
IPSec/PHIL (Packet Header Information List): Design, Implementation, and
Evaluation

Chien-Lung Wu , NC State University, Raleigh, NC
S. Felix Wu , University of California, Davis, CA

Ravindar Narayan, Cosine Communication, Red Wood City, CA

Abstract
For most TCP/UDP/IP applications, when a packet or a message
arrives, usually only the payload portion of the original packet
can be obtained by the application. For instance, if a packet has
been delivered through some IPSec tunnels along the route path,
then the application, in general, will not know exactly which
tunnels have been used to deliver this particular packet. The
IPSec/PHIL (Packet Header Information List) interface has
been designed and implemented such that an “authorized”
application is able to know which set of IPSec tunnels has been
used to deliver a particular incoming packet. Furthermore,
IPSec/PHIL enables the controllability over which set of IPSec
tunnels will be used to send a particular outgoing packet.
IPSec/PHIL is a key component in the DECIDUOUS
decentralized source tracing system to correlate the IPSec
information with intrusion detection results. Other IPSec/PHIL
applications we have built include a SNMPv3 security module
using IPSec as well as a IPSec tunnel switching router.

1 Introduction

IP security (IPSec) protocol suite [1, 2, 3, and 4] is a series of
guidelines for the protection of Internet Protocol (IP)
communications. It provides ways for securing private
information transmitted over public networks. The currently
available IPSec-based applications in the market are
predominantly Virtual Private Networks (VPNs). VPNs
provide Network-to-Network security by setting up SAs
(Security Associations) in the tunnel mode between
Gateways of the networks, and these tunnels secure the
aggregated data flowing from one policy domain to another
through IPSec gateways.

For most TCP/UDP/IP applications, when a packet or a
message arrives, usually only the payload portion of the
original packet can be obtained by the application. If a packet
has been delivered through some IPSec tunnels, then the
application, in general, will not know exactly which tunnels
have been used to deliver this particular packet. For instance,
an intrusion source tracing system (such as DECIDUOUS [5,
and 6]) might be very interested in analyzing not only the
payload but also which particular IPSec tunnels have been
used to deliver these attack packets with obviously spoofed
source IP addresses.

For application-layer protocols such as SNMP and LDAP, it
is usually not natural and feasible to use IPSec to secure the
application-layer traffic, and thus a separate security
mechanism is needed. In this paper, we will show that, with a

simple extension of the socket API, the security mechanisms
and capabilities of IPSec can support the security
requirements of some applications. We called this new
interface: IPSec/PHIL (Packet Header Information List [7])
API.

A third issue is regarding the support of end-to-end security
using IPSec, while it is impossible to directly build a IPSec
security association from the source to the destination. For
instance, in an inter-domain environment, it might not be
always possible to negotiate directly between two IP nodes
belonging to two different domains. Things get trickier if an
intermediate gateway will perform network address
translation (NAT). We will show later that how to utilize the
PHIL API to support “packet switching” among a set of
IPSec tunnels such that it is possible to use a set of tunnels
collaboratively (an IPSec tunnel path, more specifically) to
secure the information end-to-end.

2 Background

IPSec protocol suite [8] has been discussing and developing
in IETF IPSec working group. The fundamental concept of
IPSec is to provide authenticated or security IPSec tunnel,
such that any packet, going through this tunnel, has the
confidentiality to verify that the packet is real be
authenticated by the routers of the both end of the tunnel. If a
packet goes through this tunnel, but not been authenticated
will be dropped.

In IPSec, there are two types of protocols in doing tunnel
authentication:
a. Authentication Header (AH) protocol provides support

for data integrity and authentication of IP packets.
b. Encapsulating Security Payload protocol provides

confidentiality services, including confidentiality of
message contents, and also provides options for
authentication of IP header.

Actually, IPSec protocol suite provides a flexible framework.
For example, on AH protocol, users are allowed to use
different AH algorithms —MD5, HMAC-MD5, …,etc. And
for ESP protocol, the ESP algorithm could be triple DES or
IDEA.

For IPSec to do Authentication/Encryption, algorithms are
important; but the key management is also very important as
well. IPSec also provides a flexible way for users to do key

exchange. Currently IPSec adapts ISAKMP protocol to do
security information exchange.

A key concept in both AH and ESP protocols is the Security
Association (SA). An SA can be identify by three parameters:
1. Security Parameters Index (SPI): A SPI is a number

assigned to a security association. The SPI is carried in
AH and ESP headers to enable receiving system to select
the SA when it received a packet.

2. IP Destination Address: the destination endpoint of A SA
could be an end user or a network system such as a
firewall or router.

3. Security protocol Identifier: This indicates whether the
SA is an AH association or ESP association.

All SA are storage in Security Association database (SAdb).
The SAdb has the relationship with Security policy. Security
policy describes how this router will treat this packet. For
example, the incoming packets could be dropped, could be
routed without SA, or could be routed using another SA. All
related security policies are stored in Security Policy database
(SPdb).

Fig 1 is a simple example to see how IPSec work. First, from
policy server, system administrators are able to update
security policy between router A and B. The policy could be:
“ Any IP packet, going through A, will be encrypted (ESP
protocol) and sent to B.”

With this security policy, router A and B will look at their
SAdb. If there existed the requested SA, then any packet,
satisfying the security policy, will go through the
authenticated tunnel using that SA. If there doesn’t exist any
available SA, both A and B will negotiate to decide which
ESP algorithm is available for both A and B. After the
negotiation, both A and B will agree to use SA (SPI=100) to
encrypt all IP traffic.

In our research, instead of interested in the data integrity, we
are more interested in the IP packet header authentication.
For example, if we set up all policies between A and B, then
if B received a packet, B has the confidence to say that the

Fig 1: a simple example to show how IPSec work.

packet is actually from router A, even the Source address X is
not trusted. Otherwise the packet will be dropped within B.

Fig 2: Applying IPSec to do attack source tracing

With the merit of authenticated tunnel, we come out the idea
to do source identification and attack source tracing. For
example, in Fig 2, if victim domain received a packet with
the SPI=500, we can sure that the packet came from R4
(tracing back to previous router). Similarly, if R4 received a
packet with SPI=400, he will know that the packet is from
R3. Following the same process, we finally are able to know
that the attacker is at A.

The thing interested is that “if a router receive a IP packet,
can he know which SA has been used?” The answer is “No”,
he can just know that the packet has went through
authenticated tunnel; but he didn’t have any opportunity to
know which SA has been used, and he even don’t know this
packet went through which authenticated tunnel, if there are
multiple tunnel connected with this router. So how can we
do? To solve this problem, we should have a way to keep all
IPSec information (SA, SPI…) after the IPSec processing.
This is the motivation for us to design PHIL (Packet Header
Information List). Furthermore, if end-users are able to access
or choice a SA to secure their communication, we can ext end
the IPSec to support end-to-end communication as well.

3. Related works

Currently people using IPSec are more focus on the data
confidentiality. Today there is still few research using the
merit of IPSec authenticated tunnel to do attack source
tracing yet. In 1993, Wobber and Lampson [9] proposed a
theoretical concept of API for authentication. They suggested
that the Operating System (OS) should provide an interface
(API) for sending and receiving authenticated messages. D.
McDonald [10] also proposed a draft of API extension to
BSD socket. GRIP[11] (Gigabit Rate IP Security) project also
has a study to extend API for support host-to-host connection.
However, again, I got to emphasize that these proposals of
API extension did not support security information keeping,
since different purposes of using IPSec. As our study, to keep
the security information is very important for us to use IPSec
framework doing attack source identification. If we can keep
the security information after IPSec process, it is nature for us
to extend API to access the security information.
Furthermore, if we have the design of API extension, it could

A BA u t h e n t i c a t e d t u n n e l

S:X
D:Y payload

SAdb
SAdb

S:X
D:Y payload

St :A
D t: B

A H

S:X
D : Y payload

St :A
D t: B

ESP

S:X
D:Y payload

S e c u r i t y i n f o r m a t i o n e x c h a n g e

S P d b S P d b

SPI=100SPI=100

Secur i ty po l i cy update

be possible for end-users to control IPSec security services in
host-to-host connection.

4. Motivation

In the FreeSWAN implementation [12] of IPSec:

a. At the time of processing the in-bound IPSec traffic, all

the IPSec headers are discarded at the IP layer; and when
the applications do receive data, the data is devoid of all
IPSec headers, thus there is no way of knowing whether the
incoming packets were secured. If the packets were
secured, then it is also hard to figure out what level of
security was afforded and which end host or Security
Gateways provided the security.

b. Also, there is no way for user applications to control the

out-bound IPSec traffic through a specific SA (security
association). More specifically, since we are unable to bind
an SA to a particular socket port in the application layer,
we cannot support end-to-end application-layer security
using IPSec.

Based on our observation and experience with IPSec, we
believe that IPSec’s capabilities can be greatly extended if we
have a good interface to access the security services provided
in the IP layer. Naturally, we would like to have the
following two capabilities:

a. For incoming traffic it provides an API such that the

application developers are able to extract security
information such as the security afforded to a particular
segment of data received at the application layer from the
kernel.

b. For the outgoing traffic, PHIL-API provides the

functionality to interact with the kernel's Security
Association database (SAdB) and Security Policy
database (SPdB) to query information about the existing
SAs and the security level afforded to their outgoing data.
It should also provide a way for the outgoing process to be
able to override the default security policy.

5. Implementation

The key feature in PHIL is the “PHIL” information, which is
a “list” data structure containing the IPSec related
information. In regular protocol stack processing, all header
information about IPSec has been stripped out before the
payload being passed to the transport and application layers.
However, in PHIL, extra IPSec information will be attached
to the payload all the way up or down. The architecture of
PHIL and its relationship with the OS kernel is depicted in
the following figure. The detail implementation, please refer
to [7].

5.1 PHIL-API for socket control

 Figure 3: The Conceptual Architecture of PHIL-API
or UD
A TCP A TCP or UDP socket opened with a socket system call

should first be enabled (or maybe later disabled) to receive
the PHIL information along with the application data.
The following functions are designed to control the PHIL
functions:

 int phil_enable (int sockfd, int mode)
 int phil disable (int sockfd)

int phil bind (int sockfd, unsigned long *spi array, int size)
 int phil unbind (int sockfd)

 int phil_accept(parameters to accept(), char phil_buf, int
phil_len) /* TCP only */

5.2 For receiving data

 int phil_recvfrom(parameters to recvfrom(), char *phil_buf,

int phil_len, int *dsegs)

In addition to the return values of the corresponding normal
call recvfrom(), this call returns phil_buf, which is a character
buffer that contains the PHIL information, and dsegs, which is
the number of TCP data segments constituting the total data
bytes being read from this call. A phil_recvfrom() call is
intended to be used to retrieve the data plus the PHIL
information for both UDP and TCP applications. For sending
data.

5.3 For sending data

int phil_sendto (parameters to sendto(), long *spi_arr , int size)

The spi_arr array describes the SPI value(s) of our preference
in sending the data (in the case where we have a choice of
sending the data over several possible SAs). If the application
does not know the set of the possible SA’s, it can query the
SAdB (Security Association database) for the SPI values
through the query function of spi() [7]. Through the
phil_sendto(), it is possible to send a stream of data bytes
from a single application process over different SAs, which
provides different levels and features of security for different
data types.

IP layer

Transpor t l ayer
Kernel

SPdb

S A d b

Phi l_recvfrom ()

IP
packe t

P H I L

T C P / U D P
packe t

P H I L

Domain

User Domain

In-bound IPSEC traffic

Phil_ send to ()

T C P / U D P
packe t

Specific
S A

Specific
S A

IP
packe t

Out-bound IPSEC traff ic

IPSEC Stack

In-bound O u t - b o u n d

applications
Applicat ions
w/ specific SA

6. Applications

In today’s TCP/UDP connection, it seems to people that there
is not necessary of any PHIL support. However, in this
section, we show that some applications really do need PHIL
support, for example, Deciduous project of North Carolina
State University use PHIL to resolve inter-domain tracing.
And some applications, like SNMP, are able to use PHIL to
simplify the security mechanism design. Following we will
present several example to show how can we use PHIL to
provide flexible controllability in offering security service.

6.1 PHIL Switching

Traditionally, an IP router will forward packets solely based
on their destination addresses. In the DECIDUOUS project
[5,6], in order to support “inter-domain collaboration,” a
router needs to switch the packets based on the “incoming”
IPSec tunnels. Due to the space limitation, we will discuss
very briefly how PHIL/PHIL switching technology is used in
DECIDUOUS project. The functions of PHIL-switching can
be summarized as:

1. Any incoming IPSec traffic, if matched any entry of the

PHIL-switching table, will be forwarded to a specific
security path.

2. If the incoming traffic is non-IPSec, it will be processed as
normal IP traffic.

3. A selected set of inbound SA’s can be aggregated into one
outbound SA or dropped.

6.1.1 PHIL-Switching controller

The PHIL Switching controller provides an interface for users
to add, delete or flush PHIL switching table. In our
implementation, the controller has two different interfaces:
one is a client-server model using UDP, the other is the
SNMP MIB model. In the latter case, PHIL-switching is
under the control of SNMP agent through the PHIL-switching
MIB (Message Information Base). In either case, the user can
“read, add, delete” and “flush” the PHIL-switching table.

6.1.2 User-Level Switching Entity

For any incoming packets with header fields such as [SPI,
security protocol, source and destination addresses, protocol,
source and destination ports], the switching entity looks up
the PHIL switching table. Then, it will “switch” the incoming
packets into different tunnels using specified SPI according to
the switching table entry. To realize the concept of PHIL-
Switching in the user level, we use “divert socket]” to
intercept IP packets from kernel to the user-level switching
process. After the switching table look up, the intercepted
packet will be forwarded using the phil_sendto() with a
specified SPI/SA

6.1.3. DECIDUOUS Collaboration protocol

In an intra-domain environment, it is easy to establish SA
among routers. It is, in general, not possible to build up SA
directly among any pair of routers in different domains. With
the realization of PHIL-switching, DECIDUOUS can
collaborate with a security gateway in another domain to
establish an IPSec SA tunnel path, which emulates a direct
SA across multiple domains.

Figure 4: Inter-domain collaboration using PHIL-switching

We assume that SA can only be established between the
border security gateways of collaborating domains. In Figure
4, six SA’s (A1, A2, B1, B2, C1, C2) have been established
between victim and local border router, between remote and
local border routers, and within the remote domain. Now if
IDS (Intrusion Detection System) detects attacks, it will
report the detected attacks to local DECIDUOUS process. In
the report, it will show that the attacks have been launched
through SA C2. With the local PHIL-Switching table, we can
tell that the attacks are indeed from SA B2. And, finally, the
remote domain will be notified and it can further track down
the source by correlating SA B2 with SA A2.

 6.2 SNMP over IPSEC

The earlier versions of SNMP (SNMPv1 and SNMPv2)
[13,14, and 15] use the community feature for a simple and
unsecured password-based authentication. To improve the
security concern, therefore, SNMPv3 introduces the concepts
of snmpEngineId and securityName. snmpEngineId
uniquely identifies an SNMP engine that provides services
for sending and receiving messages, authenticating and
encrypting messages, and controlling access to managed
objects. securityName is a human readable string
representing an individual on whose behalf the services are
provided or processed. Each securityName is associated (or
configured) with a securityLevel parameter, which is stored
in the Local Configuration Database (LCD). When a user
issues a command or requests information, LCD is queried to

IDS
victim

Deciduous

Deciduous

attack

Subnet S1

Subnet S2

BR
remote

BR
local

SA C2

SA A1

SA A2

SA B1

SA B2

SA C1

Domain A Domain B

Note: BR-- Border router

A1 S1 B2
A2 S2 B1

B 1 * C 1

B 2 * C 2

PHIL Switching
 Table

PHIL Switching
 Table

Figure 5: SNMP security architecture using IPSec

determine the security requirements for the given Figure 4:
SNMP security architecture using IPSec securityName and
snmpEngineID. If the securityLevel specifies that the
message is to be authenticated, then the message is
authenticated according to the user's authentication protocol.
Privacy and timelines modules are called depending on the
securityLevel.

For supporting SNMPv3 security on IPSec, first, we modified
the SNMPv3 to support security information mapping (SIM)
as shown on Figure 5. For example, The securityName(Bill)
and snmpEngineID(Earth1) will generate two SPIs: SPI
0x161 for incoming, and SPI 0x171 for outgoing. Hence the
SNMP packet data unit from SNMP manager to SNMP agent
will be encrypted/decrypted using SPI 0x171; and when
SNMP agent receives the request from SNMP manager,
SNMP agent will use securityName(Bill) to associate with
the replying message and the replying security information

(SPI 0x 161). With the PHIL-API (phil_sendto(), and
phil_recvfrom()), we can apply the specified SPI (generated
by SIM) in the IPSec process.

7. Performance Evaluation

In this section, we evaluate the latency introduced by PHIL.
The major overhead introduced by PHIL is the PHIL process
for both incoming side and outgoing side.

Environments and methods
The measurement includes two machines: both are 450MHz
Pentium II equipped with 10Mbit/sec Ethernet cards, and run
on Linux2.0.36 with FreeSwan 1.0[12]. We create echo
client/server (TCP/UDP) to launch 100000 packets each
times and then calculate the average time in each sending and
receiving process. We also concern the different data sizes in
16, 32, 64, 128, 256, 512, 1024 bytes. For any packet great
than MTU (Maximum Transmission Unit), this packet will be
fragmented and the PHIL process could be executed more
than twice (depends upon the data size) in each packet. Hence
we restrict the packet size to be less than MTU such that we
can simply calculate the average time delay for each packet.
Three cases are under testing:

Case 1: Linux 2.0.36 kernel, no IPSec, and no PHIL.
Case 2: Linux 2.0.36 kernel with FreeSwan IPSec (V1.0); no PHIL.
Case 3: Linux 2.0.36 kernel with FreeSwan IPSec (V1.0) and PHIL.

The result is shown on table 7-1. From case1 and case 2, we
show the IPSec overhead; and by comparing case2 and case3,
we present the PHIL implementation overhead. Within Table
7.1, we observed that the overhead introduced by PHIL
(compare with Case2 and Case 3) is 1-2 microseconds.

Table 7.1: The test result of PHIL

 size(bytes) Case 1 Case 2 Case 3 Case3-Case2
16 363 us ESP: 505 us ESP: 506 us ESP: 1 us

 AH: 502 us AH: 502 us AH: 0 us

32 398 us ESP: 538 us ESP: 539 us ESP: 1 us
 AH: 535 us AH: 536 us AH: 1 us
64 465 us ESP: 616 us ESP: 617 us ESP: 1 us
 AH: 613 us AH: 613 us AH: 0 us
128 601 us ESP: 761 us ESP: 762 us ESP: 1 us
 AH: 756 us AH: 757 us AH: 1 us
256 870 us ESP: 1050 us ESP: 1051 us ESP: 1 us
 AH: 1045 us AH: 1046 us AH: 1 us
512 1410 us ESP: 1628 us ESP: 1630 us ESP: 2 us
 AH: 1625 us AH: 1625 us AH: 0 us
1024 1410 us ESP: 1628 us ESP: 1630 us ESP: 2 us
 AH: 1625 us AH: 1625 us AH: 0 us

Phil_sendto(data, spi_1)

 Agent
SNMP

SIM

Manager
SNMP

SIM

SAdb
SAdb

Manager_to_Agent_request

Phil_ sendto(data, spi_2) Phil_recvfrom()Phil_recvfrom()

Agent_to_Manager_reply

User
domain

Kernel
domain

IPsec encrypting
 process IPSec decrypting

process

8. Remarks and Conclusions

IPSec has been standardized and widely deployed for
securing private information over the Internet. Currently,
VPN is the major application for IPSec since higher layers
cannot easily access and control IPSec-layer security
services. Our PHIL-API design and implementation provides
a possible bridge between IPSec and other security
applications. We have demonstrated the usefulness of this
new API for applications such as DECIDUOUS and
SNMPv3. We believe that many other secure Internet
applications can be built directly on top of IPSec/PHIL,
without having to re-develop yet another security module
within the application layer. Furthermore, in the near future,
we expect to see more and more hardware acceleration for
IPSec (e.g., 3Com’s IPSec NIC, and CellTech’s Gigabit
IPSec chip). Therefore, for high performance applications, it
will be much more attractive to use IPSec/PHIL than the
software-based lower-throughput transport/application layer
protocols such as TLS or SSL. Practically, the PHIL-API is
useful when the applications need to run on platforms not
supporting other security protocols (e.g., TLS). Finally,
through our implementation and evaluation, we have shown
that the overhead (memory space and CPU time) in providing
PHIL is quite reasonable – 1 to 2 microseconds per packet in
software. The PHIL service has been integrated into the
DECIDUOUS system, which can trace the true attack sources
in a few seconds on top of a 10-node test-bed.

9. References

[1] S. Kent, and R. Atkinson, “Security Architecture for the
Internet Protocol”, RFC 2401, November 1998.

[2] S. Kent, and R. Atkinson, “IP Encapsulating Security
Payload (ESP),” RFC 2406, November 1998.

[3] S. Kent, and R. Atkinson, “IP Authentication Header,”
RFC 2402, November 1998.

[4] Angelos D. Keromytis, John Ioannidis, and Jonathan M.
Smith, “Implementing IPSec,” IEEE, August 1997.

[5] H.Y. Chang, S.F. Wu, et al., "Deciduous: Decentralized
Source Identification for Network-based Intrusions",
appeared in 6th IFIP/IEEE International Symposium on
Integrated Network Management, IEEE Communications
Society Press, May 1999.

[6] H.Y. Chang, S.F. Wu, et al., "Design and Implementation
of a Real-Time Decentralized Source Identification
System for Un-trusted IP Packets", appeared in DARPA
Information Survivability Conference and Exposition
(DISCEX 2000), IEEE Computer Society Press, January,
2000.

[7] Ravindra Narayan, “Socket API Extensions to Extract
Packet Header Information List (PHIL)” Master thesis,
May 1999. http://www.lib.ncsu.edu/etd/public/etd-
3721141949931381/etd-title.html

[8] IP Security working group of IETF: IP security roadmap
http://www.ietf.org/rfc/rfc2411.txt

[9] Edward P. Wobber, Martin Abadi, Michael Burrows, and
Butler Lampson. “Authentication in the Taos Operating
System” ACM Transactions on Computer Systems,
12(1):3-32, February 1994. Also appeared as SRC
Research Report 117

[10] D. McDonald, “draft-mcdonald-simple-ipsec-api-
03.txt”, http://www.alternic.org/drafts/drafts-m-n/draft-
mcdonald-simple-ipsec-api-03.html

[11] GRIP (Gigabit Rtae IP Security):
http://www.east.isi.edu/DIV10/GRIP/

[12] Linux IPSec/FreeSwan Web site:
http://www.xs4all.nl/~freeswan/

[13] Harrington, D., Presuhn R., Wijnen B., "An Architecture
for describing SNMP management frameworks", RFC
2271, January 1998.

[14] D. Levi, P. Meyer, B. Stewart, “SNMPv3 Applications,”
RFC2273, January 1998

[15] Blumenthal, U., Wijnen B., "User-based Security Model
(USM) for version 3 of the Simple Network
Management Protocol", RFC 2274, January 1998.

[16] The Linux Kernel Archives: http://www.kernel.org/
[17] M. Beck, H. Bohme, M. Dziadzka, and U. Kunitz,

“Linux Kernel Internals” Addison-Wesley Second
version, 1998.

