.

Table 2: Detection rates for the position
metric

Position
nbin=5

Dropping
pattern

Heidel-
berg

NCU Sing-
Net

UIUC

Normal* - 4.0% 5.4% 3.5% 6.5%

PerPD (10,4,5) 99.7% 100% 100% 100%
 (20,4,5) 100% 98.1% 99.2% 100%
 (40,4,5) 96.6% 100% 100% 98.5%
 (20,20,5) 100% 100% 100% 100%
 (20,100,5) 98.9% 99.2% 99.6% 99.1%
 (20,200,5) 0% 76.5% 1.5% 98.3%
 (100,40,5) 0.2% 0% 0% 100%

RetPD (5,5) 84.9% 81.1% 94.3% 97.4%

RanPD 10 0% 42.3% 0% 0%
 40 0% 0% 0% 0%

5 98.6% 100% 98.2% 100% Intermittent
(10, 4, 5) 50 34.1% 11.8% 89.4% 94.9%

Table 3: Detection rates for the number
metric

Position
nbin=10

Dropping
Pattern

Heidel-
berg

NCU Sing-
Net

UIUC

Normal* - 5.6% 6.1% 2.8% 4.5%

PerPD (10,4,5) 100% 100% 100% 100%
 (20,4,5) 99.2% 98.7% 100% 100%
 (40,4,5) 97.3% 100% 99.6% 100%

 (20,20,5) 100% 100% 100% 100%

 (20,100,5) 100% 100% 98.9% 99.6%
 (20,200,5) 65.1% 90% 0.6% 99.1%
 (100,40,5) 4.5% 0% 0% 100%

RetPD (5,5) 97.5% 94.4% 95.7% 100%
RanPD 10 0% 76% 0% 19.1%

 40 0% 0% 0% 18.2%
5 100% 100% 100% 100% Intermittent

(10, 4, 5) 50 52.9% 22.1% 71.8% 96.2%

Table 4: Detection rates for the delay metric

Position
nbin=20

Dropping
pattern

Heidel-
berg

NCU Sing-
Net

UIUC

Normal* - 15.6% 9.0% 1.6% 5.8%
PerPD (10,4,5) 100% 100% 100% 100%

 (20,4,5) 100% 97.5% 98.3% 99.2%
 (40,4,5) 96.4% 100% 100% 100%
 (20,20,5) 100% 100% 100% 100%
 (20,100,5) 100% 99.1% 99.2% 100%
 (20,200,5) 0.7% 83.2% 0% 99.5%
 (100,40,5) 3.6% 0% 0% 100%

RetPD (5,5) 100% 92.8% 95.8% 100%
RanPD 10 0% 27% 0% 37.4%

 40 0% 0% 0% 16.2%
5 100% 100% 100% 100% Intermittent

(10, 4, 5) 50 83.8% 50.3% 98.5% 100%
* False positive rate for normal cases

Comparing against the long-term profile, the

TDSAM can easily detect such deviation and raise
alarm. However, it is hard for the position metric to
detect an attack that generates a distribution of packet
reordering similar to the long-term profile. In this case,
we say that the short-term distribution is long-term-
profile-like. Note that for the Heidelberg, NCU and
SingNet sites, the number of total data packets
transmitted in a connection is about 4000. Therefore, the
dropping patterns, (20, 200, 5) and (100, 40, 5), evenly
distributing the victim packets over the connection, may
generate a long-term-profile-like distribution.
Consequently, their Q values could be too small to raise
alarm. From Table 2, we see that the false negative rate
(miss rate) of the TDSAM for such kind of attacks can

be as high as 100%. For the NCU site, the high
detection rate found for the PerPD attack pattern (20,
200, 5) is because the normal distribution of packet
reordering is not uniform. For the UIUC site, the
number of data packets transmitted was high (11300).
The two attack patterns, (20,200, 5) and (100, 40, 5), do
not generate an even distribution in this case. Instead,
all victim packets fell into the first 2 bins. Therefore, the
corresponding detection rates are also very high.

The results also demonstrate that the TDSAM
performs poorly at detecting random packet dropping
attacks. Such attacks generate a nearly even distribution
of packet reordering in aggregate. Since the distribution
is long-term-profile-like as well, TDSAM using the
position metric can be easily fooled. It appears that
increasing the number of bins does not help much. We
observe a non-zero detection rate for randomly dropping
10 packets at the NCU site. It is also due to a non-
uniform distribution of packet reordering during the
normal (non-attacked) short-term period.

TDSAM has a comparatively high detection rate for
retransmission dropping attacks. Although one attack
may impact the distribution of packet reordering little,
the aggregated impacts of many attacks can result in
abnormally high occurrences of packet reordering at a
specific position.

For intermittent attacks, the performance of
TDSAM depends on the attack interval, binning
mechanisms and specific sites. Generally, attacks with a
small attack interval are easily detected, and an
increasing nbin correlates with an increase in the
detection rate. For the sites experiencing a low packet
reordering rate, such as SingNet and UIUC, the
detection rate remains high when the attack interval
becomes large.

From Table 2, we note that nbin is not highly
related to detection rate. For instance, for the Heidelberg
and NCU sites, the highest detection rate for PerPD (20,
200, 5) is found at nbin=10, while the highest detection
rate for intermittent attacks occurs at nbin=20.
Similarly, the false positive rate is not highly related to
the number of bins either. When increasing the nbin, we
observe an increase in the false positive rate at the
Heidelberg and NCU sites, a decrease at the SingNet
site and a fluctuation at the UIUC site. Although a large
nbin usually corresponds to large Q value due to the
finer representation of long-term behavior, it does not
mean a higher detection rate or false positive rate. This
is because the Q test uses the tail distribution of the Q
value rather than the Q value itself for intrusion
detection.

We conclude by noting that we are measuring
performance only at the receiver side; no cooperation is
required by the sender, or from the network. For this
reason, we believe our method is quite general. Our

results demonstrate that detection of dropping attacks by
host systems attached to the network can be very
successful. We are also investigating whether
interference by other hosts can cause problems similar
to those caused by compromised routers [19], and if so,
whether our method can likewise detect such an
occurrence.

4. Conclusions and future work

As mentioned, ARQoS is a large project addressing

prevention and detection of QoS attacks at the
connection and packet levels. Other aspects of ARQoS,
not described here due to space limitations, include:

• Selective authentication of QoS signaling,
particularly of RSVP messages, to detect
forgery or illegal modification.

• Pricing of DiffServ flows.
• Application of pricing to TCP congestion

control, and to server access.
• Consistency checking between security

policies and security mechanisms.
• Distributed monitoring of DiffServ behavior,

and detection of attacks on DiffServ.

We believe the ideas and techniques presented will
be valuable for protecting emerging QoS capabilities
from misuse or attack. Without such security
mechanisms, we predict that the benefits of such
capabilities will be seriously degraded.

Acknowledgments This work has been supported by
the Defense Advanced Research Projects Agency under
the Fault Tolerant Networks Program, managed by
AFOSR under contract F30602-99-1-0540.

5. References

[1] C. Aras et al., Real-Time Communication in Packet-
Switched Networks, Proceedings of the IEEE, Vol. 82, No. 1,
January 1994, pp. 122—139.

[2] L. Zhang et al., RSVP: A New Resource Reservation
Protocol, IEEE Network Magazine, Vol. 9, No. 5, September
1993.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and
W. Weiss, An Architecture for Differentiated Services, IETF
RFC 2475, December 1998.

[4] L. Walras, Elements of Pure Economics (translated by W.
Jaffe), Richard D. Irwin Publ. Co., 1954.

[5] E. Fulp, Resource Allocation and Pricing for QoS
Management in Computer Networks, Ph.D. thesis, Department
of Electrical and Computer Engineering, N.C. State
University, August 1999.

[6] H. Varian, Microeconomic Analysis, 3rd ed., W.W. Norton
and Company, Inc., 1992.

 [7] N. Anerousis and A. Lazar, A Framework for Pricing
Virtual Circuit and Virtual Path Services in ATM Networks,
Proc. of ITC-15, 1997, pp. 791-802.

[8] F. Kelly et al., Rate Control for Communication Networks:
Shadow Prices, Proportional Fairness, and Stability, J. of the
Operational Research Society, Vol. 49, 1998, pp. 237-252.

[9] C. Courcoubetis et al., Integration of Pricing and Flow
Control for ABR Service in ATM Networks, Proc. of
GLOBECOMM, IEEE, 1996, pp. 644-468.

[10] D. Ferguson et al., Economic Models for Allocating
Resources in Computer Systems, in Market-Based Control of
Distributed Systems, ed. S. Clearwater, World Scientific Press,
1996.

[11] J. Murphy et al., Distributed Pricing for ATM Networks,
Proc. of ITC-14, 1994, pp. 1053-1063.

[12] A. Kolarov and G. Ramamurthy, Comparison of
Congestion Control Schemes for ABR Service in ATM Local
Area Networks, in Proceedings Of GLOBECOMM, IEEE,
1994, pp. 913-918.

 [13] J. Boyle et al., The COPS (Common Open Policy
Service) Protocol, IETF RFC 2748, January 2000.

 [14] M. Handley, H. Schulzrinne, E. Schooler, and J.
Rosenberg, "SIP: Session Initiation Protocol", RFC 2543,
March 1999.

[15] Van Jacobson, Congestion Avoidance and Control,
Proceedings of SIGCOMM’88, August 1988.

 [16] SRI, The NIDES Statistical Analysis System for
Intrusion Detection, at http://www.sdl.sri.com/nides/.

[17] Jay L. Devore, Probability and Statistics for Engineering
and the Science, Brooks/Cole Pub. Co., 1991.

 [18] Vern Paxson, End-to-End Internet Packet Dynamics ,
Proceedings of SIGCOMM’97.

[19] S. Savage et al., TCP Congestion Control with a
Misbehaving Receiver, ACM Computer Communications
Review, October 1999.

