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Abstract 
 

Capabilities are being added to IP networks to 
support Quality of Service (QoS) guarantees.  These 
guarantees are needed for many applications such as 
voice and video transmission, real-time control, etc.  
Little attention has been paid to making these 
capabilities secure; in their present form they are 
vulnerable to attack. The ARQoS project is examining 
these vulnerabilities, and ways to prevent denial of 
service attacks on Quality of Service capabilities.  In 
this paper, we describe two important parts of the 
project. 

The first part is the application of a pricing 
paradigm to resource allocation.  User acquisition of 
network resources must be authorized, and the relative 
amount of resources that can be requested is carefully 
controlled.  We present a distributed method of pricing 
which is highly flexible and responsive to changing 
conditions.  Experimental results illustrate its 
effectiveness. 

The second part is the detection of TCP dropping 
attacks by compromised routers.  The detection occurs 
at the end system and does not require any cooperation 
from the network.  We have enhanced a method of 
statistically analyzing traffic patterns to detect dropping 
attacks.  The method has been implemented and tested 
over the Internet; results are presented. 

 
 

1. Introduction 
 

Quality of service (QoS) is an emerging capability 
for IP networks.  The usual components of QoS are an 
upper bound on the end-to-end delay and the delay 
variation (or jitter), and an upper bound on the packet 
loss or error rate.  We believe that another dimension of 
QoS should be security (prevention and/or detection of 
attacks), which is the focus of the ARQoS project. 
(ARQoS is a play on the name “Argus”, who was a 

creature from Greek mythology assigned by the gods to 
be a watchman.) 

The addition of QoS will mean that IP networks can 
support a much broader range of such applications as 
voice and video transmission (both interactive and non-
interactive), real-time distributed simulation and 
control, collection of data from sensors, and others.  
There are powerful incentives for supporting these 
applications and converging on a single networking 
infrastructure, including efficiency and cost, ease of 
management, accelerated deployment of the latest 
commercial technology, and the potential for creating 
applications that integrate communication and 
computing.  Many of these benefits are relevant in a 
military environment. 

Providing QoS requires network support at the 
packet level, and at the connection level, where a 
connection is the entire sequence of packets transmitted 
by an application to a receiver or receivers.  Packet-
level functions include scheduling / multiplexing, traffic 
shaping or smoothing, policing, packet dropping, and 
congestion control, while connection-level functions 
include signaling, admission control, routing, and 
resource reservation.[1]  In our context, a network 
resource can mean link or switch bandwidth, buffer 
space, scheduling priority, server access, etc. 

Figure 1 shows a typical IP network configuration 
that might support QoS.  In this figure, a distinction is 
made between access networks, which have lower 
bandwidths and traffic volumes, and core networks, 
which have much higher bandwidths and must handle 
much greater traffic volumes.  Because of this 
distinction, different protocols and technologies are 
used in access and core networks.  For access networks, 
the Resource Reservation Protocol (or RSVP) [2] has 
been proposed as the fundamental means of ensuring 
QoS, while in the core networks, the major protocol is 
Differentiated Services, or DiffServ.[3].  RSVP is a 
means of reserving resources for individual connections 
(also called microflows), and can provide very strong 
guarantees of resource availability and QoS.   

 



  

  
 

Figure 1: IP network supporting QoS 
 
 
DiffServ aims to allocate resources and control QoS 

for aggregations of connections (also called a flow),  and 
as such is considered to require less overhead and be 
more scalable than RSVP. 

The importance and accessibility of the network 
infrastructure will soon make it a tempting target for 
attack.  In light of that, it is wise to regard any new or 
proposed network capability as a potential vulnerability, 
and to design in security at an early stage.  This has not 
been the case for QoS mechanisms, however, and must 
now be addressed.  We classify vulnerabilities and 
attacks into two categories: 
• Those acting at the connection level to interfere 

with the functions mentioned above (signaling, 
admission control, etc.).  We refer to these as 
attacks on the control flow. 

• Those acting at the packet level to interfere with the 
functions of scheduling, shaping, packet dropping, 
etc.  We refer to these as attacks on the data flow. 
The methods for responding to attacks can be 

categorized as prevention, detection, counter-attack, or 
recovery.  The goal of the ARQoS project is to prevent 
and/or detect control and data flow attacks on QoS 
mechanisms.  Our target network technology is the 
Internet.  The project has many parts or sub-goals.  In 
this paper, we focus on two of those parts.  One of them, 
resource pricing, is intended to prevent attacks on the 
control flow.  The other, analysis of TCP dropping 
attacks, is aimed at detecting attacks on the data flow.  
These two major parts will illustrate the breadth of the 
project, important ideas behind our work, and the 
progress made so far. 

 
2. Resource pricing 

 
A necessary step in providing QoS is allocating 

network resources to meet the needs of applications.  
There are many ways in which this process can be 
subverted.  As an example, if there is no authorization 

process in place, and no means for controlling the 
allocation amount, any user may request and reserve 
any amount of resources they wish.  Another example is 
to forge, delete, or illegally modify a reservation 
message so that an unauthorized amount of resources is 
received, or access is denied to an authorized user.  In 
this section, we address the first issue of authorizing and 
controlling resource allocation via resource pricing. 

A set of users wishes to share a resource (or 
resources).  The amount of the resource has been 
previously fixed, and there may be an insufficient 
quantity of the resource for every user to get as much as 
desired.  In this case, a method of allocating the 
resource to satisfy some external goal must be devised.  
To this end, a price per unit of resource is calculated and 
made known to the users.  Each user u has a fixed 
budget bu with which a resource r at price pr per unit 
can be purchased.  The user can afford at most bu / pr 
units of resource at this price.  If resources cannot be 
stored and sold at a later time, an obvious goal is to set 
the price low enough such that as much of the resource 
will be sold as possible at the time it is available.  A 
budget can be thought of simply as an indication of the 
relative resource amounts that users may obtain; all 
other things being equal, a user with twice as large a 
budget as another will be able to obtain twice as much 
resource.  While the means of determining and 
distributing user budgets is outside the scope of our 
work, we note that it could be based on many factors, 
including the ability to pay, urgency or importance of 
function, degree of trust, etc. 

Our method is based on the notion of demand-
based pricing.  The components of the method are 1) 
measurement of demand; 2) price calculation; and 3) 
price distribution.  Since resource demand is based on 
price, and price is calculated from demand, a feedback 
system results.  This process can be iterated to reach an 
equilibrium point that has desirable properties, such as 
satisfying a target resource utilization.  The iterative 
measurement of demand, followed by computing a new 



price, etc., until equilibrium is reached, is termed a 
tatonnement process [4].  In our work, the tatonnement 
process has the following form: 

pr
i+1 = pr

i · dr
i / (a · sr) 

where pr
i and pr

i+1  are the price of resource r in the ith 
and i+1th iterations, respectively, dr

i is the measured 
demand for resource r during the ith iteration, sr is the 
supply of resource r, and a is a constant less than 1.  
The purpose of a is to increase prices before utilization 
reaches 100%.  It can be shown that a tatonnement 
process will result in an allocation that is Pareto-
optimal.  An allocation is Pareto-optimal if no user can 
get a greater amount of resource without another user 
receiving a smaller amount of the resource. 

When there is one user u with budget bu and one 
resource r available in quantity sr, the simplest possible 
case, the equilibrium result is a price pr such that 
demand for the resource by that user equals the supply. 
When a set of users U compete for a single resource r, 
and each user u ∈U has budget bu,  at equilibrium the 
total demand equals the supply, and users are allocated 
resource amounts in proportion to their budgets.  The 
budgets can be viewed as weighting factors in allocating 
the resource among the users. 

Now consider the case where the users desire 
multiple resources.  In our discussion, we assume that 
user u demands the same amount of each resource.  This 
is the case for bandwidth allocation, for example, where 
a connection requires the same bandwidth on every link 
it traverses.  Let R be the set of all resources, and Ru be 
the set of resources demanded by user u ∈ U.  Then a 
tatonnement process may be executed independently for 
each resource r to reach an equilibrium price for that 
resource. 

Let r’u be a resource in Ru whose equilibrium price 
is greater than or equal to that of any other resource in 
Ru.  r’u is called a limiting resource for user u.  Given 
that the user has one budget bu, but faces |Ru| resource 
prices, one for each resource it needs, how is the budget 
to be allocated?  The answer to this question determines 
the type of fairness that the resource allocation policy 
implements.  One important form of fairness, frequently 
advocated for network congestion control, is max-min 
fair: users who are resource-limited by the same 
resource will share in that resource equally.  A more 
general form of fairness is weighted max-min fair; if 
users u and v have weights wu and wv respectively, and 
r’ is a limiting resource for both u and v, then the ratio 
of resources allocated to u and v is equal to wu / wv.   We 
can achieve both max-min fairness and weighted max-
min fairness with pricing, in the following way.  Each 
resource executes an independent tatonnement process 
to compute its equilibrium price.  A user u for which r’u 
is a limiting resource is allocated bu / pr’ of every 
resource r ∈Ru.  Thus, the price charged to u is equal to 

the price of the most expensive resource u requires, and 
the amount of resource allocated is proportional to u’s 
budget (i.e., its weight). Under these conditions, it can 
be shown the system will result in a weighted max-min 
fair allocation; when the budgets of all users are the 
same, the allocation is simply max-min fair.   

Another important form of fairness is proportional 
fairness.  Suppose the relative change for a user u 
between one set of resource prices and another is equal 
to the change in its allocation amount, divided by the 
allocation amount (i.e. if u can afford 4 units of resource 
under one set of prices and 5 units under another, the 
relative change is (5-4)/4 = .25).  Informally, a price 
assignment is proportionally fair if the sum of the 
relative changes for all users between this price 
assignment and any other price assignment is less than 
or equal to 0.  Similar to max-min fairness, there is a 
weighted version of proportional fairness.  Proportional 
fairness is important because, among other things, it is 
the form of fairness exhibited by TCP congestion 
control.  If we compute prices for each resource 
independently, but allocate resources such that user u is 
allocated bu /  (Σr ∈ Ru pr) then it can be shown that the 
resulting allocation is weighted proportionally fair.  A 
formal statement of these properties, and their proofs, 
may be found in [5]. 

A common notion in economics is the utility curve.  
A utility curve is a function relating resource allocation 
to the degree of utility or satisfaction experienced by the 
user.  There are many forms of utility, but a common 
case is that utility is monotonically non-decreasing in 
allocation amount.  It is possible and even likely for 
each user to have a unique utility curve representing that 
user's particular valuation of resources.  For example, a 
user using a network for voice transmission would 
normally be satisfied with a much lower resource 
allocation than a user who was transmitting a video.  
Two other forms of fairness may now be defined.  An 
allocation is equitable if users who are resource-limited 
by the same resource enjoy the same degree of utility, 
i.e., are equally satisfied with their allocation.  
Secondly, an allocation is utility-maximizing if it results 
in the maximum aggregate utility (sum of the utilities of 
the users of the network) of all possible allocations.  It 
can be shown that our pricing method can accomplish 
either of these fairness goals.  Again, details may be 
found in [5]. 

We have described above how prices are calculated.  
Other important issues are how to measure demand, 
since the tatonnement process uses that as an input, and 
how to distribute prices to the users.  The tatonnement 
process itself is a simple computation, so the speed with 
which equilibrium is achieved will depend mainly on 
the number of iterations required, and the time required 
to distribute prices and measure the change in demand.  



Convergence time is important in an environment where 
demands and/or resource availability can change 
frequently and rapidly, which is the case in computer 
networks.  We address these issues below. 

There are many benefits of the pricing approach 
that has just been presented.  Foremost among them is 
flexibility.  Using one mechanism for budget 
assignment, price adjustment, demand measurement, 
and price distribution, we can implement an abundance 
of different allocation policies.  Ours is the most flexible 
method known in this regard. We believe this is a major 
benefit for network operation in a variety of different 
environments.  In the section below on experimental 
results, we demonstrate that our pricing method is also 
fully distributed (scalable), is robust, adapts quickly to 
changes, has low overhead, and results in efficient 
resource usage. 

Our work is based on results from microeconomics 
[6].  There have been other proposals to apply 
microeconomics to allocation of network resources, 
including [7] [8] [9] [10] [11]. The differences of our 
work with those include: 
• Our method regards fairness as a policy; we present 

a mechanism that can support a variety of fairness 
goals, or policies. 

• Our method is fully distributed and has been shown 
to converge quickly under dynamic and realistic 
network conditions. 

• Our method makes no assumptions about the type 
of traffic allowed, and supports a more general 
model of user behavior. 

• As discussed below, our model is the only one to 
support both reserved and dynamic resource 
pricing. 

 
2.1. Implementation and experimental results 

 
Pricing can be used to dynamically determine the 

appropriate transmission rate for connections using a 
network.  For ATM networks, this is the purpose of 
ABR rate control, while for IP networks, it is the 
function of TCP congestion control.  We simulated rate 
control for ATM networks using our pricing 
mechanisms; our implementations, and the results, are 
presented here. 

Traffic loads for the ATM ABR class may be 
frequently changing as new connections start, old 
connections stop, and the transmission requirements of 
existing connections change (due, for instance, to the 
variable bit rate output by a codec).  A method of 
pricing must converge quickly to an equilibrium value 
under these circumstances.  Our first experiment 
simulated a set of 20 users competing for a single 
resource.  All user budgets were equal, but the user 
demands were randomly and uniformly distributed.  

Starting from an initial price, the tatonnement process 
was executed until equilibrium was achieved.  This 
process was repeated 10,000 times; the results are 
summarized in Figure 2.  The x-axis in this figure 
measures the ratio of the initial price to the equilibrium 
price, and varies from .01 to 100.  The y-axis indicates 
the number of iterations required for convergence; the 
average and 95% confidence intervals are shown.  From 
this example it may be seen that convergence occurs 
very quickly, typically requiring only a few iterations. 

 

 
Figure 2: Dependence of convergence time 

on the initial price estimate 
 
Our second experiment investigated the ability of 

our pricing method to achieve fair allocations in a 
complex network, with rapidly varying traffic 
conditions.  For an experimental network, we used a 
benchmark proposed by the ATM Forum [12] for 
investigating resource allocation methods.  It models 
substantial competition between users with differing 
routes and widely varying propagation delays.  The 
traffic source for each user was taken from a set of 
actual MPEG VBR video traces.  There were two 
groups of users; budgets for user group #1 were set to 
twice the budgets of users in group #2.  Traffic demand 
on each link was measured and a new price computed 
every 10 ms.  Prices were distributed to the users using 
ATM RM cells (already standardized for explicit rate 
allocation).  We are interested in the utilization of link 
bandwidth, and the fairness of the allocation.  The 
fairness of the allocation is measured according to the 
fairness index, which measures how far from optimally 
fair an allocation is.  A measurement of 1.0 indicates 
complete fairness, while 0.99 has been proposed as the 
appropriate definition of "fair". 
The results are shown in Figure 3.  In the first case, the 
goal of the price computation was a weighted max-min 



fair allocation; in the second case, the goal was a 
weighted proportionally fair allocation.  From these 
results, it may be seen that utilization was very high, 
and the allocation was always fair.  These results are 
extremely encouraging, given that they incorporate the 
characteristics of real networks and actual traffic. 
Details may be found in [5]. In summary, advantages 
are:  
• The price calculation and allocation is fully 

distributed.  This bodes well for scalability and 
robustness.  There is no synchronization among 
users, or in the computation of resource prices. 

• Overhead is low, involving demand measurement, a 
simple iteration, and distribution of prices. The 
distribution of prices in the example above would 
require less than 1% of the bandwidth of the data 
traffic. 

• Efficient and fair resource utilization. 
• Rapid adjustment to changing conditions. 

 

Figure 3a: Weighted max-min allocation 
 

 

 
Figure 3b: Proportionally fair allocation 

 
2.2. Pricing of reserved resources 

 
One shortcoming of the pricing method as 

presented is that while utilization, fairness, and resource 
access are stable, prices are not. This means the 
allocation per user changes dynamically, as is normally 
the case with reactive congestion control.  Applications 
desiring a stable resource allocation may not be able to 
tolerate such fluctuations in price and resource 
allocation amount. 

To deal with this problem, prices must be computed 
over longer intervals of time.  A demand-based price 
computation must then address the issue of predicting 
demand over an interval.  There are numerous bases for 
predictions, including past measurements of demand 
(possibly over long periods of time), current demand, 
and auctions.  Prediction of demand is outside the scope 
of our project, but implementing stable pricing is within 
scope.  The result of fixed prices is that resources are 
reserved for use once they are acquired.  New users may 
thus find they are denied admission to the network 



because there are insufficient resources not already 
reserved. 

In our work, we are interested in a two-price model, 
where one set of prices are based on predicted demand, 
and another set of prices are based on current 
(instantaneous, or immediate) demand.  Prices of 
resources whose demand is predicted will remain stable 
for the specified interval, while those based on current 
demand are free to vary.  Users wishing to acquire 
resources may do so from either pool.  The preference 
of users for resources with stable prices over resources 
with varying prices can be expressed by means of an 
indifference curve, a common concept in economics [6].  
This allows optimization of resource allocation 
according to the preferences of users.  In general, it 
should be expected that prices for reserved resources 
will be higher than those for variably-priced resources. 

We implemented the two-price model on the same 
ATM network used in the previous experiment.  
Reserved prices were computed based on predicted 
demand, and any resource not actually purchased at the 
reserved price was available at a price based on the 
immediate (and varying) demand.  Users were 
categorized as those who prefer reserved prices, or 
those who prefer cheaper prices.  The results are shown 
in Figure 4.  From this figure, it may be seen that 
utilization is high, the allocation method is responsive to 
changing demands and reaches equilibrium quickly, and 
the price of reserved resources is normally less than the 
price of "spot" resources (those computed from 
immediate demand). 

 

 
Figure 4: The two-price model. 

 
This version of pricing (that supports the two-price 

model) supports users with varying preferences for 
stability vs. maximum resource amount.  We discuss 
next an application in which reservations are desirable. 

 
2.3. Application to RSVP 

 
Pricing is an appropriate method of resource 

allocation for individual connections when those 
resources are reserved in advance.  As mentioned, 
RSVP is a well-known method of resource reservation 
for individual connections.  Figure 5 depicts a typical 
configuration for an RSVP-enabled network.  In this 
diagram, a reservation message from source to 
destination is transmitted using RSVP.  At each router, 
this message is intercepted and a policy request is made 
using the COPS [13] protocol.  The COPS request is 
handled by a policy server and an admission control 
decision is made by that server.  If the decision is 
positive, the response to the router indicates that 
resources should be reserved for the requesting 
connection, and the RSVP reservation message is 
propagated onwards to the next router.  If the decision is 
negative, the response from the policy server is 
propagated to the user to indicate that admission is 
denied, and no reservation is established.  The 
vulnerability in this scheme is that there is no incentive 
for users to limit their requests.  The policy server lacks 
the information needed to distinguish or discriminate 
between users, and to allocate resources fairly when 
they are scarce.  The result is that reservations can 
easily be used to acquire (and waste) resources 
unnecessarily. 

 



 
 

Figure 5: RSVP / COPS interaction 
 
 
 
We propose to use pricing to improve this situation.  

The protocol changes we are proposing and 
implementing are illustrated in Figure 6.   

 
 
 

 
 
 
 
 

 
 

Figure 6: RSVP/COPS and other infrastructure for pricing 
  



The changes we propose are as follows: 
1. A user wishing to reserve resources contacts an 

authorization server to receive authorization.  We 
suggest the use of SIP (Session Initiation Protocol) 
for this purpose.  The authorization server responds 
with a signed policy object that verifies the ability 
of the user to pay a specific price. 

2. This signed policy object is included in the RSVP 
message by the sending application. 

3. When the RSVP reservation message is intercepted, 
the policy object is copied into the COPS request 
message.  The policy server can then consider this 
information, and current resource prices, in making 
the admission control decision.   

4. The response to the user includes the price being 
charged for the resource.  The user can propagate 
this information back to the authorization server if 
desired. 
The changes required are generation at the 

connection server of signed policy objects, attachment 
of the object to RSVP and COPS messages, and 
attachment of the price to the policy server's response.  
We are currently investigating which signature 
mechanism is the best choice in terms of scalability and 
security.  The major benefit of the proposed approach is 
that it allows a high degree of independence between 
the connection server and the policy server.  
Communication between them is conducted using 
existing protocols, and neither must know the identity or 
location of the other. 

We believe the work done on pricing is a valuable 
part of preventing denial of service on quality of service 
mechanisms.  The method we have presented is highly 
flexible, and is practical to use in large networks.  Most 
importantly, perhaps, is that it gives incentives to users 
to user resources responsibly, and provides 
disincentives for fraudulent use of resources. 

 
3. Detection of TCP packet dropping 

attacks 
 
Among the various types of denial of service (DoS) 

attacks, the packet dropping attack  is one of the most 
difficult to handle. As part of the ARQoS project we 
have studied the impact of packet dropping attacks on 
network quality of service, and methods of detecting 
such attacks. A compromised router (one which has 
been hacked) can choose different dropping patterns to 
degrade TCP service by varying degrees; selectively 
dropping a very small number of packets can result in 
severe damage to TCP performance. Three packet 
dropping patterns have been investigated: periodic, 
retransmission-based, and random. We describe a 
statistical analysis module (a SAM) for the detection of 

TCP packet dropping attacks. This analysis module 
focuses on how to effectively distinguish normal packet 
dropping (due to TCP behavior [15]) from malicious 
dropping. The metrics of average packet delay (the 
delay metric), the position or sequence number of 
reordered packets (the position metric), and the number 
of packets reordered (the number metric), have been 
used for purposes of detection. We have evaluated and 
compared the effectiveness of this approach through 
experiments involving four FTP sites accessed across 
the Internet. 

  
3.1. Dropping Patterns  

 
The victim under a particular dropping attack may 

be any TCP connection; in our experiments, we have 
studied only FTP connections. An FTP connection that 
is attacked is called a victim connection, and packets 
dropped by an attacker are called victim packets. We 
classify packet dropping patterns as follows.  
1. Periodic packet dropping (PerPD): Packets are 

periodically dropped in a connection according to 3 
parameters symbolized by K, I, and S.  K is the total 
number of victim packets in the connection. I is the 
interval between two consecutive victim packets, 
and S is the position of the first victim packet in the 
connection. In this pattern, every packet is counted, 
including retransmitted packets.  

2. Retransmission packet dropping (RetPD): In this 
attack, the attacker always drops the 
retransmissions of a specific packet. Two 
parameters K and S are defined for this pattern. S 
denotes a specific victim packet. K denotes the 
number of times this packet (including 
retransmissions) is dropped. When a retransmitted 
packet is dropped, TCP retransmits again only upon 
expiration of the retransmission timer, and enters 
the slow start phase of operation. For each 
retransmission, the retransmission timeout value 
(RTO) is doubled, with an upper limit of 64 
seconds. This doubling is called exponential 
backoff. We can infer that after a few consecutive 
unsuccessful retransmissions, the sender has to wait 
a long period of time before attempting a new 
retransmission. 

3. Random packet dropping (RanPD): Attackers 
randomly choose up to K packets to drop in a 
connection. Since this kind of attacks behaves more 
like normal packet dropping in the Internet, it may 
be expected that the fast retransmit and recovery 
mechanism [15] of TCP will work effectively in 
response to packet loss. From this point of view, we 
would expect that random dropping has limited 
impact on TCP’s performance, compared with other 
dropping patterns.  



 
3.2. Empirical  study of impacts of packet 

dropping attacks 
 
In order to investigate the impact of packet 

dropping attacks, we performed a series of experiments 
using different dropping patterns. All experiments were 
based on FTP bulk data transmission from servers to 
clients.  File transfers were conducted between 4 client-
server pairs in the Internet; the client was located in our 
lab at N. C. State University, while the servers were 
located in the U.S., Europe, and Asia (see Table 1). The 
data file used for transfer was an identical, mirrored file 
of size 5.5 MB. 

 
Table 1: FTP sites used in the experiments 

 
The client ran under Linux 2.0.36 with IP firewall 

and divert socket support. In order to simulate an 
attacker, a program named attack-agent was executed on 
each client. For every arriving FTP data packet, the 
attack-agent captured it through a divert socket, and 
then released or dropped the packet according to a 
predefined dropping pattern.  

Figure 7:  Connection delay for the NCU site 
under three dropping patterns 

 

Figure 7 evaluates the impacts of three dropping 
patterns for the NCU site (National Central University 
in Taiwan). Other sites show similar behavior under 
these attacks. It is clear from the Figure 7 that given the 
same number of victim packets, the retransmission 
packet dropping attack interferes the most with TCP 
performance. 
 
3.3. Intrusion detection for malicious packet 

dropping 
 
In this section, we describe the design and 

implementation of our statistics-based intrusion 
detection tool.  This tool runs at the FTP client site, to 
determine whether a particular TCP flow is 
experiencing a malicious dropping attack or not.  

SRI’s NIDES/STAT [16] algorithm monitors a 
subject’s (either a user or a software program) behavior 
on a computer system, and raises alarm flags when the 
subject’s current (short-term) behavior deviates 
significantly from its expected behavior.  The expected 
behavior is described by its long-term profile. The 
NIDES algorithm is based on a χ2-like test for 
comparing the similarity between the short-term and 
long-term profiles.  We now briefly describe this 
algorithm. 

Let the current system behavior be a random 
variable under the sample space S.  Events, E1, E2 … En, 
represent a partition of S, where these n events are 
mutually exclusive and exhaustive. Let p1, p2 … pn be 
the probabilities of occurrence corresponding to events 
E1, E2 … En.  The system behavior is sampled N times, 
where N is a large number. Let Yi represent the number 
of occurrences of event Ei in these N experiments. Thus, 
we have pi=Yi/N, where 1

1
=∑ =

n

i ip .  

A short-term profile is taken from a smaller number 
of measurements N’.  Yi’ is the number of occurrences 
of event Ei in these N’ experiments, and NYp ii ′′=′ / .  
To determine whether a short-term profile has a similar 
probability distribution with the corresponding long-
term profile, the following hypothesis is tested [17]: 
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Intuitively, Q measures the closeness of the observed  
(short-term) probability distribution to the expected  
(long-term) distribution. A small Q favors the 
hypothesis H0, while a large Q favors H1. If 
independence is assumed between events Ei, and the 
experiments are carried out independently, it has been 
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proved that, for a large N’, Q has an approximate χ2 

distribution with n-1 degrees of freedom. To get an 
accurate approximation, it is suggested that N’ should 
be larger than 50 and (N’ × pi) should be larger than 5. 
Otherwise, several ‘rare’ events should be merged 
together to form a new event such that (N’ × pnew) will 
exceed 5, where pnew denotes the probability for the 
merged event. 

Let q be an instance of Q, and α be the desired 
significance level of the test. If Prob( Q> q ) < α , or 

2
)1(, −> nq αχ , the hypothesis is rejected. In the context 

of our application, it means that the short-term profile is 
statistically significantly different from the 
corresponding long-term profile, leading to the 
conclusion that anomalous behavior has occurred. In 
drawing this conclusion, two kinds of errors may occur. 
A Type I error means that the hypothesis is true, but  
was rejected according to the test. A Type II error 
means that the hypothesis is false, but was accepted as 
true by the test. The frequency of occurrence of Type I 
errors is also referred to as the false positive rate, while 
the frequency of occurrence of Type II errors is referred 
to as the false negative rate. 

In practice, however, the assumption of 
independence between events may not hold true. As a 
result, Q may not have a χ2 distribution. The 
NIDES/STAT algorithm proposes to empirically 
measure the probability distribution of Q. This 
distribution of Q values for the short-term 
measurements, along with the distribution of the 
system’s long-term behavior (i.e.,  p1,  p2 … pn), is 
saved in a profile.  This profile is updated per 
UPDATE_PERIOD (24 hours in NIDES) in a real-time 
operation. 

Training is the process by which the statistical 
component learns the normal behavior for a subject. In 
NIDES/STAT, the long-term profile training consists of 
three phases: Category training (learning the subject’s 
expected behavior, i.e., the probabilities of events, Ei.), 
Q training (learning the empirical distribution of Q 
through a sequence of short -term measurements) and 
threshold training (establishing an appropriate threshold 
for detecting anomalous behavior). 

 
3.4. Experiments 

 
We implemented a method of detecting packet 

dropping attacks which was based on the statistical 
analysis methods of SRI’s NIDES/STAT.  We call our 
method TDSAM, for TCP dropping statistical analysis 
module.  In our method, three metrics  total ftp 
connection delay, the position of packet reordering, and 
the number of packet reorderings per connection  
were used as input to the statistical analysis model for 

intrusion detection. We hypothesized that the 
connection delay, the position and number of packet 
reordering would all deviate significantly from their 
corresponding normal patterns [18] under a dropping 
attack. The reasons for using packet reordering rate vs. 
packet loss rate are that (1) dropping packets usually 
results in packet reordering, and (2) at the receiver side, 
packet losses are difficult to measure reliably.  While a 
server (sender) can easily detect data packet loss by 
noticing a retransmission of the packet, a client 
(receiver) cannot be sure of a packet loss unless the 
sender informs it of the transmission. In our experiment, 
however, receivers did not have such information. 

To detect an out-of-order packet, the receiver 
records the sequence number of the last-received non-
reordered packet; this is denoted as Seqmax.  For each 
arriving packet, if its sequence number is larger than 
Seqmax (with wrapping comparison), the packet is 
considered non-reordered, and Seqmax is set to the 
sequence number of this arriving packet.  Otherwise, we 
test if the arriving packet has been received before.  If 
not, it must be out of order.  Otherwise, it is a redundant 
retransmission, possibly caused by an ACK loss, coarse 
feedback, or an invalid retransmission timeout.  Note 
that we do not count this as reordering in our 
experiment. For instance, if 5 packets, P1, P2 … P5, are 
sent in sequence and received in the order, P1, P2, P3, P5, 
P4, then we say that P4 is an out-of-order delivery.  

For each FTP site, an experiment was conducted, 
consisting of 4 steps: (1) normal (non-attacked) long-
term profile establishment, (2) normal (non-attacked) 
short-term Q distribution measurement, (3) 
measurement of short-term profiles while under attack 
(according to different dropping patterns), and (4) 
intrusion detection using our statistical analysis module, 
TDSAM.  We now describe steps (1) and (2) in more 
detail, using just the position metric as an example. 
Long-term Profile Establishment: We formed the 
long-term profile by running 20000 FTP connections 
consecutively.  For each FTP connection, the observing 
window covered all data packets. The window was 
evenly divided into n bins, numbered from 0 to n-1. For 
example, if a connection transmitted 4000 packets and 
n=5, then the observing window ranged from 1 to 4000 
and the bin-width = 800 packets, with bin0 = [1, 800], 
bin1 = [801, 1600], … and bin4 = [3201, 4000].  

In each connection, the position of reordered 
packets was measured.  Let Counti represent the number 
of out-of-order packets whose sequence number fell into 
the ith bin. We summed up the Counti for all the FTP 
connections and calculated the probability of each bin as 
follows: 
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Q Distribution Measurement: A Q value was 
calculated by comparing the short-term profile with the 
long-term profile. The short-term data were collected 
from 5000 FTP connections. Information about an FTP 
connection was defined as a record, grouped into record 
sets.  Multiple consecutive records were accumulated 
until a record set satisfied the requirements of a Q test. 
These requirements included that (1) the total number of 
records N’ in the set should be larger than 50; (2) for 
each bin, the value, ipN ×′ , should be larger than 5. For 
each such record set, a Q value was calculated. 

Qmax was defined as the maximum Q value 
calculated from any of the record sets. The distribution 
of Q values from 0 to Qmax was divided into 32 intervals, 
and the frequency of each interval was obtained. The 
resulting Q distributions are shown in Figure 8, for the 
case where 5 bins were used. We see that the last 
several intervals in the Q distribution have small tail 

probabilities. If a Q value falls into one of these 
intervals, this means that the corresponding short-term 
behavior deviates significantly from the normal 
behavior. 
 

3.5. Results 
 
After establishing the long term profile and 

measuring the Q distribution, we subjected the ftp 
connections to attack using our attack agent.  An 
important value called the red threshold was defined for 
the Q distribution. The value of this threshold was set to 
.01 in our experiments.  If a test generates a Q value 
whose probability is less than this threshold, according 
to the Q distribution, TDSAM will raise an alarm.  This 
alarm indicates that an attack has been detected.   

In Tables 2, 3 and 4, due to limited space, we only 
show the intrusion detection rate (DR). The “normal” 
case is one in which no attack in fact occurred.  In this 
case, DR represents the false positive rate, and there are 
no false negatives.  The other cases are different 
instances of attacks.  In these cases, DR is the true 
positive rate, and (1-DR) is the false negative rate.  

Table 2 summarizes the intrusion detection results 
using the position metric (position of reordered 
packets), Table 3 shows the results using the number 
metric (number of reordered packets), and Table 4 
shows the results using the delay metric (average packet 

Heidelberg

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35
Q bins

P
ro

ba
bi

lit
y

NCU

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35
Q bins

P
ro

ba
bi

lit
y

SingNet

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35
Q bins

P
ro

ba
bi

lit
y

UIUC

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35
Q bins

P
ro

ba
bi

lit
y

 
Figure 8:  Q distribution for position measure, when nbin=5 

  
 



delay).   In these tables, the parameters of the periodic 
(PerPD) attacks are the total number of dropped 
packets, the spacing between dropped packets, and the 
position of the first packet to be dropped.   For the 
retransmission (RetPD) attacks, the parameters are the 
number of times one packet will be dropped, and the 
position of that packet.  For the random (RanPD) 
attacks, the sole parameter is the total number of 
dropped packets. The parameter nbin refers to the 
number of bins used in the long-term measurement.   

The results show that TDSAM has a high detection 
rate for most periodic dropping attacks. This is because 
normal packet reordering nearly uniformly distributes 
across a connection, but periodic dropping attacks 
usually generate an extremely different packet 
reordering distribution. For instance, the long-term 
profile of the Heidelberg site is: p1=0.194339, 
p2=0.200759, p3=0.197882, p4=0.204260, p5=0.202760, 
where nbin=5 and bin-width = 800. The PerPD (20, 4, 
5) attack drops packets only in the first 85 packets, 
resulting in a large number of occurrences of packet 
reordering in the first bin. Under the attack, the 
corresponding distribution reordering becomes: 
p1=0.837264, p2=0.039390, p3=0.043192, p4=0.041045, 
p5=0.039109. 

 
 
 

Table 2: Detection rates for the position 
metric 

Position 
nbin=5 

Dropping 
pattern  

Heidel-
berg 

NCU Sing-
Net 

UIUC 

Normal* - 4.0% 5.4% 3.5% 6.5% 

PerPD (10,4,5) 99.7% 100% 100% 100% 
 (20,4,5) 100% 98.1% 99.2% 100% 
 (40,4,5) 96.6% 100% 100% 98.5% 
 (20,20,5) 100% 100% 100% 100% 
 (20,100,5) 98.9% 99.2% 99.6% 99.1% 
 (20,200,5) 0% 76.5% 1.5% 98.3% 
 (100,40,5) 0.2% 0% 0% 100% 

RetPD (5,5) 84.9% 81.1% 94.3% 97.4% 

RanPD 10 0% 42.3% 0% 0% 
 40 0% 0% 0% 0% 

5 98.6% 100% 98.2% 100% Intermittent  
(10, 4, 5) 50 34.1% 11.8% 89.4% 94.9% 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 3: Detection rates for the number 
metric 

Position 
nbin=10 

Dropping 
Pattern  

Heidel-
berg 

NCU Sing-
Net 

UIUC 

Normal* - 5.6% 6.1% 2.8% 4.5% 

PerPD (10,4,5) 100% 100% 100% 100% 
 (20,4,5) 99.2% 98.7% 100% 100% 
 (40,4,5) 97.3% 100% 99.6% 100% 

 (20,20,5) 100% 100% 100% 100% 

 (20,100,5) 100% 100% 98.9% 99.6% 
 (20,200,5) 65.1% 90% 0.6% 99.1% 
 (100,40,5) 4.5% 0% 0% 100% 

RetPD (5,5) 97.5% 94.4% 95.7% 100% 
RanPD 10 0% 76% 0% 19.1% 

 40 0% 0% 0% 18.2% 
5 100% 100% 100% 100% Intermittent 

(10, 4, 5) 50 52.9% 22.1% 71.8% 96.2% 

 
 
 
 
 
Table 4: Detection rates for the delay metric 

Position 
nbin=20 

Dropping 
pattern  

Heidel-
berg 

NCU Sing-
Net 

UIUC 

Normal* - 15.6% 9.0% 1.6% 5.8% 
PerPD (10,4,5) 100% 100% 100% 100% 

 (20,4,5) 100% 97.5% 98.3% 99.2% 
 (40,4,5) 96.4% 100% 100% 100% 
 (20,20,5) 100% 100% 100% 100% 
 (20,100,5) 100% 99.1% 99.2% 100% 
 (20,200,5) 0.7% 83.2% 0% 99.5% 
 (100,40,5) 3.6% 0% 0% 100% 

RetPD (5,5) 100% 92.8% 95.8% 100% 
RanPD 10 0% 27% 0% 37.4% 

 40 0% 0% 0% 16.2% 
5 100% 100% 100% 100% Intermittent 

(10, 4, 5) 50 83.8% 50.3% 98.5% 100% 
* False positive rate for normal cases 

 
Comparing against the long-term profile, the 

TDSAM can easily detect such deviation and raise 
alarm. However, it is hard for the position metric to 
detect an attack that generates a distribution of packet 
reordering similar to the long-term profile. In this case, 
we say that the short-term distribution is long-term-
profile-like. Note that for the Heidelberg, NCU and 
SingNet sites, the number of total data packets 
transmitted in a connection is about 4000. Therefore, the 
dropping patterns, (20, 200, 5) and (100, 40, 5), evenly 
distributing the victim packets over the connection, may 
generate a long-term-profile-like distribution. 
Consequently, their Q values could be too small to raise 
alarm. From Table 2, we see that the false negative rate 
(miss rate) of the TDSAM for such kind of attacks can 



be as high as 100%. For the NCU site, the high 
detection rate found for the PerPD attack pattern (20, 
200, 5) is because the normal distribution of packet 
reordering is not uniform. For the UIUC site, the 
number of data packets transmitted was high (11300).  
The two attack patterns, (20,200, 5) and (100, 40, 5), do 
not generate an even distribution in this case. Instead, 
all victim packets fell into the first 2 bins. Therefore, the 
corresponding detection rates are also very high. 

The results also demonstrate that the TDSAM 
performs poorly at detecting random packet dropping 
attacks. Such attacks generate a nearly even distribution 
of packet reordering in aggregate. Since the distribution 
is long-term-profile-like as well, TDSAM using the 
position metric can be easily fooled. It appears that 
increasing the number of bins does not help much. We 
observe a non-zero detection rate for randomly dropping 
10 packets at the NCU site. It is also due to a non-
uniform distribution of packet reordering during the 
normal (non-attacked) short-term period. 

TDSAM has a comparatively high detection rate for 
retransmission dropping attacks. Although one attack 
may impact the distribution of packet reordering little, 
the aggregated impacts of many attacks can result in 
abnormally high occurrences of packet reordering at a 
specific position. 

For intermittent attacks, the performance of 
TDSAM depends on the attack interval, binning 
mechanisms and specific sites. Generally, attacks with a 
small attack interval are easily detected, and an 
increasing nbin correlates with an increase in the 
detection rate. For the sites experiencing a low packet 
reordering rate, such as SingNet and UIUC, the 
detection rate remains high when the attack interval 
becomes large. 

From Table 2, we note that nbin is not highly 
related to detection rate. For instance, for the Heidelberg 
and NCU sites, the highest detection rate for PerPD (20, 
200, 5) is found at nbin=10, while the highest detection 
rate for intermittent attacks occurs at nbin=20. 
Similarly, the false positive rate is not highly related to 
the number of bins either. When increasing the nbin, we 
observe an increase in the false positive rate at the 
Heidelberg and NCU sites, a decrease at the SingNet 
site and a fluctuation at the UIUC site.  Although a large 
nbin usually corresponds to large Q value due to the 
finer representation of long-term behavior, it does not 
mean a higher detection rate or false positive rate. This 
is because the Q test uses the tail distribution of the Q 
value rather than the Q value itself for intrusion 
detection.   

We conclude by noting that we are measuring 
performance only at the receiver side; no cooperation is 
required by the sender, or from the network.  For this 
reason, we believe our method is quite general.  Our 

results demonstrate that detection of dropping attacks by 
host systems attached to the network can be very 
successful.  We are also investigating whether 
interference by other hosts can cause problems similar 
to those caused by compromised routers [19], and if so, 
whether our method can likewise detect such an 
occurrence. 
 
4. Conclusions and future work 

 
As mentioned, ARQoS is a large project addressing 

prevention and detection of QoS attacks at the 
connection and packet levels.  Other aspects of ARQoS, 
not described here due to space limitations, include: 

• Selective authentication of QoS signaling, 
particularly of RSVP messages, to detect 
forgery or illegal modification. 

• Pricing of DiffServ flows. 
• Application of pricing to TCP congestion 

control, and to server access. 
• Consistency checking between security 

policies and security mechanisms. 
• Distributed monitoring of DiffServ behavior, 

and detection of attacks on DiffServ. 

We believe the ideas and techniques presented will 
be valuable for protecting emerging QoS capabilities 
from misuse or attack.  Without such security 
mechanisms, we predict that the benefits of  such 
capabilities will be seriously degraded. 
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