
A Formal-Speci�cation Based Approach for Protecting the Domain

Name System

Steven Cheung

Department of Computer Science

Universit yof California

Davis, CA 95616

cheung@cs.ucdavis.edu

Karl N. Levitt

Department of Computer Science

University of California

Davis, CA 95616

levitt@cs.ucdavis.edu

Abstract

Many network applic ationsdep end on the security
of the domain name system (DNS). A ttackson DNS
can cause denial of service and entity authentication to
fail. In our appr oach,we use formal speci�c ations to
characterize DNS clients and DNS name servers, and
to de�ne a security goal: A name server should only
use DNS data that is consistent with data from name
servers that manage the corresponding domains (i.e.,
authoritative name servers). T o enfor cethe security
goal, we formally specify a DNS wrapper that exam-
ines the inc oming and the outgoing DNS messages of
a name server to dete ctmessages that could cause vi-
olations of the security goal, coop erates with the corre-
sponding authoritative name servers to diagnose those
messages, and drops the messages that are identi�ed
as thr eats. Based on the wrapper sp eci�c ation,we im-
plemented a wrapper prototyp eand evaluated its per-
formance. Our experiments show that thewr apper in-
curs r easonableoverhead and is e�e ctive againstDNS
attacks such as cache poisoning and certain spoo�ng
attacks.

1. Introduction

This paper presents a detection-response approach
for protecting the domain name system (DNS). DNS
manages a distributed database to support a wide va-
riety of netw orkapplications suc h as electronic mail,
WWW, and remote login. F or example, netw ork appli-
cations rely on DNS to translate betw een host names
and IP addresses. A compromise to DNS may cause
denial of service (when a client cannot locate the net-
w ork address of a server) and entity authentication to
fail (when host names are used to specify trust relation-

ships among hosts). F or example, if DNS is compro-
mised to cause a client to use incorrect DNS data, the
client may be unable to obtain the IP address of a mail
server and thus cannot communicate with it. As an-
other example, if the DNS mapping for www.cnn.com is
compromised, an attacker may be able to direct a web
browser looking for the news web site to one that gives
out counterfeit news. If the web browser does not au-
thenticate the server, the user may use the counterfeit
news as if they were genuine. Some applications (e.g.,
Unix rlogin) use name-based authentication. Attacking
DNS could change the name-to-address mapping, and
hence may allow an attacker's machine to masquerade
as a trusted machine. Thus protecting DNS is security
critical.

Our approach for protecting DNS is driven b y formal
speci�cations. The use of formal speci�cations enables
reasoning, thus pro viding assurance for our solution.
F ormal methods have not been used in connection with
an intrusion detection approach. Using Vienna Devel-
opment Method (VDM), w e dev eloped formal speci�-
cations to characterize DNS clien ts and DNS servers,
and to de�ne a security goal as an invarian t:A DNS
server should only use DNS data that are consistent
with those disseminated by the corresponding authori-
tativ e sources.We designed a DNS wrapper, also char-
acterized by formal speci�cations, that enforces the se-
curit y goal. Our DNS wrapper examines DNS messages
en tering and departing a protected name server to de-
tect those messages that could lead to violations of our
securit y goal. If the wrapper does not have enough
information to determine whether a DNS message rep-
resents an attack, it collaborates with the name servers
that manage the relevant part of the DNS name space.
If the DNS wrapper cannot verify the data of the DNS
message to be trustworthy, the wrapper logs the mes-
sage and prevents it from reaching the protected name

0-7695-0707-7/00 $10.00 � 2000 IEEE

serv er.
Section 2 reviews the basics of the domain name sys-

tem. (Readers are referred to [1, 13, 14] for more details
about DNS.) Section 3 describes some known DNS vul-
nerabilities. Section 4 presents our system model. Sec-
tion 5 presents a DNS wrapper that enforces our secu-
rity goal for DNS. Based on the wrapper speci�cation,
w eimplemented a wrapper protot ype. Section 6 de-
scribes our experiments for evaluating the performance
of the wrapper implementation and their results. The
results show that the DNS wrapper incurs reasonable
overheads and is e�ective against some known DNS at-
tacks. Section 7 concludes, compares our work with
related work, and suggests future w ork. F or the sak e
of brevit y,w eomit the formal speci�cations for DNS
clients, DNS servers, and the DNS wrapper in this pa-
per. See [7] for details of this work.

2. Overview of DNS

2.1. What is DNS?

DNS manages a distributed database indexed by
names. The database has a hierarchical structure. A
name (e.g., cs.ucdavis.edu.) has a structure that re-

ects the hierarchical name space, which is depicted in
Figure 1.

edu com mil

ucdavis in-addr

gov arpa

cs

Figure 1. Hierarchical Structure of DNS Name
Space

A zone is a contiguous part of the domain name
space that is managed together by a set of machines,
called name servers. The name of a zone is the concate-
nation of the node labels on the path from the topmost
node of the zone to the root of the domain name space.
The name servers that manage a zone are said to be
authoritative for this zone. Every subtree of the do-
main name space is called a domain. The name of a
domain is the same as the zone name of the topmost
node of the corresponding subtree.

One of the main design goals for DNS is to have dis-
tributed administration. The distribution is achieved
by delegation. F or instance, insteadof storing all the
information about the en tire edu domain, which is a
very large domain, in a single name server, the re-
sponsibility of managing the ucdavis.edu domain is del-
egated to the authoritative name servers of UC Davis.
The authoritative name serv ers of the edu zone are
equipped with the names of the authoritative name
serv ers of theucdavis.edu zone. Thus if the edu servers
need information about the ucdavis.edu domain, they
kno w which servers to contact.

Clients of DNS are called resolvers, which are usu-
ally implemented as a set of library routines. Whenever
an application on a machine needs to use the name ser-
vice, it invokes the resolv er onits local machine, and
the resolver in teracts with name servers to obtain the
information needed. The most common implementa-
tions of resolvers are called stub resolvers (e.g., BIND1

resolv ersare stub resolv ers). Stub resolvers only do
the minimal job of assembling queries, sending them
to servers, and re-sending them if the queries are not
answered. Most of the w orkis carried out by name
servers.

2.2. How does DNS Work?

The process of retrieving data from DNS is called
name resolution or simply resolution. Suppose the host
h1.cs.ucdavis.edu needs the IP address of h2.cs.foo.edu.
The resolv er will query a local name server in the
cs.ucdavis.edu domain. There are tw omodes of reso-
lution in DNS: iterative and recursive. In the iterative
mode, when a name server receiv es a query for which
it does notkno w the answer, the server will refer the
querier to other servers that are more likely to know the
answer. Each server is initialized with the addresses of
some authoritative servers of the root zone. Moreover,
the root servers know the authoritative serv ers of the
second-level domains (e.g., edu domain). Second-level
servers know the authoritative serv ers of third-level do-
mains, and so on. Thus by following the tree structure,
the querier can get \closer" to the answer after each re-
ferral. Figure 2 shows the iterative resolution scenario.
For example, when a root server receiv es aniterative
query for the domain name h2.cs.foo.edu, it refers the
querier to the edu serv ers. Eventually , the querier will
locate the authoritative servers of cs.foo.edu and obtain
the IP address. In the recursive mode, a server either
answers the query or �nds out the answer by contact-
ing other servers itself and then returns the answer to

1BIND stands for Berkeley Internet Name Domain, which is
the most common implementation of DNS.

0-7695-0707-7/00 $10.00 � 2000 IEEE

edu

cscs

ucdavis foo

root

4

3

2

1

Figure 2. Iterative Name Resolution

the querier.

The above resolution process may be quite expen-
sive in terms of resolution time and the number of mes-
sages sent. T o speed up the process, servers store the
results of the previous queries in their caches. Consider
the above example. If h1.cs.ucdavis.edu asks its local
server to resolve the same name twice, the serv er can
reply immediately based on the information stored in
its cache the second time. Also, if in a subsequent query
h1.cs.ucdavis.edu asks its local server to �nd out the IP
address of h3.cs.foo.edu, the local server can skip a few
steps and con tacta cs.foo.edu serv er directly . If the
querier gets an answer from an authoritative server,
the answer is called an authoritative answer. Other-
wise, it is called a non-authoritative answer. Because
there may be changes tothe mapping, servers do not
cac he data forever. Authoritative serv ers attach time-
to-liv e2 (TTL) tags to data. Upon expiration, a name
server should remove the data from its cache.

2.3. DNS Message Format

A DNS message consists of a header and four sec-
tions: question, answer, authority, and additional. A
resour ce record (RR) is a unit of information in the last
three sections. Here is a list of common resource record
types [13]:

2There is no single \best" TTL value for all resource records.
The TTL value of a resource record is based on a tradeo� be-
tw een consistency and performance. A small TTL will increase
the average name resolution time because remote name servers
will remove the resource record earlier and need to query the
corresponding name servers more often. If a resource record is
changed, a small TTL enables other name servers to purge the
stale data and to use the new data earlier. One should reduce
the TTL before the resource record is changed. A common TTL
value is one day (e.g., the cs.ucda vis.edu zone), although some
high-lev el zones (e.g., the root zone) use a multi-day TTL.

� An A record contains a 32-bit IP address for the
speci�ed domain name.

� A CNAME record lists the original (or canoni-
cal) name of the speci�ed domain name. In other
w ords, aCNAME resource record maps an alias to
the canonical domain name.

� An HINFO record contains host information such
as the operating system used.

� An MX record contains a host name acting as a
mail exchange for the speci�ed domain.

� An NS record contains a host name that is an au-
thoritative name server for the speci�ed domain.

� A PTR record contains a domain name corre-
sponding to the speci�ed IP address.

� An SOA record contains information for the entire
speci�ed domain such as the domain administra-
tor's mail address.

The header has a query id �eld, which is used
to facilitate requesters' matching up responses to
outstanding queries. The question section carries
a target domain name (QNAME), a query type
(QTYPE), and a query class (QCLASS). F or ex-
ample, a query to �nd the IP address of the host
h2.cs.foo.edu has QNAME=h2.cs.foo.edu, QTYPE=A,
and QCLASS=IN (which stands for the Internet). The
answer section carries RRs that directly answer the
query. The authority section carries RRs that describe
other authoritative serv ers. F or instance, the author-
ity section may contain NS RRs to refer the querier
to other name servers during iterative resolution. The
additional section carries RRs that may be helpful in
using the RRs in the other sections. F or instance, the
additional section of a response may contain A RRs to
provide the IP addresses for the NS RRs listed in the
authority section.

3. DNS Vulnerabilities

Bellovin [3, 4], Gavron [10], Sc hubaand Spa�ord
[15], Vixie [17], and CERT advisory CA-98.05 [5] dis-
cuss sev eral security problems of DNS. In the following,
w e describe two well-known problems of DNS that are
relev an t to this paper|cache poisoning and failure to
authenticate DNS responses.

In the cache poisoning attack, an attacker can trick
a name server S1 to query another name server S2. If
S2 is a compromised name server, the attacker can have
S2 to return a DNS response that contains faked RRs.

0-7695-0707-7/00 $10.00 � 2000 IEEE

Otherwise, the attacker can masquerade asS2 and send
the DNS response to S1 (see below). Recall that a name
server cac hes the results ofprevious in teractions with
other servers to improve performance. When S1 uses
its contaminated cache to resolve a name, it may use
the incorrect DNS data supplied by the attacker.

The message authentication mechanism used by
most implementations of DNS is weak: A DNS server
(or a DNS clien t) attac hes an id to a query, and uses
it to match with the id of the corresponding response.
Suppose a server S1 sends a query to another server S2.
If an attacker can predict the query id used by S1, the
attacker can send a forged response that has a match-
ing query id to S1. When S1 receiv es the response that
claims to be from S2, S1 has no way to verify that the
response actually comes from S2. If S2 is unavailable
when the query is sent, the attacker can just masquer-
ade as S2 and send the forged response to S1. If S2
is operational, the attacker can mount a denial of ser-
vice attack against S2 to prev en tS2 from responding
to S1's query. Also, if a name server receiv es multiple
responses for its query, it uses the �rst response. Thus
even if S2 can reply to S1, the attacker can still succeed
if the forged response reaches S1 before S2's response
does.

4. System Model

In our model, there are two types of processes: DNS
servers and DNS clients (or resolvers). These processes
communicate with each other through message passing.
Resolvers only communicate with serv ers; serv ers can
communicate with other servers in addition to commu-
nicating with resolv ers. These two types of processes
are denoted by Server and R esolverrespectively. Basi-
cally, we model DNS clients and DNS servers as an ob-
ject that maintains a view on DNS data. The view may
be changed only through communicating with other
DNS components (i.e., sending DNS requests and re-
ceiving DNS responses) or by timeouts for DNS data.

We use the Vienna Development Method (VDM) to
specify our system model, because VDM provides a
formal language for specifying data and the associated
operations, and includes a framework to perform re-
�nements of data and operations. Another reason is
that VDM provides a basis for performing formal veri-
�cation, which makes it more convenient to extend our
w ork in the future.Most of the symbols used in VDM
are standard mathematical symbols. We will describe
the non-standard or less commonly used ones as w e
need them. Readers are referred to [11, 2] for more
details on VDM.

In the following, Section 4.1 presents our DNS data

model. Section 4.2 de�nes our notion of a process'
view on DNS data. Section 4.3 formalizes the DNS
concept of authority. Section 4.4 discusses our assump-
tions about DNS. Section 4.5 presents our security goal
for DNS.

4.1. DNS Data

DNS messages (of type Msg) are either a query (of
type Query) or a response (of type Resp).

Query [Resp = Msg

Query \ Resp = ;

A message m of type Msg consists of the following sec-
tions: header, question, answer, authority, and addi-
tional. We denote these sections of m by Hdr(m),
Q(m), Ans(m), Auth(m), and Add(m) respectively.
The header section includes a query id, an opcode3,
a truncated message
ag4, and a response code5. We
denote these �elds of m by id(m), opcode(m), tc(m),
and rcode(m) respectively. The question section con-
sists of a domain name, a query type, and a query class.
The answer, the authority, and the additional sections
consists of resource records (RR). We denote the set of
resource records of a message m by RRof(m). A RR
consists of a domain name, a type, a class, a 32-bit
TTL (in seconds), and a resource data �eld. For a re-
source record r, w edenote these �elds by dname(r),
type(r), class(r), ttl(r), and rdata(r) respectively.

DNS manages a distributed database. The database
is indexed by a tuple (dname, type, class) of type Idx.
The range of the database is a set of resource records,
abbreviated as RR. T odenote this database type in
VDM, we use a map type DbMap : Idx

m
�!RR�set.

A map type T = D
m
�!R has domain D and range R.

The domain and the range of T are denoted by dom(T)
and rng(T) respectively. A map of type T is a set that
relates single items in D to single items in R.

RRType = fA;PTR;NS;CNAME;MX; SOA;
= HINFO; : : :g

RRClass = fIN; : : :g
TTL = f0 : : :232 � 1g

3The opcode of a DNS message distinguishes between dif-
ferent types of queries|standard queries and inverse queries. A
standard query looks for the resource data given a domain name.
An inverse query looks for the domain name given resource data.

4The truncated message
ag indicates whether the DNS mes-
sage is truncated. Message truncation occurs when the message
length is greater than that allow ed on the transmission medium.

5The response code �eld is used to indicate errors and
exceptions.

0-7695-0707-7/00 $10.00 � 2000 IEEE

Idx :: dname : DName
type : RRT ype
class : RRClass

RR :: dname : DName
type : RRT ype
class : RRClass
ttl : TTL
rdata : RData

DbMap = Idx
m
�!RR-set

Db represents the data managed by DNS.
SubDomain captures the domain-subdomain relation-
ships. Given a domain d, the set of all the sub-domains
of d is represented b ySubDomain(d). A zone con tains
the domain names and the associated data of a do-
main, except those that belong to a delegated domain.
A zone is a contiguous part of the domain name space
that is managed together by a set of name servers. A
zone may have a set of delegated subzones, represented
by the function SubZone. (In VDM, a function spec-
i�cation consists of tw oparts. The �rst part de�nes
the argument types and the result type, which are sep-
arated by the symbol \!". The second part gives the
function de�nition.) F or a zone z, ZoneData(z) con-
tains all resource records whose domain names belong
to zone z, the zone cut data, and the glue data. The
zone cut data describe the cuts around the bottom of
zone z: In particular the NS resource records of the
name servers for the delegated zones of z. If there are
name servers for the delegated zones residing below the
zone cut, the glue data contain the addresses of these
serv ers.

Db : DbMap

SubDomain : Domain
m
�!Domain�set

ZoneData : Zone
m
�!DbMap

SubZone : Zone! Zone�set
8z 2 Zone � SubZone(z) 4

fcz j 9rr 2 rngZoneData(z) � type(rr) = NS^
dname(rr) 6= z ^ cz = dname(rr)g

4.2. View

Every process maintains its view of the database.
The view of a server s can be partitioned into the au-
thorit ypart (denoted by V iewauth(s)) and the cache
part (denoted by V iewcache(s)), where the former takes
precedence over the latter. The map overwrite opera-
tor y takes tw o map operands and returns a map that
contains all the elements in the second operand and
those in the �rst operand whose domain does not ap-
pear in the domain of the second operand. F or a server
that is not authoritative for any part of the database

and for a resolver, the corresponding V iewauth is ;.

Viewauth : Process
m
�!DbMap

Viewcache : Process
m
�!DbMap

View : Pr ocess! DbMap
8p 2 Process � V iew(p) 4

V iewcache(p) y V iewauth(p)

4.3. Authority

Some servers are said to be authoritative for a
zone; their views on the zone data de�ne them.
AuthServer maps a zone to the list of authoritative
servers. AuthAnswer de�nes the mapping from an in-
dex to the authoritative answer, de�ned by the view of
the an authoritative serv er on the index.Authoritative
returns true if and only if every resource record in the
input resource record set is authoritative.

AuthServer : Zone
m
�!Server�set

AuthAnswer : Idx! RR�set
8i 2 dom(Db) �AuthAnswer(i) =

let z 2 Zone ^ p 2 Process^
i 2 domZoneData(z) ^ p 2 AuthServer(z) in
V iewauth(p)(i)

Authoritative : RR�set! Boolean

8rrs 2 RR�set �Authoritative(rrs) =
8rr 2 rrs � rr 2
AuthAnswer((dname(rr); type(rr); class(rr))

4.4. Assumptions

In this section, we explicitly list our assumptions for
DNS. They concern with ho wname servers prioritize
RR sets, the accuracy of authoritative DNS data, the
e�ect of changes on DNS data, the accuracy of delega-
tion data, and the power of attackers on eavesdropping
DNS packets.

Assumption 1 Protected servers do not add an RR to
the V iewcache of a process if an RR that corresponds to
the same index already exists in the V iewcache. More-
over, protected servers prefer authoritative data over
cache data.

Both of them hold for \good" servers (i.e., servers
that behave according to the DNS RFC [13 , 14]).
Some server implementations rank data from di�erent
sources at di�erent credibility lev els. Moreover, data
from a higher credibility level can preempt data from
a low er credibility level. We do not model data credi-
bility levels in our work for the sake of simplicity. Be-
cause our DNS wrapper only allows authoritative data
to reac h a protected name server, this simpli�cation
does not a�ect the validit y of our results.

0-7695-0707-7/00 $10.00 � 2000 IEEE

Assumption 2 Data from an authoritative server are
correct.

For example, if a server is authoritative for a machine
h and the server says the IP address of h is i, then we
believ e that the IP address ofh is i.

Assumption 3 When a server attaches a TTL with
t seconds to a resour cerecord for which the server is
authoritative, the resour cerecord will be valid for the
next t seconds.

We state this assumption because there is no revoca-
tion mechanism in DNS. Without this assumption, one
cannot determine the validit yof DNS data as soon
as they leave their authoritative serv ers. We argue
that this assumption is reasonable. When a resource
record needs to bec hanged, the TTL of this resource
record is usually decreased before the changeover so
that incorrect/stale recordswill timeout shortly after
the changeover.

Assumption 4 For every zone, the dele gation data
and the glue data of its child zones correspond to the
NS RRs and the A RRs of the name servers of the child
zones.

An example violation of this assumption is called lame
dele gation. Lame delegation is caused by operational
errors: A system administrator changes the name
servers for a zone without changing the corresponding
delegation information in the parent zone or notifying
the system administrator of the parent zone about the
change.

Assumption 5 A ttackers cannot eavesdr op on the
DNS packets sent betwe enour protected servers and
the le gitimate name servers.

This is a limit w eplace on the attac kers;if attac kers
can monitor the communication, our scheme may fail
to cope with spoo�ng attacks. In the future, when the
use of the DNS securit y extensions [8] (DNSSEC)|
which employs digital signatures to authenticate DNS
data|is widespread, we may drop this assumption. An
implication of this assumption is that by randomiz-
ing the query id used, the probability that an attacker
can forge a response whose id matches the randomized
query id is small. Thus attempts for sending forged re-
sponses by guessing the query id used can be detected
by the wrapper.

4.5. Our Goal

Our goal is to ensure that the view of a protected
name server agrees with those of the corresponding au-
thoritative name serv ers. This goal is speci�ed us-
ing a VDM data invarian t. A data invariant of a
data type speci�es the predicates that must hold true
during the execution of a system. Our name server
speci�cation, which re
ects the minimal functionalities
of DNS servers among existing implementations, does
not satisfy this data invarian tbecause it allows non-
authoritative DNS data to be used by a name server.
Thus for a name server s, Authoritative(rng V iew(s))
may not hold. In the next section, w ewill present
our solution|a security wrapper for protecting name
servers. Our DNS wrapper �lters out DNS messages
containing resource records that cannot be veri�ed as
authoritative. Therefore, a protected name server that
satis�es the data invarian t can be constructed by com-
posing a name server and our DNS wrapper.

state DNS of
protectedNS : Server�set

� � �
inv mk-DNS(protectedNS) 4

8s 2 protectedNS� Authoritative(rng V iew(s))
end

5. Our DNS Wrapper

We use security wrapp er(or simply wrapper) to refer
to a piece of softw are that encapsulates a component,
such as a nameserv er, to improve its securit y. Using
wrappers to enhance the security of existing softw are
is not a new idea. Related work includes TCP wrapper
[16] and TIS' generic softw are wrappers [9]. How ev er,
our work is di�erent in that it addresses problems that
are DNS speci�c and it involves the use of formal spec-
i�cations.

Consider a wrapper w. Wrapper w chec ks DNS re-
sponse packets going to a name server and ensures that
they are authenticated6 and they agree with authorita-
tive answers. If a resource record in the response does
not come from an authoritative server, wrapper w lo-
cates an authoritative serv er and queries that server
for the authoritative answer. To locate an authorita-
tive server for a zone, say z, the wrapperstarts with
a serv er, say s, that is known to be an authoritative

6Data authentication checks can be performed by match-
ing the query id's of queries to those of responses, or by us-
ing DNSSEC. However, the query id generation process used in
some implementations of name servers is quite predictable. Be-
fore DNSSEC is widely deployed, we need a means to protect
these name servers from spoo�ng attacks.

0-7695-0707-7/00 $10.00 � 2000 IEEE

server for an ancestor zone of z, and queries server s
for authoritative servers of the child zone that is either
an ancestor zone of z or z itself. The searc h is per-
formed by traversing the domain name tree, one zone
at a time, until an authoritative serv er for the DNS
data being veri�ed is located. Recall that the zone data
maintained by a server include the name server data of
the delegated zones. Moreover, the zone data, includ-
ing the zone cut data and the glue data, tak e prece-
dence overRRs obtained from outside sources. Thus
the delegation data is immune from cache poisoning at-
tacks. Our scheme exploits this fact to securely locate
the authoritative serv ers.

Let ns denote the name server protected by wrapper
w. Our wrapper consists of tw o main parts:Wrappersq

for processing queries, and Wrappersr for process-
ing responses. (The subscript s stands for \serv er".)
Wrapper w processes queries generated by ns before
they are sent out, and processes queries destined for
ns. Wrapper w also processes responses destined for
ns; those that are accepted by w will be forwarded to
ns.

When ns sends a query, wrapper w generates a ran-
dom query id and uses it to replace the original query
id (used by ns). We use a translation table to track
the mapping betw een the random query id's used by w
and the original query id's used by ns.

Wrappersq processes queries that involve ns. These
queries can be partitioned into tw otypes. The �rst
type corresponds to the queries that are sent to ns. The
second type corresponds to the queries that are gener-
ated by ns. These tw o types of queries are treated
di�erently. For the �rst type, wrapper w chec ksthe
queries to determine whether they are w ell-formed
(e.g., the answer, the authority, and the additional sec-
tions for a standard query should be empty). F or the
second type, the wrapper generates a random query id,
replaces the query id used in the original query by this
randomly generated query id, and updates the local
query id translation table.

Wrappersr processes responses that are received
by the wrapper. Wrappersr has tw o components:
Wrappersr1 and Wrappersr2. Wrappersr1 screens
out forged response messages. In other words, response
authentication is hardened. Wrappersr2 veri�es the
response messages to ensure thatthey agree with au-
thoritative answers, and copes with cache poisoning
attacks. There are two types of responses received b y
a wrapper: responses for queries generated by the pro-
tected name server ns, and responses for queries gener-
ated by the wrapper itself (for message diagnosis pur-
poses). When a response for a query generated by ns
is receiv ed, the wrapper uses thequery id translation

table to restore the query id (to the one used by ns)
before passing the response to Wrappersr2.

6. Experiments

6.1. Overview

We conducted experiments to ev aluate the response
time (i.e., the elapsed time betw eensending a query
to a name server and receiving a response from it) of a
wrapped name server, and to evaluate the false positive
rate, the false negative rate, and the computational
overhead (i.e., CPU time used) of our wrapper.

Based on the DNS wrapper speci�cation, we imple-
mented a prototype of the DNS wrapper for BIND re-
lease 4.9.5, which was the latest release for BIND when
w e started our implementation. The DNS wrapper
was written in C. We modi�ed the BIND name server
source code to invok ethe DNS wrapper upon receiv-
ing queries and responses and upon sending queries to
other name servers.

In this section, we describe tw o sets of experiments
and their results. In Experiment A, we examined the
response time, the false positive rate, and the compu-
tational overhead of our wrapper using a trace of DNS
queries received b y a name server in an operational set-
ting. In Experiment B, we examined the false negative
rate of our wrapper with respect to four attacks: three
cac he poisoning attacks and one spoo�ng attack.

6.2. General Experimental Setup

In these experiments, our name servers (BIND 4.9.5)
listened to port4000 instead of port 53 (the de facto
standard port number for name serv ers) for DNS
queries to preven t queries outside our experiments from
a�ecting our results.

In ev ery run of our experiments, we started a fresh
copy of our name server because name servers maintain
a cache for DNS information obtained through interact-
ing with other name servers. The behavior of a name
server can be quite di�erent depending on whether the
DNS information queried can be found in the cache.
Restarting name servers can avoid interference betw een
consecutive runs of the experiment.

We used a modi�ed version of nslo okupas the DNS
client in our experiments. (See [1] for a good tutorial
on nslookup.) We chose nslookup because it is a con-
venient tool for generating DNS queries and display-
ing DNS responses. Moreover, nslookup can be easily
con�gured to use a speci�ed name server port number
and to query a speci�ed name serv er. Our modi�ed
nslookup uses Unix gethrtime() system calls to record

0-7695-0707-7/00 $10.00 � 2000 IEEE

the time when a query is sent and when the correspond-
ing response is received. Unless otherwise speci�ed, we
will use nslookup to refer to this modi�ed version of
nslookup.

Our experiments w ere performed on a lightly loaded
Sun SPARC-5 running Solaris 2.5.1. We ran our name
servers and nslo okupon the same machine to eliminate
the net w orklatency for the communication betw een
them, thus reducing the in
uence of the local area net-
w ork load on the experimental results.

Because we did not have control over external name
serv ers, and the inter-net w ork links betw een our name
server and external name servers, w eperformed Ex-
periment A multiple times and calculated the average
response time.

6.3. Experiment A

6.3.1 Data Set

The data set for Experiment A consisted of a trace of
1340 DNS queries received b y a name server in a \real
w orld"setting. T ogather the trace of DNS queries,
w emodi�ed a name server to log all DNS queries it
receiv ed and ran it for two days. We also modi�ed the
local BIND resolver con�guration �le to direct all DNS
queries to this name server. In the resolver con�gura-
tion �le, the search list w as consisted ofcs.ucdavis.edu.,
ucdavis.edu., and ucop.edu. When a BIND resolver is
invoked to resolve a relative domain name|a domain
name that does not ha vea trailing dot|it appends
the domain names in the order speci�ed in the search
list and attempt to resolv e them until a positiv ere-
sponse is receiv ed. If none of them results in a suc-
cessful resolution, the resolver then generates a query
for the relative domain name itself. F or example, when
the BIND resolver is in voked for domain name dn, it at-
tempts to resolve for dn.cs.ucdavis.edu., dn.ucdavis.edu.,
dn.ucop.edu., and dn in that order until a successful res-
olution is obtained.

6.3.2 Experimental Procedure

1. Start a wrapped name server.

2. Run nslo okupto query the wrapped name serv er
for resolving the 1340 DNS queries sequentially .

3. Record the total system CPU time and the total
user CPU time used.

4. T erminate the wrapped name server.

5. Repeat the above procedure using an unmodi�ed
name server instead of a wrapped name server.

6.3.3 Experimental Results

T able 1 shows the statistics related toresponse times
recorded by nslo okupbased on 33 runs of this experi-
ment. The mean response time for the wrapped server
was 0.12 second per query, and that for the unmodi-
�ed server w as 0.08 second per query. We examined the
trace segments that correspond to \steep" increases in
the response times (e.g., 400th-600th query), we found
that they could be explained by DNS queries gener-
ated by w eb sur�ng sessions, which involv edmostly
remote and distinct domain names. Speci�cally, the
trace segment for the 400th-600th query included 43
remote and distinct domain names. The average total
response times for those 43 queries for the unmodi�ed
server and the wrapped server w ere 28.29 seconds and
47.54 seconds respectively, which accounted for 83%
and 88% of the total response times for that interval
respectively.

Table 2 shows the CPU times usedb y the unmod-
i�ed server and the wrapped server. The �gures show
that the average CPU times used are a small fraction
(8% for the unmodi�ed server and 7% for the wrapped
serv er) of the total response time. Thus the response
time overhead of the wrapper reported in Table 1 was
largely due to w aiting for the response messages in
the message diagnosis process. The average total CPU
time increased from 9.33 seconds to 11.29 seconds (i.e.,
a 21% increase).

The number of false positives ranged from 2-10 per
run, with the mean being 5.85 and the standard de-
viation being 1.89. Among the false positives, 80% of
them were caused by name server behaviors thatvio-
late our name server speci�cation or to a violation of
our assumptions. For example, false positiv escaused
by miscon�gurations of name servers are in this cate-
gory. The remaining 20% of the false positiv eswere
generated when the wrapper gave up on diagnosing
a DNS message after the amount of resources spen t
(e.g., the number of DNS queries issued) had reached
a threshold. The threshold is used to ensure that the
amount of resources used for verifying a message is
bounded, thus protecting the wrapper from problems
like denial of service attacks.

6.4. Experiment B

The main goal of Experiment B is to examine the
detection rate of malicious attacks of a wrapped name
server (i.e., false negative rate). We investigated the
follo wing four types of attacks:

� Sending incorrect resour ce records for a r emote do-
main name to the target: This is accomplished by

0-7695-0707-7/00 $10.00 � 2000 IEEE

Table 1. Cumulative Response Time (in Sec.) for the “Two-day trace” Data Set.
Unmodi�ed Name Server Wrapped Name Server

queries Mean Min Max Std Dev Mean Min Max Std Dev
200 6.24 3.75 19.78 3.62 8.83 4.27 24.52 4.66
400 11.63 7.44 23.99 4.06 19.56 10.48 34.53 6.37
600 45.59 22.29 147.99 28.31 73.42 40.66 270.41 45.65
800 59.71 35.60 171.83 28.99 94.66 58.53 312.98 49.46
1000 74.15 40.28 263.69 50.93 111.69 70.72 332.60 62.77
1200 96.71 55.36 370.10 75.22 145.10 85.13 396.51 87.50
1340 111.05 70.52 392.48 78.75 165.96 102.38 439.51 91.96

Table 2. System and User Times Used (in Sec.) for the “Two-day Trace” Data Set.
Unmodi�ed Name Server Wrapped Name Server

T ype Mean Min Max Std Dev Mean Min Max Std Dev
System 4.01 3.43 4.90 0.36 5.32 4.59 5.82 0.33

User 4.35 3.73 4.90 0.26 6.94 6.31 7.90 0.43

using a CNAME resource record in the answer sec-
tion of a response message to introduce (in the
resource data �eld) an arbitrary domain name for
which the target serv er is not authoritative, and
then including incorrect resource records for this
remote domain name in the additional section of
the response message.

� Sending inc orrect resour ce records that con
ict
with the zone data for which the target is author-
itative: In particular, the attacker uses a CNAME
resource record to link to an A resource record for
which the target is authoritative.

� Sending resour ce records that correspond to a non-
existing domain name that lives in the target
server's zone.

� Sending a response with a guesse dquery id: In
this attack, one queries the target server to trigger
it to send a query to the attacker, whom records
the query id used. A second query is then issued
to trigger thetarget to query the attac ker again.
Instead of using the query id of the second query,
the attacker adds one to the query id used in the
�rst query and uses the result as the query id in
its second response.

The �rst three types of attacks correspond to sending
incorrect DNS data to a name server (i.e., cac he poison-
ing attacks). The fourth type of attacks corresponds to
masquerading attacks. Our wrapper used randomized

query id's for outgoing queries. Thus attackers who do
not have access to those queries will have to guess the
query id's used for their forged response messages. As
a result, their forged messages will be detected with
high probability.

6.4.1 Data Set

In Experiment B, w emodi�ed the data set used in
Experiment A by inserting tw o queries that correspond
to each of the four types of attacks at random locations
in the t wo-day trace. Moreover, we also inserted four
queries at random locations in the trace as controls.
These queries correspond to di�erent domain names
in the domain for which a malicious name server is
authoritative but do not trigger an attack.

6.4.2 Experimental Procedure

1. Start a malicious name server for a new sub-
domain dns.cs.ucdavis.edu. When that malicious
name server is ask ed to resolve for certain domain
names that reside in the dns.cs.ucdavis.edu. do-
main, depending on the domain names queried, it
will either return incorrect DNS resource records
or send out response messages with an incorrect
query id or a predicted query id.

2. Start a wrapped name server.

3. Run nslo okup with the modi�ed trace of DNS
queries as input and send the queries sequentially

0-7695-0707-7/00 $10.00 � 2000 IEEE

to the wrapped name server.

4. T erminate the wrapped name server.

5. T erminate the malicious name server.

6. Repeat the above procedure using an unmodi�ed
name server instead of a wrapped name server.

6.4.3 Experimental Results

We ran the experiment �ve times. In all �ve runs, all
eight attacks (i.e., tw o from each of the four attack
types) were reported correctly by the wrapped name
server, and none of the response messages correspond-
ing to the control queries were misclassi�ed as attacks.

When we applied thesefour t ypes of attacks toan
unmodi�ed name server, the �rst type of attacks suc-
ceeded in planting incorrect DNS data into the cache
of the target server. F or the second and the third type,
the unmodi�ed name server did not cache the incorrect
DNS data for domain names that belong to its author-
itativ e domain. How ev er, the name server did forward
the en tire response message receiv ed, including those
incorrect resource records for which the name serv er
was authoritative, to its clien t. That did not make
muc h di�erence for our experiments because the client
used was nslo okup, which did not perform cac hing.
How ever, if the clien t w asanother name serv er that
was not authoritative for those incorrect DNS data,
the cache of the clien tw ouldbe corrupted. This sit-
uation may occur when the clien t is a caching-only
server7 that uses another name server as a forwarder8.
The fourth type of attacks succeeded for an unmodi�ed
name server. It was because the query id used by the
unmodi�ed name server w as predictable:the query id
used in successive queries always di�ered by one.

7. Conclusions and F utureWork

This paper presents a detection-response approach
for protecting DNS. Our approach consists of the fol-
lowing steps. First, w ede�ne a securit y goal|name
serv ers only use DNS data that are consistent with
the corresponding authoritative data. Second, we de-
clare the threats, namely cache poisoning and spoof-
ing attacks. Third, w edev elopa DNS model, which
includes formal characterizations of DNS clien ts and

7A cac hing-only serv er is a name server that is not authori-
tative for any domain.

8A forwarder is a name server to whic h other name servers
forw ard their recursiv e queries. A forwarder is useful for building
a large cache for remote DNS data, especially when communi-
cation bet w een local machines and remote machines is slow or
restricted.

DNS servers. F ourth,w e design a DNSwrapper with
the objective that the composition of the speci�cation
for a protected name server and that for the wrapper
satis�es our security goal for DNS. If the DNS wrap-
per receives a DNS message that may cause violations
of the securit y goal, the wrapper drops the message
instead of forwarding it to the protected name server.
Fifth, w e use the formal speci�cation for the wrapper
to guide our implementation of a wrapper prototype.

T o counter cache poisoning, Vixie [17] presents
enhancements to BIND. Brie
y, BIND version 4.9.3
chec ks the input resource records more carefully be-
fore cac hing them.Moreover, it implements a credibil-
ity level scheme in which resource records from a more
credible source take precedence over those from a less
credible one. Cheswick and Bellovin [6] present a de-
sign for a DNS proxy (dnsproxy). In their design, the
domain name space is partitioned in to regions called
realms. A realm is served by a set of servers. Depend-
ing on the query name of a DNS request, dnsproxy for-
w ards the request to the servers responsible for the cor-
responding realm. Certain resource records in response
messages|those that do not refer to realm to which
the query name belongs, and those that satisfy a set
of �ltering rules|are removed to protect the queriers.
Eastlake and Kaufman [8] present security extensions
to DNS (DNSSEC) that uses digital signatures to sup-
portdata authen tication for DNS data. In DNSSEC,
new resource record types are introduced for public
keys and digital signatures. Security-aw are servers
and security-aw are resolvers can use zone keys, which
are either statically con�gured or learned by chaining
through zones, to verify the origins of resource records.
Compared to the prior w orkfor protecting DNS, our
DNS wrapper has the following advantages:

� Pro vides assurance by employing formal speci�ca-
tions (written in VDM) to characterize DNS com-
ponents, to state the security goal, and to charac-
terize our solution.

� E�ective against cache poisoning attacks and cer-
tain spoo�ng attacks (i.e., query id guessing) when
the assumptions in Section 4.4 are met.

� Compatible with existing DNS implementations.

� Does not require changes for the DNS protocol.

� Incurs reasonable performance overhead.

� Can be deployed locally; does not depend on
changes to other remote DNS components.

In November 1998, a company called Men & Mice
survey ed the status of name servers on the Internet

0-7695-0707-7/00 $10.00 � 2000 IEEE

[12]. Among 4184 randomly picked com zones, 1344 of
them (i.e., 32:1%) were found to be vulnerable to cache
poisoning attacks. In other words, the name servers of
those zones could be compromised and gave out in-
correct information about other domains, including its
delegated domains. We note that the e�ectiveness of
our DNS wrapper is not a�ected by attac ks against
external name servers as long as our assumptions are
met.

There are several directions for future research.

� T o further raise the assurance level of our wrapper,
one may perform a complete formal veri�cation
from speci�cationto implementation. The VDM
speci�cationsdev eloped can be used as the basis
for conducting the formal veri�cation.

� Results from Experiment A sho wa 0.437% false
positive rate for the DNS wrapper. Because the
majority of these false positiv esw erecaused by
miscon�gurations of external name servers, a non-
trivial modi�cation for the DNS wrapper may be
needed to signi�cantly reduce the false positiv e
rate.

� We have not discussed protecting DNS resolv ers.
If the communication path betw een a resolver and
its trusted local name serv er is secure, and the
name server is protected by the DNS wrapper, the
DNS data received by the resolv er is \safe" be-
cause a wrapped name server only uses DNS data
that are consistent with the corresponding author-
itative answers. F uture research may be conducted
to protect DNS resolvers when the resolver-server
communication path is insecure. A possibility is
to adapt the DNS wrapper to protect resolvers.

� One may apply our approach to protect other net-
w ork services and privileged processes.

8. Acknowledgments

This w orkwas supported by DARPA under grant
ARMY/DAAH 04-96-1-0207.

References

[1] P . Albitz, and C. Liu, \DNS and BIND." O'Reilly
and Associates, Inc., 1992.

[2] D. Andrews, and D. Ince, \Practical Formal Meth-
ods with VDM." McGraw-Hill, 1991.

[3] S.M. Bellovin, \Security Problems in the TCP/IP
Protocol Suite." Computer Communications R e-
view, Vol.19, No.2, April 1989, pp.32-48.

[4] S. Bellovin, \Using the Domain Name System for
System Break-ins."Pr oc. of the 5th UNIX Security
Symposium, June 5-7, 1995, pp.199-208.

[5] CERT Coordination Center, \Multiple Vulner-
abilities in BIND." CERT Advisory CA-98:05,
April 8, 1998.

[6] B. Cheswick, and S. Bellovin, \A DNS Filter and
Switch for Packet-�ltering Gateways." Pr oc. of the
6th UNIX Security Symposium, July 22-25, 1996,
pp.15-19.

[7] S. Cheung, \An Intrusion Tolerance Approach for
Protecting Netw orkInfrastructures." Ph.D. Dis-
sertation, University of California, Davis, Septem-
ber 1999.

[8] D. Eastlake, 3rd, and C. Kaufman, \Domain
Name System Security Extensions." RFC 2065,
January 1997.

[9] T. Fraser, L. Badger, and M. Feldman, \Harden-
ing COTS Softw are with Generic Softw are Wrap-
pers." Proceedings of the 1999 IEEE Symposium
on Security and Privacy, Oakland, California,
May 5-7, 1999, pp.2-16.

[10] E. Gavron, \A Security Problem and Proposed
Correction with Widely Deployed DNS Software."
RFC 1535, October 1993.

[11] C.B. Jones, \Systematic Soft w areDevelopment
using VDM." Prentice-Hall, 1990.

[12] Men and Mice, \Domain Health Survey."
http://www.menandmice.com, November 1998.

[13] P. Mockapetris, \Domain Names { Concepts and
F acilities." RFC 1034, November 1987.

[14] P . Mockapetris, \Domain Names { Implemen-
tation and Speci�cation." RFC 1035, November
1987.

[15] C.L. Schuba, and E.H. Spa�ord, \Addressing
Weaknesses in the Domain Name System Proto-
col." Technical Report, Department of Computer
Sciences, Purdue University, 1994.

[16] W. V enema,\TCP Wrapper: Net w orkMonitor-
ing, Access Control, and Booby Traps." Proc.
of the 3rd UNIX Security Symposium, September
1992, pp.85-92.

[17] P . Vixie, \DNS and BIND Security Issues." Proc.
of the 5th UNIX Security Symposium, June 5-7,
1995, pp.209-216.

0-7695-0707-7/00 $10.00 � 2000 IEEE

