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Abstract

Computers have been integrated into many different types of systems where the
safety of lives and property directly depends on the correctness of the system. To have the
maximum assurance that a system is correct, it should be mathematically proven that a
system’s implementation satisfies its specification, an often complicated and difficult process
called formal verification. Compositional verification — independently verifying a system’s
components, and then “composing” the verified components into a complete system — may
reduce the difficulty of verifying a large system, but may still be too difficult to be practical.

The goal of the work presented here is to simplify compositional verification by
composing systems in a step-wise fashion, and by reusing specifications and proofs in each
step. To this end, we have developed the calling agent model of interacting components and
a standard specification style, based on a theory of composition developed by Abadi and
Lamport, that ensures that specifications written for calling agents satisfy the requirements
for composition.

We have also developed a method of viewing a system’s calling agents as a hierar-
chy, which can be used to identify an optimal incremental composition strategy. An optimal
strategy is one that composes only components whose composition results in an overall re-
duction in the complexity of the verification effort. We have developed an algorithm that
finds an optimal composition strategy in calling agent hierarchies.

Our notion of a template encapsulates parameterized specifications and proofs.
Instances of specific calling agents can be specified and composed simply by specifying the

appropriate parameters. We have created an example template, developed using the HOL

iii



theorem proving system, and demonstrated how it can be applied to compose different
calling agents simply by choosing different parameters.

Using our incremental composition method, once suitable templates have been
created, an entire system consisting of many calling agents can be composed almost au-
tomatically. Examples of systems to which our method can be applied are micro-kernel
operating systems, systems with nested security policies, and distributed systems such as

the Domain Name System (DNS) and web caching systems.
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Chapter 1

Introduction

What is now proved was once only imagin'd.
William Blake (1757-1827), “The Marriage of Heaven and Hell” (“Proverbs of Hell")

Computers are used in an ever-increasing number of critical applications where
errors in the computer system can cause a major loss of information, money, or even human
life. These applications include communications networks, international financial systems.
and fly-by-wire aircraft controls. The more critical the application, the more critical it is
that the computer system be as flawless as possible.

An error in a computer system is an instance where the actual behavior of the
system does not match the intended behavior of the system for some set of inputs. A correct
computer system has no errors, i.e., its behavior always matches the intended behavior of
the system for all inputs. The process of determining the correctness of a system is called
verification.! Unfortunately, computer systems used in critical applications are almost

always highly complex, and it may be extremely difficult — if not impossible — to show

' A separate issue from verification is determining whether or not a system satisfies the expectations of
its users, a process called validation.



that they are correct.

There are two complementary approaches to determining the correctness of a sys-
tem: testing and formal verification. Testing is an inductive approach. A limited number
of test cases are supplied to the system and, if the system’s behavior correctly matches
its intended behavior for these test cases, the system is assumed (hoped) to be correct for
all possible cases (to some probability). Formal verification is a deductive approach. The
system and its specification are represented in a formal logic and, if the system can be
mathematically proven to satisfy its specification, it is shown to be correct for all possible
test cases [14].

Testing can never prove that a realistic, complex system is correct. The most
rigorous set of tests can only show that whatever errors the system may yet contain remain
undetected. Unlike testing, formal verification can, in principle, demonstrate that a system
is correct, but formal verification nevertheless cannot replace testing. For one thing, formal
verification can only show the correspondence between a system and its specification. A
system may be proveu to satisfy its specification, but that does not mean that the specifi-
cation correctly described what the system is intended to do. Moreover, usability issues, in
general, cannot be addressed by verification[35].

Furthermore, the greater the size and complexity of a system, the greater the
size and complexity of the formal verification effort. A large and complex system may be,
practically speaking, impossible to formally verify as a monolithic unit. Even when formal
verification is possible, the potentially large cost to formally verify a system is a strong

disincentive.



The purpose of the work described here is to increase the reliability — and safety
— of computer systems by simplifying the formal verification process. We focus on the
formal verification of large systems that consist of numerous components, each of which
can be verified independently and then combined into the complete system. Our method,
furthermore, is designed to scale well as the size and complexity of a system increases. The
result of our work is a practical methodology that can reduce the verification effort by many

orders of magnitude for some classes of systems.

1.1 Compositional Verification

All verification, whether testing or formal verification, boils down to comparing
the implementation of a system against its specification. In testing, the specification is in
terms of inputs and outputs: the outputs that are expected from the system as a result of a
particular set of inputs. The implementation is run using each set of inputs to demonstrate
that it generates the expected outputs.

Formal verification uses two specifications: a more detailed specification that rep-
resents the system implementation (the “low-level” specification) and a more abstract spec-
ification that represents the expected functioning of the system (the “high-level” specifi-
cation). Because the low-level specification shows more details, it is called a refinement
of the high-level specification. For example, when you present your claim check at a dry
cleaner’s, the clerk (hopefully) goes to the back of the shop, retrieves your cleaned clothes,
and brings them out to you. All that you see is the clerk going to the back of the shop and

returning with your clothes. The refinement of that high-level view includes all the details



of how clothes are actually organized and stored in the back of the shop so that the clerk

can quickly find them.?

1.1.1 Mechanical Theorem Provers

A formal proof can be an extremely tedious and time-consuming exercise. Even
the simplest proofs can require thousands of mathematical steps and the large number of
details make it easy to make mistakes. For this reason, programs have been developed
that keep track of the proof details and that check the validity of each proof step. Such
programs are called proof checkers. Another type of program, called proof generators, tries
to automatically generate proofs. The general term for both proof checkers and proof
generators is mechanical theorem provers, or just theorem provers. for short.

An example of a proof generator is the Boyer-Moore theorem prover[10], which uses
a first-order logic. Most other mechanical theorem provers provide relatively little in the way
of automatic proof generation tools, but offer a more powerful specification language and
proof environment. An example of this type of theorem prover is HOL, a proof development
system for higher order logic[16]. Higher-order logic is similar to predicate logic but also
allows quantification over predicates and functions. Our verification methodology has been
developed using HOL because of its expressive power and extensibility, but we could have

used other theorem provers that also support higher order logic, such as PVS [31].

*Because the abstract specification is mathematically “cleaner” than the low-level specification, it might
seem counter-intuitive to refer to the low-level representation as a “refinement.” The term reification has
been proposed as an alternative[21].



1.1.2 Refinement Step

The important step in formal verification consists of mathematically proving that
the low-level specification satisfies the high-level specification. In a simple system, the
proof may show that the relationship between inputs and outputs is the same for both
specifications. In more complex systems, the proof may relate the states of the low-level
specification to that of the high-level specification to demonstrate that the behavior of the
implementation conforms to the system’s expected behavior at all times. Because the proof
shows that a low-level, refinement specification satisfies a high-level specification, it is often

called a refinement step.

1.1.3 Compositional versus Non-compositional Verification

To cope with the size and complexity of formal verification for large systems, re-
searchers have developed “divide and conquer” methods to separately specify and verify the
components of a system, and then to prove that the components working together correctly
implement the complete system. These methods are called compositional methods, because
the system is composed out of its parts. A compositional proof of a system ideally can be
less complex than a proof of the system as a monolithic unit because the internal details
of cach system component are hidden when carrying out the proof. The specification and
proof of correctness for a component, furthermore, can be reused when the same component
is used in a different system, reducing the overall cost of the compositional proof effort.

To see how compositional proof can hide details and reduce proof complexity, let

us say that we are trying to verify the hardware that makes up the disk I/O subsystem of



a computer system. The subsystem consists of a disk controller and a disk drive, which
communicate via some well-defined interface. Each of the components consists of various
circuitry, firmware, and other devices that, among other things, manage how the component

deals with control and data signals on the interface. This is depicted in figure 1.1.

Disk

controller Disk drive
O 5
Interface
without | O D o O

o ==

with B e ——
composition

Figure 1.1: Compositional vs. non-compositional proof

If we compose this system as a monolithic unit, our proof must explicitly take
into account all of the circuitry, firmware, and other devices that drive the interface within
each component. When we do a composition proof, however, to compose this system we
first verify that each of the components satisfies its own specification with respect to the
interface. This requires us to prove that the various circuitry, irmware, and other devices
within each component correctly put out, and respond to, control and data signals on the
interface. Once we have done that, when we compose the controller and drive together, we
can simply use the component specifications and no longer must concern ourselves with the

devices of which each component is composed.



1.1.4 Reusing Specifications and Proofs

A device interacts with other devices solely through external interfaces. For this
reason, once a device has been shown to satisfy its own abstract specification, the specifica-
tion can be reused in the compositional proof of other systems in which that component is
used. The proof that the device satisfies its specification does not have to be redone because

the device’s relationship to the external interfaces has not changed.

1.1.5 Composition Step

A compositional proof can show that two components., A and B, working together,
implement a larger system AB. At that point, the separate specifications for A and B can be
replaced by the single specification for AB. While A and B may be verified independently,
however, it must also be proven that they still work correctly in each other’s presence.

To see why a verified component might work incorrectly when working in concert
with another, consider the devices in the disk I/O system described above. Each component
is verified with respect to its specification in terms of external inputs and outputs, but the
specification is only valid under certain assumptions about the external inputs and outputs.
For example, when data is being saved to the disk, the disk drive might assume that
the controller will send it data in 512-byte blocks. If the controller does not satisfy this
assumption and sends data in larger blocks, the disk drive will not correctly store the data.

To show that components will still work correctly when composed with each other,
it must be proven that the externally visible behavior of each component satisfies the as-

sumptions of the other components. This proof is called a composition step, to distinguish



it from the refinement step.

The compositional verification methodology that we have developed is based on a
refinement of the general compositional theory developed by Abadi and Lamport[3]. Their
theory includes a composition step proof rule that describes the conditions under which a
composition step proof is valid. A complete composition proof using Abadi and Lamport’s
method requires both a composition step and a refinement step.

Abadi and Lamport’s composition theory can be tricky to apply. Their composi-
tion rule can be applied only provided that the specifications satisfy certain conditions. but
because their specification method is so general it is easy to write specifications that do not
satisfy the conditions. Our refinement of their method constrains the style in which speci-
fications can be written. The regular, structured specification style in our method provides
a framework in which reusable specifications and proofs can be written and ensures that
specifications will satisfy the composition conditions. We will talk more about Abadi and

Lamport’s theory in chapter 3, and about our refinement of that theory in chapter 4.

1.2 Incremental Composition

In section 1.1.3, we explained how compositional proof hides the internal details
of a component when the component is composed with other components. First, we verify
that the component’s implementation satisfies its specification for externally visible behavior
(viz., the behavior visible at its interface); then, the implementation details can be “hidden”
when the component is composed with other components.

But the internal devices that make up a component are themselves made up of



even lower-level components. An integrated circuit (IC), for example, consists of various
modules that are themselves made up of transistors. More and more frequently, ICs are
formally verified with respect to the signals on their pins, which form the interface between
a circuit and the circuit’s environment. When we verify that the disk controller’s imple-
mentation satisfies its specification for externally visible behavior, what we are really doing
is composing the disk controller specification out of the specifications for its ICs and other
components.

The composed disk I/O system, furthermore, is undoubtedly itself a component
of a computer system. Once the disk I/O system specification is composed out of the disk
controller and disk drive specifications, the disk I/O system specification can be composed
with other components to form a complete computer system — or the computer system may
itself be only a component of an even larger system. These different levels of composition
are depicted in figure 1.2, which shows different levels of composition that might be used
when composing an airplane.

At each level of composition, more and more detail is hidden within each compo-
nent, which reduces the complexity of each compositional proof. Composition in different
levels like this is called incremental composition. Each level of composition is called a

composttion stage.

1.2.1 Incremental Composition Strategies

In the airplane example of incremental composition described above, the different
composition stages roughly corresponded to the granularity of the system components —

circuits were composed with circuits, boards with boards, etc. Sometimes, however, it
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may be necessary to compose a large number of components of the same granularity. The
larger the number of components to compose, of course, the greater the complexity of the
composition proof. Given a large enough number of components, the composition proof
may be too complex to be tractable.

To reduce the complexity of a composition proof, we need to look for strategies
for applying incremental composition even when the composition stages are not obvious.
In chapter 6, we introduce the concept of a calling agent hierarchy — a way of ordering
components of the same granularity so that an incremental composition strategy can be

found.

1.3 Proof Reuse

If a system contains many components, even incremental composition may not re-
duce the verification of the system to a manageable project. The problem is that potentially
every composition proof stage is a highly complex proof in its own right. Although incre-
mental proof can reduce the complexity of each stage, the total number of stages necessary
to compose the entire system may be very large.

In some cases, however, one composition proof stage may resemble another so
much that the proof for one stage can be reused, with only relatively slight modification,
for the other. The effort to reuse a proof can be much less than the effort to create a
proof “from scratch.” In the best case, each of the composition proof stages will be quite
similar, so that essentially the same proof can be applied over and over again. A practical,

scalable compositional proof method seems to be possible only where significant proof reuse
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is possible, but the degree to which proofs can be reused depends to a large extent on the
type of system that is to be composed. Specification and proof reuse is only possible where
the components specifications are similar and the way that they interact with one another

is fairly uniform.

1.3.1 Structural Homogeneity

When components in a system have similar specifications and interfaces, we say
that they are structurally homogeneous. For example, the components of the airplane in
the example described above are not particularly structurally homogeneous, but a multi-
processor system where every processor is the same as the others is extremely structurally
homogeneous. Obviously, the degree of uniformity among components determines the de-
gree to which a proof can be reused. Our work is directed at developing a reusable proof
method for systems with a high degree of structural homogeneity.

Structurally homogeneous components, while they must have some degree of uni-
formity in their specification and interfaces, may, nevertheless, be quite different from one
another. For example, the server processes in a micro-kernel operating system such as
Mach [36] may have quite different functions, but they all use the same, basic communica-
tion system — message passing — and have similar interfaces. Although their functional
specifications will differ, the specifications will, nevertheless have many structural similar-
ities. The differences in their specifications can be abstracted and parameterized, so that
the same abstract specification can be used to describe each of the server processes.

The degree of structural homogeneity, therefore, is determined by the extent to

which the same abstract specification can be applied to describe each of the components.
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Ideally, the specification for each component in a system is an instance of the same abstract

specification.

1.3.2 Calling Agents

In chapter 5, we describe a model of structurally homogeneous components that
interact with other components — the calling agent model. An example of a system of
calling agents is the set of server processes in a micro-kernel operating system like Mach. The
servers work in concert to implement system resource management policies; the composition
of the specifications of the server processes together with the kernel should satisfy the
specification for the operating system [19].

The calling agent model is also useful to describe components in a wide variety of
other types of systems that are either distributed or where the implementation of system
policies are distributed among a number of components. Examples include the Domain
Name System (DNS) [29], web caching systems [6], and systems with nested security poli-

cies [18].

1.3.3 Templates

A proof can be reused in several ways. The least sophisticated method is to
simply redo the proof, substituting labels and making modifications where necessary. A
more sophisticated method is that described by Caplan and Harandi, where specifications
and proofs are parameterized [11].

Parameterized specifications and proofs can be reused by instantiating the pa-

rameters with different values. The usefulness of this approach is that the parameters at
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different levels of abstraction can be values, types, programs, specifications, or even proofs
themselves. Proofs and specifications that are parameterized in this way are said to be
generic, because they can be instantiated in many different ways by a suitable choice of
parameters.

For example, consider the composed disk I/O system discussed earlier. We could
write a generic specification for a disk drive, parameterized by the disk capacity. In this
way, we could reuse the generic specification to describe disk drives of any capacity. We
could also parameterize other features, such as block size, to handle many different makes
and types of drives. Similarly, a generic specification can be created to describe a variety of
disk controllers. If we do the composition proof with respect to the generic specifications,
the result is a generic proof that applies to any instances of the generic specifications.

We call the combination of generic calling agent specifications and generic compo-
sition proofs templates. Once a template has been created, it can be saved as a library in
the context of a theorem-proving system. Proofs using templates can often be carried out
automatically to a large degree by the theorem-proving system. Thus, incremental com-
position reduces the complexity of each compositional proof stage, and templates, because
they can be reused, effectively reduce the number of compositional proof stages.

We have devised generic specifications for the calling agent model. A wide variety
of components can be specified simply by choosing appropriate parameter values. We have
also shown how to use generic (i.e., parameterized) composition proofs to compose the
specifications. Our calling agent templates are covered in detail in chapter 6. An example

template, with a detailed description of the generic specifications and composition proof, is
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given in chapter 7.

1.4 Contributions

The work described in this dissertation makes five important contributions:

1. Our refinement of Abadi and Lamport’s composition theory results in a standardized
and regular specification style that eliminates many possible sources of specification
errors and simplifies the creation of compositional templates. The specification style
constrains only the way that specifications are written, not the types of systems for
which specifications can be written. Our refinement of Abadi and Lamport’s theory

is discussed in chapter 4.

2. Our calling agent model formalizes compositional reasoning about the components
in distributed systems. The model is applicable to components in systems where
resource management policies are distributed among a number of agents, such as
micro-kernel operating systems and systems with nested security policies; and to dis-
tributed services, such as DNS and web caching. The calling agent model is discussed

in chapter 5.

3. Our concept of templates turn the specification and compositional proof of distributed
system components from a difficult and ad hoc activity into an engineering exercise

that can be applied using well-defined rules. Templates are discussed in chapter 6.

4. Our calling agent hierarchy abstraction provides a way of organizing a large number of

components into smaller groups so that an optimal incremental composition strategy
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can be found. Our algorithm for finding an optimal incremental composition strategy
in a calling agent hierarchy can be used to guide the application of templates to
incremental composition stages. The optimal strategy simultaneously reduces the
complexity of each composition stage but maximizes the benefit of each incremental
stage in terms of hiding information, so that it holds the number of incremental stages
to a minimum. Calling agent hierarchies and the incremental composition algorithm

are also discussed in chapter 6.

5. We provide a fully worked example of a template, including generic specifications for
calling agents and a generic composition proof. A detailed explanation of the example

template is given in chapter 7.

Our work has been oriented toward developing a practical methodology for scal-
able, compositional verification based on proof reuse, applied to a generalized model of
composable components. Our proof reuse strategy can significantly reduce the composi-
tional proof effort for systems with structural homogeneity because proofs can be handled

in a regular, largely automatic fashion by a theorem-prover.

1.5 Chapter Summaries

The remainder of this dissertation consists of the following chapters: Chapter 2
describes related work, including an overview of other work in proof reuse and compositional
proof and refinement. We also include brief descriptions of other research topics that have
directly contributed to our own. Chapter 3 describes the composition theory of Abadi and

Lamport, while chapter 4 covers our refinement of Abadi and Lamport’s method, including
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the specification style constraints and our mechanization of the composition theory in HOL.

Chapter 5 lays out our general model of a calling agent and gives a high-level
description of how the composition method can be used to compose systems of calling agents.
Chapter 6 explains the abstraction of a calling agent hierarchy and gives an algorithm for
finding an incremental composition strategy. This chapter also further develops the concept
of a template, showing how the basic calling agent model can be enhanced through an
assortment of different parameters.

Chapter 7 is a detailed explanation of a HOL template that can be used to compose
two calling agents and that demonstrates several of the calling agent model enhancements
described in chapter 6. Chapter 8 summarizes this work and describes future directions it
could take.

Appendix A contains the complete generic specifications for the example template

and Appendix B contains two instantiations of the template.
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Chapter 2

Related Work

Prove all things; hold fast that which is good.
I Thessalonians 5:21, King James Version
Our work draws from research in many different areas, including distributed sys-
tems, the application of formal methods to parallel programs, other specification and verifi-
cation techniques including specification composition methodologies, other large-scale veri-
fication projects, and proof reuse. In this chapter, we will briefly discuss how these research
areas have influenced our own research. We will also give an overview of selected other
research projects in the areas of compositional proof and proof reuse, and compare and

contrast our work with that of the other projects.

2.1 Systems of Calling Agents

The inspiration for the idea of calling agents as a general model of a composable
system, and as an application of our composition method, were distributed systems that

display a high degree of structural homogeneity. Systems of this type include the Domain



19

Name System (DNS), web caching systems, and distributed operating systems. Our model
of calling agents is directly applicable to systems of this type. In this section, we describe

the structural homogeneity in each type of system.

2.1.1 Distributed Operating Systems

An important class of distributed operating systems are those based on a micro-
kernel design. A micro-kernel operating system has a small, fast kernel that implements
the abstractions of processes and inter-process communication. Most operating system
functions are implemented by special processes called servers. For example. files may be
implemented by a file server process that calls a disk manager process. Examples of micro-
kernel operating system designs include Mach [36], Synergy [33] and UC Davis’s Silo [39].

In each of these operating systems, all server processes use the same communi-
cations interface and they share the same basic functionality of reading a message, taking
some action, and sending a message in response. Their specifications, therefore. have a large
degree of structural homogeneity when viewed abstractly.

The servers, furthermore, work together to implement system policies. In Mach,
for example, files may be the responsibility of a file server, which creates the abstraction
of files out of individual disk blocks. The file server depends on a disk server (or servers)
to fetch and store disk blocks on the system’s disk devices. In addition to these basic
functions, each of the servers may implement buffering, to speed up access to frequently
used files and disk blocks. The system policy implemented by the servers is to create the
abstraction of files that are stored on disk devices, but this policy is a composition of the

policies implemented by each of the individual servers.
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The Synergy and Silo systems were designed to enforce a security policy that
was implemented by one or more servers. The policy enforced by these systems must be
a composition of the individual policies enforced by each of the servers, and is a natural

application of our composition method [18].

2.1.2 Domain Name System

Another example of a system of calling agents is the Domain Name System (DNS).
The DNS is a large, distributed database, used to translate between host names (e.g..
“abc.rd.hp.com™) and numeric Internet (IP) addresses (e.g., “192.151.52.10"). Programs
called name servers each maintain the translation information for some local part of the
Internet and make that information available to other parts. Programs called resolvers are
used to query the name servers [29].

Host names are pathnames that contain a list of hierarchical domains and sub-
domains. For example, the host name “abc.rd.hp.com” identifies a system “abc” in the “rd”
sub-domain of the “hp” sub-domain of the “com” domain. This hierarchy can be depicted
as a tree, as in figure 2.1.

Let us consider a DNS-like system where each of the name servers knows the IP
addresses for the systems and name servers immediately “below™ it. In our example, the
.com name server knows the IP addresses for the .Ap name server, as well as the .ibm name
server and the .eol name server. The .Ap name server knows the IP addresses for the .rd
and .sup name servers below it, and the .rd name servers knows the IP address for the two
systems .abc and .zyz.

If a resolver queries the .com name server for the IP address of the .kp name server,
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Figure 2.1: Model of hierarchical naming system

the .com name server simply returns that [P address. If, however, the query asks for the IP
address of a system “beneath” the .hp name server, the .com name server can either refer
the resolver to the .hp name server or else recursively query the .Ap name server itself.
The recursive query model is a good example of a hierarchy of calling agents. The
root of each sub-hierarchy calls the root of the next, until the name in the query is resolved to
an IP address. The system is structurally homogeneous as well: although the name servers
may be coded differently, their interfaces and functional specifications are essentially the
same. Although many different name servers may be called upon to provide the IP address
of a particular host, from the resolver’s point of view it appears as if the entire database
was available to the first name server that the resolver queried. The functional specification
of the complete DNS-like system, therefore, is a composition of the functional specifications

of all of its constituent name servers.
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2.1.3 Web Caching Systems

Another example of a distributed service implemented by cooperating, structurally
homogeneous agents is web caching. Web caching is a method of speeding access to web
pages and reducing network congestion by storing copies of frequently accessed pages closer
to the computers that are accessing the pages [6].

Like DNS, a network may contain many different individual web caching compo-
nents. These components may be organized in a hierarchical fashion, or not. For example,
as depicted in figure 2.2, there is a cache at the server site, an intermediate cache somewhere
in the network between the server and the client, a local proxy cache for the client site, and

a local cache for each client web browser.

Originating Originating
server server
Server site
cache
Network
cache
Local proxy
cache

Figure 2.2: Web caching system

Unlike DNS, where each of the components implements the same functional spec-
ification of mapping domain names to IP addresses, each of the web caching components

may implement a different web caching strategy. For example, the server site cache may
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emphasize the “freshness™ of the copies that it provides, frequently updating the pages with
the latest copies, while the local proxy cache may implement a “least recently used” policy
of flushing pages from its cache. The overall web caching policy is a composition of the

policies implemented by each cache component.

2.2 Formalisms for Parallel Systems

Distributed systems, like those described above, are typically concurrent: the com-
ponents run simultaneously. Because the components run in parallel, it may not always be
possible to determine in advance the order of events in the system. Systems with this
property are said to be non-deterministic.

A common issue in concurrent, non-deterministic systems is called a race condition,
where the results of an execution of the system vary depending on the order in which the
component actions occur. For example, if we have two concurrent processes, one of which
writes the value 1 to a particular memory location and the other that writes the value 2,
the process that executes first will write first and the final value in the memory location
will be the value written by the slower process.

It may be that the final value written to the memory location does not matter (in
terms of the functional specification of the system) or it may be that we always want one
process to write first and the other process second. In the latter case, the race condition
could actually be an error condition. A specification and proof method used to verify
distributed systems must be able to represent both parallelism and non-determinism in

order to catch these kinds of error conditions.
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2.2.1 Parallel Programs

The application of formal methods to parallel programs has been an active research
arca for many years. Hoare’s CSP [20] and Misra and Chandy’s UNITY [12] systems, for
example, both provide proof methods to assist in the development and verification of parallel
programs.

Both of these approaches, by design, consider parallelism and non-determinism.
but they may be less suitable for the specification and verification of the type of distributed
systems that we are interested in. For one thing, these methods are not designed to handle
what are called reactive systems [17]. While most program verification is aimed at verifying
systems that accept inputs, perform transformations on the inputs, and produce outputs.
reactive systems continuously respond to external stimuli and maintain some kind of state,

but may or may not produce outputs.

2.2.2 State-transition Models

A more general approach to modeling parallel systems is the state-transition
method. In a state-transition representation of a system, the execution of a concurrent
program or other parallel system is represented as a finite or infinite sequence of state

transitions, as shown in figure 2.3.
e, ez €,
OO O
Figure 2.3: State transition sequence

The system changes from state s; to state s;4; as a result of some event e; . (also
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called an action) caused by a component of the system. Events may be inputs, outputs, or
changes to the internal state of a component, or combinations of the three.

Events are modeled as atomic actions, which means that they cannot happen
simultaneously. This is a reasonable model of distributed systems, where an underlying
mechanism enforces the independence of actions. For example, when modeling a message-
passing system, we can model the sending and receiving of messages as atomic actions
because the underlying system that implements the abstractions of messages ensures that
messages are delivered as discrete objects. Even if two messages, m; and m», are simultane-
ously sent to the same receiver, they must arrive in the order m;, my or my, m;. Messages
sent to different receivers are similarly independent of one another, so that modeling their
arrivals as atomic events is a reasonable abstraction.

The multiple possible interleavings of atomic events represents the concurrency of
the system. For example, there are two possible orderings for the arrival of messages m;
and my. If the order of arrival was deterministic, there would only be one possible ordering.
Because concurrent systems are usually non-deterministic, however, it is often the case that
many different sequences of events are possible.

The set of all possible event sequences (also called ezecution traces or behaviors)
completely describes the functional behavior of a concurrent system. For this reason, the
set of all possible traces can be used as a system specification.

It may seem that a specification that consisted of all possible execution traces of
a system would be too detailed to be useful. This need not be the case. For example, we

could specify as an invariant that a state variable z was always equal to the value 5 using
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the following predicate:
Y i. val_c(get_state(trace,i)) = 5

where get_state is a function that maps natural numbers to states in an execution trace, and
val_z is a function that returns the value of the state variable z in a state. This predicate
is true for all traces in which the value of the state variable z equals 5 in all states; we do
not have to epumerate all the possible traces. The conjunction of many such predicates can

be used to fully specify a system.

2.2.3 Safety and Progress Properties

Pnueli [32] and Lamport [25], among others, have used state-transition systems
to specify systems in terms of both safety and progress properties. Intuitively. a safety
property can be described as a specification that “nothing bad ever happens.” A progress
property can be described as a specification that “something good eventually happens” [3].

Because events and state changes in a trace are ordered in a sequence, both safety
and progress properties are described in terms of temporal properties of the sequences.
Safety properties can be defined in terms of conditions that hold in every state (or, al-
ternatively, never hold). The invariant on the value of the state variable z, above, is an
example of a safety property. Progress properties can be defined in terms of conditions that
eventually occur, conditions that become true and remain true (henceforth), or in terms of
the frequency with which the conditions occur. For example, we could specify a progress
property on a state variable y that says the value of y eventually equals the value 6 using

the following predicate:
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3 j. val_y(get_state(trace, j)) = 6

The conjunction of this predicate and the predicate on the value of z that asserts that z = 5
in all states of a trace (from the previous section, 2.2.2) specifies all traces (and implicitly,
therefore, all systems) where the value of z is always 5 and the value of y equals 6 at some
point in the trace.

The state-transition model of a system, where the sets of traces describe all possible
behaviors of the system, is an excellent way of modeling distributed, reactive systems. Not
only does this model cleanly represent the concurrency and non-determinism of the system,

but the use of safety and progress properties provides a convenient and succinct specification

language.

2.3 Theorem Prover

The theorem prover that we have used in our specification and proofs is the Higher-
Order Logic (HOL) theorem proving system, originally developed at Cambridge Univer-
sity {16]. The HOL system allows one to formally specify and prove theorems in a high order
logic that allows quantification over predicates and functions. HOL has been widely used
since 1988 for hardware verification. Entire microprocessors have been formally specified
and verified using HOL, as well as smaller, special purpose digital logic devices [23, 13, 5].
HOL has also been applied to software verification [15, 40].

Drawbacks of HOL for use in an engineering environment include its rather slow
speed and that it is primarily a proof checker, not a proof generator. An important advau-

tage of HOL over other verification systems, however, is that proofs can only be developed
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in a controlled manner. HOL is based on five primitive axioms and eight primitive inference
rules. All proofs generated using HOL can be reduced to one using only these basic axioms
and inference rules, giving a high degree of assurance that the proofs are correct.

HOL is also a highly extensible system. In addition to its built-in theorem proving
infrastructure, it is possible to extend the logic by creating new packages of definitions,
theorems, and tools. A large user community has created many such packages.

HOL is designed to be used both as a stand-alone theorem proving tool and as an
embedded theorem prover for customized verification systems. This makes it useful to us
both in developing templates and to create an engineering tool in which templates can be

applied.

2.4 Compositional Proof Methods

A variety of different compositional proof methods have been developed that use
the state-transition model. Here we describe several of those methods.
Lam and Shankar developed a state-transition module composition method for

layered modules [24]. Their method has three steps:

1. Decompose the system into a hierarchy of modules. Each module has an upper inter-

face and a lower interface. The specification for a module is the upper interface.

2. Prove for all modules that, assuming that the environment of a module (see below)
meets the input requirements of its upper and lower interfaces, the module correctly

implements its upper interface specification.
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3. Use a composition theorem to infer from the proofs in step 2 that the composition
of a module and all modules beneath it implements the module’s upper interface

specification.

The environment for a module M in Lam and Shankar’s theory consists of the
modules above M that call M's upper interface U, and the modules below M to which M
calls through its lower interface L. Inputs to M consist of inputs to U (viz., values passed
in calls from higher modules) and outputs from L (viz., values returned from calls to lower
modules). Similarly, outputs from M consist of outputs from U (viz., the values M returns)

as well as values passed by M in calls to L. This model is depicted in figure 2.4.

Module above M

,:-‘-»i """ 1;:."'

Inputs to M Module M Outputs from M

T

Module below M

Figure 2.4: Lam and Shankar’s module composition method

The composition method considers that L is both the lower interface for M and the
upper interface for the module below M (call it N), so outputs of M to L are simultaneously
inputs to N, and inputs to M from L are simultaneously outputs from N. The composition
theorem says that, if M implements U assuming that L is implemented correctly, and if N
implements L, then the composition of M and N(and all the modules below N) implements
U.

Jonsson developed a specification and composition method for distributed systems
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that communicate via asynchronous message passing [22]. In Jonsson’s method, a compo-
nent is specified using a standard model, called an I/0-system, where the state transitions
are in terms of input and output events (i.e., sending and receiving messages). The spec-
ification for a component describes all possible orderings of input and output actions by
that component. Purely internal events can also be represented by an event primitive.
These specifications can be used to represent both safety and progress properties of the
component.

Composition in Jonsson’s method is essentially performed by matching up input
and output events and removing them from the composed specification. For example, as
depicted in figure 2.5, if we have two systems A and B, and if A has a single output event
to B while B has a single input event from A, we can compose A and B into a single system

where the sending of messages by A to B becomes an internal event.

—~[a}+{e]~  —f:iai=si|—

Figure 2.5: Jonsson’s composition method

Abadi and Lamport developed a general composition theory based on a formally
defined principle for composing specifications [3]. Their composition principle recognizes
that a system can be proven correct only under the assumption that the system’s environ-
ment satisfies certain conditions. When composing a system, however, each of the compo-
nents may be part of the environment of the others. The problem is that if a component
m is correct only assuming that component 73 is correct, but 7 is correct only assuming

that m; is correct, it is not always necessarily true that the composition of 7, and = is



31

correct. Abadi and Lamport’s theory describes the conditions under which components can
be composed. Because Abadi and Lamport’s composition method is fundamental to our
work, we will discuss it at greater length in chapter 3.

Jonsson’s method, like that of Lam and Shankar, focuses on matching up input and
output events. Unlike Lam and Shankar’s method, however, Jonsson's method is not limited
to hierarchical systems of modules, but can be used for composing distributed systems.
Abadi and Lamport’s composition method, unlike the other two methods. does not focus
on matching inputs and outputs to produce a composed system, but treats input and output
events like other state transitions. The focus is on showing that the state transitions of one
component satisfy the environment assumptions of another. Their composition method is
more flexible than the other two because the result of the composition is determined by the
choice of abstract specification, whereas in the other methods the abstract specification is
explicitly derived from the modules and composition method. Thus, Abadi and Lamport’s
method, like Lam and Shankar’s method, can be applied to the composition of hierarchical
systems of modules, and like Jonsson’s method, Abadi and Lamport’s method can be applied
to the composition of distributed, communicating modules.

We have used Abadi and Lamport’s method as a basis for our work. Like Jons-
son, however, we use a standard model of a component, but within Abadi and Lamport’s
framework. The standard component model and standard specifications provide a regu-
lar, structured specification style that simplifies the tasks of developing and composing

specifications, and makes the proof effort more amenable to automation.
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2.5 Specification and Proof Reuse

Possibly the most complete example of a verified, composed system to date is
the “CLI short stack,” built by researchers at Computational Logic, Inc. [8]. The system
consists of a verified compiler, assembler, linker and microprocessor. (An operating system
kernel, called “Kit”. was also verified, but was not part of the stack because it had been
designed and verified to run on a different processor [7].) The system was a stack in the
sense that each of the layers was designed and verified as an abstract machine built on
the next lower layer [30]. Although CLI used a similar specification model for each layer
of the stack, their specifications and proofs were not parameterized and so each proof was
essentially unique.

Windley verified a microprocessor, AVM-1, using a model of an abstract machine
that was similar to CLI's, but developed it into a theory of abstract theories in HOL [38].
The abstract theories consist of generic specifications and theorems about them that can
be instantiated for each level of abstraction in a hierarchical proof. Abstract theories can
also be used to define generic proofs by laying out the complete set of lemmas that must
be proven in order to complete a refinement step between two levels of abstraction.

The verification methods used by Windley and CLI, though they were effective
for the systems that they verified, are not composable. A system cannot be specified as
components and then the component specifications be easily combined, and it is difficult
to see how functions could be added to the Kit operating system or AVM-1 microproces-
sor, for example, without redoing their entire proofs. Windley’s and CLI’s systems were

not distributed, so they did not have to deal with concurrency. Schubert later addressed



33

the concurrency problem by creating an interpreter calculus that can be used to compose
interpreter specifications [34].

Although the model of abstract theories developed by Windley and Schubert is pa-
rameterized, their method is not fully parameterized in the sense that the proofs themselves
can be reused and thereby automated. Their abstract theories are essentially libraries of
theorems about the specifications. Our idea of templates, although similar to Windley's and
Schubert’s abstract theories, are designed to fully encapsulate the reusable specifications
and proofs so that they can be applied as “turn-key” proof modules.

Aagaard and Leeser demonstrated a method for reusing proofs of hardware compo-
nents (1]. Their method is based on parameterized modules. In addition to parameterizing
by structural variables such as signal bit-widths, however, their method provides a measure
of composability by parameterizing submodules. Given a module that consists of several
submodules, the module can be shown to be correct for all possible structural variables as
well as all correct implementations of the submodules.

Like Aaraard and Leeser’s approach, our method uses parameterized modules and
structural variables. Unlike their method, however, we use a general model of a component,
and the parameters include not only structural variables but also variables that determine
the function of the module.

Caplan and Harandi gave a high-level description of a logical framework for ver-
ification of reusable software components [11]. Their framework supports the reuse of pa-
rameterized specifications and proofs. The parameters at different levels of abstraction can

be values, types, programs, specifications, or even proofs themselves.
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While they sketched out their framework, Caplan and Harandi did not demonstrate
it on more than small examples and their work did not address compositional proof. Qur
work applies Caplan and Harandi’s general ideas of proof reuse to a compositional frame-
work, and extends the idea of reusability by encapsulating the specifications and proofs
into templates within the context of a theorem-proving system, making some degree of

automation possible.

2.6 Summary

Our work draws on research in a number of different areas. Our notion of templates
was anticipated by Windley’s work with abstract theories in HOL. Unlike Windley’s abstract
theories, however, our templates are intended to be fully encapsulated specifications and
proofs, rather than a library of theorems about generic specifications. Our method of
proof reuse has been most influenced by Caplan and Harandi’s framework for reusable
components. Unlike in their framework, however, we have applied their basic concepts of
reusable specifications and proofs to compositional proof, and with an eye toward applying
the parameterized proofs in the context of an automated engineering application.

The template-based method for composing complex systems is predicated on a
refinement of the composition method of Abadi and Lamport. Because of the importance
of Abadi and Lamport’s work to our own, we discuss their method and our refinement of it

in the following chapters.
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Chapter 3

The Composition Method of Abadi

and Lamport

We prove what we want to prove, and the real difficulty is to know what we want to prove.

Emile Chartier (1868-1951), in “Webster’s Electronic Quotebase”, ed. Keith Mohler, 1994
Our composition method is based to a large extent on a refinement of the compo-
sitional proof method developed by Martin Abadi and Leslie Lamport. Abadi and Lamport
provided a composition principle and proof rule for composing modular specifications that
consist of both safety and progress properties [3]. Their composition method is based on
the transition-aziom specification method [26] and a refinement mapping method of prov-
ing that one specification implements another [2]. In this chapter, we summarize the main
concepts and terms used in their transition-axiom, refinement mapping and composition
methods. We will refer to these concepts and terms in subsequent chapters. Except where

indicated, the material in this chapter has been summarized from reference [3].
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3.1 Composition Principle

The goal of composition is to prove that a composed system satisfies its speci-
fication provided that all of its components satisfy their specifications. Each component.
however, interacts with other components and with the outside world, which make up the
component’s environment. The specification of what a component does may only be guar-
anteed provided that the component’s environment satisfies certain assumptions.

For example, a component A in a message passing system may be guaranteed to
respond to messages in the order that they are received provided that the rest of the system
can only append new messages to the tail of A’s mailbox. If the environment could insert
messages at other locations in the mailbox, delete messages from the mailbox, or rearrange
messages in the mailbox, then A could not be guaranteed to satisfy that specification.

Let us say that there is a second component, B, that also depends on the envi-
ronment leaving its mailbox alone (except for appending new messages to the end of the
mailbox). B is part of A’s environment, so A depends on B to not interfere with A’s
mailbox. But A is part of B’s environment, so B depends on A to not interfere with B’s
mailbox. In general, in order to be able to compose a set of components into a complete
systemn, each of the system’s components and the system’s environment must satisfy each
of the other components’ environment assumptions. Abadi and Lamport informally define

this composition principle as follows:

Let 11 be the composition of Iy, ..., Il,, and let the following conditions hold:

1. Every Component Il; guarantees M; under environment assumption E;.

2. The environment assumption E; of each component I1; is satisfied if the
environment of [l satisfies E and every I1; satisfies M;.

3. II guarantees M if each component II; guarantees M;.
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Then Il guarantees M under environment assumption E.

The composition principle is depicted in figure 3.1 for two components, where E
is the composed system’s environment assumption and M is the composed system specifi-
cation, E| and E9 are the environment assumptions for the two components, and M; and
M, are the component specifications. As shown in the figure, the conjunction of £ and
M, must satisfy the environment assumption E}, and the conjunction of £ and M, must

satisfy the environment assumption Es.

E

Figure 3.1: Composition principle

As shown in the figure, the composition principle’s reasoning is circular because
cach M; holds only when E; holds, but we assume every M; holds when proving that every
E; holds. Abadi and Lamport’s chief result is a proof rule that clearly sets out the conditions

under which the reasoning is valid, despite the circularity.

3.2 Behaviors

In Lamport’s transition-axiom method [26], systems are specified as sequences of
. o, . a «a . .
atomic state transitions, called behaviors, so = s; =3 ..., where each s; is a state (sq is

the initial state) and each a4 is an agent. State transitions occur due to actions taken by
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agents. Behaviors may be finite or infinite, but a finite computation can be represented by
an infinite sequence if the sequence reaches a point where the state no longer changes. A
state is a binding of values to a set of state variables that represent only the visible interface
of a system, not internal variables.

A sequential program would have only one agent (the program) and only one
possible correct behavior for a given set of inputs (i.e., the series of state transitions due to
the execution of program steps). A general specification for the sequential program would
consist of the set of all allowed behaviors for all possible inputs (e.g., depending on the
inputs, different conditional branches might be taken), where the inputs are specified as
part of the initial state of a behavior.

A concurrent system, however, consists of more than one agent, has potentially
many possible interleavings of events and, therefore, has many possible state transition
sequences. For example, a system with two concurrently running agents, «; and as, each
with a single possible atomic action, a; and a3, has two different possible interleavings of
events: aj,ap and az,a;. The nondeterminism of the system is represented by the different
possible event orderings.

A p-stuttering step is a transition from a state s to the same state s (i.e., the
state does not change) where the agent is a member of the agent set p. Let f,0 be the
behavior obtained from a sequence o after replacing every sequence s = s 3 s... (o € p)
of p-stuttering steps with the single state s. Two behaviors o and 7 are considered to be
stuttering equivalent if i,0 = h,7. If we consider non-stuttering transitions to be changes

to the observable system state, then stuttering steps would correspond to invisible changes
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to the internal state of the system.

Stuttering steps are necessary when proving that an implementation satisfies a
high-level specification. The implementation, as a refinement of the specification, may
contain many details that do not appear in the specification. Thus, some state changes in
the implementation may be “filtered” by the refinement function, so a state transition in

the implementation may map to a stuttering step in the specification.

3.3 Properties

A set of behaviors that is closed under stuttering (i.e.., that contains all behaviors
that are stuttering equivalent to behaviors in the set) is called a property. As discussed
previously in section 2.2.3, there are two types of properties: safety properties and progress
properties. Intuitively, safety properties of a system define the acceptable initial states and
the allowable state transitions. Progress properties assert that specific state transitions
eventually occur.

The specification of a system consists of the conjunction of various safety and
progress properties. If, for example, I is a state predicate that determines the set of valid
initial states (interpreted as the property consisting of all behaviors whose initial state
satisfies the predicate), T(N) is a property that consists of all behaviors whose every state
transition is either a stuttering step or else is allowed by a next-state relation N, and L is
a progress property, then the specification for a program could be defined as the property
INT(N)N L, which means the set of behaviors whose initial state satisfies I, whose every

state transition is a stuttering step or satisfies the next-state relation N, and that satisfies
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the progress requirement on the scheduling of transitions.

For example, consider the concurrent system described above, with two agents «a)
and a, each with a single possible action, a; and as. As noted earlier, it has two different
possible interleavings of events: a;,as and a2, a;. To specify this, we could write a property
where I is always true (i.e., there are no constraints on the initial state), where N allows
only the transitions a; and a; and allows each to happen only once, and where the progress
property asserts that a; and as will both eventually happen. Because of stuttering steps.
an infinite number of possible behaviors satisfy the property, but they all have the general
form [z*,a),z%,az2,z*] or [z°,a2, 2", a1, z"], where z* means zero or more stuttering steps by
either or both agents. Without the progress property, our specification would also allow the
additional behaviors @ (i.e., nothing happens), [z*] (nothing but stuttering steps happen).

[z*,a1,z*] and [z*,a2,z"] (only one of the transitions happen).

3.3.1 Machine Closure

It is important that a progress property constrain the scheduling of state tran-
sitions but does not constrain which state transitions can occur. Otherwise, it may be
impossible to build a system that satisfies the specification. Abadi and Lamport provide
the following example of why this is so [3].

The initial state of a program and the computer instructions that the program
executes are determined by the program’s code, which specifies the program’s next-state
relation. Consider the next-state relation, depicted in figure 3.2, for a program with a
single state variable z. The initial state predicate asserts that z initially equals 0. The

state transitions from the initial state that are permitted by the next-state relation are to
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z=1and z = 2.

Figure 3.2: Next-state relation

Now assume that a progress property in the specification for the program asserts
that £ = 3 at some time during the execution of the program. For the program to satisfy
that property, it must never make the transition to £ = 1. In effect, this progress property
implies a further safety property — that z never equals 1. A compiler could not simply use
the program’s code (i.e., next-state relation) to generate an executable file that satisfied the
specification. but would somehow also have to deduce that one of the allowed transitions
must not occur.

Abadi and Lamport define a pair (M, P) of properties to be machine-closed if P
does not imply any safety properties not implied by M [2]. For specifications written in the
form INT(N)N L, where I and T(N) are safety properties and L is a progress property,
we want the pair (INT(N),INT(N)NL) to be machine-closed so that we can only specify
a system that is possible to implement.

The closure of a property Q, denoted Q. is the smallest safety property containing
Q. The closure of a property PN L, where P is a safety property, L is a progress property,

and (P, PN L) is machine-closed, would simply be P.
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3.4 System versus Environment

The inputs to a system come from outside the system, which is the system’s
environment. For example, when we specify a server process in an operating system, the
server’'s environment consists of the kernel and all other processes (both other servers and
user processes). The universe of agents is divided into two sets of agents, the system agents
and the environment agents.

A specification for a system could be written that accounts for the behavior of
the system for all possible inputs. It is simpler, however, to specify a system assuming
that the inputs satisfy some definition of correctness. A specification written this way must
take into account that the system is only expected to work correctly if the environment
works correctly (i.e., the environment provides correct inputs). The server processes in
an operating system, for example, cooperate to implement the overall operating system
specification. It would be simpler to specify one server assuming that the other servers
also conform to their specifications rather than specifying the behavior of the server in
all possible conditions. The specification of a system M and the assumptions about its
environment E is the property £ = M, which includes all behaviors where the system

satisfies its specification or the environment does not.

3.4.1 Machine Realizability

A specification of the form E = M asserts only that the system specified by M
behaves correctly when the environment satisfies the assumptions E, not that the environ-

ment will always satisfy E. If M also asserted that the environment always behaved in a
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certain way, then the system would be impossible to implement correctly because no matter
how you built the system you could not control the environment. Such a specification is
said to be unrealizable.

A realizable specification is a specification for which it is possible to build a cor-
rect implementation. A correct implementation allows only behaviors that are permitted
by the specification. A specification may have both realizable and unrealizable parts. Be-
cause a correct implementation may only allow behaviors that are also permitted by the
specification, it can only implement the realizable part of the specification.

A receptive property is a property that is completely realizable (i.e.. all behaviors in
the property have a correct implementation). Abadi and Lamport define a pair of properties
(M. P) to be machine-realizable if the pair is machine-closed and if P is receptive. Because
a system consists of a set of agents u, a machine-realizable system specification is said to

be u-machine-realizable.

3.4.2 Writing the Environment Property as a Safety Property

An interesting result of Abadi and Lamport is that when an environment specifica-
tion is machine-realizable, the environment progress property can be incorporated into the
system’s progress property, and the realizable part of the resulting specification is equivalent
to the original.

For an environment specification I N EsN Ef, where [ is an initial state predicate,
Es is the environment safety property, and E; is the environment progress property, and
a system specification Ms N M, theorem 1 of reference [3] says that if (Es, Es N EL) is

—p-machine-realizable (where 4 is the set of system agents and —u is the set of environment



agents), then
INEsNE = MsnN M,
and
INEs = MsN(EL = M),

are u-equirealizable (i.e., they have the same realizable parts).

One of the chief requirements for valid application of the Composition Principle is
that all environment assumptions are safety properties. This theorem ensures that even if
the environment specification contains a progress property, we can put the complete system

specification into a form suitable for applying the Composition Principle.

3.5 Internal versus External State

State variables are used to completely describe the interface between the system
and the environment. The system, however, may also have internal state that is not mod-
ifiable by the environment. Abadi and Lamport “hide” internal state using existential
quantification. The property that specifies a system with internal state must also assert
that the internal state has correct initial values and that only the agents in the system (i.e.,
not the environment agents) can modify the internal state. The complete safety property

M for a system with agent set 4 and with internal state z can be written in this form:

Az : [ N TA-,(Uz) NTAL(N)

where I; is a predicate on the initial values of z; TA-,(U;) is an assertion that, for all state

transitions caused by the environment agents, the internal state remains unchanged; and
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TA,(N) is the next state relation for the system. The complete specification for a system,

including the system’s progress property, can be written in the form 3z : M, N M.

3.6 Proof Rule

We give here the formal statement of Abadi and Lamport’s composition proof rule

from reference (3]:

If py, p2, and py U uo are agent sets and E, E,, E;, M,, and M, are properties

such that:
1. E=InP, BEy=0LNP, and E; = I, N P>, where
(a) I, I,, and I, are state predicates.

(b) P, P\, and P, are safety properties that constrain at most —~(py U p2), ~p1, and

—ua, respectively.
2. M| and M, constrain at most y, and u,, respectively.
3omNuz=0

then the rule of inference

EnMNM; CE, NE,
(By = M)N(E; = M>) C(E = M| N M)

is sound.

This rule easily generalizes for systems of n components (n > 2). Strictly speaking,
the conclusion of Abadi and Lamport’s rule of inference applies only to the realizable parts
of the specifications, but the specifications that we use in our approach to describe calling

agents are machine-realizable so the conclusion shown here is equivalent.
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3.7 Refinement

Our remaining step to complete the composition is to find a refinement mapping

from M, A M5 to M.

3.7.1 Refinement Mappings

A refinement mapping is a function from states in one specification (e.g., M; N M;)
to states in another specification (e.g., M). Intuitively, we can think of M; N M- as the
implementation of a system and M as the abstract specification for the system.

Abadi and Lamport describe four conditions that must be satisfied by a refinement
mapping f:

1. f must preserve the external state (i.e., the mapping is a total function from the
external state and implementation internal state to the abstract specification internal

state).

2. f must map initial states in the implementation to initial states in the abstract spec-

ification.

3. f must map state transitions in the implementation to state transitions in the abstract

specification.

4. f maps behaviors that satisfy the implementation (including environment steps) to

behaviors that satisfy the abstract specification’s progress properties.

The refinement step in a composition proof is to find a suitable refinement map-

ping between an implementation and a specification and to prove that it satisfies the four
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conditions.

After applying the composition rule to a set of component specifications, the result
is an implementation specification that we can use in the refinement step. After proving
that our refinement mapping from the implementation to the abstract system specification

is correct, the composition proof is complete.
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Chapter 4

Mechanizing the Composition

Method in HOL

That which you hear you'll swear you see, there is such unity in the proofs.
Winter’s Tale, Act V. Scene 2

Abadi and Lamport’s composition method is extremely general. Their semantic
model of composition permits the proof developer to use his or her own specification format
and is intended to be independent of any particular specification language or logic. This
kind of flexibility is powerful, but it can make the development of specifications somewhat
ad hoc.

One risk of ad hoc specification development is that a developer might create
specifications that do not satisfy the conditions for the composition rule. For example,
a developer might easily write a specification that is not machine-realizable by specifying
progress properties that also imply safety properties.

When specifications are hand-crafted as needed, furthermore, they will likely be
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so different from one another that proof reuse is difficult or impossible. Reusable proofs
require some kind of standardized specification format.

The importance of composing only specifications that satisfy the composition rule
conditions, and the need for standardized specifications, has led us to develop a refinement
of Abadi and Lamport’s method. Our refinement puts some limits on the way that speci-
fications can be written, but does not limit the generality of the types of systems that can
be specified and reasoned about using Abadi and Lamport’s method.

While our refinement satisfies our requirements for “safe” and standardized spec-
ifications. many other different refinements that have the same effect could be developed.
Ours was designed to make it easier to specify and reason about the types of distributed
systems that are of interest to us.

In this chapter, we describe our refinement of Abadi and Lamport’s semantic
model and our implementation of it in HOL. We note here that we do not derive Abadi and

Lamport’s results, but use the composition principle as an axiom.

4.1 A Specification Language for Composition

Abadi and Lamport’s work was intended to be independent of any particular spec-
ification language or logic. They point out, however, that a logic for composition must have

the following attributes [3]:

1. The logic must express sets of behaviors as properties (i.e., the sets must be closed

under stuttering).

2. The logic must have an attribute that Abadi and Lamport call ezplicitness. This
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means that determining if a behavior satisfies some formula can only be based on
comparing the state variables that are free variables in the formula (the behavior may
have other free variables that are irrelevant for this purpose). Conversely, it means
that if some formula says that one state variable is modified, but no other state
variables are even mentioned in the formula, then every state variable must implicitly

be a free variable in the formula.

The second attribute can be tricky to implement. Abadi and Lamport say that
a practical language must let you implicitly include some variables as free variables, even
though it does not appear explicitly in the formula. The suggestion here is that a practical
language allows you to implicitly say that “any state variables not shown here remain

unchanged.”!

4.2 Traces

We call behaviors “traces” (as in “execution traces”). Traces are defined as func-
tions from positive integers to (agent, state) pairs, called “trace elements.”

For some trace trace and a number 1, trace(i) is the trace element that corresponds
to agent a; and state s; in the behavior represented by trace. The state in trace(0) (the
first trace element) is the initial system state. (The agent in trace(0) is undefined because
there is no preceding state from which to transition to the initial state.)

Abadi and Lamport define properties as sets of behaviors that are closed under

'Although Abadi and Lamport intended that their work be independent of any particular specification
language or logic, we note in passing that Lamport’s temporal logic of actions language [26] satisfies both
of these requirements.
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stuttering. This could be represented in HOL (using the HOL “sets” library {28]) as
{(trace : num — trace_element) | P(trace)},

the set of functions that map natural numbers to trace elements that satisfy a predicate P,
where P allows stuttering steps. Practically speaking, however, we never need to use the
set notation in applying the composition principle, but use only the predicate.

Following Abadi and Lamport, we distinguish safety properties from progress prop-
erties and safety properties on the initial state from safety properties on state transitions.

We use the “standard” form
INTA,(N)NP

for specifications, to ensure realizability.

4.3 Internal State

Abadi and Lamport “hide” internal state using existential quantification. The
meaning of the existential operator in Abadi and Lamport’s approach is that there exists
an entire sequence of values for the internal state — call it the “internal trace” — that
corresponds to a behavior (and therefore allows stuttering). Their approach also requires
an assertion that the environment does not modify the internal state. A benefit of their
approach is that all references to the internal state, including the assertion that the envi-
ronment does not touch it, are encapsulated in the system property. No reference to the
internal system state appears in the externally visible (interface) state or in the environment
property. A HOL implementation of some property Q of a system that had internal state

might look like the following:
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Y trace. 3 itrace. Q(trace,itrace),

where trace is a function from numbers to interface state, itrace is a function from numbers
to internal state, and @ includes the assertion that any transitions in the trace by non-
system agents leave the internal state of the system unchanged.

In our formulation, we tried another approach to implementing internal state.
This approach extends the definition of system state in a trace element to include. but
maintain separately, internal as well as external state. In other words, where Abadi and
Lamport’s existential quantifier is used to define a sequence of internal state transitions
that is parallel to the sequence of external state transitions in the trace, our approach
merges the internal state into each trace element. Traces are therefore functions from
natural numbers to the triple (agent, (global state,internal state)). The type of the pair
(global state.internal state) is called a system state, because it completely describes the
entire state of the system.

Because a trace element contains both the global and internal state, our method
does not hide the internal state; Abadi and Lamport’s assertions that the environment does
not modify the internal state become part of the safety properties of the environment instead
of the system. When we compose systems and prove that the environment assumptions of
each are satisfied, we must at the same time prove that each system does not modify the
others’ internal state. This is, in general, a very simple proof.

One effect of our approach is that it helps our logic satisfy the explicitness criterion.
A trace element contains the value for every state variable, both global and internal, so when

traces or trace elements are free in a formula, so are all of the state variables.
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4.4 Properties

A property is a predicate that defines a set of traces. For example, consider the

property

(V trace . example_property trace =
(Vi . valx(trace i) = 5))

where val_z is a function that extracts the value of the state variable z. This property is
true for all traces where the state variable z has the value 5 at all times.

By universally quantifying traces in properties, the traces and their constituent
trace elements are free variables in the properties. Because trace elements are (agent, state)
pairs and because states are (global state,internal state) pairs, all state variables are free
in properties. In this way, our logic satisfies the explicitness requirement.

We use the Abadi and Lamport’s “standard” form for the properties that define

a system:

INTALN)NP

where I is the initial state property, TA,(N) is the system’s next-state relation, and P is
the progress property. In this section, we describe our implementation of these three types
of properties.

4.4.1 Initial State Properties

The general form of an initial state property is

(V trace . initial_property trace = I(trace 0))
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where I is a predicate on the initial state. Note that this definition implicitly allows stut-
tering steps because it cares only about the initial state, and so is a true property.

There is an initial state safety property for the external state, the “environment
initial state property”, and another initial state safety property that applies to the internal

system state, the “system initial state property”.

4.4.2 State Transition Properties

A state transition property specifies the next-state relation for the system. It
therefore is the disjunction of all allowable state transitions for a particular agent set,
including stuttering steps.

State transition properties have this general form:

(V trace. transition.property trace =
(V i. let ssl = get_trace_state(trace i) and ss2 = get_trace_state(trace(i+1))
in ((get-trace_agent ss2) = a) =—»>
(ss2 = ssl) V (ss2 = transition_function_1 ssl) V ... V(transition relation_n ssl ss2)))

where get_trace_state and get_trace.agent are functions that extract the system state and
agent, respectively, from each trace element. The predicate compares the states in adjacent
trace elements; the difference between the two states represents a state transition. Because
a next-state relation applies to state transitions by a particular agent set, the predicate
only compares states in transitions caused by a particular agent a (which here represents
an agent set).

This predicate is true for all traces where every state transition caused by agent
« is either a stuttering step or else satisfies one of the valid atomic state transitions (the

predicate is trivially true when the agent is not «). By explicitly permitting stuttering steps,
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we make our state transition specifications closed under stuttering and, hence, properties.

The atomic state transitions may be expressed as relations or functions from states to states.

4.4.2.1 Specifying State Transitions

There are two approaches to specifying how a system is allowed to transition from
state to state. One approach emphasizes what a system is permitted to do: anything not
specifically permitted is forbidden. The other approach emphasizes what a system may
not do; anything not explicitly forbidden is permitted. We use both approaches in our
specifications.

Atomic state transitions are predicates on pairs of states, for example P s s3. The

predicate is satisfied if the second state represents a valid transition from the first state.

State Transition Functions A special case of an atomic state transition is the predicate
s2 = F'(s;), which is true only when the state s, is equal to the value calculated by the
function F applied to state s;. F is an example of a state transition function, which has

this general form:

(V ss : system _state . state_transition_function ss =
—(precondition ss) = ss | (next_state.n ss))

A state transition function specifies what a system is allowed to do. If some pre-
condition is not met, the only permitted transition is a stuttering step. If the precondition
is met, the next allowable state is calculated by the function.

For example, consider a system where the state consists of two state variables, a

and b. The following would be a state transition function written in HOL that modified
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state variable a provided that state variable b met some precondition, and that leaves b

unchanged.

(V ss : system_state . state_transition_function ss =

let a = (get_a ss) and b = (get_b ss) in

% If b does not meet the precondition then return state unchanged. %
(("precond b) — ss |

% Otherwise, modify a... %
(let new_.a = (modify a) in

% construct the new state %
(put_a new._a ss))))

(Note that a HOL comment is delimited by a pair of % characters.) This state transition
function uses destructor functions to extract state values from the system_state data type.
For example, get_a ss extracts the value of the state variable a. The constructor put_a
replaces the value of a in the state, leaving all other state variables unchanged. The syntax
precondition — cond|cond, is a conditional statement that returns either cond_1 or cond_2.
depending on whether the precondition is true or false, respectively.

An advantage of expressing state transition functions in this way is that state vari-
ables not explicitly changed by the function are implicitly left unchanged, which simplifies
the transition specification because we do not have to exhaustively assert whether or not
each variable changes. The function above, for example, has no constructor functions that

modify the value of the state variable b, so its value is unchanged.

State Transition Relations State transition functions emphasize what the transition
is permitted to do. In cases where a large number of possible state transitions must be
defined, a specification may be more succinct if it instead emphasizes what a system may
not do. A state transition relation can be used for this purpose.

Here is an example state transition relation for the system described above that has



57

two state variables labeled a and b. The relation permits (i.e., the value of the predicate
is true for) any transition that leaves the state variable a unchanged, but there are no

constraints on how b’s value may change:

(V ssl ss2 : system state . state_transition_relation ss =
let al = (get_a ssl) and a2 = (get_a ss2)in
% check that a has not been changed %

(al = a2))

4.5 Progress Properties

We specify progress properties using the following general form:

(V trace . progress_property_n trace =
Vi.3j. i<jA
(get_system _state(trace(j+1)) =
transition_n(get_system state(trace j)))))

where transitionn is a state transition function. This property is true for all traces where
at any point i in the trace there is another point j that occurs after i and where the
transition will happen. In temporal logic (e.g., see [27]), this statement is represented as
“always eventually transitionn”, or OOtransition_n. There is one progress property for
cach state transition. The complete progress property for a system is the conjunction of
the individual state transition progress properties.

Progress properties of this type imply that all traces are infinite, but that does
not imply that only infinitely running systems can be specified. As previously discussed in
section 3.2, a finite computation can be represented by an infinite sequence if the sequence
reaches a point where the state no longer changes. That point is reached in systems specified
using this type of progress property when none of the state transition preconditions are

satisfied and they are not satisfied at any point thereafter in the trace.
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The progress property for a system is the conjunction of the individual state tran-
sition progress properties. The system progress property asserts that each transition will
occur infinitely often. Note that a state transition defaults to a stuttering step when the
transition’s preconditions are not met, so it is possible that the state change defined by the
transition will never occur unless the precondition becomes true at some point and remains
true until after the transition has occurred. Our progress properties, therefore, implement
a “weak fairness” scheduling policy on transitions [4].

We chose this form for progress properties for several reasons. First, a progress
property in this form asserts no new safety properties. Abadi and Lamport use the term
machine-closed to described specifications where the progress properties have this char-
acteristic. A machine-closed specification should make it simple, for some system M, to
create M, the smallest safety property that contains M, as required by the antecedent of
the composition proof rule. We merely take out the progress properties, leaving the initial
state and state transition properties.

Another reason for using this general form for progress properties is that it sim-
plifies the mapping of some kinds of transitions. For example, it simplifies the mapping
of any transitions of an implementation that never map to stuttering steps in the abstract
specification. In such a case, it is easy to prove that, because the implementation transi-
tion always eventually happens, the abstract specification transition also always eventually

happens. Transitions that always map to stuttering steps, of course, are even easier to map.
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4.6 Composition

Having specified the properties of each of the component systems. the next step
in composing the system is to prove the antecedent of Abadi and Lamport’s proof rule
(summarized in section 3.6).

The antecedent of the rule for composing n components becomes the following

HOL proof goal:

(V trace .
((env.nit trace) A (env_transition trace) A
(sys_l.nit trace) A (sys_l_transition trace) A ... A
(sys_ninit trace) A (sys_n_transition trace)) —>
((env_1.init trace) A (env_l_transition trace) A ... A
(env_n_init trace) A (env_n_transition trace)))

where env_init and env_transition are the overall environment initial state and state tran-
sition properties (whose conjunction corresponds to E in the proof rule), sys_1_init and
sys_l_transition are the initial internal state and state transition safety properties for com-
ponent system 1 (whose conjunction corresponds to M; in the proof rule), and env_1_init
and env_l_transition are the environment initial state and state transition properties for

component system 1 (whose conjunction corresponds to E; in the proof rule).

4.6.1 Proof Complexity

The composition proof can rapidly grow in complexity as a function of the number
of state transitions on the left-hand side of the implication and the number of systems that
are being composed. For each system state transition property sys.r_transition on the left
side of the implication and environment state transition property env_y_transition on the

right side of the implication (z # y, because the agent sets of a system and its environment
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do not intersect), we must prove that every transition in sys_z_transition implies at least
one of the transitions in env_y_transition.

In general, if we are composing n modules and, on average, each of the modules
has m state transitions, then we must prove that each of the nm state transitions satisfy
n — 1 environments. In the worst case, we have to do ©(n?m) proofs. In practice, however,
we can often use incremental composition to reduce the number of modules — and the

resulting number of transition proofs — in each composition proof stage.

4.7 Refinement

We define a refinement mapping f as a function that corresponds to Abadi and
Lamport’s f* formula [3]. The function takes as input a system state of the form (¢, y). where
t is the external state and y represents all of the internal state of the components, and returns
as output a system state in the form (s, z), where s is the external state of the composed
system and z is the internal state of the composed system. Because in our refinement of
Abadi and Lamport’s method we have merged the external and internal state, our refinement

mappings are simply HOL functions of type component_state — cormnposed_system_state.

4.7.1 Mapping the Initial State

The goal for proving that the initial state in the components maps to the initial

state in the composed system is

(Vss.Iss =>TI(fss))
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where f is the refinement mapping function from ss, a system state of the components,
to a system state of the composed system; I is the conjunction of the environment and
individual system initial state predicates of the components; and I’ is the conjunction of

the environment and system initial state predicates for the composed system.

4.7.2 Mapping the State Transitions

The next step in the refinement is to prove the mapping of each of the state
transitions of the components to either a state transition or a stuttering step in the composed
system. Because the specification of state transitions may implicitly assume that the system
state is always in some kind of consistent state, it may not be the case that the component
transitions map up to the composed system transitions for all possible values in the range
of the state variables. Invariants are used to eliminate unreachable states from the proof of
the mapping. The proof that the state transitions map up may, therefore, require the proof
of the invariants as an obligation.

A goal to prove an invariant P has the form

(V trace i .
{(envinit trace)} A (env_transition trace) A
(sys-init trace) A (sys-transition trace)) = P(trace i)

which means that P holds for all states in a trace assuming the initial states and state
transitions defined for the environment and component systems. The invariant becomes a
theorem that is used in mapping the state transitions.

The HOL goal for mapping state transitions is
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(V trace i .
((envinit trace) A (env_transition trace) A
(sysdnit trace) A (sys_transition trace)) =
(N (f*(trace i)) (f’(trace(i+1))) v
((f'(trace i)) = (F'(trace(i+1))))))

where N’ is the next state relation for the composed system and f’ maps trace elements.
(The agent in a trace element, however, is unchanged by the mapping.) This means that
the safety properties of the components must map up for every state transition to either
a state transition or stuttering step in the composed system. The antecedents of this goal

imply the invariants, which can then be used in the proof.

4.7.3 Mapping the Progress Properties

The goal to prove that the progress properties of the components imply the

progress properties of the composed system has this form:

(V trace .
(I trace A TE trace A TM trace A L trace) = L’ (f” trace))

where I is the initial state property for the components, TE is the state transition property
for the environment, TM is the state transition property for the components (which consists
of the conjunction of the individual component system state transition properties), L is
the progress property for the components (i.e., the conjunction of the individual progress
properties for all the components), L’ is the progress property for the composed system,

and £’’ applies the refinement mapping function to every element in a trace.
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4.8 Summary

In this chapter, we have described our refinement of the composition method of
Abadi and Lamport and our mechanization of their semantic model in HOL. Our refinement
structures the development of specifications but does not otherwise limit the generality of
Abadi and Lamport’s method.

The goal of providing this structured specification method is to ensure that spec-
ifications that are to be composed satisfy the requirements of the composition rule and to
simplify the use of the specifications in compositional proofs. The “standard” specification
style can be applied in the development of specifications for our standard model of a com-
ponent in a distributed system, the calling agent model. which is described in the following
chapter. In chapter 7, we give a detailed example of a composition proof that uses our

method.
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Chapter 5

Calling Agents

We should recoil, stricken with sorrow and shame,
To see disclosed, by such dread proof, how ill
That which is done accords with what is known
To reason.

Williamm Wordsworth, "The Ezcursion”, V:254

Our composition method is applicable to systems that consist of a collection of
structurally homogeneous components — components that have similar specifications and
interfaces — where the specifications and proofs used to compose a small group of com-
ponents can be reused over and over again until the entire system has been incrementally
composed. The ability to reuse specifications and proofs ensures that our method scales
well as the size and complexity of a system increases: no matter how many additional com-
ponents are added to the system, the work to develop the specifications and proofs has only
to be done once.

In order to reuse specifications and proofs, some standard model of a component
must be used. We have devised a standard model of a component in a distributed system

that satisfies the need for structural homogeneity but that is sufficiently extensible to be
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useful for specifying a wide variety of systems and their components. We call this standard
model a calling agent.

An example of a calling agent system that was described in section 2.1.1 is the
set of server processes in a micro-kernel operating system. In a micro-kernel operating
system. the server processes that make up the system are relatively homogeneous. This
homogeneity suggests that the same, basic specification can be used to describe each of
the server processes, and that similar proofs can be done to show their correctness. The
differences between the functions performed by each server process can be parameterized,
so that the specification for each server process is an instantiation of the same, general.
server process specification.

In this chapter, we describe the calling agent model, explore different variations
on the basic calling agent model, and introduce how the composition principle can be used

to compose a system of calling agents.

5.1 Calling Agent Model

We use a general model of autonomous agents that communicate through asyn-
chronous message-passing. Agents call other agents by sending request messages. An agent
that receives a request performs some action on behalf of the agent that sent the request
and then returns a response message. The actions performed by an agent that responds to
a request may include calculating a function value, retrieving or modifying system state, or
sending request messages to other calling agents. Request messages may contain call pa-

rameters and response messages may contain return values. Figure 5.1 depicts this calling
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agent model.

Request Requests sent
(+ parameters) by agent
_—__9 ........... >

Calis to agent{ Agent Calls from agent

Response Responses received
(4 return V.lu..) by agent

.~
;. System
; state

Figure 5.1: Abstract model of a calling agent

The model is based on the assumption that an underlying system implements the
abstractions of agents and message-passing. For example, the underlying system could be a
micro-kernel that implements processes and mailboxes, or a network that carries messages
between nodes.

An agent that is called may in turn call other agents before returning a response.
so that a call to one agent may result in a cascade of calls between agents. The cascade
of all possible calls from one agent to another can be represented as a directed graph. The
nodes and links in the directed graph are static in the sense that all components — and the
components that they can call — must be known in advance. As we will discuss later (see
section 6.2.2), in some cases calling agents may call only a subset of the agents that they

can call, depending on different parameter or system state values.

5.2 Varieties of Calling Agents

Calling agents can be classified according to the following criteria:
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1. Whether or not they call other agents. An agent that does not call other agents, which
we call a terminal agent, becomes a leaf in the call graph. Non-terminal agents may

call more than one other agent.

2. Whether or not they maintain part of the functional system state. In our basic calling
agent model, each calling agent has its own mailbox that is part of the global system
state and has local state to manage the messages that the calling agent receives. A
calling agent may also maintain additional local state as part of the agent’s function.
For example, a file server might maintain a directory of files and a buffer cache of
frequently accessed disk blocks. We differentiate between the state that is used to
manage messages, which all calling agents have, and the functional state, and refer to

an agent that maintains no functional state as a stateless calling agent.

5.2.1 Stateless Calling Agents

The functional system state may be distributed among many calling agents. but
there is no requirement that a calling agent must maintain part of the functional system
state. A stateless agent may implement a mathematical function on its request message
parameters, in turn calling other agents or returning a response value without calling other
agents.

For example, consider a secure operating system that has a layered access control
policy {18]. There may be a hierarchy of security policies, Py, ..., P,, where P; has priority
over P; for all i < j. Each policy may be implemented in a different server process. This

system is depicted in figure 5.2.



68

Classification, Layer1 Layer 2 Layer n
clearance, server server server
access mode - T e®%e
= a3 e ('
: . H
- ] g-- -.‘ .0
Permission - T

Figure 5.2: Security layers as server processes

A security policy server accepts as parameters a user’s clearance, a classification
for some system resource or object, and an access mode, and applies a boolean function to
determine if the user is permitted to access the resource or object in the requested way. If a
security policy server denies access, it returns a value of FALSE in its response message. If
the server grants access, it sends the clearance, classification, and access mode to the next-
lower priority server, and so on down to the lowest priority security policy server, which is
a terminal server that returns TRUFE or FALSE.

A server that has approved access returns the response value from the next-lower
server as its own response. A user can only be granted access permission if all of the
security servers grant access permission; a user will be denied access if any of the servers

deny permission.

5.2.1.1 Varieties of Stateless Agents

The simplest calling agent manages no functional system state nor calls other
agents. It simply accepts parameters in input requests, calculates a mathematical function
of the input parameters, and returns the function value in the response message. This
simple type of agent is depicted in figure 5.3, where the agent, passed the parameter z in

the request message, returns the value f(z) in the response.
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Agent

f(x)

Figure 5.3: Simpie calling agent

A calling agent that calls other agents may calculate a number of different functions
as part of the processing that it does. For example, consider an agent A that accepts a
single parameter in a request message and that itself makes a single call to another agent
B. As shown in figure 5.4, agent A may calculate a function a; on the input value before
sending a request message to B, and may calculate a function a; on the value returned by

B before sending a response message. Both a; and a; may be the identity function.

a,(b(a, (x)))

Figure 5.4: Calling agent pre- and post-functions

5.2.2 Agents that Maintain State

The functional state of a system may be distributed among different system com-
ponents, which in our model of a system are calling agents. An agent that reads and returns
values from its part of the functional system state is very similar to an agent that simply

calculates a mathematical function value. Instead of calculating a function value, however,
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this variety of agent maps an input value z, which designates a portion of the agent’s local
state s, onto the corresponding state value s(z). The agent may also update the functional
state that it maintains, using the value passed in a request message. A calling agent that

maintains functional state is depicted in figure 5.5.

X
—9
Agent
e —
s(x) A
v

state (s)

Figure 5.5: Agent retrieving a state value

An agent that maintains functional state may call other agents that maintain state.
For example, a file server would maintain a directory of files and a buffer cache of frequently

accessed disk blocks and would call a disk manager to allocate and deallocate disk blocks.

5.3 Reasoning About Calling Agent Systems

The goal of reasoning about a system of calling agents is to prove that a correct
response message is generated for any request message sent to the system. We can prove this
by composing a system of calling agents into a single calling agent, as shown in figure 5.6,
where the system consisting of calling agents A and B is composed into the system AB.

In our model, every agent has its own mailbox, to which other agents send request

messages. A called agent responds to a request by sending a message to the requesting



71

Requests from outside the system

Figure 5.6: Composing a simple calling agent system

agent’s mailbox. The global state of the system consists of all the mailboxes.

A calling agent in our model corresponds to an agent in Abadi and Lamport’s
specification method. As depicted in figure 5.6, from the point of view of an agent B the
sending of a request message by another agent A is an action of B’s environment. Similarly,
from the point of view of agent A, the sending of a response message by B is an action of
A’s environment. After composing A and B, the composed system will consist of agents A

and B, and the environment will consist of all other agents.

5.3.1 Calling Agent Atomic Transitions

A call from one calling agent A to another calling agent B, where B is a terminal

calling agent that does not call other agents, consists of three atomic state transitions:
1. A sends a request message to B’s mailbox

2. Eventually, when A’s message reaches the front of B’s mailbox (i.e., after B has read
all of the messages in the mailbox ahead of A’s message), B reads A’s message and

moves it to B’s internal queue
3. B processes the request and sends a response message to A’s mailbox

The three state transitions are depicted by the arrows in figure 5.7.
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Figure 5.7: Calling agent state transitions

5.3.2 Environment Atomic Transitions

In addition to a stuttering step, the environment of a calling agent has two tran-
sitions:
1. the environment appends a message to the calling agent’s mailbox (the env_send

transition), or

2. the state changes in some other way that does not affect the calling agent (the
env_arbitrary transition). The env_arbitrary transition is written as a relation, not
as a function, because a calling agent is specified to work correctly as long as the
environment behaves correctly with respect to the agent’s mailbox only. The relation
simply says that the agent’s mailbox remains unchanged by the transition, but there

is no restriction on how the rest of the global state (other mailboxes) can change.

5.4 Specifying and Composing Calling Agents

In this section, we give simple descriptive specifications for some of the varieties of

calling agents that we mentioned above and give a high-level overview of how the compo-



73

sition method can be applied to compose some simple call graph structures. In chapter 7,

we will give a fully worked example of composing calling agents.

5.4.1 Terminal Calling Agents

A terminal agent does not call any other agents. The specification of a termi-
nal calling agent has three transitions: agent_reads, agent_responds, and stutter. Progress
properties, described in section 4.5, ensure that these transitions occur infinitely often.

Here is a descriptive specification for the agent_reads transition function:

V system.state. agent.reads system'state =
If no messages in the mailbox then
return system_state
else
return the system state modified as follows:
transfer message at head of mailbox to tail of internal queue,
leaving all other mailboxes and head of internal queue unchanged

If there are no messages in the mailbox when an agent_reads transition occurs, the state
transition function implements a stuttering step by returning the system state unchanged.
If there is at least one message in the mailbox, the transition function modifies the system
state by moving the message from the head of the mailbox to the tail of the internal queue.

A descriptive specification for the agent_responds transition resembles that of the

agent_reads transition in that the system state is modified only if a precondition is satisfied:

V system._state. agent _responds system _state =
If no messages in internal queue then
return system.state
else begin
return the system state modified as follows:
read one message from the head of the internal queue;
let src be the ID of the message sender;
let data be the request data value;
put a response message in src’s mailbox that contains f(data)
end
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If there are no messages in the internal queue when the transition occurs, the state transition
function implements a stuttering step. If there is at least one request message in the internal
queue, the agent_responds transition function applies the function f to the data value in

the request message, and returns that calculated value in a response message.

5.4.1.1 Composing Terminal Calling Agents

Let us say that we are composing the two terminal agents A and B shown in
figure 5.8 into the composed system AB. Because B never sends a request message to A,
A never sends a response message to B. Thus, when some other agent sends a request
message to A, which appears as an env_send transition to A, the transition appears to B

as an env_arbitrary transition by the environment (because B’s mailbox is unchanged).

x{ la(x) ¥ b(y) x| |a(x) V¥ b(y)

OO &

Figure 5.8: Composition of A and B to AB

Similarly, any agent_responds transition by A sends a message to a mailbox other
than B’s and appears to B as an env_arbitrary environment transition. An agent_reads
transition by A, which moves a message from A’s mailbox to its internal buffer, also appears
as an env.arbitrary environment transition to B. The view from A with regard to B is
symmetric.

Thus, when applying the composition rule (see section 3.6), it is straightforward
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to show that the state transitions in the overall environment E and the safety properties
of A, My, satisfy the state transitions in B’s environment specification Eg (and that the

state transitions in E and Mg satisfy the state transitions in E ).

5.4.1.2 Refinement Step

In general, the refinement step of a composition of two compounents 4 and B into

the system AB shows that

f(AAB) = AB,

where f is a refinement function that maps states in the components to states in the
composed system. When we compose two terminal agents, however, the composition does
not hide any state — neither the mailboxes that make up the global state nor the internal
state for each agent — and it does not hide any of the state transitions. Request messages
to A still go to A’s mailbox, and request messages to B still go to B’s mailbox. Thus. the
refinement function for the composition of two terminal agents is essentially the identity

function.

5.4.2 Simple, Non-terminal Calling Agents

Non-terminal agents call other agents. The simplest type of non-terminal calling
agent makes a single call to another agent.

Let us say for example that a non-terminal agent A receives a request message from
an agent in A’s environment, called E. Furthermore, let us say that in order to process the

request from E, A must call a terminal agent B. After receiving a request message from E,
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A sends a request message to B’s mailbox and cannot send a response to E until it gets a
response from B. Once B has responded to A, A can send a response message to E. This
system is depicted in figure 5.9. As shown in this figure, F sends some value z in a request
message to A, A sends the value of the function a(z) to B, B returns to A the function
value b(a(z)), and A returns to E the value that A received from B.

-
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Figure 5.9: Composition of non-terminal and terminal agents

For now, we assume that B receives request messages from A only. We will talk
about reusing agents in a hierarchy (i.e., in the call graph there are multiple edges to the
same node) in chapter 6.

The goal of composing A with B is to show that the composed system satisfies a
specification for a single terminal calling agent, call it AB. The composition proof must
show that AB will accept the same request messages and return the same response messages
as A working together with B.

In our model, each agent has only a single mailbox, and it must process messages
in the order that they are received. This means that A must continue to process messages
while it is waiting for B to respond, so A must buffer the original request message from E
until it receives B’s response.

Meanwhile, B reads the request message from A, processes it, and sends a response

message back to A’s mailbox. Eventually, due to the progress properties that ensure that
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A processes messages in its buffer and mailbox, the message sent by B reaches the head of
A’s mailbox, so A reads the message, pulls E’s original request message out of the buffer,
and sends a response message to E.

The messages that A continues to read while it is waiting for a response from B
may be either additional requests from E or responses from B to previous requests from A.
If a message is a request from E, A generates a new request message for B and buffers E's
request message. If a message is a response from B to an earlier request from A, A matches
the response from B with the original, buffered request from E and sends a response.

The different transitions necessary for A to respond to a request are shown pic-
torially in figure 5.10. The solid arrows represent the original request message to A and

A’s request message to B. The dotted lines depict the path of B’s response to A and A’s

ultimate response.
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Figure 5.10: Message path in simple calling agent chain

Because mailboxes are FIFO queues, a terminal agent is guaranteed to respond
to requests in the order that the requests arrive. This means that A will receive responses

from B in the order that it sent requests to B and that A’s own responses will occur in the

same order that it received requests.
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5.4.2.1 Specifying Simple, Non-terminal Calling Agents

The agent_reads transition for the simple, non-terminal calling agent is the same as
for a terminal agent. The agent_responds transition, however, is quite different. The agent
must determine the origin of the message and take different actions depending on whether
the message was a request from another agent or a response from the terminal agent.

Here is a descriptive specification for the agent_responds transition for simple, non-

terminal calling agents:

V system.state. agent_responds system._state =
If no messages in internal queue then
return system_state
else begin
read message from the head of the internal queue;
let src be the ID of the message sender;
if src is the terminal agent then
do send_response
else
do save_request
end

As in the agent_responds transition for terminal agents, if there is no message in the mailbox
then the transition implements a stuttering step.

When a message is from the terminal agent (B in our example), it is a response
message to a previous request message from the non-terminal agent (A). The message from
B corresponds to the request message at the head of A’s internal buffer; A buffers the
request messages in the order that it receives them and B responds to A’s requests in the
order that they are received. A uses the value in B’s response message to calculate its
response message to the sender of the original request message. The specification for this

action is shown here:
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V system_state. send_response system._state =
get original request message from head of internal buffer;
let rsrc be the identity of the original request message sender;
let bdata be the data value returned from the terminal agent;
create response message that contains bdata;
put the response message in rsrc’s mailbox;

If the message is not from the terminal agent — i.e., the message is a new request
message — the message is added to the end of the internal queue and A sends a request

message to B.

V system_state. save_request system_state =
save request message at end of buffer;
let data be the data value passed in the request message;
apply function a, giving adata;
create request message that contains adata to send to terminal agent;
put the request message in terminal agent’s mailbox:

5.4.2.2 Composing a Chain of Calling Agents

When an agent sends a request message to A, which appears to A as an env_send
transition, the transition appears to B as an env_arbitrary transition by the environment
(because B's mailbox is unchanged). Similarly, when A performs an agent_reads transition,
it appears to B as an env_arbitrary transition.

When B gets a request message from A and performs an agent_reads transition, it
appears to A as an env_arbitrary transition. When B sends a response message to A, that
transition appears to A as an env_send transition.

A’s agent_responds transition appears to B as either an env_send or env_arbitrary
transition, depending on whether A is performing a save_request (A sends a request message

to B) or send_response (A sends a response message to E) action, respectively.
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5.4.2.3 Refinement Step

In chapter 7 we will give a detailed example of the refinement of a chain of calling
agents like A and B. Here we will give a high-level overview to show how the refinement of
this system differs from the refinement of the terminal calling agents.

The refinement step must show that the composition of A and B satisfies the
specification for AB. AB is a terminal agent, so its specification is similar to that of B, but
it returns the function value ab(z) in its response messages. One important proof obligation
is to show that a(6(z)) = ab(z).

All request messages from outside the system that contains agents A and B are
sent to A's mailbox. For this reason, our refinement mapping must map A’s mailbox to
the mailbox for AB. Because we assume here that B only receives messages from A, B's
mailbox becomes state that is internal to the system, so B’s mailbox is removed from the
global state by the refinement mapping.

The terminal agent B sends messages to A, and these messages appear in A’s
mailbox (and internal queue). In the specification for AB, however, there are no state
transitions that could account for the appearance in AB’s mailbox of the messages sent by
B. For this reason, our refinement mapping hides the messages that are sent to A by B,
leaving all other messages and their ordering alone.

The mapping of A’s internal queue and buffer to AB’s internal queue is simple.
A saves each request message in its buffer until it receives a response message from B.
The concatenation of A’s queue (without the messages from B that are hidden by the

refinement function) with A’s buffer contains the same messages in the same order as the
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request messages in AB’s internal queue. B’s internal state is completely filtered by the
mapping.
This mapping is depicted in figure 5.11, showing how messages from B are filtered

by the refinement function and how A’s queue and buffer are concatenated to form AB’s

queue.
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Figure 5.11: Mapping of A and B state to AB state

5.4.2.4 Mapping the Transitions

B’s mailbox is hidden by the refinement, so when B performs an agent_reads
transition, no change in AB’s state is observable. Thus, all of B’s agent_reads transitions
map to stuttering steps in AB. Similarly, whenever B sends a response message to A, that
message is filtered by the refinement function so that there is no change to AB’s mailbox,
so all of the agent_responds transitions performed by B also map to stuttering steps in AB.

When A does an agent.reads transition, but reads a message from B, no change
to AB’s external or internal state is visible (because the refinement function filters out all
the messages from B), so this transition maps to a stuttering step in AB. If, however, the

message read by A is not from B, the transition maps to an agent_reads transition in AB.



82

When A sends a request message to B, the changes to B’s mailbox and to A’s
queue are filtered by the refinement function, so the transition maps to a stuttering step in
AB. When A sends a response message after receiving a response from B, that transition

maps to an agent_responds transition by AB.

5.5 Adding Fault Tolerance to the Calling Agent Model

Our calling agent model implicitly assumes that there will always be one response
message for every request message (e.g., in the previous section, A implicitly assumes that
B will send only one response to every request sent by A). In fact, as we will show in
chapter 7, we can explicitly prove that a system of calling agents has this property.

But real systems may not necessarily always conform to this assumption. Our
model of a calling agent can be made more sophisticated to handle “spontaneous” or oth-

erwise erroneous response messages. This can be handled in two different ways:

1. The environment assumption can be strengthened to exclude the sending of erroneous
response messages. The behavior of a calling agent is guaranteed provided that the
environment satisfies the agent’s environment assumptions. By strengthening the
environment assumptions to exclude erroneous response messages, the behavior of a

calling agent if it receives an erroneous response message is left undefined.

2. The calling agent state transition specifications can be strengthened to explicitly de-

scribe the behavior of the calling agent should it receive erroneous response messages.

In general, modifications to the basic calling agent model to handle any kind of

faults can be implemented in the same two ways as just described for erroneous response
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messages. There are advantages and disadvantages to each approach. Strengthening the
environment assumption will most often result in a simpler specification than strengthening
the state transition specifications. On the other hand, the behavior of calling agents in
the presence of faults (i.e., when the environment does not satisfy some properties that are
considered to be “normal”) might be an important feature that must be captured in the

specification.

5.6 Summary

In this chapter, we have described our calling agent model and have introduced
how the composition method can be applied to a system of calling agents. Calling agents
can be characterized by whether or not they maintain part of the functional system state,
and whether or not they call other agents. Agents that do not call other agents are known
as terminal calling agents.

The composition of terminal calling agents is relatively simple because there is no
interaction between the agents. The composition of non-terminal agents is a much more
complicated proof. In this chapter, we gave an overview of the composition of a simple
chain of agents. In the next chapter, we will explain how the composition method can be
applied to more general topologies of calling agents called calling agent hierarchies, and in
chapter 7 we will give a fully worked example of the compositional proof of a system of

calling agents.
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Chapter 6

Templates and Calling Agent

Hierarchies

In aught that tries the heart, how few withstand the proof!
Byron - “Childe Harold,” Canto II, Stanza 66
When a system consists of a large number of components, even compositional proof
can be quite complex. Our method of reducing the complexity of compositional proof hinges
on being able to incrementally compose systems that contain a large number of components
and on being able to reuse specifications and proofs for each incremental proof stage.
Incremental composition reduces the number of components that are composed at
a time. The result of composing a set of components into a subsystem is that the details of
the interaction between those components become internal to the composed subsystem and,
hence, hidden when composing the subsystem with other components. The greatest benefit
in terms of reducing compositional proof complexity will occur when each incremental stage

hides a maximum of these details.
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While using incremental composition stages can reduce the complexity of each
composition stage, a large number of stages will also increase the complexity of a proof.
An optimal incremental proof strategy, therefore, is one that only uses an incremental
stage when doing so will hide detail and that chooses the components to be incrementally
composed that will result in hiding the most detail possible. Our method of finding an
optimal incremental proof strategy is based on viewing a system of calling agents as a
hierarchy and by incrementally composing from the bottom of the hierarchy toward the
top.

Viewing a system of calling agents as a calling agent hierarchy can optimize the
number of incremental proof stages, but there may still be a large number of stages. Ideally,
specifications and proofs can be reused in each incremental stage to reduce the work in each
stage. In principle, in a system that has a sufficiently regular, recursive topology. a single
set of reusable specifications and one reusable compositional proof could suffice to verify
the entire system.

In order for reuse of specifications and proofs to be practical, we need to have
abstract specifications and generic proofs that can be instantiated to support a wide variety
of calling agent types. We call the abstract specifications and proofs templates. Templates
are parameterized, so an instance of a calling agent can be specified and composed with
other agents simply by providing appropriate arguments.

In this chapter, we describe the characteristics of a calling agent hierarchy and an
algorithm for finding an optimal incremental composition strategy to compose the hierarchy.

We also explain how templates can be applied to a hierarchy to incrementally compose a
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large system of calling agents.

6.1 Templates

A template includes both abstract specifications and generic proofs. What makes
a specification abstract and a proof generic is the use of parameters. The parameters can be
values, types, specifications, and theorems. A template can be saved in HOL as a generic
theory [38].

A generic theory in HOL is a collection of definitions and theorems that provide
a framework for theorem reuse. It consists of an abstract representation of objects and
types, abstract operations, and theorems about the representation. A generic theory also
includes a set of theory obligations. The abstract theorems are guaranteed to hold for
any instantiation of the abstract representation provided that the theory obligations are

satisfied.

6.1.1 Parameterized Specifications

HOL provides a “generic typing” feature that can be used to parameterize types.
For example, a generic function f whose domain and range may be different types can be
defined using the type definition f : (¥ — *x), which means that the domain of f is of type
+ and the range is of type *=.

Higher level constructs, such as functions, can themselves become parameters by
using universal quantification. For example, we can change the following descriptive speci-

fication from section 5.4.1 for the agent_responds transition
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V system.state. agent_responds system state =
If no messages in internal queue then
return system. state
else begin
return the system state modified as follows:
read one message from the head of the internal queue;
let src be the ID of the message sender;
let data be the request data value;
put a response message in src’s mailbox that contains f(data)
end

into a more abstract specification by universally quantifying the function f that the tran-

sition calculates.

V system.state (f : (= — ==)). agent_responds system_state =

If no messages in internal queue then

return system.state
else begin

return the system state modified as follows:

read one message from the head of the internal queue;

let src be the ID of the message sender;

let data be the request data value;

put a response message in src's mailbox that contains f(data)
end

This parameterized specification is generic for all transitions that apply a single function to

the data value in the request message.

6.1.2 Generic Proofs

A generic proof is parameterized by the use of the abstract specifications and by
a set of theory obligations. For example, as described in section 5.4.2.3, when composing
a simple chain of calling agents A and B into the system AB, it is necessary to show
that the composition of the functions calculated by A and B, a(b(z)), is equal to the
function calculated by AB, ab{z). A template can be created to compose the agents A
and B, and any other pair of agents that are structurally homogeneous to A and B, by
universally quantifying the functions, with a corresponding theory obligation to show that

a(b(z)) = ab(z).
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The same template can be applied to compose an arbitrarily long chain of struc-
turally homogeneous calling agents. For example, consider a chain of calling agents shown
in figure 6.1 that consists of A, which calls B, which calls C, which calls D. To compose
this chain, we would first apply the template to compose C and D into CD, then apply the
template to compose B with CD into BCD, and then apply the template one last time to
compose A with BCD. At each incremental step in the composition, however, in order to
be able to apply the template we need to satisfy the theory obligation, instantiated with

the functions from each calling agent (or composition of calling agents).

Figure 6.1: Incremental composition of a “long” chain of calling agents

6.2 Calling Agent Hierarchies

The abstraction of a calling agent hierarchy is a method of partitioning a system
of calling agents so that an optimal incremental composition strategy can be found. An
optimal incremental composition strategy composes components that interact, in order to
hide the details of that interaction in later incremental composition stages. As explained in
section 5.4.1.2, composing two terminal agents does not hide any detail. In fact, composing

any set of agents that do not interact hides no detail. An optimal incremental composition
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strategy will, whenever possible, only compose agents that interact.

The system depicted in figure 6.1 is a simple example of a calling agent hierarchy.
The incremental proof strategy described in section 6.1.2 to compose that system is optimal
in the sense that it only composes agents that interact. There would be no benefit, for
example, in having an incremental composition stage that composed agents B and D.

In this section, we will discuss more complicated templates and calling agent hierar-
chies. Although we focus here on hierarchies whose call graphs are acyclical, our techniques
can be applied to systems whose call graphs contain cycles as well. The chief difference
between templates for acyclical and cyclical call graphs is that templates for cyclical graphs
must be more sophisticated with respect to the eventual generation of responses (i.e.. they

must show that the cycle eventually terminates).

6.2.1 Composing n-ary Trees

A linear chain of calling agents is a unary tree. Templates can be developed in a
similar manner for binary and larger order trees. For example, consider a system of calling
agents whose calling structure is a complete binary tree, as shown in figure 6.2. Each of
the subtrees — (B, 1,2) and (C, 3,4) — that consist of a root node and two leaves can be
composed, leaving another instance of a root node (A) and two leaves (B12 and C34) that

can be composed using the same template.

6.2.1.1 Identity Agents

In the case where an n-ary tree is incomplete, so that some of the subtrees have a

lower order than others, we do not necessarily have to use different templates for each order
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Figure 6.2: Binary tree calling agent hierarchy

subtree. As an alternative, a template for an n-ary subtree can be used to compose m-ary
subtrees (m < n) by using an identity agent. An identity agent is a simple terminal agent
that is defined to have no effect on the system state other than to receive request messages
and send responses. The function of an identity agent depends on the requirements of
a template. For example, in a template where agents are passed parameters and return
function values, an identity agent might simply return the input value unchanged (i.e., it
implements the identity function).

For example, as depicted in figure 6.3, agent C only calls agent D, but in order
to be able to use the same template for the entire hierarchy C is specified to also call an
identity agent :.

An m-ary agent can call n — m identity agents to “fill” the unused calls in the
template. Although the specification for the m-ary agent is no longer m-ary, but is now
n-ary, the specifications are functionally equivalent because the identify agents have no

effect.
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Figure 6.3: Composition of an incomplete tree

6.2.2 Conditional Call Graphs

Up until now, we have only been considering “hard-coded” call graphs. That is, if
an agent ever calls another, it always calls that other agent in every instance. For example,
consider the binary call graph depicted on the left side of figure 6.3, above. Agent A might
calculate a function of the values returned by both agent B and agent C. In this case, both

agents B and C would always be called. We can describe A’s actions with the statements
B(z); C(z)

to indicate that A calls both B and C using the input parameter z. In this section, we
consider calling agents that may call a subset of all the agents that they could possibly call,

depending on different parameter or system state values.

6.2.2.1 Parallel Conditional Call Graphs

The agent A described above, which always calls agents B and C, implements
what we define as an unconditional parallel call. The call is unconditional because both B

and C are always called. The call is parallel because the order that results from B and C
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are returned to A does not matter, so A can call C without waiting for a response from B.
(A must wait for responses from both B and C, however, before it can return a response of
its own.)

Consider, however, an agent A that implements the following conditional statement

based on an input parameter z:
if > 5 then B(z) else C(x).

This case is an example of a conditional parallel call We can use the same template
for a conditional parallel call as we do for an unconditional parallel call. Consider an agent

A that implements the following conditional statements:
if f(z) then B(z) ;if g(z) then C(z).

If f and g are both trivially TRUE, the function will always call both of the other agents and
we have an unconditional parallel call. If ¢ = —f, the function implements a conditional
where only one of the branches is called. Thus, different variations on parallel calls can be

implemented by using different instantiations of f and g.

6.2.2.2 Sequential Conditional Call Graphs

Not all binary call trees, however, describe parallel calls. The call to C may
depend on a value returned by B, so that A cannot call C until A receives B’s response.
For example, A may pass to C the value that was returned by B. This dependency leads
to an unconditional sequential call, which we can represent by the statement B then C.

The value returned by B may determine if A calls C at all, which could be rep-

resented by the conditional if f(B) then C. If f is trivially TRUE then the conditional
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implements an unconditional sequential call. Thus, we can use a single template for both

unconditional and conditional sequential calls by instantiating with the appropriate function

f.

6.2.3 Composing Forests of Calling Agents

As described in section 5.4.1.2, the refinement function for composing two inde-
pendent, terminal calling agents is essentially the identity function. This fact holds true
in general for composing any forest of calling agents. Because the agents in the forest do
not call each other, all of their state and state transitions are preserved by the composition
and refinement. Composing a forest of agents is the only time that an optimal incremental
composition strategy should compose non-interacting agents.

To compose a forest of call trees, we first compose each of the trees individually
and then compose the resulting composed agents as non-interacting terminal agents. This
is depicted in figure 6.4, where first A and B are composed, C and D and composed, then

AB and CD are composed.
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Figure 6.4: Composition of a forest of calling agents
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6.2.3.1 Compound Agents

The result of the composition of the two independent trees in figure 6.4 is a com-
pound agent, which has more than one entry point. Each entry point is a distinct destination
to which a request message can be sent.

The degree of a compound agent is the number of entry points that the compound
agent has. For completeness, we refer to an agent with a single entry point as a compound
entry point with degree 1.

As with incomplete n-ary tree call graphs, where some of the nodes have a degree
that is less than n, some agents in a system may be compound agents of degree 1, others of
degree 2, and others with even higher degrees. To write templates that can handle agents
of different degree, we can make every agent a compound agent of some maximal degree
n. For agents of degree m, where m < n, the extra n — m entry points can be assigned to

identity agents.

6.3 Composing with Reuse

The examples that we have given until this point do not “reuse” agents, i.e., no
agent is called by more than one other agent. When an agent is called by more than one
other agent, however, the resulting call graph forms an acyclic directed graph that is not a
tree. An example of this is shown in figure 6.5, where agent C is called by both agents A
and B.

The method of recursively composing trees that we have previously described does

not work when agents are reused. The problem is that once two agents are composed they
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Figure 6.5: Directed acyclic graph of calling agents that is not a tree

lose their individual characteristics and become a single, composed entity.

The solution is to compose agents so that the entry point of the called agent
becomes part of the composed system. The resulting system is a compound agent, as if
two independent trees had been composed. For example, to compose the system depicted
in figure 6.5, we could use a binary tree template to first compose agents B and C into the
compound agent { BC,C} (using an identity agent for B’s other call), propagating the entry
point for C. The next step is to compose the compound agent with agent A. In chapter 7,

we give an example template that composes a system like B and C into a compound agent.

6.3.1 An Algorithm for Composition with Reuse

Assuming that we have suitable templates, we can compose arbitrary rooted,
acyclic call graphs in the manner just described — composing in a depth-first manner
and propagating entry points — using the following algorithm:

We start with a set A of agent entry points, {ag,ai,...,an}, where the calling
topology forms a rooted, acyclic graph. We also have a corresponding set E of the degree of
incoming edges to each entry point in the graph, {eg,ey,...,e,}. Entry points in the roots
of the graph are the entry points into the system as a whole, and their edge count is always

1.
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Composition is done iteratively. In each iteration, do the following:

1. Calculate the longest path in the graph (if there is more than one longest path, pick
any one of them), then compose the agents in the smallest subtree that contains
the farthest edge. For example, in figure 6.5 the longest path is (A4, B,C) and the
smallest subtree that contains the farthest edge is {B,C,i} (where i is an identity
agent). In figure 6.2 the longest paths are (A, B. 1), (4, B.2), (4,C,3). and (A.C.4).
We can choose as the smallest subtree that contains the farthest edge either {B, 1,2}

or {C,3,4}.

2. For each entry point a; that is in, but is not the root of, the subgraph that is being
composed, subtract one from e;. Any entry point whose incoming edge count is
reduced to zero has been fully composed, so it no longer needs to be propagated (i.e.,
it becomes an internal, hidden, detail). If, however, after the composition, an entry

point in the subtree has a non-zero incoming edge count, then it must be propagated.

For example, when composing the system in figure 6.5, the incoming edge count for
C is initially 2. After it has been composed with B, however, its edge count is
decremented to 1. B’s edge count is not decremented because it is the root of the
composed subtree. Because both B and C have non-zero edge counts, their entry

points are both propagated.

In the system in figure 6.2, however, once the subtree {C,3,4} has been composed,
the edge counts for entry points 3 and 4 are decremented to zero, so those entry points
are not propagated. C’s edge count remains at 1 because it is the root of the subtree,

so it is propagated.
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3. Repeat the steps above until the only entry points left in the system are root entry
points (i.e., the edge counts for all remaining (propagated) entry points and the longest

paths are all 1). Then compose the root entry points as terminal agents.

For example, consider the call graph depicted in figure 6.6. The incoming edge
counts for agents {A, B, C, D} are {1, 1,2, 2}, respectively. Initially, the longest path in the

tree is (A, B,C, D).
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Step 3
Figure 6.6: Example of composition with reuse

In the first step, we compose C and D (and an identity agent). Both C and D
initially have incoming edge counts of two, but the incoming edge count for D is decremented
because of the composition with C. Because D’s incoming edge count is still greater than
zero, however, we must propagate its entry point. The result of the composition is a
compound agent with two entry points: CD and D. The new set of entry points is now
{4, B.(CD, D)}, and the corresponding set of incoming edges is now {1,1, (2,1)}.

In the next step, the longest path in the tree is (A, B,(CD, D)). We compose B
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with (CD, D). The incoming edge count of D reduces to zero, so that entry point is no
longer propagated. The incoming edge count of CD is reduced to one. As a result of this
step, the set of entry points is reduced to {A,(BCD,CD)}, and the incoming edge counts
are {1,(1,1)}. The final composition step fully composes the system, leaving us with the

entry point {ABCD} and an edge count set of {1}.

6.3.2 Reuse with Multiple Roots

This method of composition also works for directed, acyclic call graphs with mul-

tiple roots. For example, consider the call graph in figure 6.7.

Figure 6.7: Acyclic system of calling agents with multiple roots

Initially, the set of entry points is {A, B,C, D}, and the corresponding set of
incoming edge counts is {1, 1,1,2}. The three longest paths are the same length, so we can
compose either of the subtrees {A, B, D} or {C, D} (with an identity agent) first. Let us
choose {C, D}, so the result of the first composition is the agent set {A, B,(CD, D)}, and
the incoming edge count set {i,1,(1,1)}.

In the next step, the longest path is in the subtree rooted at A, so we compose
A with B and D. The edge count for CD remains greater than 0 so that entry point is
propagated. The result is the compound agent (ABD,CD), an edge count set of {(1,1)},

and we are done.



99

6.3.3 Correctness Proof of Composition with Reuse Algorithm

To prove that this algorithm works for all acyclical call graphs, we first assume
that we already have templates for all compositions. We must also define what it means

for the algorithm to fail. What is a wrong result? The algorithm fails if either

1. it attempts to compose an agent with another agent that is not completely composed,

or

2. the result of a composition calculates the wrong function.

The first error case is impossible because if we try to compose an agent with some
agent that is not already completely composed, the agent that is not already composed
must itself be calling yet another agent. If so, then there is still a longer path that has not
been composed, but this violates the rules of our algorithm, which always composes the end
of the longest path first.

The second case is also impossible because we use the call graph to determine what
to compose and the templates guarantee that the compositions are correct.

The algorithm for composition with reuse described above always yields an optimal
incremental proof strategy — it only composes agents that interact except for the final stage,
when there is nothing left but root entry points. This is guaranteed because the algorithm
at cach step composes the smallest subtree that contains the farthest edge. An edge is only

present when one agent calls another, so the agents that are composed must interact.
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6.4 Servers with State

Creating templates for servers that maintain system state is trickier than for state-
less servers. By “stateless” we mean that the server does not maintain any global state
beyond its mailbox. The trouble is that the refinement step must be able to refine the state
and the transitions but, in general, the state maintained by servers with state will vary
considerably in terms of its type and the operations that may be performed on it. This
kind of structural non-homogeneity may not be as amenable to the use of templates. Where
system state is structurally homogeneous, however, templates are quite useful.

When the global state is structurally homogeneous at each stage of composition,
templates can be used in the same way as for the purely stateless servers described earlier
in this chapter. Once the compositional proof has been done abstractly, it can serve as a
template for composition of the entire system.

For example, consider the distributed name service (DNS) type system described
in section 2.1.2. When name servers make recursive queries, it appears to the original caller
that the called name server itself knows the [P addresses of every system in its domain. In
other words, the called name server and all the name servers beneath it can be composed
into a single, comprehensive name server that implements a mapping from every host name
in the domain to corresponding network (IP) addresses.

We can represent the mapping from host names to IP addresses by each name
server in the form of a table — a list of host names and their corresponding IP addresses.
The global state for the composition of the entire system would be a single, very large table,

and the refinement function merges the smaller tables of each name server into the larger
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table. This is depicted in figure 6.8.
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Figure 6.8: Composition of global state in DNS-type system

At each step of the composition, the state of each of the components — their
host name to IP mapping tables — are mapped to the larger table of the composed system.
When state is updated, the update is reflected in the mapping. The structure of the address
tables is the same at every step of the composition and, more importantly, the refinement
mapping is the same. For this reason, the same composition template can be applied when

composing each of the name servers with the rest of the system.

6.4.1 Example: A Micro-kernel Operating System

As another example of how our method can be applied to compose a system of
servers that have regular state, consider a simple micro-kernel operating system. The system
consists of a number of server tasks, including a file manager, memory manager, and I/O
servers. To simplify our discussion, here we will consider just the operating system calls that
create user processes and that manage files. These services are provided by the memory

and file managers and by a low-level “system” task whose job it is to manage the kernel
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process table. This design is similar to that used in the Minix operating system [37]. For
simplicity, we will assume that the abstractions of messages and mailboxes, and of process

scheduling, are provided by the kernel.

File calls Process calls

. OS Interface
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Figure 6.9: Simpleoperating system

In addition to the file manager, memory manager, and system task. our system
also includes a “security” server that implements a mandatory access control policy. We
model each of the server tasks as a calling agent. The calling agent hierarchy for this system
is depicted in figure 6.9. As shown in the figure, user processes invoke the file manager (Fin
the figure) for file management operations (open, close, etc.) and the memory manager (M
in the figure) for process management operations (fork, exec, etc.). The memory manager
calls the system task (Sy), the security server (Se), and the file manager. The file manager
calls the security server and system task. (Thefile manager must also call a disk I/O server,
but for purposes of this discussion we will assume that the functionality provided by the

disk I/O server is already present in the file manager.)
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All calls from user processes to server tasks, and between server tasks, are imple-
mented as messages. Because each server task has only one mailbox, different types of calls
to the same server task, for example the fork and ezec calls to the memory manager, are

differentiated by a call id parameter in each request message.

6.4.1.1 Server Tasks

The system task manages the kernel process table, which has one record per pro-
cess. A process’s record in the process table contains the process’s registers (when the pro-
cess is suspended), its memory map (the locations and boundaries of the process’s stack,
data, and code segments), and other low-level data. The memory manager calls the system
task when a new process is created (via a fork call) to create a record for that process in
the process table and to create a mailbox for the process. The file manager calls the system
task when a new process is created and when an existing process begins to execute a new
code segment (via the ezec call) to establish the new instruction pointer and code segment
size.

The security server maintains a table of user identity and clearance information for
each process. The file manager consults the security server to determine access permissions.
For example. if a process wants to open a file for read access, the file manager consults the
security server, which compares the process’s user clearance against the file’s classification
and allows or disallows access. The memory manager calls the security server when a new
process is created to create a record for that process in the identity/clearance table and
when a process changes its effective user id.

The file manager maintains a table of file information for each process. The per
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process information includes open files, access modes, and file pointers. Calls from user
processes to open and close files, and to read and write files, go directly to the file manager.
The memory manager calls the file manager when a new process is created to create a
record for that process in the file table. The memory manager also calls the file manager
to load an executable program file for a new process and when an existing process ezecs a
new program. In both of these cases, the file manager calls the security server to see if the
process has execute access permission to the specified program files and calls the system
task to update the code segment information for the process.

The memory manager is really a process manager. It assigns each process a block
of memory when the process is created, and reclaims memory when a process exits or
is killed. Calls to fork (create) a new process, or to ezec a new program go directly to
the memory manager. When a new process is created, the memory manager assigns it a
memory block and creates a record for the process in the memory manager table. Among
other information, the memory manager table contains information about the process’s
parent that can be used when a process exits or is killed.

After creating a memory manager record for a new process, the memory manager
calls the system task to create a process table record and mailbox for the new process, calls
the security server to create an identity/clearance record for the process, and calls the file
manager to create a file table record for the process. When a new process is created and
when an existing process ezecs a new program, the memory manager calls the file manager

to load a program file for the process to execute.
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6.4.1.2 Composition of the Server Tasks

Each of the server tasks keeps a table of information that is organized on a per-
process basis. A process can be completely described by the concatenation of the appropriate
records from each of the tables. The concatenation of the tables maintained by the server
tasks is a refinement of the operating system specification with respect to processes and
the files that they have open. This is depicted in figure 6.10. As shown in the figure. the
refinement function is applied to the state maintained by each server task to produce the

state maintained by the composed system.

Server task state
.- Apply refinement
Memory Process| M “ function f
manager I) dats Y
File Process F System specification state
manager /] data
0 #(M.F.Se.Sy)
Security Process| Se
server D data
System Process| Sy J
task [[+] date

Figure 6.10: Concatenation of operating system tables

To compose this system, we can use a single template in two incremental com-
position stages. The template composes a server task and the server tasks that it calls.
Following our algorithm for an optimal incremental composition strategy, we first compose
the subtree that contains the farthest edge. That subtree is rooted at the file manager (see
figure 6.9). Applying the template, we compose the file manager with the security server

and system task. Because the edge counts for the security server and system task are still
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greater than zero after this step, we propagate their interfaces.

In the second composition stage, we compose the memory manager with the file
manager, security server, and system task. After this step, we are left with a composed
system that presents the file manager and memory manager interfaces, and our composition

is done.

6.5 Summary

In this chapter, we have described how to view a system of calling agents as a calling
agent hierarchy, and an algorithm for determining an optimal incremental composition
strategy in a calling agent hierarchy. We have also described templates — collections
of abstract, parameterized specifications and generic proofs — that can be reused in the
composition of a structurally homogeneous calling agent hierarchy, and presented some
examples of how templates can be applied to compose systems. In the next chapter, we
will give a fully worked example of a template, including parameterized specifications and

a generic proof.
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Chapter 7

An Example Template

We'll leave a proof by that which we do.
Merry Wives of Windsor, Act IV. Scene 2
In this chapter, we present an example of our generic compositional proof method-
ology, developed using HOL. The example template consists of two abstract calling agent
specifications: a specification for a terminal agent (as described in section 5.4.1.1), called F,
and a specification for a non-terminal agent, F'G, that calls the terminal agent (as described
in section 5.4.2). The example template composes the agents into a compound system, so
that the interfaces to both agents are propagated (i.e., this is an example of “composition
with reuse,” as described in section 6.3). We will refer to the interfaces in the composed
system as the OSF and OSFG entry points to distinguish them from the interfaces to the
calling agents.!
The proof of this template required approximately 23,000 lines of HOL. Roughly

1,600 lines (about 7%) were required for the composition step. Of the remainder, refinement

'In this context, “OS" can be considered to mean “overall system.”
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of the progress properties took three times more work than the refinement of the safety
properties.

This chapter is organized as follows: Section 1 gives a brief architectural overview
of the template. Section 2 explains how we specify traces, including the global and local
state. Section 3 explains the entry point specifications, while section 4 explains the calling
agent specifications. Section 5 covers the environment specifications. Section 6 discusses the
composition step of the proof. Section 7 discusses the refinement step for safety properties,
section 8 explains how the proof obligations are used in the refinement step, and section
9 explains the mapping of the progress properties in the refinement step. Sections 10 and
11 explain how the template can be applied and how the example template can be further

generalized.

7.1 System Overview

The system is depicted in figure 7.1. Agent F accepts request messages containing
some value y (of HOL numeric type num) and returns the value f(y) (where f is a function
of type num — num). Agent FG accepts request messages that contain a value z (also of
type num), sends the value g(z) (g is a function of type num — num) in a request message
to agent F, which applies function f to the request message value and returns f(g(z)) to
FG. FG returns the result from F in its response message.

The specifications for F and F'G are parameterized (see section 6.1.1) by the
functions f and g, respectively. The template can be used to compose any agents that are

structurally homogeneous with F and FG by instantiating different functions f and g.
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Composed system interface

x 'T‘f(o(x» vl 'T‘f(y)

Y A
g(x)
—
<

f(g(x))
Calling agents

Figure 7.1: Entry points and calling agents

The composed, compound system has two entry points: OSF accepts requests that
contain y and returns f(y), while OSFG accepts request messages that contain a value z
and responds with the value fg(z)) (where fg is a function of type num — num). The

refinement step in the composition proof shows that f(g(z)) = fg(z).

7.1.1 Basic Form of the Specifications

Each of the composed system entry points and the two calling agents have the
same basic state transitions: to read a message from a mailbox and to send a response
message. This basic form is depicted in figure 7.2. Variations on this basic form are due
to whether a specification applies to an entry point or to a calling agent, and whether or
not a calling agent is a terminal agent. Each state transition has a corresponding progress

property that specifies that the transition happens infinitely often.
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Request message “Read" "Respond"
| —_ transition transition
mailbox queue

Figure 7.2: General form of specifications for example template

7.2 Trace Specifications

As described in section 4.3, we define traces to be functions from natural numbers
to the triple (agent, (globalstate,internalstate)). Here we give the precise HOL trace def-
initions for both the agents and for the composed system, and introduce the constructors

and destructors that are used to manipulate the state objects.

7.2.1 Global State

The global state for both the composed system and for the two agents is the set

of mailboxes. The mbozes type is defined as a set of cartesian product type
(mboz_id#mbozx _def)

Every mailbox has a unique identifier, mboz _id, that matches the identifier of an agent and
that designates the mailbox as belonging to that agent. The mbozes set effectively defines
a partial function, or mapping, from identifiers to mailboxes.

The contents of a mailbox are defined by the type mboz_def. Mailboxes are defined
as lists of messages. New messages are intended to be added by the system to the end of
the list (we say “intended” here because the type definition cannot guarantee that the state

is used in this manner). Messages are intended to be read by an agent from the head of the
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list. A nezt pointer (i.e., a numerical index into the list of messages) is used to keep track

of the next message that is to be read. The mboz_def type, therefore, is defined as

(next#((msg-def)list))

where messages are of type msg._def. The structure of the mailboxes is depicted in figure 7.3.
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Figure 7.3: Structure of the mailboxes

This definition of mailboxes, using the “next” pointer, was inherited from a pre-
vious project. An alternative specification that would be much easier to formally reason
about would be a simple queue, where messages are appended to the queue as they arrive
and removed from the queue as they are read.

The msg.def type is a triplet: (task_id#msg_data#msg_id). The task_id is the
identifier of the agent that sent the message. The msg_data is the actual data contained in

the message. In the example in this chapter, msg._data is the HOL numerical type, num.
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The msg_id is an anachronism and is not used.

7.2.2 Constructors and Destructors

Various constructors and destructors are defined to manipulate messages, mail-
boxes, and the mailbox set. Destructors get_mbz _nzt and get_mbz_msgs extract a mail-
box’s next pointer and list of messages, respectively, from a mailbox object, using HOL

primitives. For example, get_mbz_nezt looks like this in HOL:

let get_mbx_next = new_definition (‘get_mbx_next‘,
”(V(mbx : mbox_def).
get_.mbx_next mbx = (FST mbx)
)71
)i

The HOL destructor FST extracts the first part of a cartesian product type. The corre-
sponding destructor SN D is used to extract the second part.
A mailbox can be constructed out of a separate next pointer and list of messages

using the cons_mbz constructor:

let cons.mbx = new._definition (‘cons.mbx’,
(V (nxt : *) (msgs : **).
cons_mbx nxt msgs = (nxt, msgs)
)W
)i

Note that this constructor uses HOL generic types * and **, and so can be used to construct
any HOL cartesian type.

Constructors and destructors can be combined, as shown in this definition of
put_mbz_msg, which appends a message to the end of a mailbox but leaves the next pointer

unchanged:
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let put.mbx_msg = new_definition (‘put_mbx_msg‘,
7 (V (mbx : mbox_def) (msg : msg-_def).
put.mbx_msg mbx msg =
let msgs = (get-mbx_msgs mbx)
and nxt = (get_mbx_next mbx) in
let new_msgs = (SNOC msg msgs) in
(cons_mbx nxt new_msgs)
)71
)5

This function uses get_mbz_nzt and get_mbz_msgs to extract a mailbox’s next pointer and
list of messages, respectively, appends the new message to the end of the message list using
SNOC (a HOL definition for appending an element to the end of a list), and then puts the
next pointer and modified list back together using cons_mbz.

We also created a generic HOL theory for manipulating objects of type ((*# * *) :
set), of which mbozes is an instance. This theory implements some simple functions to
extract the domain and range of the partial function, a consistency checker to determine if

a set of (*,**) pairs is a function, a function to map a domain value to its corresponding

range value, etc.

7.2.3 Trace Specifications for the Agents

For the two agents, traces (of the type trace_def) are defined as functions of type

(num — trace_element). A trace_element is a HOL cartesian product type triplet:
(Agent#T Label#trace_state)

Agent denotes the agent that caused the transition and is an enumerated type consisting
of ENV, denoting any of the agents other than agents F and FG, SYS_F, denoting agent

F, and SYS_FG, denoting agent FG.
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The T Label component (short for “transition label”) is used as a shorthand method
of indicating what kind of transition was made by either F or FFG. T Label is an enumerated
type with these possible values: FREADS, FRESPONDS, FGREADS, FGRESPONDS,
and STUTTER. We found that it was much easier in the composition step to use the
T Label markers along with Agent than to use Agent and the state changes alone. The
specifications for both F and FG insure that only the appropriate transition label is used
for each tramnsition.

The trace_state component is the entire system state, including the globally visible
mailboxes and the local state of each agent. The trace state is defined as the cartesian
product type (mbozes#trace_istate). The component trace_istate contains the local state
for the two agents, and is defined as (F .internal_state# FG_internal_state).

The local state types vary according to the type of agent — terminal or non-

terminal. The terminal agent, F, has the following local state:

(F -work_buf#F work_buf_flag)

The buffer, F.work_buf, is used to store a single message after the message is read by a
read transition from the head of the mailbox, and is of type msg.def. The boolean flag,
F_work_buf_flag, is set whenever there is a message in the buffer and reset when a message
is removed from the buffer.

In addition to a buffer and a buffer flag, the non-terminal agent FG has a mes-
sage queue that it uses to buffer messages while it is waiting for a response from F.
The queue is defined as a list of messages. The complete local state for agent FG is

(FG.buf#FG_flag#FG _queue).
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7.2.4 Trace Specifications for the Entry Points

For the composed system, traces (of the type OS_trace_def) are defined as func-
tions of type (num — OS_trace_element). An OS_trace_element is a HOL cartesian prod-
uct type triplet: (Agent#T Label#OS _trace_state). The Agent and T Label components
are the same as for the agents, described above.

The OS_.trace_state component is defined as the HOL cartesian product type
(mbozes#OS internal _state). The component OS_internal_state contains the internal

state for the two entry points, and is defined as
(OSF .internal_state#OS FG .internal_state)

The two entry points in the composed system each have local state in the form of
a buffer queue, which is specified as a list of messages. The HOL type of the OSF _gqueue

and OSFG _queue components is (msg.-def)list.

7.3 Entry Point Specifications

As described in section 3.4, every specification has the form £ = M, where E is
the specification for the environment assumptions and M is the specification for the system.
In this section, we describe the specifications for M in our system — the compound system
that contains the two entry points.

The specification for a system is written as the property I NT(N) N L, where I
and T'(N) are the initial state and state transition safety properties, respectively, and L is
a progress property (see section 3.3). In this section, we explain each of these properties

for the composed system.
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The specifications of the composed system entry points both have the same general
form as that described for terminal calling agents in section 5.4.1. Each performs two atomic
actions: transferring a single request message from its mailbox to an internal queue (the
read transition) and sending a response message for a single queued request message (the
respond transition), as shown in figure 7.2, above. A progress property for each atomic
action ensures that all request messages are eventually read and buffered, and that the

buffered messages eventually generate responses.

7.3.1 Entry Point Initial State Specification

The initial state conditions for the composed system’s local state is limited to

specifying that the entry point queues are both empty:

let OS_init = new definition (‘OS.init‘,
?(V (trace : OS_trace_def) .
OS_init trace =
let init.t = (trace 0) in
let OSis = (get_OStrace.is (get-OStrace_state init_t)) in (
-(0Sis_Fq-pending OSis) A
—(0Sis_FGq-pending OSis))
)77
)i

OSis_Fq_pending (resp., OSis_FGq_pending) returns TRUE if F’s (FG’s) local queue has
a length greater than zero. This predicate is TRUE if neither of the local queues contain

any messages in the initial state of a trace (trace 0).

Note that this initial state specification defines the initial conditions on the local
state only. Initial conditions on the global system state are defined by the environment

specification (described below in section 7.5.1.1).
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7.3.2 Entry Point Read Transition Specification

The specifications for the OSFG and OSF entry point state transitions are the same
except for the functions that they calculate and necessary renaming of HOL constructors and
destructors. For the sake of brevity, we will show just the OSF state transition specifications
here.

This is the specification for the OSF entry point read transition:

let OS_reads.F = new definition (‘OS_reads_F",
"(V (ssl, ss2 : OS_trace_state) .
OS_reads_F ssl ss2 =
(ss2 = (OS_reads_F .msg ssl))
)H
)i

The state transition is defined as a function between two successive states in a trace. The

function is specified as follows:

let OS_reads_F_msg = new definition (‘OS_reads_F _msg’,
" (V (ss : OS_trace_state) .
OS_reads_F _msg ss =
let mbxs = (get_OStrace_mbxs ss)
and OSis = (get-OStrace.is ss) in
let Fmbx = (get.mbxs_mbx mbxs F_ID) in
%Check if no messages. If none, return state unchanged. %
((—~ mbx_s_unread-msg Fmbx) = ss |
%Otherwise, read message... %
(let (msg, new_Fmbx) = (read_mbx_msg Fmbx) in
%put back the modified mailbox (with incremented next pointer) %
let new.mbxs = (put-mbxs_mbx mbxs F_ID new.Fmbx)
%put msg in the local queue %
and new_OSis = (OSis_put_-Fq_msg OSis msg) in
(put_OStrace_mbxs (put_OStrace_is ss new_0OSis)
new_mbxs)))
)ﬂ
)5

The function returns the state unchanged if the mailbox has no unread messages. If there is
a message, the state that is returned is the same as the input state, except that the message

at the head of OSF’s mailbox is put at the tail of OSF's local queue.
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The destructors get_OStrace.mbzs and get_OStrace_is extract the mailboxes and
local state, respectively, from the trace state. The destructor get.mbzs_mbz extracts the
mailbox associated with a specified identifier from a set of mailboxes, in this case the mailbox
associated with the identifier F_ID. The function mbz_ts_unread_msg checks if there are any
unread messages in the mailbox by comparing the mailbox’s next pointer with the length of
its message list. The message list in a mailbox is indexed beginning at 0. If the numerical
value of the next pointer equals the length of the list, then the list is empty.

The function read_mbz_msg reads the message from the head of the mailbox list
and increments the next pointer, returning the message and the modified mailbox. The
constructor put_mbzs_mbz puts the modified mailbox back into the set of mailboxes, replac-
ing the original, while OSis_put_Fq_msg appends the message to the OSF entry point’s local
queue. The constructors put_OStrace_is and put_OStrace_mbzs put the modified local state

and modified mailboxes together to form the system state that results from the transition.

7.3.2.1 Standard Progress Property

The progress property for the OS_reads_F state transition is

let OS reads.F _progress = new _definition (‘OS_reads_F _progress',
7 (V(trace : OS_trace_def) .
OS_reads_F _progress =
(V(i : num) . 3(j : num) .
(i<=j)A
(get_OStrace_state(trace(j+1)) =
(OS_reads_F (get_OStrace_state(trace j))))))
)V’
)i

The progress property specifies that, starting at any time 7 in the trace, there is another
time j, either now or in the future, when the transition happens. The effect of this property

is to specify that the transition happens infinitely often.
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The format of this progress property is used for all progress properties in the

template. From now on we will refer to it as the “standard” progress property.

7.3.3 Entry Point Respond Transition Specification

This is the specification for the OSF entry point respond transition:

let OS_responds_F = new definition (‘OS_responds_F*,

" (V (ssl, ss2 : OS_tracestate) (F_func : num — num) .
OS responds_F ssl ss2 F_func =

(ss2 = (OS.responds_F_msg ssl F_func))

)
B

As with the OS_reads_F transition, this state transition is defined as a function between

two successive states in a trace. The function is specified as follows:

let OS_responds_F _msg = new definition (‘OS _responds_F _msg’*,
"(V (ss : OS_tracestate) (F_func : num — num).
OS_responds_F _msg ss F_func =
let mbxs = (get_OStrace.mbxs ss)
and OSis = (get_OStrace.is ss) in
% Check if F queue has any messages... %
% ..If not, return state unchanged. %
((~0Sis_Fq-pending OSis) = ss |
Z%Otherwise, create response message... %
(let (rgst, new_OSis) = (OSis_Fq._get_msg OSis) in
let src = (get_msg_sndr rqst)
and mdata = (get_msg-data rqst)
and mid = (get_msg.d rqst) in
%Construct a response message, applying a function to input data %
let response = (cons_msg FID (F_func mdata) mid) in
%Put response message in destination mailbox %
let new._mbxs = (put_mbxs_msg mbxs src response) in
(put_OStrace_mbxs (put_OStrace_is ss new_0OSis) new_mbxs)))
).’1
)5

The function returns the state unchanged if the local queue is empty. If there is a request
message in the queue, the message at the head of the OSF queue is removed and a response

message is put at the end of the mailbox of the sender of the original request message. The

rest of the state is unchanged.
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Note that the function F_func, applied by the transition to the input value when
creating the response message, is universally quantified, and can be instantiated with any
function of the correct type. This type of parameterization is what makes the specification
abstract. The specification for the OSFG entry point similarly has the function FG_func as
a universally quantified parameter.

The progress property for this state transition is similar to the standard progress
property described for the OS_reads_F transition (see section 7.3.2.1) and specifies that the

OS_responds_F transition happens infinitely often.

7.3.4 Entry Point State Transition Relation Specification

The complete entry point state transition relation specification for the composed.
compound system (i.e., for both the OSF and OSFG entry points) has the following speci-

fication:

let OS_safety = new definition (‘OS_safety*,
" (V (trace : OS_trace.def) (F_func, FG_func : num — num).
OS_safety trace F_func FG_func =
V(i : num) .
let t1 = (trace i)
and t2 = (trace(SUC i})) in (
—~(get_OStrace_agent t2 = ENV) —
let ss1 = (get_OStrace_state t1)
and ss2 = (get_OStrace_state t2) in (
% stuttering step %
(ssl = ss2) Vv
% or a legal transition %
({(get-OStrace_tlabel t2) = FREADS) A (OS_reads_F ssl ss2)) Vv
(((get_OStrace_tlabel t2) = FGREADS) A (OS.reads_FG ssl ss2)) Vv
(((get-OStrace_tlabel t2) = FRESPONDS) A (OS_responds_F ssl ss2 F_func)) v
(({get-OStrace_tlabel t2) = FGRESPONDS) A (OS_responds_FG ssl ss2 FG_func))))
)”
)i

Recall that the universe of agents is divided into environment agents and system agents.

The agents in this system have the identifiers F_ID and FG_ID. This specification constrains
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only the transitions that are caused by system agents. The specification says that a state
transition between the state at time ¢ and the state at time SUC(i) (the HOL way of
saying ¢ + 1) that is not caused by an environment agent must be either a stuttering
step or be one of the four legal transitions, OS_reads_F, OS_reads_FG, OS_responds_F, or
OS._responds_FG. Note how this entire state transition relation is parameterized by the two

universally quantified functions F_func and FG_func.

7.4 Calling Agent Specifications

When multiple components are composed into a single system, each of the com-
ponent specifications has the form E, => M,, for all components n = 0,1,.... In this
section, we describe the specifications Mg and Mgg.

Like the specifications for the entry points, the specifications for the two calling
agents F and F'G have the same basic “read a message” and “send a response” transitions.
But while F is a terminal agent, and therefore has a specification that is much like that of

the two entry points, FF'G’s “send a response” transition is considerably different.

7.4.1 Calling Agent Initial State Specifications

As described in section 7.2.3, the local state of the terminal agent F' includes a
single-length message buffer and a boolean flag that is used to indicate if the buffer is empty

or not. The specification for the agent’s initial state is as follows:
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let F_init = new definition (‘F.init‘,
7 (V (trace : trace.def) .
F_init trace =
let init_t = (trace 0) in
let Fs = (get_trace_Fs (get_trace_state init_t)) in (
—(Fs_get_flag Fs))
)”
)i

which says that the boolean flag is FALSE in the initial state.
Agent FG has the same kind of buffer and flag as agent F, plus a queue used
to buffer messages while FG is waiting for responses from F. This is the initial state

specification for the FG agent:

let FGdnit = new definition (‘FGnit‘,
" (V (trace : trace_def) .
FGdnit trace =
let init_t = (trace 0) in
let FGs = (get_trace FGs (get_trace_state init.t)) in (
—(FGs_get_flag FGs) A
-~(FGs.s_pending FGs))
)?’
)i

which evaluates to TRUE if FG’s buffer flag is FALSE and if there are no messages in the

queue.

7.4.2 Calling Agent Read Transition Specifications

The specifications for the FG and F calling agent “read message” state transitions
are the same (except for necessary renaming of HOL constructors and destructors) and
similar to those for the entry points (described in section 7.3.2). Here we will show just the

F calling agent “read message” state transition specification.
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let F_reads = new definition (‘F.reads‘,
"(V (ssl, ss2 : trace.state) .

F reads ssl ss2 =
(ss2 = (F reads_msg ssl))

)H

)i

The state transition is defined as a function between two successive states in a trace. The

function is specified as follows:

let F_reads.msg = new definition (‘F _reads_msg’,
"(V (ss : tracestate) .
F_reads_msg ss =
let (mbxs,Fs) = ((get-trace_mbxs ss),(get.trace_Fs ss)) in
let mbx = (get_mbxs_mbx mbxs F_ID) in
% Check if no messages or if a message already in work buffer... %
% If so, return state unchanged. %
(((—~mbx_s_unread _msg Fmbx) Vv (Fs.get_flag Fs)) = ss |
%Otherwise, read message... %
(let (msg, new_mbx) = (read.mbx_msg mbx) in
%put back the modified mailbox (with incremented next pointer) %
let new_mbxs = (put.mbxs_mbx mbxs F_ID new_mbx)
%put msg in work buffer %
and new_Fs = (Fs_put_buf Fs msg) in
(put_trace_mbxs (put_trace_Fs ss new_Fs) new_mbxs)))
)
)i

The function returns the state unchanged if the mailbox has no unread messages or if the
single-length buffer is already full. If there is an unread message and the buffer is empty,
the message at the head of F’s mailbox is removed from the mailbox (by read-mbzr_msg.
which does so by advancing the next pointer) and put in the buffer (done by Fs_put_buf,
which also sets the flag). A standard progress property (described in section 7.3.2.1),

F _reads_progress, specifies that the transition occurs infinitely often.

7.4.3 Calling Agent Respond Transition Specifications

The state transition where agent F' sends a response message is much like the

response transitions of the entry points. The state transition where FG sends a response,
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however, is quite different because FG must differentiate between request messages from

outside the system and response messages from F.

7.4.3.1 Agent F Respond Transition

This is the specification for the F agent respond transition. It is parameterized

by the function F_func used to calculate the response message.

let F_responds = new definition (‘F_responds®,
" (V (ssl, ss2 : tracestate) (F_func : num — num) .
F responds ssl ss2 F_func =
(ss2 = (F responds_msg ss1 F_func))
)1’
)i

This state transition is defined as a function between two successive states in a trace. The

function is specified as follows:

let F _responds_msg = new definition (‘F_responds_msg’,
"(V (ss : trace.state) (F_func : num — num).
F _responds_msg ss F func =
let (mbxs,Fs) = ((get_trace_mbxs ss),(get_trace.Fs ss)) in
% Check if work buffer has a message... %
% ..If not, return state unchanged. %
((—~Fs_get_flag Fs) => ss |
%Otherwise, create response message... %
(let (rgst, new_Fs) = (Fs_get_buf Fs) in
let src = (get_msg_sndr rqgst)
and mdata = (get_nsg.data rqst)
and mid = (get_msg.d rqst) in
%Construct a response message, applying a function to input data %
let response = (cons_.msg F_ID (F_func mdata) mid) in
%Put response message in destination mailbox %
let new_mbxs = (put_mbxs_msg mbxs src response) in
(put_trace_.mbxs (put_trace_Fs ss new_Fs) new_mbxs)))
)?7
)i

The function returns the state unchanged if the local buffer is empty (because there is
nothing to respond to). If there is a request message in the buffer, the message is removed

from the buffer (the value new_F's returned by Fs_get_buf has the flag reset) and a response
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message is put at the end of the mailbox of the sender of the original request message. The
rest of the state is unchanged. A standard progress property, F_responds_progress, asserts

that this transition happens infinitely often.

7.4.3.2 Agent FG Respond Transition

As described in section 5.4.2, because a non-terminal calling agent has only one
mailbox, it must continue to read messages while it is waiting for a response from the
agent or agents that it calls. For this reason the “send a response” state transition for the
non-terminal agent is considerably different from that of the terminal agent. A review of
section 5.4.2 may be helpful in understanding this section. The data path between the F
and F'G calling agents is shown in figure 7.4, where the solid arrows show the path up until

the response message from agent F and the dotted lines show the path after that point.

X FG mailbox FG butfer 4 f(g(x))
O 11— ] e S
e LT ;
N — FG
{ Hg(x)) queue

F buffer ) F mailbox _
O~

Figure 7.4: Data path for FG responses

The figure shows a request message that contains the data value z arriving in
FG’s mailbox. The solid line between the FG mailbox and the FG buffer represents a
read transition by the F'G agent. The solid line that starts from the FG buffer and splits
between the FFG queue and the F mailbox represents the FG agent queueing the request

and sending a request message to the F calling agent. This request message contains the
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data value g(z). The small solid line between the F' mailbox and the F buffer represents a
read transition by the F calling agent. The dotted line between the F buffer and the FG
mailbox represents the F agent sending a response message to the F'G agent. The dotted
line between the FG mailbox and the F'G buffer represents another read transition by the
F'G agent, and the split dotted line that originates at both the F'G buffer and the F'G queue
represents the F'G agent sending a response message.

This is the specification for the FG agent respond transition. It is parameterized

by the function G_func used to calculate the response message.

let FG_responds = new definition (‘FG _responds*,
"(V (ssl, ss2 : tracestate) (Gfunc : num — num) .
FG_responds ssl ss2 G_func =
(ss2 = (FGresponds_msg ssl! G_func))
)77
)i

This state transition is defined as a function between two successive states in a trace. The

function is specified as follows:

let FG_responds_msg = new definition (‘FG_responds_msg‘,
" (V (ss : tracestate) (Gfunc : num — num).
FG responds_msg ss G_func =
let (mbxs, FGs) = ((get-trace_mbxs ss), (get.trace FGs ss)) in
% Check if work buffer has a message... %
% ..If not, return state unchanged. %
((-FGs_get flag FGs) = ss |
7Otherwise, check who sent the message... %
(let (bufmsg, FGsl) = (FGs_get.buf FGs) in
let bufsrc = (get_msg-sndr bufmsg) in
ZIf sender is not F, queue message and send request to F %
(—~(bufsrc = FID) = (FG_push_request ss G_func) |
%Otherwise, F sent the message so send a response message %
(FGend.response ss))))
)ﬁ
)i

As with all of the other state transitions described above, a standard progress property,

FG _responds_progress asserts that this transition happens infinitely often.
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The function returns the state unchanged if the local buffer is empty. If there is a
request message in the buffer, FG takes different actions that depend on the identity of the
message sender. If the sender is not the terminal agent, the message is a request message
from outside the system. In this case, the agent queues the request message and sends a
request to agent F. These actions are performed by FG_push_request, described below.

If the message was sent by F, the message is a response from F to a previous
request sent by F'G. The value contained in the message from F is the value that is to be
returned to the sender of the original request message at the head of FG’s local queue. In
this case, FG removes the message from the head of the queue, determines who the original
sender was, and then sends a response message using the value sent by F. These actions

are performed in FG_send._response.

FG_push_request Here is the specification for FFG_push_request:

let FG_push_request = new definition (‘FG_push_request‘,
"(V (ss : trace_state) (Gfunc : num — num).
FG_push_request ss Gfunc =
let {mbxs, FGs) = ((get_trace_mbxs ss),(get-trace_FGs ss)) in
let (bufmsg, FGsl) = (FGs_get_buf FGs) in %FGsl1 has cleared buffer %
% Put request message in the queue %
let new FGs = (FGs_put_queue_msg FGsl bufmsg) in
% Create a message to send to F %
let bufmdata = (get_msg_data bufmsg)
and bufmid = (get.msg_id bufmsg) in
let msg for F = (cons_msg FG_ID (G_func bufmdata) bufmid) in
% Send the message to F %
let new_mbxs = (put_mbxs_msg mbxs F_ID msg_for_F) in
(put_trace_mbxs (put_trace_FGs ss new_FGs) new_mbxs)
)
)i

This function puts the request message at the end of the queue (FGs_put_queue.msg),
extracts the data from the request message (bufmdata), creates a message to send to F

containing the value G_func(bufmdata), and then sends the request message to F. F will
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eventually read the request message from F'G and respond to FG with a message containing
the data value F_func(G.func(bufmdata)).

When a message in FG’s buffer is from F, the message was sent by F' in response
to a request message previously sent by FG. F is specified to respond to messages in
the order that they are put into F’s mailbox, so response messages from F to FG will be
received by F'G in the same order that FG sent the request messages to F (we prove this

as an invariant).

FG _send _response This is the specification for FG_send_response:

let FG_send_response = new definition (‘FG_send_response’,
7 (V (ss : trace_state).
FG_send_response ss =
let (mbxs, FGs) = ((get-trace_mbxs ss),(get_trace_FGs ss)) in
let (bufmsg, FGsl) = (FGs_get_buf FGs) in %FGsl has cleared buffer %
({FGs.s_pending FGsl) =
(let (rgst, new_FGs) = (FGs_get_queue_msg FGsl) in
let bufmdata = (get_msg_data bufmsg) in
let rsrc = (get_msg._sndr rest)
and rmid = (get_msg.id rqst) in
% Create response message %
let response = (cons_msg FG_ID bufmdata rmid) in
(put_trace_mbxs (put_trace_FGs ss new _FGs) new_mbxs)) |
(put_trace_FGs ss FGsl))
)”
)i

This specification first checks that there is something in the queue (FGs_is_pending). If
not, it simply returns the state with the buffer empty. This is done for completeness, but the
system specification never permits this situation to occur (we prove this as an invariant).
If there is a message in the queue, the sender’s identifier (and message id, although the
message id is not otherwise used) are extracted from the message at the head of the queue.
A response message that includes the original sender’s message id and the data sent by F

(whose message is in the buffer) is created. The agent sends the response message to the
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original sender of the queued message. The queued message is removed from the queue and

the buffer is emptied.

7.4.4 Calling Agent State Transition Relation Specification

The complete calling agent state transition relation specification for agent F' is as

follows:

let F _safety = new definition (‘F_safety",
"(V (trace : trace_def) (F_func : num — num).
F safety trace F func =
V(i : num) .
let t1 = (trace i)
and t2 = (trace(SUC i)) in
(get_trace_agent t2 = SYS F) =
let ss1 = (get_trace_state tl)
and ss2 = (get_trace_state t2) in
% stuttering step %
(({get.trace_tlable t2) = STUTTER) A (ssl = ss2)) V
% or a legal transition %
((((get-trace_tlabel t2) = FREADS) A (F reads ssl ss2)) v
(({(get-trace_tlabel t2) = FRESPONDS) A (F_responds ssl ss2 F_func))))
)”
)u

This specification says that all transitions caused by the agent SY S_F must be either a

stuttering step or one of the two legal transitions defined for that agent. The state transition

relation for agent F'G is the same, except for the obvious renaming, and is omitted here.

7.5 Environment Specifications

Our template composes two specifications Er => Mfr and Erg = MFg¢ into the

system Eps => Mos. In previous sections, we have covered Mps, Mg, and Mp¢. In this

section, we will describe Eps, Er, and Erg. Note that there are no progress properties on

the environment — the environment may send request messages, but it does not have to.
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7.5.1 Composed System Environment Assumptions

In this section, we describe the initial global state specification and the environ-

ment state transitions.

7.5.1.1 System Environment Initial State Specification

The initial state specification for the composed system environment is the initial
global state specification (the environment has no local state) for the entire composed system
specification, including the entry points. The initial conditions on the global state consist
of the initial values of the state variables and on their structural attributes.

First of all, each of the agents F and F'G must have a mailbox in the set of
mailboxes. Mailboxes are specified to exist for only agents F' and F'G because there is
no need to put a limit on the other agents that can exist in the environment. A benefit
of leaving the other agents unspecified is that the composed system can more easily be
composed with other components.

The identifiers for the two agents must be distinct. The set of mailboxes, further-
more, must implement a partial function from identifiers to mailboxes (i.e., there can be
no duplicate identifiers) so that every agent has only one mailbox and the next pointer for
each of the mailboxes must be less than or equal to the length of that mailbox.

The initial state global state values are that every mailbox is empty. This is

specified by requiring that there are no unread messages in any of the mailboxes.
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7.5.2 System Environment State Transitions

The composed system environment state transitions are (assumed to be) limited

to four types of atomic actions:
1. a stuttering step,
2. an agent in the environment may send a message to F’s mailbox,
3. an agent in the environment may send a message to FG’s mailbox,
4. anything else, so long as the environment leaves F’s and F'G’s mailboxes alone.

These options are specified as follows:

let OS_env_safety = new definition (‘OS_env_safety’,
"(V (trace : trace_def).
OS_env_safety trace =
V(i : num) .
let t1 = (trace i)
and t2 = (trace(SUC i)) in (
(—~(get-trace_agent t2 = SYS_F) A
—(get_trace_agent t2 = SYS FG)) =
let ssl = (get_trace_state tl)
and ss2 = (get_trace_state t2) in (
% stuttering step %
(ssl =ss2) Vv
% or a legal transition %
(OS_env SEND_F ssl ss2) vV
(OS.env SEND_F ssl ss2) v
(OS_env_arb ssl ss2)))
)”
i

This specification says that, for any state transition not caused by the agents SY S_F and
SYS_FG, the transitions are assumed to be as listed. Note that there are no assertions
about the trace labels, as there are for the state transitions that are part of the system.

This is because, when we map the environment transitions during the refinement step, we
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do not care which of the environment agents caused, for example, a stuttering step. We
care only that it was not either of the two agents.

The careful reader will also note that this specification used the same trace defi-
nition (trace.def) used by the agent specifications and not the definition (OS _trace_def)
used in the entry point specifications. The two differ only in the local state definitions and
because the environment is specified to never alter the local state of the system agents, it
is simple to extract just the global state from a trace definition (of either type). We could
have used OS_trace.def, but having the overall system environment specification use the
same trace definition as the environments for the two calling agents was convenient. albeit

at the loss of some clarity in this explanation.

7.5.2.1 System Environment SEND State Transitions

Unlike the state transitions for the calling agents and entry points, which are
specified as functions from state to state, the state transitions for the environment are
specified as relations. If we were to limit the set of environment agents and exhaustively
enumerate how each of the environment agents could send a message to a system agent,
we could use functions. A relation, however, is simpler because we simply have to say that
some message arrives from any environment agent.

Here is the specification for the state transition where the environment sends a

message to the F' mailbox:
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let OS_env SEND_F = new definition (‘OS_env.SEND_F*,
"(V (ssl, ss2 : trace_state).
OS_env SEND_F ssl ss2 =
let (mbxsl, mbxs2) = ((get_trace_mbxs ssl), (get-trace.mbxs ss2))
and internalsl = (get_trace_not_mbxs ss1)
and internals2 = (get_trace_not_mbxs ss2) in
let Fmbx1 = (get_mbxs_mbx mbxsl F_ID)
and Fmbx2 = (get-mbxs_mbx mbxs2 F_ID) in
let FGmbx1 = (get_mbxs_mbx mbxsl FG_ID)
and FGmbx2 = (get_mbxs_mbx mbxs2 FG _ID) in (
%No new mailboxes can be created nor a mailbox be deleted %
((dom mbxsl) = (dom mbxs2)) A
%The internal state must be untouched %
(internalsl = internals2) A
%The FG mailbox must be untouched %
(FGmbx1 = FGmbx2) A
%There must be a new message in the F mailbox %
(3(msg : msg_def) .
let sndr = (get_msg_sndr msg) in (
%The new message’s sender must have a mailbox %
(sndr IN (dom mbxsl)) A
%The sender’s id cannot be F_ID or FG_ID (system agents) %
—(sndr = FID) A
—(sndr = FG_ID) A
%The new message must be at the end of the F mailbox... $
% ...all other messages and their order untouched %
((put-mbx_msg Fmbx1 msg) = Fmbx2)})))
)”
)i

This specification says that, as a result of the transition, there must be a new message
from a legitimate environment agent (not F' or FFG, which are system agents), that the
sender must have a mailbox, and that F’s mailbox must be untouched except for the new
message at the end of it. The domain of mailboxes, furthermore, all local state, and the
FG mailbox, must be left unchanged by the transition (the environment may do what it
pleases with the other mailboxes as that does not affect F and FG). The specification for
the state transition where the environment sends a message to the FG mailbox is the same

except for simple renaming.
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7.5.2.2 System Environment Arbitrary State Transitions

The arbitrary environment state transitions are so-called because they put almost
no restrictions on what the environment is assumed to do. The only restrictions are that
the environment neither creates nor deletes any mailboxes, that the F and FG mailboxes

are left untouched, and that the local state does not change. This is specified as follows:

let OS_env_arb = new definition (‘OS_env_arb’,
"(V (ssl, ss2 : trace_state).
OS_env_arb ssl ss2 =
let (mbxsl, mbxs2) = ((get.trace_mbxs ssl), (get_trace_mbxs ss2))
and internalsl = (get_trace_not.mbxs ssl)
and internals2 = (get_trace_not_mbxs ss2) in
let Fmbxl = (get_mbxs_mbx mbxsl F_ID)
and Fmbx2 = (get_mbxs_mbx mbxs2 F_ID) in
let FGmbx1 = (get.mbxs_mbx mbxsl FG.ID)
and FGmbx2 = (get_.mbxs_mbx mbxs2 FG_ID) in (
%No new mailboxes can be created nor a mailbox be deleted %
((dom mbxs1) = (dom mbxs2)) A
%The internal state must be untouched %
(internalsl = internals2) A
%The F and FG mailboxes must be untouched %
(Fmbx1l = Fmbx2) A
(FGmbx1l = FGmbx2))
)"
)i

7.5.3 Agent Environment Assumptions

In this section, we describe the agent environment assumption specifications, Efr

and Frg.

7.5.3.1 Agent Environment Initial State Specifications

The environment assumption initial state specification for agent F is almost iden-
tical to the overall system environment assumption initial state specification. The only

difference is that F'’s initial assumption specifies only that F must have a mailbox; it does
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not mention F'G at all. This is because, from F’s point of view, F'G is part of F’s environ-
ment.

The environment assumption initial state specification for agent F'G is the same
as that for the overall system environment. Although F' is part of FG's environment, FG’s
environment assumption must specify that a mailbox exists for F as well as for F'G because

F'G sends request messages to F.

7.5.4 Agent Environment State Transitions

The state transitions for the agent environments are identical except for obvious

renaming, so we will show only those for agent F’s environment:

let F_env_safety = new definition (‘F_env_safety*,
" (V (trace : trace_def).
F_env _safety trace =
V(i : num) .
let t1 = (trace i)
and t2 = (trace(SUC 1)) in (
—(get_trace_agent t2 = SYSF) —
let ss1 = (get-trace_state tl)
and ss2 = (get_trace_state t2) in (
% stuttering step %
(ssl = ss2) V
% or a legal transition %
(F.env_SEND ssl ss2) Vv
(F_env_arb ssl ss2)))
)7’
H

From F’s point of view, any changes to FG’s mailbox fall into the “arbitrary” category
of environment transitions, so there is no constraint on what changes can happen to that

mailbox.



7.5.4.1 Agent Environment SEND State Transitions

136

Like the system environment state transitions, the state transitions for the agent

environment are specified as relations. Here is the specification for the state transition

where the environment sends a message to the F mailbox:

let F.env SEND = new definition (‘F_env_SEND",
" (¥ (ssl, ss2 : trace.state).
F_env SEND ssl ss2 =
let (mbxsl, Fs1) = ((get-trace_mbxs ssl), (get_trace_Fs ssl))
and (mbxs2, Fs2) = ((get_trace_mbxs ss2), (get_trace_Fs ss2))in
let Fmbxl = (get_mbxs_mbx mbxsl F_ID)
and Fmbx2 = (get_mbxs_mbx mbxs2 F_ID) in (
%No new mailboxes can be created nor a mailbox be deleted %
((dom mbxsl) = (dom mbxs2)) A
%The internal state must be untouched %
(Fsl = Fs2) A
7 There must be a new message in the F mailbox %
(3(msg : msg.def) .
let sndr = (get_msg.sndr msg) in (
%The new message’s sender must have a mailbox %
(sndr IN (dom mbxsl)) A
%The sender’s id cannot be F_ID (viz., the system agent) %
—(sndr = FID) A
%The new message must be at the end of the F mailbox... §
% ...all other messages and their order untouched Yo
((put_mbx_msg Fmbx1l msg) = Fmbx2))))
)H
)s;

This specification says that, as a result of the transition, there must be a new message from

a legitimate environment agent (not F', which is a system agent), that the sender must have

a mailbox, and that F’s mailbox must be untouched except for the new message appended

to it. The domain of mailboxes, furthermore, and F’s local state must be left unchanged

by the transition (the environment may do what it pleases with the other mailboxes as that

does not affect F'). The specification for the state transition where the environment sends

a message to the F'G mailbox is the same except for simple renaming.
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7.5.4.2 Agent Environment Arbitrary State Transitions

The only restrictions in the F agent’s environment arbitrary transition are that the
environment neither creates nor deletes any mailboxes, that the F' mailbox is left untouched,

and that F’s local state does not change. This is specified as follows:

let F_env.arb = new definition (‘F_env_arb‘,
"(V (ssl, ss2 : trace_state).
F_env_arb ssl ss2 =
let (mbxsl, Fsl) = ((get-trace_mbxs ss1), (get_trace_Fs ssl))
and (mbxs2, Fs2) = ((get-trace_mbxs ss2), (get_trace_Fs ss2))in
let Fmbx1l = (get_mbxs_mbx mbxsi F_ID)
and Fmbx2 = (get_mbxs_mbx mbxs2 F_ID) in (
%No new mailboxes can be created nor a mailbox be deleted %
((dom mbxsl) = (dom mbxs2)) A
%The internal state must be untouched %
(Fs1 = Fs2) A
%The F and FG mailboxes must be untouched %
(Fmbx1 = Fmbx2))
)W
)5

FG’s environment arbitrary transition is the same, except for renaming.

7.6 Composition Step

Now that we have introduced the specifications for the agents and the composed
system, we are ready to examine the composition proof of the template. As described in
chapter 3, the proof consists of two steps, the composition step and the refinement step. In
this section, we discuss the composition step.

The composition proof rule is described in section 3.6. Here is how our specifica-

tions satisfy the proof rule conditions:

If ), po, and py U uo are agent sets. ..

In our template, 1£; and up are SYS_F and SYS_FG.
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...and E, E,, E5, My, and M, are properties such that:

1. E=INP, E,=11NP,, and F; = I, N P,, where
(a) I, I, and I5 are state predicates.

b) P, Py, and P, are safety properties that constrain at most —~(u; U p2),
yp
=y, and -uy, respectively.

2. M, and M, constrain at most pu; and ua, respectively.

3. mNuz=10
I NP in the template is expressed as
((OS _env_init trace) A (OS _env_safety trace))
I, N Py is expressed as
((F _env_init trace) A (F_env_sa fety trace))
and I, N P, is expressed as
((FG .env_anit trace) A (FG_env_safety trace))

OS_env_init, F_init, and FG.init are clearly state properties (viz., on the initial
states of traces). Similarly, OS_env_safety, F_env_safety, and FG_enu_safety are safety prop-
erties that constrain =(SYS_F USYS_FG), -(SYS_F), and -(SY S_FG), respectively.

M), and M, are expressed as (F_init A F_safety) and (FG_.nit A FG_safety).
They constrain only SYS_F and SYS_F, respectively. SYS_F and SY S_F are distinct
values of a HOL enumerated type (that consists exclusively of ENV, SYS_F and SYS_F).

...then the rule of inference

ENMiNnM,CE NE,
(Ey = M)N(E; = M) C (E = M, NM,)

is sound.
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Having met the soundness conditions for the rule of inference, we are ready to
prove the antecedent of the rule of inference. In our template, the antecedent is expressed

as the following theorem to be proven:

let composeF FG = prove_thm(‘composeF FG*,

(V (trace : trace_def) (F func, G func: num — num).
((OS_envnit trace) A (OS_env_safety trace) A
(F .nit trace) A (F._safety trace F_func) A
(FG init trace) A (FG_safety trace G_func)) =
((F_env_init trace) A (F_env_safety trace) A
(FG_env.init trace) A

(FG_env_safety trace))
)i

Once this has been proven, we can apply the composition rule.

7.6.1 Proving the Composition Rule Antecedent

The complicated looking antecedent proof can be broken down into three smaller

proofs:

1. The initial state properties on the left side of the implication imply the

initial state properties on the right side. l.e., that

((OS_env.init trace) A (F.nit trace) A
(FGnit trace)) —>
((F-envinit trace) A (FG_env.nit trace))

The state transitions cannot affect the initial state properties, and so they play no

part is this sub-proof.

Because F_init and FG.init strictly constrain the local state of the two agents, this

sub-proof reduces even further to

(OS_env.init trace) —>
((F-env.init trace) A (FG_env.nit trace))
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2. The environment and FG state transitions imply the F environment state

transitions. lL.e., that

((OS_env_init trace) A (OS_env.safety trace) A
(FG_safety trace G_func)) =
(F_env_safety trace)

)i

The agent set in the F specification is disjoint from the agent set in F'’s environment, so
F’s state transitions play no part in this sub-proof. This sub-proof requires showing
that each of the transitions in OS_env_safety and F'G_safety satisfy the permitted
transitions in F_env_sa fety. This is an example of the compositional proof complexity

that we discussed in section 4.6.1.

3. That the environment and F state transitions implement the FG environ-

ment state transitions. lLe., that

((OS_envnit trace) A (OS_env safety trace) A
(F safety trace G.func)) =
(FG_env_safety trace)

)i

This proof is symmetric with that for F_env_sa fety, except for the obvious renaming.

7.7 Refinement

A refinement mapping is a function from states in one specification to states in
another. Because we are mapping traces, however, not just states, we must also show that
the state transitions of the first specification map to state transitions (or stuttering steps)

in the second, and that all progress properties are satisfied.
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In this section, we describe our refinement mapping between the composed system
specification and the calling agent specifications. A review of section 5.4.2.3 — a high-level
discussion of the refinement of a similar type of system — may be helpful in understanding

this section.

7.7.1 Mapping the States

The mapping function between the calling agent and composed system specifica-

tions has three parts:

1. Mapping the global state (viz., the mailboxes).

2. Mapping the F calling agent internal buffer to the F entry point internal queue.

3. Mapping the FG calling agent internal buffer and queue to the FG entry point internal

queue.

7.7.1.1 Mapping the Mailboxes

In the calling agent specifications, FG sends messages to, and receives them from,
F. These messages appear in the F and FG mailboxes and in the calling agents’ internal
buffers. In the calling agent specification, however, there are no individual calling agents,
only the F and FG entry points, and there are no state transitions that could account for
the appearance in the mailboxes of the messages passed between the calling agents. For
this reason, our refinement mapping hides the messages that are passed between the two
servers, leaving all other messages and their ordering alone. This filtering is depicted in

figure 7.5, which shows how a message from the F'G calling agent is filtered in the the F
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mailbox.

i 1 Entry point state

j 1 1itg:  Calling agent state

Figure 7.5: Mapping the mailboxes

7.7.1.2 Mapping F’s State

Mapping the F calling agent internal buffer to the F entry point internal queue
requires filtering similar to that of the mailboxes: any message from the FG calling agent is
filtered, which means that the single-length buffer either maps to an empty F' calling agent
internal queue or to a queue with only one message in it. This is depicted in figure 7.6. In
the figure, when the calling agent buffer contains message “2” that was sent by an agent
other than FG, it maps to the entry point queue that contains only that same, single
message. When, however, the calling agent buffer contains a message from the agent F'G.

that maps to an empty queue in the entry point.

No filtering necessary Fitering
qusue queus
2 Entry point state
B Calling agent state
butfer butfer

Figure 7.6: Mapping F’s state
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7.7.1.3 Mapping FG’s State

The FG calling agent saves each message in a local queue until it receives a response
message from the F calling agent. The concatenation of the FG server buffer with the queue
contains the same messages in the same order as in the FG calling agent internal queue.
The mapping does this concatenation, but also filters any messages from the F calling agent
that might be in FG’s buffer. This is depicted in figure 7.7, which shows one case where

filtering is unnecessary and one where the contents of the buffer must be filtered.

No filtering necessary Filtering
queus queue
1211 PR 1 Entry point state

-
-

Calling sgent state

] ]

buffer queue buffer queve

Figure 7.7: Mapping FG'’s state

7.7.2 Mapping the State Transitions

Having defined a mapping function, our next step is to show that each of the
calling agent state transitions map to a valid state transition, or a stuttering step, by the
entry points. We need to show that the calling agent state transitions map for all possible

state conditions.

7.7.2.1 Mapping the F_reads Transition

The F_reads transition has three possible cases:
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1. The mailbox is empty or there is already something in the buffer. The F_reads

transition leaves the state unchanged, which maps to a stuttering step.

2. The buffer is empty and the message at the head of the mailbox is from the FG server.
The message from the FG server is filtered by the mapping function, so this transition

also maps to a stuttering step.

3. The buffer is empty and the message at the head of the mailbox is not from the FG
server. This case is the only one where the F_reads transition maps to an OS_reads_F
transition that does not stutter.

7.7.2.2 Mapping the F_responds Transition

The F_responds transition also has three cases:

1. The buffer is empty. The F_responds transition leaves the state unchanged, which

maps to a stuttering step.

2. The message in the buffer is from the FG server. The message from the FG server is

filtered by the mapping function, so this transition also maps to a stuttering step.

3. The message in the buffer is not from the FG server. This case is the only one where

a F_responds transition maps to a non-stuttering OS_responds_F transition.

7.7.2.3 Mapping the FG_reads Transition

The cases of the FG_reads transition are the same as that of the F_reads transi-

tion, described above. The proof is the same except for renaming.
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7.7.2.4 Mapping the FG_responds Transition

The FG_responds transition also has three cases:

1. The buffer is empty. The transition leaves the state unchanged, which maps to a

stuttering step.

2. The message in the buffer is not from the F server. Only messages from the F server
result in a response message being sent. All other messages are request messages
and are transferred to the internal queue. The request message that FG sends to
F as a result of reading a request message is filtered by the mapping function. The
mapping function concatenates F'G’s buffer and queue, so no change to the mapped

state occurs, and the calling agent transition maps to a stuttering step.

3. The message in the buffer is from the F server. This case is the only one where a

FG_responds transition maps to a non-stuttering OS _responds_F'G transition.

The mapping of the FG_responds transition is shown by proving the following

theorem:
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let map_.up FG_responds = prove_theorem(‘map_up_FG responds’,
7(V (trace : trace.def) (F func G_func FG_func : num—num).
(V¥ (x : num). assumption F_func Gfunc FG_func x) A
OS_env_init trace A
OS_env._safety trace A
F_init trace A FG_nit trace A
F safety trace F_func A
FG._safety trace G_func A
(FG responds(get.trace. state(trace i))(get_trace_state(trace(SUC i))) G_func)
—
% map to a stuttering step %
((getOStrace_state(map_-up-element(trace i)) =
get .OStrace state(map.up.-element(trace(SUC i)})) v
% or map to an OS_responds_FG transition %
(OS responds FG
(get_OStrace state(map_up_element(trace i)))
(get_OStrace state(map_up-element{trace(SUC i))))
FG func))
)V‘I
)i

In order to prove this theorem, the antecedent assumption, a predicate on the functions
F_func, G_func, and FG_func, must first be proven. We will explain the use of assumption

in the next section.

7.8 Functional Composition

The FG_responds transition applies the function G_func to the data in the request
messages that it receives. The OS_responds_FG transition applies the function FG_func to
the data in the request messages that it receives. These functions are not equivalent, so
how can we prove that FG.responds sometimes maps up to OS_responds_FG?

To answer that, we must take into account that the F agent is applying the function
F_func to the data in the request messages that it gets. The value in the response messages
sent by FG_responds is not G_func(z), therefore, but F_func(G_func(z)). The mapping,

therefore, can only be shown if we also show that (F_func(G-func(z)) = FG_func(z)).
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In the template, the specific functions F_func and G_func used by the F and G
servers, and the function FG_func used by the OSFG entry point, are parameterized, so
that any functions of type (num — num) can be used provided that F_func o G_func =

FG_func. This requirement is precisely what assumption is there to ensure:

let assumption = new_definition(‘assumption®,
"(V (F func G_func FG_func : num—num) (x : num).
assumption F_func G_func FG_func x =
(F func(Gfunc x) = FG_func x)
)7!
)i

Just as the three functions are parameters to the template, assumption is a proof obligation

that must also be supplied to the template as a parameter.

7.9 Mapping the Progress Properties

The proof that the mapping satisfies the progress properties requires a much more
complex proof than that of the state transitions. In this section, we described the special

characteristics of progress properties that make them so difficult to map.

7.9.1 Conditions for Mapping Progress Properties

Our specifications have simple progress properties that guarantee the eventual
occurrence of each transition. The eventual occurrence of a calling agent transition, however,
does not always guarantee the eventual occurrence of an entry point transition under the
refinement mapping.

For example, if there is at least one message in the F mailbox that is not from

the FG calling agent, but there is also a message in F’s buffer, the F_reads transition will
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implement a stuttering step because the precondition for the transition requires the buffer
to be empty. The corresponding transition in the entry point specification, OS_reads_F,

however, is enabled because there is a message in the mailbox. This is shown in figure 7.8.

Maessage in mailbox
- eénabiles transition

mailbox v queue

ly| =t |..dx| entrypointstate

Lol A
! ‘ cee Y e— 3 calling agent stats
; [ T A

Full buffer oo™ buffer

disables transition

Figure 7.8: Non-mapping of F_reads transition, case 1

In a second case, where F’s buffer is empty but there is at least one message in
the F mailbox that is not from FG and the message at the head of the mailbox is from
FG, then the preconditions are satisfied for both F_reads and OS_reads_F, but the calling
agent transition, nevertheless, does not map to the entry point transition. This is because
the refinement mapping filters out the messages from FG so the message at the head of the
mailbox in the calling agent state is not the same message as at the head of the mailbox in

the entry point state. This situation is depicted in figure 7.9.

mailbox queue
N RN
: Peal ! i §Y§ — .. entry point state
it R i
T eee D Y gl e— calling agent state
: ;oY
P 1 : [
buffer

Figure 7.9: Non-mapping of F_reads transition, case 2
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If, on the other hand, the only messages in the mailbox are from FG, then the
OS_reads_F transition is disabled (viz., because its mailbox is empty) but the F_reads tran-
sition may or may not be enabled (depending on whether or not its buffer is empty), as
shown in figure 7.10. If the buffer is full, the F_reads transition does a stuttering step. If
the buffer is empty it moves the message from FG at the head of the mailbox into the
buffer. In either case, the F_reads transition maps to an OS_reads_F transition, but the

OS_reads_F transition does nothing (stutters).

maiibox queue

Pl oo

P eee b b — ] entry point state

HEH ; HEE AR

5 cee i ;fg§ —l cailing agent state
buffer

Figure 7.10: Non-mapping of F_reads transition, case 3

In a fourth case, the F mailbox is completely empty, so a F_reads transition does
a stuttering step, as does the OS_reads_F transition to which it maps. As with the preceding
case, this is true whether or not the buffer is full.

The only conditions where an enabled F_reads transition maps to an enabled
OS_reads_F transition is when there is at least one message in the mailbox, F’s buffer is
empty, and the message at the head of the mailbox is not from FG.

If we call these last three cases when a F_reads transition maps to an OS_reads_F
transition p and denote the F_reads transition and OS.reads_F transition as t; and tg,
respectively, then to prove OOty (always eventually ) — the progress property on ty —

we need to prove OO(p A tr).
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The progress properties on each transition guarantee that the transitions will oc-
cur, but not that the preconditions will ever be true. The preconditions could be true
infinitely often, but never true when the transition occurs. Only if the preconditions be-
come true and remain true until the transition occurs can we show that a transition will ever
implement anything other than a stuttering step. In order to obtain OO (p A tr), therefore,

we need the following three conditions:

1. That t; occurs infinitely often, i.e., OO¢t;. This is precisely the progress property on

tr.
2. That p always eventually holds, i.e., OCp.

3. That p, once true, remains true unless the server transition occurs, i.e.. O(p W t.).

7.9.2 Mapping to OS_reads_F_progress

As we described above, the conditions p that must hold for the F _reads transition

to map to OS_reads_F are as follows:

1. The F mailbox is completely empty, or

]

. The only messages in the mailbox are from the FG server, or

3. There is at least one message in the mailbox, F's buffer is empty, and the message at

the head of the mailbox is not from FG.

These conditions are expressed in the following HOL definition:
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let F_reads_maps._up.if = new_definition(‘F reads.maps_up.if*,
"(V (i : num) (trace : trace.def).
F reads_maps.up.if i trace =
let t1 = (trace i)
and t2 = (trace (SUC i)) in (
—~mbx_s_unread_msg
(filtmbxF FG
(get_mbxs_mbx
(get_trace_mbxs(get._trace_state t1)) F_ID)) v
(mbx_is_unread_msg
(filtmbxF _FG
(get_mbxs_mbx
(get_trace_mbxs(get_trace state t1)) F_ID)) A
—Fs_get_flag(get_trace_Fs(get_trace_state t1)) A
~fromF _FG
(FST
(read_mbx_msg
{get _mbxs_mbx
(get_trace_mbxs(get._trace_state tl))
F.D)))))
)H
)is

The function mbz_is_unread_msg returns TRUE if there is an unread message in its mailbox
argument. The function filtmbzF _FG takes a mailbox as a parameter, filters out all of
the messages from F or FG, and returns the rest of the mailbox, in the same order and
compressed to eliminate any gaps there might be due to the removal of messages from F and
FG. By checking if there are any unread messages in the filtered F mailbox, this definition
takes care of the first two conditions in p.

The function fromF_FG, as the name implies, examines a message and returns
true if it is from F or F'G. The second disjunctive clause in the definition checks that there
is at least one unread message in the mailbox, that the buffer is empty (viz., that the flag is
reset), and that the message at the head of the mailbox is from FG (or, strictly speaking,

F', but F never sends a message to itself), which is the last of the three cases that make up

p-
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The first step in showing that the calling agent system satisfies (via the mapping)
OS_reads_F_progress is to prove that our p is correct. This is done by proving the following

theorem:

let map_F _reads_conditions = prove_theorem(‘map_F reads._conditions*,
"(V (i : num) (trace : trace_def) (F func G func : num—num).
let t1 = (trace i)
and t2 = (trace (SUC i)) in (
OS _env_nit trace A
OS_env _safety trace A
F _safety trace F_func A
FG safety trace G_func A
F _reads (get_trace_state tl)(get_trace_state t2) A
F reads_maps._up.f i trace
——
let mtl = (map_up-element t1)
and mt2 = (map-up.element t2) in (
OS_reads_F (get_OStrace_state mtl)(get_OStrace_state mt2))
)"
)i

The function map_up_element applies the mapping function to the state in a trace element,
returning an OStrace element.

To show that p always eventually holds, we use well-founded induction, first finding
a termination condition and then proving that it is reached. In this case, ~p implies that
there is an unread message in the mailbox that is not from the FG agent. The well-founded
induction is applied to the distance of this message from the head of the mailbox. The
termination condition is when this distance reaches 0, i.e., the message is at the head of
the mailbox. We prove that any message in the F mailbox eventually advances to the head
of the mailbox, so that any message in the mailbox that is not from the FG agent will
eventually reach the head of the mailbox.

Similarly, we must also prove that if F’s buffer is full then it will eventually be
emptied (we can do this using the F_responds_progress progress property). Together, these

results lead to the desired result that, at any point in the trace, either p holds or else it



153

eventually holds at some future point in the trace.

To show that p, once true, remains true until the next F_reads transition, we have
a problem. F' has no control over the other agents, so it cannot ensure that its mailbox will
always remain empty until the next F_reads transition nor can it guarantee that only the
FG agent will send it messages. This means that the first two of the p conditions cannot
be guaranteed to remain true.

On the other hand, we can prove that each of the other transitions by any agent in
F’s environment leaves the head of the F mailbox unchanged and leaves the F server buffer
empty. This is straightforward (albeit tedious) to prove, as all transitions by other agents
(either FG or in the environment) can only append messages to F’s mailbox and have no
effect on F’s local state, and the other transition by F leaves the mailbox unchanged and
can only empty the buffer if it is full.

From this we can deduce the following: At any time in a trace when a F._reads
transition occurs, F's mailbox is either empty, contains only messages from F'G, or contains
at least one message that is not from FG. If F’s mailbox is empty or contains only messages
from FG, the F_reads transition maps to an OS_reads_F transition. If, however, F’s mailbox
contains at least one message from an agent other than F'GG, we have already proven that
a non-FG message will advance to the head of the mailbox and that F’s buffer will be
empty, and that those conditions will persist until the next F_reads transition. Because
the F_reads_progress progress property guarantees that a F_reads transition will happen,
we can guarantee that there will always eventually be a time when p is true and F_reads

happens, thus proving that the OS_reads_F_progress progress property is preserved.
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The complete HOL theorem in which the mapping is proven is as follows:

let map_F reads_progress = prove_theorem(‘map_F reads_progress®,
"(V (trace : trace_def) (F_func G.func : num—num).
OS_env_init trace A
OS_env_safety trace A
F safety trace F_func A
FG_safety trace G_func A
F reads_progress trace A
F_responds_progress trace =
OS_reads_F _progress (map_up-trace trace)
)11
)i

The function map_up_trace applies the mapping function to the state in every trace element

in the trace, returning an OStrace.

7.9.3 Mapping to OS_responds_F_progress

The F_responds transition is unique among the four transitions in our specifications

in that its mapping condition (p) is always true. There are three possible cases:

1. The F server buffer is empty, which maps to an empty F calling agent queue. Both

transitions are disabled and implement stuttering steps.

2. The F calling agent buffer contains a message from FG, which maps to an empty F
entry point queue. Because the result of the F_responds transition is an empty buffer
that maps to an empty entry point queue, at the entry point level the transition is

disabled and it implements a stuttering step.

3. The F server buffer contains a message that is not from the FG server, which maps
to a F calling agent queue that contains a single message. The empty buffer after the
server transition maps to an empty queue, which is also the result of the calling agent

responding to the message.
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As a result, a F_responds transition always maps to an OS_responds_F_progress
transition and the proof that the mapping from the calling agent system preserves the

progress property OS_responds_F_progress in the composed system is extremely simple.

7.9.4 Mapping to OS_reads_FG_progress

We used virtually the identical method described above for the OS_reads_F _progress
progress property to prove that that the mapping from the calling agent system preserves
the progress property OS.reads_FG_progress in the composed system. Other than renaming,

the proof is essentially the same.

7.9.5 Mapping to OS_responds_FG_progress

The following conditions (p) must hold for the FG_responds transition to map to

O0S_responds_FG-

1. The FG agent’s buffer and queue must both be empty. This maps to an empty queue
in the FG entry point. If the queue is empty, there are no outstanding response
messages expected from the F calling agent, so no messages from F can be in the
mailbox (nor will FG ever send itself a message). As a result, the mailbox looks
the same to both the FG agent and OSFG entry point. The FG_responds transition
implements a stuttering step, which maps to a stuttering step in the OS_responds_F'G

transition.

2. FG’s buffer is full and the message is from the F calling agent. The message in the

buffer from F is a response to a request from FG that corresponds to the request
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message at the head of the FG calling agent’s request message queue. The request
message at the head of F'G’s queue is the same as the message at the head of the OSFG
entry point queue. When the FG_responds transition sends a response message, that

maps to the OS_responds_FG transition sending a response message.

These conditions are expressed in the following HOL definition:

let F_responds_maps_up_if = new_definition(‘F .responds_maps_upif*,
" (V (trace : trace.def) (i : num).
F responds_maps_up.if trace i =
let t1 = (trace i) in
let fgi = get_trace_FGs(get_tracestate tl) in
let fgi_flag = FGS_get_flag fgi
and fgi_buf = get_FGs_buf fgi
and fgi_q = FGs_get_queue fgi in (
((NULL fgi_q) A —fgi_flag) v
(fgiflag A (from_F fgi_buf)))
)
)5

As before, we have to prove that this p is correct, that it eventually holds, and
that once it holds it remains true until a FG_responds transition occurs.

The correctness of p is proven in the following theorem:

let map FG_reads_conditions = prove_theorem(‘map-FG reads_conditions*,
"(V (i : num) (trace : trace_def) (F_func G func FG_func : num—num).
let t1 = (trace i)
and t2 = (trace (SUC 1)) in (
(v
OS_env.init trace A
OS_env_safety trace A
F _safety trace F_func A
FG_safety trace G_func A
F_init trace A FG.nit trace A
FG _responds (get_trace_state t1)(get_tracestate t2) Gfunc A
FG responds_maps_upif trace i
==
let mtl = (map-up-element t1)
and mt2 = (map_-up-element t2) in (
OS _responds _FG (get_OStrace_state mtl)(get_OStrace.state mt2))))
)n
)i
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F_init and FG_init are included in the antecedents in order to be able to prove a number
of invariants. For example, it must be proven that there are never any messages from F in
FG’s request queue and that there is never a message from FG in FG’s buffer or queue.
Another invariant that must be proven to show that p is correct is that whenever
a response message from F is in FG’s buffer and the message at the head of F'G’s queue has
data value z, the data value in the message in FG's buffer is equal to F_func{G_func(x)).
To show that p always eventually holds, we again use well-founded induction, first
finding a termination condition and then proving that it is reached. In this case, —p implies

that one of the following conditions is true:

1. The FG agent’s buffer is empty, but its request queue has at least one message. The
FG agent will perform a stuttering step, which maps to a stuttering step even though

the OS_responds_F transition is enabled to send a response.

2. The FG agent’s buffer is full, but the message in the buffer is not from F. The FG
agent will put the message into the request queue and send a request message to F.
This does not map to an OS_responds_F transition because the request message simply
moves from the buffer to the queue, which maps to a stuttering step even though the

OS_responds_F transition is enabled to send a response.

If the first condition of —p holds, that means that at some time in the past the
FG agent sent a request message to F', which will eventually read the message from FG
and send a response. The response message from F will make its way to the front of FG's
mailbox, and be moved into FG’s buffer by a F_reads transition. At that time, the condition

p will hold.



158

If the second condition of —p holds, then as a result of the FG_responds transition,
FG will put the message in its queue and send a request message to F. At this point, we
are in exactly the same circumstances as if the first condition held: F will eventually read
the message and send a response message to F'G, the message will advance to the head of
FG’s mailbox and eventually be moved by an FG_reads transition into the buffer, at which
time the condition p will hold.

Our termination condition, then, is when the response message from F finally
makes its way into F'G’s queue. To prove that this termination condition always eventually
occurs, we define an abstract queue of messages passed between the F and FG calling agents
that is parallel to the OSFG entry point queue. The abstract queue is constructed from the
concatenation of the following components, beginning from the head of the abstract queue

and working toward the tail:

p—t

. The message in the FG buffer, if it exists and if it is from the F server.
2. All messages in the F'G mailbox from the F server, in order.
3. The message in the F buffer, if it exists and if it is from the FG server.
4. All messages in the F’ mailbox from the FG server, in order.

As an invariant, we prove that the abstract queue is the same length as the FG
agent queue. Furthermore, the invariant shows a correspondence between the data values
in the abstract queue and the FG queue. For all data values z in the FFG queue, the
corresponding data values in the messages in the abstract queue for components 1 and 2

are f(g(z)) (because they are response messages from F). The corresponding data values
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in the messages in the abstract queue for components 3 and 4 are g(z) (because they are

request messages sent by FG to F). This invariant is proven in the following HOL theorem:

let map_FGq.nvariant = prove_theorem(‘map_FGq_.invariant‘,
"(V (i : num) (trace : trace_def) (F_func G_func FG_func : num—num).
OS_env_init trace A
OS_env_safety trace A
F_nit trace A FG_nit trace A
F safety trace F_func A
FG_safety trace Gfunc = (
let fgq =
(FGs_get_queue(get _trace_FGs(get_trace_state(trace i)))) in
let fglst = (mk_fg_msg list(get_trace_state(trace i)))
and glst = (mk_g_msg_list(get_trace_state(trace i))) in
let par = (APPEND fgist glst) in (
(LENGTH fgq = LENGTH par) A
(¥x. (0 <= x) A (x < LENGTH fglst) =
(get msg_data(EL x par) =
F func(G_func(get_msg_data(EL x fgq))))) A
(vx. (LENGTH fglst <= x) A (x < LENGTH par) =
(get msg.data(EL x par) =
G func(get_msg_data(EL x fgq))))))
)Y’
)i

The function mk_fg_msglist constructs the part of the abstract queue that comes from
FG’s buffer and mailbox. The function mk_g_msg list constructs the part of the abstract
queue that comes from the F buffer and mailbox. The abstract queue, called par for
“parallel”, is formed from the concatentation of the two parts.

We can use the abstract queue par to prove that p will always eventually occur.
To do this, we use the other progress properties to prove that any message in one of the
components of par will always eventually advance to the next component. For example, the
progress property on the FG_responds transition guarantees that a non-F message in the FG
buffer that contains the data value z will eventually cause the FG server to send a message
to the F mailbox that contains the data value g(z). We can use a previously proven result,
that any message in the F mailbox eventually advances to the head of the mailbox, along

with the progress property on the F_reads transition, to prove that any message from the
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FG server in the F mailbox eventually advances to the F buffer. We use the other progress
properties in a similar manner, along with our definition of par and the invariants that we
proved about it, to show that if p does not hold then there always eventually will be a
message from the F server, containing the value f(g(z)), in the FG buffer that corresponds
to the message at the head of FG’s queue, which contains the data value z. Thus, at any
time either p holds or it eventually will.

Proving that p persists until the next FG_responds transition is a comparatively
simpler task. If F'G’s buffer and queue are empty, there is no guarantee that they will still
be empty in the future, but if they are not then we have already proven that the other p
condition will always eventually hold. No other transition can empty a full FG buffer, so
once we are in a situation where F'G’s buffer contains a message from F', it will remain
there until the next FG_responds transition. Together with the progress property on the
FG_responds transition, we have all necessary theorems and definitions to prove that the
OS_responds_FG_progress property is preserved by the mapping. The HOL theorem that

proves the mapping to OS_responds.FG_progress is as follows:

let map _FG_responds_progress = prove_theorem(‘map_FG _responds_progress®,
7 (V¥ (trace : trace_def) (F func G_func FGfunc : num—num).

(V (x : num). assumption F_func G_func FG_func x) A

OS_env.init trace A

OS _env _safety trace A

F_init trace A FG_init trace A

F safety trace F_func A

FG _safety trace G_func A

F _reads_progress trace A

F responds_progress trace F func A

FG reads_progress trace A

FG _responds_progress trace G_func =

OS _responds _FG_progress (map-up-trace trace) FG'func

)”
)i
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Note that this theorem uses the proof obligation assumption (described in section 7.8) in

the antecedents, to ensure that (F_func(G_func z) = FG_func z).

7.10 Applying the Template

In the template, each of the proof steps are saved as theorems. A formal proof
about the composition of a system like the F and FG calling agents in our example can
be done using the pre-proven theorems by instantiating the universally quantified func-
tions F_func, G_func, and FG_func, and by providing a proof (what we have been calling
assumption) that (F_func(G_-func z) = FG_func z) for all values in the domain of the
three functions.

In many cases, the assumption proof can be done almost automatically in HOL.
For example, the proof of the composition of some numeric functions can be done in only
a few lines using the HOL “arith” library, which implements a partial decision procedure
for arithmetic with natural numbers [9]. The complete HOL proof of the theorem that says
that (F_func(G_func ) = FG_func z) in all of our instantiations of the template is as

follows:

let proveF FG = prove_thm(‘proveF FG*,
"(¥x. (F func(Gfunc x) = (FG_func x))
)",
GEN_TAC THEN
REWRITE_TAC [F func;G func;FG_func] THEN
CONV_TAC ARITH.CONV

)i

Given the proof about the composition of the server functions, the rest of the
proof is similarly simplified by using the pre-proven theorems and several proof tactics,

which apply the theorems to the composition proof goals.
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The theorems and definitions constitute a HOL theory about composing two simple
servers. This theory serves as a template for all compositions of similar servers. By simply
specifying the functions calculated by the servers, the composition of the servers can to a
great degree be done automatically.

We did this for our example template, choosing two different sets of functions.
We used the same G_func(z) = z + 2 for both instances. In the first instance, we chose
F_func(z) = z+1 and FG_.func(z) = £+3. In the second instance, we chose F_func(z) =
T *2 and FG_func(z) = 2z + 4. No other substitutions were made. These two instances of

the template are shown in appendix B.

7.11 Generalizing the Template

As the template is currently written, although it can be reused for different values
of F_func, G_func, and FG_func, it is otherwise not particularly general and is not entirely
suitable for reuse in the incremental composition of a hierarchy of calling agents. Here are
some modifications that would generalize the template and make it more useful for reuse in

a hierarchical composition:

e Use Abadi and Lamport’s method of specifying local state. Our method of specifying
local state, described in section 4.3, puts the local state in the same data type as the
global state. This makes incremental composition difficult to automate, because the
local state for every component that is being composed must be “manually” added to
the trace state definition for each composition. Ideally, each component specification

should be the only place where the component’s local state is mentioned. Using Abadi
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and Lamport’s method of specifying local state we could also use the same trace type
definition for both the agents and the entry points, rather than the two that we used

in the template.

Use the same types of local state for the calling agents as for the entry points. In this
template, the entry points use our standard calling agent model (see section 5.1), but
the calling agents do not: instead of a queue of messages they have only a single-length

buffer.

Note that would be impossible in our model for the OSFG entry point to also have a
single-length buffer because the F'G agent must queue request messages until the F
agent responds. No mapping would be possible unless the OSFG agent also queued
messages, which is why a queue is built into our standard calling agent model. Using
the standard model in our template would make it possible to apply the template to

compose calling agents that are themselves compositions of other agents.

Convert the identifiers from an enumerated type to a set. As defined in this template,
the identifiers SYS_F, SYS_FG, and ENV are hard-coded (see section 7.2.3). That
is sufficient for this particular template, because the result of the composition is not
itself being composed with anything else. If it were to be composed with another
specification, however, there would be no way to indicate that the identifiers in the
other system are part of this system’s environment. The identifiers in this system
must be in the form of a set rather than an enumerated type. Then it would still
be straightforward to identify the system agents and the environment agents (viz.,

anything of the agent type that is not in the set of system agents), and would leave
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the identity of the environment agents unspecified until it is necessary to explicitly

name them.

e Parameterize the identifiers. This template works great for things that are labeled F
and F'G, but not everything in a hierarchy can have the same names. We should be
able to specify SYS_F and SYS_FG, or A and B, or any other identifiers of the proper

type (as defined for the set of identifiers; see the bulleted item above) that we choose.

7.12 Conclusion

In this chapter, we have described the specifications and proofs of an example
template. The template demonstrates our refinement of Abadi and Lamport’s method, our
basic model of calling agents, and our method of using reusable composition proofs, where
functions (e.g., F_func) and proofs (e.g., assumption) are parameters to the composition
proof. The template also demonstrates how two agents can be composed into a compound
agent.

Note that our composition method does not necessarily give any savings with
respect to the work involved in creating the specifications and proofs in a template (although
our standardized specification method might provide some benefit). This work would have
to be done regardless of whether one is using templates or doing a compositional proof in
some other way. There can be a major reduction in proof effort, however, when templates
are reused: not only does our incremental proof strategy reduce the complexity of the proofs
in templates (relative to the proof complexity of composing the entire system at once), but

reusing a template means that there is almost no additional specification and proof effort
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required for additional composition stages.
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Chapter 8

Summary

Beware of bugs in the above code; I have only proved it correct, not tried it.

Donald Knuth, March 1977 memo to Peter van Emde Boas, cited on
http://Sunburn.Stanford.EDU/~knuth/faq.html

Computers have been integrated into many different types of systems where the
safety of lives and property directly depends on the correctness of the system. To have
the maximum assurance that a system is correct, a system should be formally verified. It
can be quite difficult, however, to formally verify large, complex systems. As the size and
complexity of the system increases, so can the size and complexity of the verification effort.

Using the “divide-and-conquer” technique of compositional proof, a system’s com-
ponents can be independently verified, and then the verified components “composed™ into
the complete system. Compositional proof can significantly reduce the complexity of verify-
ing a system; once a component is independently verified its internal details are hidden when
the component is composed with other system components. Moreover, the specification and
proof of correctness for a component can be reused when the component is reused.

Compositional proofs themselves, however, can be quite difficult. While the com-
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plexity of verifying a system using compositional methods may be many orders of magnitude
less than verifying the system as a monolithic unit, it may still be too great to be practical.
Compositional proof hides the internal details of components (from the point of view of the
other components), but there may be many components and the compositional proof must
deal with interactions between all of the external details of all the components. Thus, even
compositional proof may prove to be an intractable exercise for real systems, where the
time and cost to carry out the verification determine whether or not it will be done at all.

Another hurdle in applying compositional proof is that, in general, each proof is
“hand-made” — constructed for the verification of a specific system and tailored to that
system alone. Ideally, the work put into the compositional verification of a component with
other components in a system could be reused along with the component’s specification and
proof of correctness, and would require a minimum of “customization.”

The goal of the work presented here is to make the compositional proof of large,
complex systems tractable. Our approach is to simplify composition by incrementally com-
posing parts of the system in a step-wise fashion. This reduces the complexity of each step
of the proof.

We also have designed a standard model of components and templates, which
consist of abstract specifications and generic proofs, that can be reused to compose a wide
variety of components by instantiating different parameters. Using a small number of
templates, the composition of a large system can be performed with a bare minimum,

or even no, additional proof effort.
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8.1 Major Contributions

The result of our work is a practical methodology for the composition of large,
distributed systems — a scalable methodology that enables the reuse of components, speci-
fications, and compositional proofs. The work is applicable to a wide variety of systems that
are either distributed or where the system policies are distributed among distinct compo-
nents, including micro-kernel operating systems [19], the DNS, web caching systems, layered

security policies [18], and others. The major contributions of our work are as follows:

1. Our calling agent model is a simple, yet easily extensible model of components in a

distributed system.

2. Our specification style constraints on Abadi and Lamport’s general composition model
provide a framework for the development of compositional templates. The constraints
ensure that abstract specifications for calling agents satisfy the requirements of the

composition rule, and guide the generic composition proofs.

3. Our notion of templates changes the formal verification of large systems from an ad

hoc activity into an engineering exercise that can be applied using well-defined rules.

4. Our calling agent hierarchy abstraction and incremental composition algorithm can
be used to find an optimal incremental composition sirategy. An optimal strategy

reduces the overall complexity of the compositional proof to a minimum.

5. We have provided a fully worked example of a template, including generic specifica-

tions for calling agents and a generic composition proof.
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Through the use of templates and incremental composition, the effort that goes
into the compositional proof of a large, complex system can be reduced to the point of

simply choosing suitable parameters and supplying them to a theorem-prover.

8.2 Future Work

The work presented here has shown how templates and iterative composition can
be used to reduce compositional proof complexity in distributed systems and systems whose
policies are distributed among a number of components. The success of this effort encour-

ages us to continue research in the following areas:

e Further develop and refine templates and their HOL implementation. Our
demonstration as we presented it is still unsuitable for use as an engineering tool by
unsophisticated users. A tool can be created that uses templates but that hides the
specification and proof details. This tool will permit engineers to verify the correctness
of their system design simply by providing appropriate parameters, even without

understanding the intricacies of compositional proof.

e Support for n-ary trees. Our method focuses on tree-like topologies, but it does
not yet support, in an elegant way, trees of arbitrary degree. Either “identity” agents
must be used to fill out subtrees of lower degree, or else different templates must be
used for subtrees of different degrees. We would like to make a more generic template

in which the degree of the subtree is parameterized.



170

e Additional topologies. Our basic model of a calling agent requires a response
message to every request message. A more general model would permit requests that
do not generate responses, or message “forwarding” so that responses can come from

a different agent than the request message recipient.

e Automatic synthesis of code and proof from specifications. Only the ar-
guments to template parameters must be supplied to verify the composition of the
calling agents that are instantiations of the templates. In effect, the specifications and
composition proofs for the calling agents are being synthesized from the parameters.
The calling agent model is simple and regular, so it may also be possible to synthesize
the actual implementation (viz., code) for the calling agents. And if we can synthesize
code, it may be possible to synthesize the correctness proofs for the calling agents —
i.e., that the synthesized code satisfies the synthesized specifications. Thus, by sup-
plying appropriate template parameters, an engineer conceivably could synthesize an

entire, verified distributed system.

8.3 Conclusion

The goal of the work presented here is to reduce the complexity of compositional
proof to the level of an engineering exercise that can be applied in a regular fashion, following
well-defined rules, and using well-understood tools. The standard model of a calling agent
and the standard specifications and proofs that make up a template are a means toward this
end. By using templates along with incremental composition, the compositional proof effort

to verify a system can be reduced by many orders of magnitude, and provide an environment
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in which compositional proof can be carried out by users who have little experience with
formal verification. The techniques that we have developed point the way toward a method
of integrating formal verification as a practical step in the development of large, complex

systems.
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Appendix A

Template Specifications

This appendix contains the complete specification files for the example template
described in chapter 7. The files are written in the HOL88 language (basically ML, with
extensions). Readers may wish to consult reference [16] or the following web pages for more

information about HOL:
e http://www.cl.cam.ac.uk/Research/HVG/HOL/
e http://lal.cs.byu.edu/lal/hol-documentation.html

The abstract specification for the template was developed using an earlier specifi-
cation created as part of the UCD Silo Project [39], which is why many of the file names
begin with the prefix “silo”.

The file init.ml contains some basic HOL “bookkeeping” commands and some
simple tactics that are used in the proof.

The files silomorelists.ml, silolists.ml, and silomappings.ml contain basic definitions

and theorems for lists and for a VDM-like mapping type {21]. The file silobasic.ml contains
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the definitions for messages, mailboxes, and other global and local state types. Each of
these files contains constructor and destructor functions for the types that it defines.

The F-FG.ml file contains the definitions of the two calling agents. The OS-
env.ml file contains the system environment definitions, while the OS-sys.ml file contains
the definitions for the composed system. The prefix “OS™ means “overall system” in this
context.

The letconv.ml and siloprojection.ml files contain basic definitions and theorems
used by the mapdefs.ml file. The mapdefs.ml file contains the mapping function used in the

refinement step.

A.1 init.ml

frxsrrsnnsrsssenssssssraensssss —2—- Mode: HOl —%- *xsxssssssxsnssssss
** init.ml --- Standard miscellaneous definitions.
*x

* Mark Heckman 10/04/95

#*t*ttttttt‘t‘t‘“““t““““““t‘t“#.‘l“t“tt“‘tt#‘#l#‘t‘.““%

Yo meemm e e e -

autoload_all

Autoload all definitions and theorems from the given THEORY. The
call will fail if THEORY is not part of the current theory



segment .

Acquired from Rob Shaw <shaw@cs.ucdavis.edu>, who acquired it from
Phil Windley and Mike Gordon. Was named my_autoload_theory.
---------- - %

let autoload_all thy =

map (\name. autoload_theory(‘axiom‘, thy, name))
(map fst (axioms thy));

map (\name. autoload_theory(‘definition‘, thy, name))
(map fst (definitions thy));

map (\name. autoload_theory(‘theorem‘, thy, name))
(map fst (theorems thy));

Oss

load_parent

Declare a new PARENT theory and autoload all definitions and
theorems from that theory.

Acquired from Rob Shaw <shaw@cs.ucdavis.edu>, who acquired it from
Phil Windley and Mike Gordon.

let load_parent parent =
new_parent parent;
autoload_all parent;;

new_theory_safe

Start a new THEORY definition. If a file THEORY.th exists on the
search_path, the first such file will be deleted.

BEWARE! I believe that this does what I want it to do, but you use
it at your own risk!

It still has problems if THEORY has been previously opened during
the current session. I do not at the moment know how to fix this.
___________ %

let new_theory_safe theory =
(
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let theory_file_path = find_file (theory ~ ‘.th‘)
in
message (‘Removing file: ¢ ° theory_file_path);
unlink theory_file_path
) ?? [“‘find_file‘] ();
new_theory theory;
message(‘Theory ¢ - theory ~ ¢ opened.‘);;

%(t‘l#ttt‘t“tt“““‘““"“““.l“““t‘tt‘t.““““““t‘tt‘l'tt

TACTICS, ETC.

t#t#t“‘“‘t‘“‘.‘.l.‘.‘.""t““tt“.t““tt“t‘t‘“tt“tt“.“‘.‘)%

h< ==
c

Like e, the alias for expand, but uses CHANGED_TAC so that failure

occurs if nothing changes in the goal.
__________ )'/.

let ¢ x = e(CHANGED_TAC x);;
%“let e x=expand (CHANGED_TAC x);;%

let SYM_RULE =
(CONV_RULE (ONCE_DEPTH_CONV SYM_CONV))
? failwith ‘SYM_RULE‘;;

let EXPAND_LET_TAC =
ONCE_REWRITE_TAC (LET_DEF]
THEN CONV_TAC (TOP_DEPTH_CONV BETA_CONV);;

let EXPAND_LET_RULE x =
(CONV_RULE (TOP_DEPTH_CONV BETA_CONV)
(ONCE_REWRITE_RULE [LET_DEF] x));;

let REMOVE_DUP_ASM_TAC = (

POP_ASSUM_LIST(\thl. MAP_EVERY ASSUME_TAC (setify thl))
);; let UNDISCH_EVERY_TAC = (

ASSUM_LIST (\thl.

EVERY (map (UNDISCH_TAC o concl) (setify thl))

)
};; let UNDISCH_FIRST_TAC = (

ASSUM_LIST (\thl. (UNDISCH_TAC o concl) (el 1 thl))
);; let POP_ALL = (POP_ASSUM_LIST(\thl. ALL_TAC));; let
POP_ALL_TAC = (POP_ASSUM_LIST(\thl. ALL_TAC));;



let let_CONV_RULE = (CONV_RULE (DEPTH_CONV let_CONV));; let

let _CONV_TAC = (CONV_TAC (DEPTH_CONV let_CONV));; let
sym_ASM_EL_TAC n = (ASSUM_LIST(\thl.
ASSUME_TAC (SYM_RULE (el n thl)))
);; let ASM_REWRITE_EL_TAC n = (ASSUM_LIST(\thl.
REWRITE_TAC [(el n thl)])
);; let sym_ASM_REWRITE_EL_TAC n = (ASSUM_LIST(\thl.
REWRITE_TAC [SYM_RULE (el n thl)])
);; let PROMOTE_ASM_TAC s = (
(UNDISCH_TAC s THEN
STRIP_TAC) ? failwith ‘PROMOTE_ASM_TAC®
);; let ASM_REWRITE_PICK_TAC al thl = (
ASSUM_LIST(\asl.

REWRITE_TAC ((filter ((\a. mem a al) o concl) asl) @ thl)

)
);; let ALL_THM_TAC th = ALL_TAC;; let TRASH_ASSUM as =
PROMOTE_ASM_TAC as THEN POP_ASSUM ALL_THM_TAC
? failwith ‘TRASH_ASSUM: assumption not found‘;;
let filter_as_list asl al = (
(filter ((\a. mem a al) o concl) asl)
);; let KEEP_ASM_TAC al =
POP_ASSUM_LIST(\asl.
EVERY (map ASSUME_TAC (filter_as_list asl al))
)
;3 let REWRITE_ASM_PICK_TAC as thl al = (
ASSUM_LIST(\asl.
if not ((filter ((\a. a = as) o concl) asl) = (])
then ASSUME_TAC (
REWRITE_RULE (filter_as_list asl al @ thl)
(find ((\a. a = as) o concl) asl)
) THEN TRASH_ASSUM as
else failwith ‘REWRITE_ASM_PICK_TAC®
)
);; let sym_ASM_PICK_TAC as
ASSUM_LIST(\asl.
if not ((filter ((\a. a
then ASSUME_TAC (
SYM_RULE (find ((\a. a = as) o concl) asl)
) THEN TRASH_ASSUM as
else failwith ‘sym_ASM_PICK_TAC®
)
);; let mod_ASM_PICK_TAC as rl = (
ASSUM_LIST(\asl.

(

as) o concl) asl) = [])
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if not ((filter ((\a. a = as) o concl) asl) = [])
then ASSUME_TAC (
rl (find ((\a. a = as) o concl) asl)
) THEN TRASH_ASSUM as
else failwith ‘mod_ASM_PICK_TAC‘
)
)

let REWRITE_ASM_KEEP_PICK_TAC as thl al = (
ASSUM_LIST(\asl.
if not ((filter ((\a. a = as) o concl) asl) = (1)
then ASSUME_TAC (
REWRITE_RULE (filter_as_list asl al @ thl)
(find ((\a. a = as) o concl) asl)
)
else failwith ‘REWRITE_ASM_KEEP_PICK_TAC®
)
);; let ONCE_REWRITE_ASM_PICK_TAC as thl al = (
ASSUM_LIST(\asl.
if not ((filter ((\a. a = as) o concl) asl) = [])
then ASSUME_TAC (
ONCE_REWRITE_RULE (filter_as_list asl al @ thl)
(find ((\a. a = as) o concl) asl)
) THEN TRASH_ASSUM as
else failwith ‘ONCE_REWRITE_ASM_PICK_TAC®
)
);; let sym_ASM_KEEP_PICK_TAC as = (
ASSUM_LIST(\asl.
if not ((filter ((\a. a = as) o concl) asl) = [])
then ASSUME_TAC (
SYM_RULE (find ((\a. a = as) o concl) asl)
)
else failwith ‘sym_ASM_KEEP_PICK_TAC®
)
);; let mod_ASM_KEEP_PICK_TAC as rl = (
ASSUM_LIST(\asl.
if not ((filter ((\a. a = as) o comncl) asl) = [1)
then ASSUME_TAC (
rl (find ((\a. a = as) o concl) asl)
)
else failwith ‘mod_ASM_PICK_TAC®
)
)i
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let list_mp_ASM_PICK_TAC al as = (
ASSUM_LIST(\asl.
if not ((filter ((\a. a = as) o concl) asl) = [])
then ASSUME_TAC (
LIST_MP (filter_as_list asl al)
(find ((\a. a = as) o concl) asl)
)
else failwith ‘list_mp_ASM_PICK_TAC®
)
);; let match_mp_ASM_PICK_TAC asl as2 = (
ASSUM_LIST(\asl.
if not ((filter ((\a. a = asl) o concl) asl) = [])
then (if not ((filter ((\a. a = as2) o concl) asl) = [])
then ASSUME_TAC (
MATCH_MP (find ((\a. a = as2) o concl) asl)
(find ((\a. a = asl) o concl) asl)
)
else failwith ‘list_mp_ASM_PICK_TAC--can not find 2nd assumption®

)
else failwith ‘list_mp_ASM_PICK_TAC--can not find 1st assumption‘

A.2 silomorelists.ml

./. _____________ —— v

* File: silomorelists.ml

* Version: 0.0

* Date: 03/31/96

L e et %

% DO33D3332333333DDIDIDDOD3D3IIIID53D3IIDIIIIDIIDIIDIIIIIIDIIIIIDD>
Definitions and theorems for lists.

To maintain compatibility with code that uses the old "more-lists"
library, this theory contains several definitions, such as
"MEMBER", that are not in the 2.02 lists library.
<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKL %

loadf ‘aux/init.ml‘;;



new_theory_safe ‘silomorelists‘;;

load_parent ‘list‘;;

‘/. S e —— =
begin -- Borrowed or adapted from
the HOL-2.01 more_lists library.
““““ %

let MEMBER =
new_list_rec_definition(‘MEMBER¢, "
(MEMBER (x : *) [] = F) /\
(MEMBER x (CONS h t) = (x = h) \/ MEMBER x t)
")is

let MEMBER_SNOC = prove_thm (‘MEMBER_SNOC®,
"!t (x:+) h. MEMBER x (SNOC h t) = (h = x) \/ MEMBER x t",
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MEMBER ;SNOC] THENL [
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC
(RAND_CONV o ONCE_DEPTH_CONV) [J [EQ_SYM_EQ] THEN
REWRITE_TAC (]
REWRITE_TAC [DISJ_ASSOC] THEN
REWRITE_TAC
[(SPECL ["((x:#*)=h)";"(h’=(x:*))"] DISJ_SYM)]
]
DI

let SNOC_NOT_NULL = prove_thm(‘SNOC_NOT_NULL®,
"1 (d:+) 1. "NULL (SNOC 4 1)",
REPEAT GEN_TAC THEN
STRUCT_CASES_TAC (SPEC "1l:(=*)list" list_CASES) THEN
REWRITE_TAC[SNOC;NULL]
)i

let NULL_EQ_EMPTY = prove_thm (‘NULL_EQ_EMPTY‘,
"11:(«)list . NULL 1 = (1 = [])",

GEN_TAC THEN

STRUCT_CASES_TAC (SPEC_ALL list_CASES) THEN
REWRITE_TAC [NULL;NOT_CONS_NIL]
)i
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let SNOC_APPEND_CONS = prove_thm(‘SNQOC_APPEND_CONS‘,
"1(1:(*) list) h. SNOC h 1 = APPEND 1 [h]",
LIST_INDUCT_TAC THENL
[ REWRITE_TAC [SNOC;APPEND];
ASM_REWRITE_TAC ([SNOC;APPEND]]
)i

let HD_SNOC = prove_thm(‘HD_SNOC*,

“t(h:*) t. HD (SNOC h t) = NULL t => h | HD t*,
REPEAT GEN_TAC THEN
STRUCT_CASES_TAC (SPEC "t:(*)list" list_CASES) THEN
REWRITE_TAC [NULL;SNOC;HD]
) HH

let LENGTH_NOT_NULL =
prove_thm
(*LENGTH_NOT_NULL®,
"1(1:(*)1list). (0 < LENGTH 1) = (“(NULL 1))",
LIST_INDUCT_TAC THENL
(REWRITE_TAC [LENGTH;NULL;NOT_LESS_O];
REWRITE_TAC [LENGTH;NULL;LESS_0]]
)i

let LAST1 = prove_thm(‘LAST1¢, "!1 y. LAST (APPEND 1 (y:+1) = y",
(REWRITE_TAC[GSYM SNOC_APPEND_CONS;LAST])
)i

let SNOC_LENGTH = TAC_PROOF (([], "! (d:*) 1. LENGTH (SNOC d 1) =
SUC (LENGTH 1) "),

GEN_TAC THEN

LIST_INDUCT_TAC THEN

ASM_REWRITE_TAC [LENGTH;SNOC]);;

let LLESS_LEFT = new_infix_list_rec_definition(‘LLESS_LEFT*,
“(LLESS_LEFT ([J:* list) 1 = “(NULL 1)) /\



(LLESS_LEFT (CONS a rest) 1 =
“(NULL 1) /\ (a = HD 1) /\ (LLESS_LEFT rest (TL
"),

let LLEQ_LEFT = new_infix_definition(‘LLEQ_LEFT*,
"LLEQ_LEFT (11:* list) 12 = (11 LLESS_LEFT 12) \/ (11 =

12)") ;5
% REEXEXXEEESEEEEEEEEEESE S EERBE LR SR SR SRR EE RS E LSS E R R EEEEEEEEE R
®
* Give a meaning to the tail of an empty list. *
® L 4
* TAIL = |- (TAIL(] = [J) /\ ('h t. TAIL(CONS ht) = t) =
= *

‘tttttt“‘.‘.t‘.""‘t#."“t‘.'tt‘t.“.““.“#“.““‘#“‘%

let TAIL = new_recursive_definition false list_Axiom ‘TAIL®
“(TAIL ([J:+ list) = ([J:+ list)) /\
(TAIL (CONS (h:=) t) = t)";;

let NTAIL= new_prim_rec_definition(
‘NTAIL®,
“(NTAIL O (1:* list) = 1) /\
(NTAIL (SUC n) 1 = TAIL (NTAILn 1) ) ");;

let TL_TAIL = prove_thm(‘TL_TAIL‘, "!l:« list. -~ (NULL 1) ==> (TL
1 = TAIL 1)",

LIST_INDUCT_TAC
THENL { (REWRITE_TAC [NULL]);

(REWRITE_TAC[TL;TAIL]) ]
)i

%#t#tttttt‘tttt‘ttttt‘t‘#tt#t‘t‘#‘ttttttt‘tttt‘#“‘tttt“t“‘ttt
*
Define the subsequence of a list as the first n elements.

|- (!x. SUBSEQ 0 x = []J) /\
('n x. SUBSEQ (SUC n) [] = [1) /\

x
x
«+  SUBSEQ =
*x
*
* (!n x. SUBSEQ (SUC n ) CONS(HD x)(TAIL x) =
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= CONS(HD x) (SUBSEQ n(TAIL x)))
x
“““‘#‘.““‘““““‘.“‘.“““““‘““““‘t“““‘.“.“%

let SUBSEQ = new_prim_rec_definition (‘SUBSEQ‘, "(SUBSEQ O (x:=
list) = ([J:* list)) /\
(SUBSEQ (SUC (n:num)) (x:* list) =
NULL x => []J | CONS (HD x) (SUBSEQ n (TAIL x)))");;

let SUBSEQ_EMPTY_LIST = prove_thm( ‘SUBSEQ_EMPTY_LIST®,
“! (n:num). SUBSEQ n ([J:* list) = [J",
(INDUCT_TAC) THEN
(REWRITE_TAC [SUBSEQ;NULL_EQ_EMPTY]));:

%tttt.tttt‘tttt‘tttttt“‘ttt“‘tt"‘tttttttt‘ttt‘t#tttttt‘t“ttt
*

If tvo lists are equal then equal length subsequences will
also be equal.

SUBSEQ_EQ = |- !'x y n. (x = y) ==> (SUBSEQ n x = SUBSEQ n y)

L IR BEE R 2K

ttt‘##t#t“t“#t.““#““‘.‘t"“““t‘ttt"ttt“t“““t“t“%

let SUBSEQ_EQ = prove_thm (‘SUBSEQ_EQ‘, "! (x:* list) (y:* list)
(n:pum). (x = y) ==

((SUBSEQ n x) = (SUBSEQ n yn",
REPEAT GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC [1);;

let SUBSEQ2 = prove_thm (‘SUBSEQ2‘, "! (n:num) (x:*) (y:* list).
CONS x (SUBSEQ n y) = SUBSEQ (SUC n) (CONS x y)",
INDUCT_TAC THEN
REWRITE_TAC [SUBSEQ; HD; CONJUNCT2 TAIL;
NULL_EQ_EMPTY;NOT_CONS_NIL]);;

let SUBSEQ_SUBSEQ = prove_thm (‘SUBSEQ_SUBSEQ®,
“! (n:num) (x:* list). SUBSEQ n (SUBSEQ n x) = SUBSEQ n x",
INDUCT_TAC THENL [
(REWRITE_TAC [SUBSEQ]);
(REPEAT GEN_TAC) THEN
(REWRITE_TAC [SUBSEQ]) THEN
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(ASM_CASES_TAC "NULL (x:+* list)") THEN
(ASM_REWRITE_TAC[NULL;HD;TAIL])
IDE

let HD_APPEND_NULL =
prove_thm
(“HD_APPEND¢,
"1 11:(#)list. (T(NULL 11)) ==>
(! 12. (HD (APPEND 11 12)) = (HD 11))",
REPEAT STRIP_TAC THEN
IMP_RES_THEN (ASSUME_TAC o SYM) CONS THEN
ONCE_ASM_REWRITE_TAC [] THEN
REWRITE_TAC [APPEND; HD;]
VP

let LENGTH_TAIL =prove_thm( ‘LENGTH_TAIL®,
“!11:« list. “NULL 1 ==> (LENGTH(TAIL 1) = ((LENGTH 1) - 1))",
LIST_INDUCT_TAC THENL
[ ASM_REWRITE_TAC[NULL] ;
ASM_REWRITE_TAC[TAIL;LENGTH;SYM(SPEC_ALL PRE_SUE1) ;PRE]
]
)i

let LENGTH_TL = prove_thm(‘LENGTH_TL®,
“(!1:¢ list. “NULL 1 ==> (LENGTH(TL 1) = (PRE(LENGTH 1)))
",
REPEAT STRIP_TAC THEN
IMP_RES_TAC (TL_TAIL) THEN
UNDISCH_TAC "~NULL (1:(=)list)" THEN
ASM_REWRITE_TAC (PRE_SUB1;LENGTH_TAIL]
)i

end -- from the HOL-2.01 more_lists library.
__________ --'/.

close_theory ();;
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A.3 silolists.ml

* File: silolists.ml

* Version: 0.0

*= Date: 10/08/96
i --Y

% DO35D533D33D2322IDIDIIIDIIIIIIIIIIIDIIDIIDIIIIIIIIIIDIDIIIDIIIIIDD>
Definitions and theorems for lists.

€LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKLL Y,
loadf ‘aux/init.ml°¢;;
new_theory_safe ‘silolists¢;;

load_parent ‘list‘;; load_parent ‘silomorelists‘;;

Returns the index of an element of a list that matches a specified
element.

UNDEFINED IF ELEMENT NOT PRESENT OR IF LIST EMPTY. Safe when used
as in the following example:

(! elem :: (MEMBER elem 1lst)
((INDEX elem lst) < some_value)

Where existence of the element in the list is first checked by
MEMBER.

let INDEX = new_definition (‘INDEX‘,"
(! (el: =) (s : = 1list)
INDEX el s = (
0x. (EL x s) = el

")
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Y —mm e e -—

* extract_substring

Given a string, a starting index and a length, returns the
substring of that length beginning at the index.

Returns the empty string if the starting index plus the length is
greater than the length of the string.

let extract_substring = nevw_definition (‘extract_substring‘, "
(! (s : (*)list) i lngth .
extract_substring s i lngth =
(SUBSEQ 1lngth (NTAIL i s))
)
")s;

f ——m e e - -_—

* is_subseq_general

TRUE if the first list is a subsequence of the second.

i.e., given some lists [al;...;an] and (bl;...;bm],
is_subseq_general is TRUE if list a is empty or if there is some j
such that j+n<=m and [al;...;an] equals [b(j+1);...;b(j+n)].
_________ —_— - ———— ———— %

let is_subseq_general = new_definition (‘is_subseq_general‘, "
(! (subs) (s) : (*=)list .
is_subseq_general subs s =
3.
((j + (LENGTH subs)) <= (LENGTH s))
/\ (subs = (extract_substring s j (LENGTH subs)))
)
)
"5

§ mmmmmeeee - — — -

* is_prefix
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True if the first list is a prefix of the second.

let is_prefix = new_definition (‘is_prefix‘, "
(! (subs) (s) : (*=)list .
is_prefix subs s =
((LENGTH subs) <= (LENGTH s))
/\ (subs = (extract_substring s O (LENGTH subs)))
)
")

'/. ——— _——— ——— -

* newBUTFIRSTN

Similar to BUTFIRSTN, but defined when the list is empty, in which
case the result is the empty list (i.e., if the number of elements
to skip is longer than the list, the result is the empty list).

let newBUTFIRSTN = new_prim_rec_definition(‘newBUTFIRSTN®,
"(1(1:(*)list). newBUTFIRSTN O 1 = 1) /\
(!n (1:(*)1list).
newBUTFIRSTN(SUC n)1 = (newBUTFIRSTN n (TAIL 1)))"
)i

close_theory ();;

A.4 silomappings.ml

'/. _________________ - -

* File: silomappings.ml

* Version: 0.0

*= Date: 08/12/95

- --- %

AR5 3335535533335 5555535335355 55535 3PD PS5 S35 55553534

Definitions and theorems for Z-like partial functions.
€<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL Y,
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loadf ‘aux/init.ml‘;;
new_theory_safe ‘silomappings‘;;

load_library ‘sets‘;;

'/' ———— - e ——— - ———— - —————

* dom
The domain of a partial function.
______________ _—— %
let dom = new_definition (‘dom‘, "
(! (map : (=#=x)get).
dom map = (
{x | ?y. (x,y) IN map}
)

")

'/. ________ -—— —_—— -— -———— =

* rng
The rng of a partial function.
__________________ - - ——————,
let rng = new_definition (‘rng‘, "
(! (map : (=#**)set).
rng map = (
{y | ?x. (x,y) IN map}
)

");s

'/' _________________________ -— - e o e e
* map_rng
The rng of a partial function value. If the input set is a
mapping, the result should be a set of no more than one element
(zero, if the specified domain value is not in the domain).
--------- %
let map_rng = new_definition (‘map_rng‘, "
(! (map : (=#==)get) (d:=) .
map_rng map d = (
{y | (4,y) IN map}
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is_mapping

*x

*

A predicate that determines if a set of (*,**) pairs is a mapping.
A

mapping has no duplicates of values in its domain.
----- %

let is_mapping = new_definition (‘is_mapping‘, "
(! (map : (s#=xx)set).
is_mapping map = (
!x . (x IN (dom map) ==> SING(map_rng map x))
)

");s

Y e —————————
* map_to_extract

Extracts the value from a set containing a single value. Used to
extract a partial function value from the set returned by map_rng.
UNDEFINED IF SET SIZE > 1 OR SET SIZE = 0 (i.e. if source set not
a mapping or if there is no mapping).

_________ - —_— ——— '/.

let map_to_extract = new_definition (‘map_to_extract‘, "
(' (r : (s#)set).
map_to_extract r = (
((SING r) => CHOICE r | ARB)

)

")

Y —mmm e _—
* maps_to

*

Given a value in the domain of a mapping, returns the value it
maps to in the range.

x

UNDEFINED WHEN INPUT VALUE NOT IN THE DOMAIN OR MULTIPLY DEFINED
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(i.e., it is not a mapping).
To use safely, must use with is_mapping and dom, as in

(is_mapping m) /\ (x IN (dom m)) => maps_tom x
_______________ “

let maps_to = new_definition (‘maps_to‘, "
(! (map : (=#ss)set) (x : »).
maps_to map x = (
map_to_extract (map_rng map x)

S HH

o/. __________ ———— -————

* map_overwvrite

Replaces all pairs in one set with pairs from a second set whose
first elements match. Preserves pairs from the first set for which
there are not matching elements in the second set. Adds pairs in
the second set whose first element do not match any in the first
set. Essentially, this function returns the union of two mappings,
selecting the pair from the second set when a conflict occurs.
Like map_replace, but this function can increase the size of the
domain of a mapping.

——————————————————— l/.

let map_overwrite = new_definition (‘map_overwrite‘, "
(! (m1 m2 : (=#=+)set)
map_overwrite ml m2 = (
{(x,y) |
((x,y) IN m2) \/
(((x,y) IN m1) /\ “(x IN dom m2))
}
)
)
“)is

ARt U ———
* map_replace
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Replaces all pairs in one set with pairs from a second set whose
first elements match. Preserves pairs from the first set for which
there are not matching elements in the second set. Discards pairs
in the second set whose first element do not match any in the
first set. Like map_overwrite, but this function preserves the
domain of a mapping.

let map_replace = new_definition (‘map_replace‘, "
(' (m1 m2 : (s#*s)set)
map_replace m1 m2 = (
{(x,y) |
(((x,y) IN m2) /\ (x IN dom m1)) \/
(((x,y) IN m1) /\ “(x IN dom m2))
}
)
)
")i;

f ——mmm e ————— o e e e o e e e e v i e e o e e e

* map_remove

Removes all pairs in one set whose first elements match elements
of the second set. Preserves pairs from the first set for which
there are not matching elements in the second set. Ignores
elements in the second set whose do not match any first elements
in the first set. This function reduces the size of the domain of
a mapping.

let map_remove = new_definition (‘map_remove‘, "
(! (m1 : (s#es)set) (m2 : (*)set)
map_remove ml m2 = (
{(x,y) |
((x,y) IN m1) /\ “(x IN m2)
}
)
)
"

close_theory ();;
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A.5 silobasic.ml

* File: silobasic.ml

* Version: 0.0

* Date: 10/04/95

A ———— —_——— %

A >33333333333333333333333333333O33I3DI3333D33533555055533355555>>
The basic types and other definitions used in the silo 0S
specification.
<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL Y
loadt ‘aux/init.ml¢;;

new_theory_safe ‘silobasic‘;;

load_library ‘sets¢;;

load_parent ‘silomappings‘;;

load_parent ‘silolists‘;;

AR>S 3555555552205 5555553355555 588 S S Py r PSPPI ST S TS

Define the local and global system state types
<<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL Y

'/. —_———— ————

basic state types

* % % #

new_type_abbrev (‘task_id‘, ":num");;

'/' ——— -

*x
* local state

*

The local state for each task consists of the registers and pc.

Local state is implemented as a partial function from task_ids to
task local state.
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===,

nev_type_abbrev (‘program_counter‘, ":num");; new_type_abbrev
(‘registers‘, ":(num)list");;

new_type_abbrev (‘task_local_state‘,
" :program_counter#registers");;

nev_type_abbrev (‘local_state‘,
":(task_id#task_local_state)set");;

W A A G v A A ar A A A Ny AP A A ap ap w AY A A AP A At N A A w my a ay dw av A A A b e o ap wv v o o o

let get_ls_pc = new_definition (‘get_ls_pc‘, "
(' (1s : local_state) (tid : task_id)
get_ls_pc 1ls tid = (FST (maps_to 1ls tid))
)
"

'/' ____________________________
* get_ls_regs

let get_ls_regs = new_definition (‘get_ls_regs‘, "
(* (1s : local_state) (tid : task_id)
get_ls_regs ls tid = (SND (maps_to 1s tid))

S IHH

let put_ls_pc = new_definition (‘put_ls_pc‘, "

=%

(t (1s : local_state) (tid : task_id) (new_pc : program_counter)

put_ls_pc 1ls tid new_pc =
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193

let regs = (get_ls_regs ls tid)

in
let new_tls = (new_pc,regs)
in
(map_overwrite 1s {(tid, new_tls)})
)
“)is
A —_—

* put_ls_regs

s e s ——— ——— ——— —— —— — o

let put_ls_regs = new_definition (‘put_ls_regs‘, "
(! (Is : local_state) (tid : task_id) (regs : registers)
put_ls_regs ls tid regs =
let pc = (get_ls_pc 1ls tid)

in
let new_tls = (pc,regs)
in
(map_overwrite 1ls {(tid, new_tls)})
)

S H-

let put_ls_tls = new_definition (‘put_ls_tls‘, "
(! (s : local_state) (tid : task_id) (tls : task_local_state)
put_ls_tls 1ls tid tls =
(map_overwrite 1ls {(tid, tls)})
)
"V

./. P ——— e

*x

L)

global state types

The global state consists of the mailboxes and a sequencer used to
generate unique tags for messages.

Each mailbox is defined as a FIFO queue of messages. Messages that



are sent to the mailbox are placed by the system at the end of the
queue. Messages that are received from the mailbox by the
mailbox’s owner are read from the current head of the list. A
‘‘next’’ pointer into the list keeps track of the current head.

Messages consist of the message data and the id of the sender. The
system automatically attaches the sender’s id to the message data
as part of the SEND operation.

The complete set of mailboxes in the system are described as a
partial function from task_ids to mailboxes.

The global state is the complete set of mailboxes and the
sequencer.

nev_type_abbrev (‘sequencer‘, ":num");;

new_type_abbrev (‘msg_data‘, ":num");; new_type_abbrev (‘msg_id‘,
":sequencer");; new_type_abbrev (‘msg_def‘,
":task_id#msg_data#msg_id");;

new_type_abbrev (‘mbox_id‘, ":task_id");;

nev_type_abbrev (‘next‘, ":num");; new_type_abbrev (‘mbox_def‘,
“:next#((msg_def)list)");; new_type_abbrev (‘mboxes‘,
":(mbox_id#mbox_def)set");; new_type_abbrev

(‘global_state‘," :mboxes#sequencer");;

'/. ____________________ —————— e — e — e, — e ——r———————

* cons_msg

Construct a message out of a sender id, message data, and message
id.

—_——— e e m e — = %

let cons_msg = new_definition (‘cons_msg‘, "
(! (sndr : task_id) (mdata : msg_data) (msgid : msg_id)
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cons_msg sndr mdata msgid =
(sndr,mdata,msgid)
)
“)i;

'/. ___________ -
* get_msg_sndr

let get_msg_sndr = new_definition (‘get_msg_sndr‘, "
(! (msg : msg_def).
get_msg_sndr msg = (FST msg)
)
")

---------- %

'/. _____________ -_—
* get_msg_data

%

let get_msg_data = new_definition (‘get_msg_data‘, "
(! (msg : msg_def).
get_msg_data msg = (FST (SND msg))
)
")

* get_msg_id

let get_msg_id = new_definition (‘get_msg_id‘, "
(! (msg : msg_def).
get_msg_id msg = (SND (SND msg))
)
")

o/. _______ - = =

* cons_mbx

—mmmmmm

Construct a mailbox out of a list of messages and a next pointer.

e
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let cons_mbx = new_definition (‘cons_mbx‘, "
(! (nxt : ») (msgs : =»)
cons_mbx nxt msgs =
(nxt, msgs)
)
)i

% ————- ———

%4

let get_mbx_next = new_definition (‘get_mbx_next‘, "
(! (mbx : mbox_def).
get_mbx_next mbx = (FST mbx)
)
N HH

o/' _______________________________

* get_mbx_msgs

let get_mbx_msgs = new_definition (‘get_mbx_msgs‘, "
(! (mbx : mbox_def).
get_mbx_msgs mbx = (SND mbx)
)
N

------ %

'/. _____________ -
* get_gs_mbxs

let get_gs_mbxs = new_definition (‘get_gs_mbxs‘, "
(! (gs : global_state).
get_gs_mbxs gs = (FST gs)
)
W HH

% ————mmm e e —-——

* get_gs_seq
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let get_gs_seq = new_definition (‘get_gs_seq‘, "
(! (gs : global_state).
get_gs_seq gs = (SND gs)
)
"

% —=————- e e e m e —— —————— e e e e o o

* put_gs_mbxs

____________________ -/.

let put_gs_mbxs = new_definition (‘put_gs_mbxs‘, "
(! (gs : global_state) (new_mbxs : mboxes)
put_gs_mbxs gs new_mbxs =
let seq = (get_gs_seq gs)
in
(new_mbxs, seq)
)
"

4 —————— e e c e e - e e e e e

* get_mbxs_mbx

Returns an empty mailbox if the specified mbox id is not in the set

of mailboxes.

let get_mbxs_mbx = new_definition (‘get_mbxs_mbx‘, *
(! (mbxs : mboxes) (mbxid : mbox_id)
get_mbxs_mbx mbxs mbxid =
((mbxid IN dom(mbxs)) => (maps_to mbxs mbxid) |
0,01
)
W HH

% ————————————— e e e e

* get_gs_mbx

let get_gs_mbx = new_definition (‘get_gs_mbx‘, "
(! (gs : global_state) (mbxid : mbox_id)
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get_gs_mbx gs mbxid =
let mbxs = (get_gs_mbxs gs)
in

(get_mbxs_mbx mbxs mbxid)
)

")

A
* put_mbx_msg

Takes a mbx and msg as inputs, returns the mbx with the msg
appended.

let put_mbx_msg = new_definition (‘put_mbx_msg‘, *
(! (mbx:mbox_def) (msg:msg_def)
put_mbx_msg mbx msg =
let msgs = (get_mbx_msgs mbx) and nxt = (get_mbx_next mbx)
in
let new_msgs = (SNOC msg msgs)
in
(cons_mbx nxt new_msgs)
)
B IHH

A e

* put_mbxs_mbx

Replaces a mailbox in a set of mboxes. Has no effect if the
specified mbox id is not in the domain of mboxes.

______________ ——— ——— ————————— %

let put_mbxs_mbx = new_definition (‘put_mbxs_mbx‘, "
(! (mbxs : mboxes) (mbxid : mbox_id) (new_mbx : mbox_def)
put_mbxs_mbx mbxs mbxid new_mbx =
(map_replace mbxs {(mbxid, new_mbx)})
)
D HH

l/. __________ -

* add_mbxs_mbx

Adds a mailbox to a set of mailboxes. Overvrites an existing
mailbox with the same id.
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—_— - - - - '/.
let add_mbxs_mbx = new_definition (‘add_mbxs_mbx‘, "
(! (mbxs : mboxes) (mbxid : mbox_id) (new_mbx : mbox_def)
add_mbxs_mbx mbxs mbxid new_mbx =
(map_overwrite mbxs {(mbxid, new_mbx)})
)
S

A e
* put_mbxs_msg

Takes a destination mbx id, a set of mbxs and a msg as inputs.
Returns the set of mbxs with the msg appended to the destination

mbx.

Returns the input mbxs unchanged if the input mbox id is not in
the domain of mbxs.

___________________________ h

let put_mbxs_msg = new_definition (‘put_mbxs_msg‘, "

(! (mbxs:mboxes) (dst :mbox_id) (msg:msg_def)
put_mbxs_msg mbxs dst msg =

let mbx = (maps_to mbxs dst)

in

let new_mbx = (put_mbx_msg mbx msg)

in

(put_mbxs_mbx mbxs dst new_mbx)

")

Q/. ______________________ - ———

* put_mbxs_msg_data

put_mbx_msg_data takes a mbox_id that represents the destination
mailbox of a message, message data, a message id, a task_id that
represents the sender of a message (viz., id of a system call) and
a set of mailboxes as inputs.

Its output is a nev set of mailboxes where the message data, id
and sender’s id have been delivered (in the form of a complete
message) to the destination mailbox.
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OQutput set of mailboxes same as input if the destination is not
present in the set of mbxs.

................. =%

let put_mbxs_msg_data = new_definition (‘put_mbxs_msg_data‘, "

(! (dst:mbox_id) (mdata:msg_data) (mid:msg_id) (sndr:task_id) (mbxs :

mboxes) .
put_mbxs_msg_data dst mdata mid sndr mbxs =
let new_msg = (cons_msg sndr mdata mid)
in
(put_mbxs_msg mbxs dst new_msg)
)
“)is

* put_gs_mbx

let put_gs_mbx = new_definition (‘put_gs_mbx‘, "
(! (gs : global_state) (mbxid : mbox_id) (new_mbx : mbox_def)
put_gs_mbx gs mbxid new_mbx =
let seq = (get_gs_seq gs) and mbxs = (get_gs_mbxs gs)
in
let new_mbxs = (put_mbxs_mbx mbxs mbxid new_mbx)
in
(new_mbxs,seq)
)
")

'/. ________________________________________________________________
* put_gs_msg

Taking an input global state, put the input message into the
mailbox identified by the input mbxid. Return the modified global
state.

let put_gs_msg = new_definition (‘put_gs_msg‘, "
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(! (gs : global_state) (mbxid : mbox_id) (new_msg : msg_def)
put_gs_msg gs mbxid new_msg =
let mbxs = (get_gs._mbxs gs)
in
let new_mbxs = (put_mbxs_msg mbxs mbxid new_msg)
in
(put_gs_mbxs gs new_mbxs)
)
II);;

% —mmm———
* get_mbx_msg

Returns the message in the input mailbox pointed to by that
mailbox’s ‘‘next’’ pointer.

UNDEFINED if next >= LENGTH(mbox) (i.e., if there are no unread
msgs) . Safe if used with ‘‘mbx_is_unread_msg’’, as follows:

(mbx_is_unread_msg mbx) => (get_mbx_msg mbx) |

let get_mbx_msg = new_definition (‘get_mbx_msg‘, "
(! (mbx : mbox_def)
get_mbx_msg mbx =
let msgs = (get_mbx_msgs mbx) and nxt = (get_mbx_next mbx)
in
(EL nxt msgs)
)
“)s;

./. _____ - W e . . - — S > - - -
* mbx_is_unread_msg

Returns TRUE if there is at least one unread msg in the input
mailbox, FALSE if there are no unread messages.

let mbx_is_unread_msg = new_definition (‘mbx_is_unread_msg‘, "
(! (mbx : mbox_def)
mbx_is_unread_msg mbx =
let msgs = (get_mbx_msgs mbx) and nxt = (get_mbx_next mbx)
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in
(nxt < (LENGTH msgs))
)
i HH

% —————— -—

* read_mbx_msg

Returns the message in the input mailbox pointed to by the
‘‘next’’ pointer. Automatically increments the "next" pointer and
returns the updated mailbox along with the message.

UNDEFINED if next >= LENGTH(msgs) (i.e., if there are no unread
msgs) . Safe if used with ‘‘mbx_is_unread_msg’’, as follows:

(mbx_is_unread_msg mbx) => (read_mbx_msg mbx) |

let read_mbx_msg = new_definition (‘read_mbx_msg‘, *
(! mbx .

read_mbx_msg mbx =
let msgs = (get_mbx_msgs mbx) and nxt = (get_mbx_next mbx)

in
let msg = (EL nxt msgs) and new_nxt = (nxt+1)
in
(msg, (cons_mbx new_nxt msgs))
)
")
S - e _— _—

* get_gs_msg

Returns the message in the specified mailbox pointed to by that
mailbox’s ‘‘next’’ pointer.

UNDEFINED if next >= LENGTH(msgs) (i.e., if there are no unread
msgs) . Safe if used with ‘‘gs_is_unread_msgs’’, as follows:

(gs_is_unread_msgs gs mbxid) => (get_gs_msg gs mbxid) |

%

let get_gs_msg = new_definition (‘get_gs_msg‘, "
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(! (gs : global_state) (mbxid : mbox_id)
get_gs_msg gs mbxid =
let mbx = (get_gs_mbx gs mbxid)
in
(get_mbx_msg mbx)
)
")is

l/. ___________________________
* gs_is_unread_msg

Returns TRUE if there is at least one unread msg in the specified
mailbox, FALSE if there are no unread messages.

let gs_is_unread_msg = new_definition (‘gs_is_unread_msg‘, "
(! (gs : global_state) (mbxid : mbox_id)
gs_is_unread_msg gs mbxid =
let mbx = (get_gs_mbx gs mbxid)
in
(mbx_is_unread_msg mbx)
)
“)is

Attt R - —— e e

* inc_mbx_next

Increments the ‘‘next’’ pointer in a mailbox.

let inc_mbx_next = new_definition (‘inc_mbx_next‘, "
(! (mbx : mbox_def)
inc_mbx_next mbx =
let msgs = (get_mbx_msgs mbx) and nxt = (get_mbx_next mbx)
in
((nxt+1), msgs)
)
")

A - ——— e m e c e

* inc_mbxs_mbx_next
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Increments the ‘‘next’’ pointer in a specified mailbox.

No effect if the specified mailbox does not exist.
----- - - %

let inc_mbxs_mbx_next = new_definition (‘inc_mbxs_mbx_next‘, "
(! (mbxs : mboxes) (mbxid : mbox_id)
inc_mbxs_mbx_next mbxs mbxid =
let mbx = (get_mbxs_mbx mbxs mbxid)

in
let incremented_mbox = (inc_mbx_next mbx)
in
(put_mbxs_mbx mbxs mbxid incremented_mbox)
)
")

- - o

* inc_gs_mbx_next

Increments the ‘‘next’’ pointer in a specified mailbox.

let inc_gs_mbx_next = new_definition (‘inc_gs_mbx_next‘, "
(! (gs: global_state) (mbxid : mbox_id)
inc_gs_mbx_next gs mbxid =
let mbx = (get_gs_mbx gs mbxid)
in
let incremented_mbox = (inc_mbx_next mbx)
in
(put_gs_mbx gs mbxid incremented_mbox)
)
Vs

'/. ________________ - —_—

* inc_gs_seq

Increments the global state sequencer.

let inc_gs_seq = new_definition (‘inc_gs_seq‘, "
(t (gs : global_state).
inc_gs_seq gs =



let mbxs = (get_gs_mbxs gs) and seq = (get_gs_seq gs)
in
(mbxs, (seq+1))
)
")is

AR>S 5555555355555 5555353535555 DS D535 >SS PSS

Define the complete system state
<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLCLLLLLLLLLLLLLLLLLLLLLLKL Y

%

complete system state

The complete system state consists of the local state and the
global state.

* ==== R ———— %

system state utility functions

L e R R adedde e X X ./
(]

Y mmmmmmmmem————mm—————————— - e
* get_ss_ls

let get_ss_ls = new_definition (‘get_ss_ls‘, "
(! (ss : system_state).
get_ss_ls ss = (FST ss)
)
")

h - - S —

* get_SS_gs

let get_ss_gs = new_definition (‘get_ss_gs‘, "
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(! (ss : system_state).
get_ss_gs ss = (SND ss)
)
B HH

f ——mmm e — ——

* put_ss_1ls

Replaces the local state in a system state with the input local
state.

.......................... %

let put_ss_ls = new_definition (‘put_ss_ls‘, "
(! (ss : system_state) (new_ls : local_state)
put_ss_ls ss new_1ls =
let gs = (get_ss_gs ss)
in
(new_ls,gs)
)
“Vis

* put_ss_gs

Replaces the global state in a system state with the input global
state.

let put_ss_gs = new_definition (‘put_ss_gs*, "
(! (ss : system_state) (new_gs : global_state)
put_ss_gs Ss nev_gs =
let 1s = (get_ss_1s ss)
in
(1s,new_gs)

“J;s

% —m——————— - ——— - -_—

* good_mbxs

The conditions the mboxes must alwvays satisfy in order to be
self-consistent. These conditions are as follows:
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1) The set of mailboxes must be a mapping (viz., there must be a
one to one mapping between mailbox ids and the lists of messages).

2) For each mbox, the pointer to the next message to read must be
less than or equal to the length of the list of messages. (If the
pointer equals the length then the maibox is empty.)

let good_mbxs = new_definition (‘good_mbxs‘, "
(! (mbxs : mboxes)
good_mbxs mbxs =
% condition 1%
(is_mapping mbxs) /\
% condition 2%
(‘mbx . (mbx IN (rng mbxs)) ==
((get_mbx_next mbx) <= (LENGTH (get_mbx_msgs mbx)))

)
");s

'/. _______ ————

* good_gs

The conditions the global state must always satisfy in order to be
self-consistent. These conditions are as follows:

1) The mboxes must be self-consistent.

2) All messages in all mailboxes must have msg ids that are less
than the current value of the sequencer.

let good_gs = new_definition (‘good_gs‘, "
(! (gs : global_state)
good_gs gs =
let mbxs = (get_gs_mbxs gs) and seq = (get_gs_seq gs)
in
% condition 1Y
((good_mbxs mbxs) /\
% condition 2Y%
(!mbx . (mbx IN (rng mbxs)) ==>
(!msg . (MEMBER msg (get_mbx_msgs mbx)) ==
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((get_msg_id msg) < (seq))
)
))
)

")

e m e e e
* good_ls

The conditions the local state must always satisfy in order to be
self-consistent. These conditions are as followvs:

1) The local state must be a one-to-one mapping between task ids
and task local states.

let good_1ls = new_definition (‘good_1ls‘, "
(! (1s : local_state).
good_1ls 1s =
% condition 1Y%
(is_mapping 1s)
)

")

% ———mm e - ————— e ————————————

* good_sys_state

The conditions the system state must always satisfy in order to be
self-consistent. These conditions are as follows:

1) The global state is self-consistent.

2) The local state is self-consistent.

let good_sys_state = new_definition (‘good_sys_state‘, "
(! (ss : system_state).
good_sys_state ss =
let 1s = (get_ss_l1s ss) and gs = (get_ss_gs ss)
in (
% condition 1%
(good_gs gs) /\
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% condition 2%
(good_1s 1s8)
))
")

close_theory();;

A.6 F-FG.ml
h====- -—

* File: F-FG.ml
* Version: 0.0
* Date: 05/20/98

Replaced F_func and G_func with universally quantified functionms.

- %

% O33355533333333333333O33333333333335335353335>>33>335>3333>33>3>>
The composition of the F and FG servers.

€€ CLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLCLLLLLLLLKLLLC Y

loadt ‘aux/init.ml‘;; new_theory_safe ‘F-FG‘;; load_library
‘sets‘;; load_parent ‘silobasic‘;;

%
F and FG ids.

The mailbox and task ids of the F and FG servers.
---------- %

new_constant(‘F_ID®, ":num");; new_constant(‘FG_ID‘, ":num");;

'/. —— - ===

F internal state.

The internal state of the F server specification. This state is
modifiable only by the F server specification, and not by the
environment.
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Consists of the F work buffer. The work buffer is a single length
message buffer. A boolean flag is used to indicate if the buffer
is empty (FALSE) or full.

nev_type_abbrev (‘F_work_buf‘, “:msg_def");; new_type_abbrev
(‘F_work_buf_flag‘, ":bool");;

new_type_abbrev
(‘F_internal_state‘,":F_work_buf#F_work_buf_flag");;

l/. __________ - - - -

* Fs_get_buf

Extracts the F buffer from an F state. Automatically resets the
flag.

let Fs_get_buf = new_definition (‘Fs_get_buf‘, "
(! (Fs : F_internal_state).
Fs_get_buf Fs =
let (buf, flag) = Fs
in
(buf, (buf, F))

* get_Fs_buf

Extracts the F buffer from an F state.

------- - %

let get_Fs_buf = new_definition (‘get_Fs_buf‘, "
(! (Fs : F_internal_state).
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get_Fs_buf Fs = (FST Fs)
)
")

% _____________ ——— - - -

* Fs_get_flag

Extracts the F work buffer flag from an F state.

_________________ — x
let Fs_get_flag = new_definition (‘Fs_get_flag‘, "
(! (Fs : F_internal_state).
Fs_get_flag Fs = (SND Fs)
)
A

% ................... ————

* Fs_put_buf

Replaces the F work buffer in a F state with the input msg.
Automatically sets flag to TRUE.

let Fs_put_buf = new_definition (‘Fs_put_buf‘, "
(! (Fs : F_internal_state) (nev_msg : msg_def)
Fs_put_buf Fs new_msg =
(new_msg,T)
)
“)ss

'/. ________ -

FG internal state.

The internal state of the FG server specification. This state is
modifiable only by the FG server specification, and not by the
environment.

The FG internal state consists of a work buffer for the current
message that has just been read, and a pending queue of messages
whose responses have not yet been sent. A boolean flag is used to
indicate if the buffer is full (TRUE) or not. A "next" pointer is
used to keep track of the head of the queue.
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nev_type_abbrev (‘FG_buf‘, ":msg_def");; new_type_abbrev
(‘FG_flag‘, ":bool");;

nev_type_abbrev (‘FG_queue‘, ":(msg_def)list");;

nev_type_abbrev (‘FG_internal_state‘,":FG_buf#FG_flag#FG_queue");;

./. _________ - —— -—— —

* FGs_get_buf

Extracts the FG buffer from an FG state. Automatically resets the
flag.

let FGs_get_buf = new_definition (‘FGs_get_buf‘, "
(t (FGs : FG_internal_state).
FGs_get_buf FGs =
let (buf, flag, que) = FGs
in
(buf, (buf, F, que))
)
")

‘/. ___________________________ - e = = = e e o -
* get_FGs_buf

Extracts the FG buffer from an FG state.

let get_FGs_buf = new_definition (‘get_FGs_buf‘, "
(! (FGs : FG_internal_state).
get_FGs_buf FGs = (FST FGs)
)

")
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%h --—- -

* FGs_get_flag

Extracts the FG flag from an FG state.

let FGs_get_flag = new_definition (‘FGs_get_flag‘, "
(! (FGs : FG_internal_state).
FGs_get_flag FGs = (FST (SND FGs))
)
")s;

Y —mme——————— - - - e e e o e e e o o o o o

* FGs_get_queue

Extracts the FG queue from an FG state.

let FGs_get_queue = new_definition (‘FGs_get_queue‘, "
(! (FGs : FG_internal_state).
FGs_get_queue FGs = (SND (SND FGs))
)
")s;

‘/. ________________________________________________________________
* FGs_put_buf

Replaces the FG buffer in a FG state with the input msg.
Automatically sets flag to TRUE.

let FGs_put_buf = new_definition (‘FGs_put_buf‘, "
(! (FGs : FG_internal_state) (msg : msg_def)
FGs_put_buf FGs msg =
let (buf, flag, que) = FGs
in
(msg, T, que)

“);;
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% —-
* FGs_put_queue_msg

Adds the input message to the end of the queue.

----------- %

let FGs_put_queue_msg = new_definition (‘FGs_put_queue_msg‘, "
(! (FGs : FG_internal_state) (msg : msg_def)
FGs_put_queue_msg FGs msg =
let (buf, flag, que) = FGs
in
(buf, flag, (SNOC msg que))
)
")is

'/. ______ - -

* FGs_is_pending

Returns TRUE if there is at least one unread msg in the FG queue
(i.e., for which a response is pending).

let FGs_is_pending = new_definition (‘FGs_is_pending‘, "
(! (FGs : FG_internal_state)
FGs_is_pending FGs =
let (buf, flag, que) = FGs
in
(0 < LENGTH que)

"“);s

h === S

* FGs_get_queue_msg

Returns the message at the head of the queue. Automatically
removes the message from the queue and returns the updated FG
state along with the msg.

UNDEFINED if there are no unread msgs. Safe if used with
‘‘FGs_is_pending’’, as followvs:



(FGs_is_pending FGs) => (FGs_get_queue_msg FGs) | ...

let FGs_get_queue_msg = new_definition (‘FGs_get_queue_msg‘, "
(! (FGs : FG_internal_state)
FGs_get_queue_msg FGs =
let (buf, flag, que) = FGs
in
let msg = HD que
and new_mbx = TL que
in
(msg, (buf, flag, new_mbx))

"V

'/. S —— Sp—

Trace definition

L R

The specification for a system is a set of all possible traces of
events in that system. Traces are represented as a list of
(agents, state) pairs, called "trace_elements". The agent in a
trace_element performed an atomic action to move the system from
the preceding state to the state in the trace_element.

Agents can be either part of the environment or the system that we
are specifying.

The state in the first trace_element in a trace is the initial
system state. The agent in the first trace_element is undefined
(because there is no preceding state from which to transition to
the initial state).

The system state for this example consists of the global state in

the system, plus the system’s internal state.
* sz=ua = = === %

let Agent_Axiom =
save_thm(‘Agent_Axiom‘,
define_type ‘Agent‘
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‘Agent

D

let Agent_INDUCT =
save_thm(‘Agent_INDUCT®,
prove_induction_thm Agent_Axiom);;
let Agent_CASES =
save_thm( ‘Agent_CASES‘,
prove_cases_thm Agent_INDUCT);;
let Agent_DISTINCT =
save_thm( ‘Agent _DISTINCT®,
prove_constructors_distinct Agent_Axiom);;

let TLabel_Axiom =
save_thm(‘TLabel_Axiom°,
define_type ‘TLabel
‘TLabel = FREADS
| FRESPONDS
| FGREADS
| FGRESPONDS
| STUTTER
D

let TLabel INDUCT =
save_thm( ‘TLabel _INDUCT?,
prove_induction_thm TLabel_Axiom);;
let TLabel _CASES =
save_thm(‘TLabel _CASES‘,
prove_cases_thm TLabel_INDUCT);;
let TLabel DISTINCT =
save_thm(‘TLabel _DISTINCT®,
prove_constructors_distinct TLabel_Axiom);;

nev_type_abbrev (‘trace_istate‘,
":F_internal_state#FG_internal_state");; new_type_abbrev
(‘trace_state‘, ":mboxes#trace_istate");;

new_type_abbrev (‘trace_element‘, ":Agent#TLabel#trace_state");;
nev_type_abbrev (‘trace_def‘, ":num->trace_element");;



trace utility functions

These first functions are not directly used by the specificationms.

e A R R R R R I e ko T W R P R

f ——mmmr e
* get_trace_istate

Extracts the internal state from the trace state.

let get_trace_istate = new_definition (‘get_trace_istate,
(! (ts : trace_state)
get_trace_istate ts = (SND ts)
)
i

- %

f —mm——————— -—

* put_trace_istate

%

let put_trace_istate = new_definition (‘put_trace_istate‘,
(! (ts : trace_state) (new_is : trace_istate)
put_trace_istate ts new_is =
let (mbxs, old_is) = ts
in
(mbxs, new_is)
)
V5

f mmm e

* get_is_Fs

let get_is_Fs = new_definition (‘get_is_Fs‘, "
(! (is : trace_istate)
get_is_Fs is =
let (Fs, FGs) = is
in
(Fs)
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u/' ______ —_— - - —

*+ get_is_FGs

let get_is_FGs = new_definition (‘get_is_FGs‘, "
(! (is : trace_istate)
get_is_FGs is =
let (Fs, FGs) = is
in
(FGs)
)
")is

‘/. ...........................

* put_is_Fs

%

%

let put_is_Fs = new_definition (‘put_is_Fs‘, "

(' (is : trace_istate) (new_Fs : F_internal_state)

put_is_Fs is new_Fs =
let (old_Fs, FGs) = is
in
(new_Fs, FGs)
)
")

'/. __________________ - —— —————

* put_is_FGs

let put_is_FGs = new_definition (‘put_is_FGs‘, "

(! (is : trace_istate) (new_FGs : FG_internal_state)

put_is_FGs is new_FGs =
let (Fs, 0ld_FGs) = is
in

(Fs, new_FGs)

")
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e e e e e
trace utility functions used by specifications
---------------------------------------------------------------- ./.
'/. ________ ———
* get_trace_agent
__________ - %
let get_trace_agent = new_definition (‘get_trace_agent®, "
(! (tel : trace_element).
get_trace_agent tel = (FST tel)
)
“)ss
'/. - P . — ——— ————————— - — — — — —— ——— T - ————— o - —
* get_trace_tlabel
_________________________ Y%
let get_trace_tlabel = new_definition (‘get_trace_tlabel‘, *
(! (tel : trace_element).
get_trace_tlabel tel = FST(SND tel)
)
")is
'/. ________________________________________
* get_trace_state
___________ _— - S

let get_trace_state = new_definition (‘get_trace_state‘, "

(! (tel : trace_element).
get_trace_state tel = SND(SND tel)
)
“)is

A

* get_trace_mbxs

%



let get_trace_mbxs = new_definition (‘get_trace_mbxs‘, "
(! (ts : trace_state)
get_trace_mbxs ts = (FST ts)
)
")is

Ay ——— —— e ————————————————

__________________________ —_———— —_— ——————— %

let get_trace_not_mbxs = new_definition (‘get_trace_not_mbxs‘, "
(! (ts : trace_state)
get_trace_not_mbxs ts = (SND ts)
)
W

% ———————— -_—— - -—

* get_trace_Fs

let get_trace_Fs = new_definition (‘get_trace_Fs‘, "
(! (ts : trace_state)
get_trace_Fs ts = (get_is_Fs (get_trace_istate ts))
)
“)i;

'/' ___________________ -
* get_trace_FGs

let get_trace_FGs = new_definition (‘get_trace_FGs‘, "
(! (ts : trace_state)
get_trace_FGs ts = (get_is_FGs (get_trace_istate ts))
)
")

n/. __________ _— Sy

* put_trace_mbxs
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let put_trace_mbxs = new_definition (‘put_trace_mbxs‘, "
(! (ts : trace_state) (new_mbxs : mboxes)

)

put_trace_mbxs ts new_mbxs =
let (old_mbxs, is) = ts
in

(new_mbxs, is)

")

/A —— -
* put_trace_Fs

let
¢

)
")is;

% —-

let
@

“)is

put_trace_Fs = new_definition (‘put_trace_Fs‘, "
(ts : trace_state) (mew_Fs : F_internal_state)

put_trace_Fs ts new_Fs =

let (mbxs, old_is) = ts

in
let (old_Fs, FGs) = old_is
in
let new_is = (new_Fs, FGs)
in

(mbxs, new_is)

%

put_trace_FGs = new_definition (‘put_trace_FGs‘, "
(ts : trace_state) (new_FGs : FG_internal_state)

put_trace_FGs ts new_FGs =

let (mbxs, old_is) = ts

in
let (Fs, o0ld_FGs) = old_is
in
let new_is = (Fs, new_FGs)
in

(mbxs, new_is)

- %
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Define FG environment state transition relation
<<L<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLCLLLLLLCLLLL Y

‘/. === Pp— —

environment state transition relation (safety properties)

These functions and predicates define the state transition
relation (safety properties) for the environment. In this case,
the environment consists of the 0S and other tasks.

Y e

* FG_env_invariant

The conditions of the system state, once established for the
initial state, that must be preserved by all state transitions as
an invariant

let FG_env_invariant = new_definition (‘FG_env_invariant‘, "
(! (mbxs : mboxes)
FG_env_invariant mbxs =
% F server must have mailbox ¥
(F_ID IN (dom mbxs)) /\
% FG server must have mailbox Y%
(FG_ID IN (dom mbxs))
)
")

Y e —— e
* FG_env_SEND

Returns TRUE if the cause of the state transition between ss1 and
ss2 is a message arriving in the FG mailbox. The message must have
a sender id other than FG_ID, because the FG server did not send
the message.
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let FG_env_SEND = new_definition (‘FG_env_SEND‘, "
(! (ss1 ss2 : trace_state)
FG_env_SEND ssl1 ss2 =
let (mbxsi, FGs1) = ((get_trace_mbxs ssl), (get_trace_FGs ss1))
and (mbxs2, FGs2) = ((get_trace_mbxs ss2), (get_trace_FGs ss2))

in
let FGmbx1l = (get_mbxs_mbx mbxsil FG_ID)
and FGmbx2 = (get_mbxs_mbx mbxs2 FG_ID)
in (

((dom mbxsl) = (dom mbxs2)) /\
(FGs1 = FGs2) /\
(? msg .
let sndr = (get_msg_sndr msg)
in (
(sndr IN (dom mbxs1)) /\
~“(sndr = FG_ID) /\
((put_mbx_msg FGmbxl msg) = FGmbx2)

Y mm e e - -
* FG_env_arb

Returns TRUE if the cause of the state tramnsition between ssl and
ss2 is a state change to any state components other than the FG
mailbox, the FG internal state, and the domain of the mailboxes.

_______________ - - -%

let FG_env_arb = new_definition (‘FG_env_arb‘, "

(! (ssi ss2 : trace_state)

FG_env_arb ssl1 ss2 =
let (mbxsi, FGs1) = ((get_trace_mbxs ssl), (get_trace_FGs ss1))
and (mbxs2, FGs2) = ((get_trace_mbxs ss2), (get_trace_FGs ss2))
in
let FGmbxl = (get_mbxs_mbx mbxsl FG_ID)
and FGmbx2 = (get_mbxs_mbx mbxs2 FG_ID)
in (

((dom mbxsl) = (dom mbxs2)) /\
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(FGs1 = FGs2) /\
(FGmbx1 = FGmbx2)

“)i;

Y ————————— - ——

* FG_env_safety
In english:

For all elements of the trace, t1 and t2, where t2 is the
immediate successor to t1 and wvhere the agent in t2 is not SYS_FG
the states in t1 and t2 must be identical
or the state transition must satisfy the safety
properties for one of the possible state transitions

Valid state transitions for the FG environment are as follows:

1) A message arriving in the FG mailbox, but the sender id may not
be FG_ID.

2) Any other state change so long as the FG mailbox, FG private
state, and domain of mailboxes are not affected.

No environment state transition may affect the internal state of
the FG server.

let FG_env_safety = new_definition (‘FG_env_safety‘,
"(! (trace : trace_def).
FG_env_safety trace =
(! (i : num)
let t1 = (trace i)
and t2 = (trace(SUC i))
in (
“((get_trace_agent t2) = SYS_FG) ==
let ss1 = (get_trace_state t1)
and ss2 = (get_trace_state t2)
in (
% no system state change or Y
(ss1 = 8s82) \/
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% a message arrives in the FG mailbox ¥
(FG_env_SEND ss1 ss2) \/
% any other state change that does not affect FG
but still satisfies the invariant %
(FG_env_arb ss1 ss2)
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Define FG server state transition relation
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*

*

FG server state transition relation (safety properties)
These functions and predicates define the atomic state transition
relation (safety properties) for the FG server.

These transitions consist of the FG server reading a message from
its mailbox and sending a response message.

'/. ________ e o e e e o o e e e e o e e e e
* FG_reads_msg

FG reads a message from its mailbox and puts it in the work
buffer.

FG_reads_msg takes a global state (mailboxes) and FG internal
state as input.

Its output is a new system state where the next readable message
in the FG system mailbox has been read and placed into the "work"
buffer and the "next" pointer of the FG mailbox has been advanced.
If there is no unread message in the mailbox, or if there is



already a message in the work buffer, the input system state is
returned unchanged.

""""" - - - %

let FG_reads_msg = new_definition (‘FG_reads_msg‘, "
(! ss .
FG_reads_msg ss =
let (mbxs, FGs) = ((get_trace_mbxs ss), (get_trace_FGs ss))
in
let mbx = (get_mbxs_mbx mbxs FG_ID)

in
% Check if no messages or if message already in work buffer.
If so, return state unchanged. %
((("mbx_is_unread_msg mbx) \/ (FGs_get_flag FGs)) => ss |
% Otherwise, read message... %
(let (msg, new_mbx) = (read_mbx_msg mbx)
in

% put back the modified mailbox Y%
let new_mbxs = (put_mbxs_mbx mbxs FG_ID new_mbx)
% put msg in work buffer %
and new_FGs = (FGs_put_buf FGs msg)
in
(put_trace_mbxs (put_trace_FGs ss new_FGs) new_mbxs)
))
)
")

f e e

*« FG_reads

True if the second system state is reached from the first due to
FG reading a message from its mailbox.

let FG_reads = new_definition (‘FG_reads‘, "
(! ss1 ss2 .
FG_reads ssl ss2 =
(ss2 = (FG_reads_msg ssl1))
)
")
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% ———— -_—

* FG_push_request

FG pushes a request message onto its queue and sends a request to
the F server.

oo -- - %

let FG_push_request = new_definition (‘FG_push_request‘, "
(! ss (G_func:num->num).
FG_push_request ss G_func =

let (mbxs, FGs) = ((get_trace_mbxs ss), (get_trace_FGs ss))
in
let (bufmsg, FGsl) = (FGs_get_buf FGs) % FGs1 has cleared buffer,
in

% put request message on queue Y%
let new_FGs = (FGs_put_queue_msg FGsl bufmsg)
in

% create message to send to F %
let bufmdata = (get_msg_data bufmsg) and bufmid =
(get_msg_id bufmsg)
in
let msg_for_F = (cons_msg FG_ID (G_func bufmdata) bufmid)
in

% send message to F
let new_mbxs = (put_mbxs_msg mbxs F_ID msg_for_F)
in

(put_trace_mbxs (put_trace_FGs ss new_FGs) new_mbxs)

")

% —————— - -—

* FG_send_response
FG sends a message in response to a request message.

The request message should be at the head of the FG queue. Data
for the response message comes out of the message in the buffer.
The destination for the response message is the sender of the
original request.
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Output is a new system state where the request message has been
removed from the queue and the response messages has been placed
in the destination mailbox.

If there is no message in the queue, the buffer is emptied and no
response message is sent. This condition should never happen if
the F server works properly, but is included in the spec to insure
that the resulting state is always defined.

let FG_send_response = new_definition (‘FG_send_response‘,
"(! ss .
FG_send_response ss =
let (mbxs, FGs) = ((get_trace_mbxs ss), (get_trace_FGs ss))
in
let (bufmsg, FGs1) = (FGs_get_buf FGs)
in
% FGs1 has cleared buffer %
((FGs_is_pending FGsl1) =>
(let (rqst, new_FGs) = (FGs_get_queue_msg FGs1)

in
let bufmdata = (get_msg_data bufmsg)

in

let rsrc = (get_msg_sndr rqst) and rmid = (get_msg_id rgst)
in

% create response message 7%
let response = (cons_msg FG_ID bufmdata rmid)
in
% send response message Y
let new_mbxs = (put_mbxs_msg mbxs rsrc response)
in
(put_trace_mbxs (put_trace_FGs ss new_FGs) new_mbxs)) |
(put_trace_FGs ss FGs1)

l/. ________________ -—— e —

* FG_responds_msg
FG responds to the message in its "work" buffer.

FG_responds_msg takes a system state as input.



If the message in the buffer is from a task other than the F
server, FG pushes the message on its queue and sends a message to
the F server that contains G(v) as its data, where ‘‘v’’ was the
data value in the original message.

If the message in the buffer is from the F server, then it is a
response from the F server to an earlier message sent by FG, and
contains a data value F(G(v)). The original request message that
started this whole process (and that contains v) should be at the
head of the FG queue. FG generates a response message for this
request, containing the F(G(v)) data value and the original id of
the request message, and removes the request from the queue.

The output is a new system state where the buffer has been
emptied, the rest of the FG internal state was modified as
described above, and a request message sent to the F server or a
response message sent to another task. If there is no message
already in the work buffer, the input system state is returned
unchanged.

let FG_responds_msg = new_definition (‘FG_responds_msg‘, "
(! ss (G_func:num->num).
FG_responds_msg ss G_func =
let (mbxs, FGs) = ((get_trace_mbxs ss), (get_trace_FGs ss))
in
% Check if work buffer has a message.’
% If not, return state unchanged. %
((~(FGs_get_flag FGs)) => ss |
% Otherwise, check who sent the message 7

(let (bufmsg, FGs1) = (FGs_get_buf FGs) % FGsi1 has cleared buffer’,

in
let bufsrc = (get_msg_sndr bufmsg)
in
% If sender is not F, J
% put request message on queue and send message to F 7
((~(bufsrc = F_ID)) => (FG_push_request ss G_func) |
% Othervise, F sent the message. %
% remove rqst message from queue and send response. %
(FG_send_response ss)
)))
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* FG_responds

True if the second system state is reached from the first due to
FG responding to a message in its work buffer.

let FG_responds = new_definition (‘FG_responds‘, *
(! ss1 ss2 (G_func:num->num).
FG_responds ssl1 ss2 G_func =
(ss2 = (FG_responds_msg ss1 G_func))
)
i IHF

./' ________  — . — — —— — " > - — A T > T e S P T S W = — -

* FG_safety

In english:

For all elements of the trace, tl and t2, where t2 is the
immediate successor to tl and where the agent in t2 is FG
the states in tl1 and t2 must be identical
or the state transition must satisfy the safety
properties for one of the possible state transitions

Valid state transitions for FG are as follows:

Reading a message from the FG system mailbox and sending a
response message to the sender.

let FG_safety = new_definition (‘FG_safety‘,
“(! (trace : trace_def) (G_func:num->num).
FG_safety trace G_func =
(¢ (i : num)
let t1 = (trace i)
and t2 = (trace(SUC i))
in (
((get_trace_agent t2) = SYS_FG) ==>
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let ss1 = (get_trace_state t1)
and ss2 = (get_trace_state t2)
in (
% no state change Y%
(((get_trace_tlabel t2)
% or a legal transition %
(((get_trace_tlabel t2) = FGREADS) /\ (FG_reads ssi ss2)) \/
(((get_trace_tlabel t2) = FGRESPONDS) /\
(FG_responds ss1 ss2 G_func))

STUTTER) /\ (ss1 = ss2)) \/

)
)ll
)
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Define FG server progress properties
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FG server state progress properties

* # »

These properties assert that the FG server will eventually read
all messages and send responses.

Assuming that the vork buffer is eventually emptied, performing a
FG_read operation will read the next unread message in FG’s
mailbox. FG_reads_progress guarantees that the read will
eventually happen. An (eventually) empty work buffer is guaranteed
by the progress property on the FG_responds operation. In this way
we guarantee that all input messages (requests) will eventually be
read and generate responses.

The progress properties for the FG server alone do not specify
that a response message will ever be generated. That depends on
the F server sending a response the FG server.

This method of specifying progress properties is possible because
of the way we wrote the safety properties. They were written to
only cause a state change wvhen conditions were correct so that the
operation could be performed. Othervise, performing either
operation causes no state change. Thus, our progress properties



specify "busy-waiting" on the part of the server.

This method is essentially that of UNITY.

. ==z=sssszsassss),

‘/. - - - ———— — o - = = -

* FG_reads_progress

A progress property for the ‘‘FG’’ system call that asserts that,
starting from any point in the trace, FG will eventually perform
an FG_reads operation.

In english:

For all “‘i’’ (viz., a trace_element in a trace)
there is some ‘‘j’’ (also a trace_element in the trace)
such that j is later in the trace than i
and whose agent is SYS_FG (i.e., the agent responsible for the
transition)

and the reason for the state transition is
a FG_reads_msg step

and in all intermediate steps between i and j
a FG_reads_msg step did not occur.

let FG_reads_progress = new_definition (‘FG_reads_progress‘,
“(! (trace : trace_def)
FG_reads_progress trace =

(! (i : num)

(? (j : num)
<= j) /\

(get_trace_state(trace (SUC j)) =

(FG_reads_msg (get_trace_state(trace j))))

* FG_responds_progress
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A progress property for the ‘‘FG’’ system call that asserts that,
starting from any point in the trace, FG will eventually perform
an FG_responds operation.

In english:

For all “‘i’’ (viz., a trace_element in a trace)
there is some ‘‘j’’ (also a trace_element in the trace)
such that j is later in the trace than i
and whose agent is SYS_FG (i.e., the agent responsible for the
transition)

and the reason for the state transition is
a FG_responds_msg step

and in all intermediate steps between i and j
a FG_responds_msg step did not occur.

______ - ——————————— %

let FG_responds_progress = new_definition (‘FG_responds_progress‘,
"(! (trace : trace_def) (G_func:num->num)
FG_responds_progress trace G_func =
(! (i : num)
(? (j : num)

(i <= j) /\
(get_trace_state(trace (SUC j)) =
(FG_responds_msg (get_trace_state(trace j)) G_func))

* FG_progress

The progress properties for the FG system call.

%
let FG_progress = new_definition (‘FG_progress‘, "
(! (trace : trace_def)
FG_progress trace =
(FG_reads_progress trace) /\



(FG_responds_progress trace)
)
")
%
'/. - -

* FG_env_progress

The progress properties for the FG system call environment.

There are no progress properties defined because the server is
purely reactive, so this property is always TRUE.

let FG_env_progress = new_definition (‘FG_env_progress‘, "
(t (trace : trace_def) .
FG_env_progress trace =
T
)
")is
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Define FG initial state
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initial state

* environmental requirements for initial system state

The requirements on the system state consist of structural
consitency requirements on the data, wvhich must remain invariant
in every state in a trace, and initial policy conditions (e.g.,
that mailboxes are initially empty).

The environment does not specify any initial conditions on the FG
server’s internal state.

* FG’s requirements for initial internal state

FG’s requirements for its initial internal state are that its work
buffer is empty.
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% ——- —_—

* FG_good_init_mbxs

The environmental requirements on the intial system state that are
due to system policy.

We require that all mailboxes are initially empty. We require this
as a convenience, since it is easier than, for example, specifying
the relationship between request and response messages in the
initial state.

let FG_good_init_mbxs = new_definition (‘FG_good_init_mbxs‘, "
(! (mbxs : mboxes)
FG_good_init_mbxs mbxs =
(! mbx . (mbx IN (rng mbxs)) ==>
("mbx_is_unread_msg mbx)
)
)
")

% -- ———— ——— ———

* FG_env_init
The complete definition of a good initial system state.

The initial system state is correct if it is self-conistent and if
it satisfies all policy requirements.

The consistency of the system state, once established for the
initial state, must be preserved by all state transitions as an
invariant (i.e., we have to prove that it is invariant).

———— o i —— = - —— '/.

let FG_env_init = new_definition (‘FG_env_init¢, "
(! (trace : trace_def)
FG_env_init trace =
% need unique mailboxes for the servers Y
“(F_ID = FG_ID) /\
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% require at least one trace element so we have an initial state %
% ((LENGTH trace) > 0) /\
let init_t = (EL O trace)’
let init_t = (trace 0)
in
let mbxs = (get_trace_mbxs (get_trace_state init_t))
in (
(FG_env_invariant mbxs) /\
% self-consistency %
(good_mbxs mbxs) /\
% policy req’s %
(FG_good_init_mbxs mbxs)
)

")

The definition of a good internal state for the FG server.

The buffer and queue must be empty (i.e., there are no responses
pending) .

FG cannot specify any initial conditions on the mailboxes, whose
initial condition is reserved for the environment.

let FG_init = new_definition (‘FG_init®¢, "
(! (trace : trace_def)
FG_init trace =
% no need to require at least one trace element because already
specified by FG_env_init. 7
% let init_t = (EL O trace)’
let init_t = (trace 0)
in
let FGs = (get_trace_FGs (get_trace_state init_t))
in (
("FGs_get_flag FGs) /\
("FGs_is_pending FGs)
»)
")i;
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* FG_system_specification

%
let FG_system_specification = new_definition
(‘FG_system_specification‘, "
FG_system_specification =
{ trace : trace_def |
((FG_env_init trace) /\
(FG_env_safety trace) /\
(FG_env_progress trace)) ==>
((FG_init trace) /\
(FG_safety trace) /\
(FG_progress trace))
}
“)is
%
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Define F environment state transition relation
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environment state transition relation (safety properties)
These functions and predicates define the state transition

relation (safety properties) for the environment. In this case,
the environment consists of the 0S and other tasks.

¢ ==== ======= %

b ————m——————————m e e e e e e o e e e e o e e

* F_env_invariant

The conditions of the system state, once established for the
initial state, that must be preserved by all state transitions as
an invariant
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let F_env_invariant = new_definition (‘F_env_invariant‘, "
(! (mbxs : mboxes)
F_env_invariant mbxs =
% F server must have mailbox ¥%
(F_ID IN (dom mbxs))
)
")s;

'/. ______________ ——— — — — — ——— — — —————— — ——— —— ——
* F_env_SEND

Returns TRUE if the cause of the state transition between ss1 and
ss2 is a message arriving in the F mailbox. The message must have
a sender id other than F_ID, because the F server did not send the
message.

let F_env_SEND = new_definition (‘F_env_SEND‘, "
(! (ss1 ss2 : trace_state)
F_env_SEND ssi ss2 =
let (mbxsi, Fs1) = ((get_trace_mbxs ss1), (get_trace_Fs ssl))
and (mbxs2, Fs2) ((get_trace_mbxs ss2), (get_trace_Fs ss2))

in
let Fmbxl = (get_mbxs_mbx mbxsi F_ID)
and Fmbx2 = (get_mbxs_mbx mbxs2 F_ID)
in (

((dom mbxsl) = (dom mbxs2)) /\
(Fs1 = Fs2) /\
(? msg .
let sndr = (get_msg_sndr msg)
in (
(sndr IN (dom mbxs1)) /\
~“(sndr = F_ID) /\
((put_mbx_msg Fmbxl msg) = Fmbx2)
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Returns TRUE if the cause of the state transition between ssli and
ss2 is a state change to any state components other than the F
mailbox, the F internal state, and the domain of the mailboxes.

____________ -— %

let F_env_arb = new_definition (‘F_env_arb‘, "
(! (ss1 ss2 : trace_state)
F_env_arb ssl1 ss2 =
let (mbxsi, Fs1) = ((get_trace_mbxs ss1), (get_trace_Fs ss1))
and (mbxs2, Fs2) = ((get_trace_mbxs ss2), (get_trace_Fs ss2))
in
let Fmbxl = (get_mbxs_mbx mbxsli F_ID)
and Fmbx2 = (get_mbxs_mbx mbxs2 F_ID)
in (
((dom mbxs1) = (dom mbxs2)) /\
(Fs1 = Fs2) /\
(Fmbx1 = Fmbx2)

")

a/. _________ —_— - — i e > s e o e o e o e e

* F_env_safety
In english:
For all elements of the trace, tl1 and t2, where t2 is the
immediate successor to tl and where the agent in t2 is not SYS_F
the states in tl and t2 must be identical
or the state transition must satisfy the safety
properties for one of the possible state transitions

Valid state transitions for the F environment are as follows:

1) A message arriving in the F mailbox, but the sender id may not
be F_ID.

2) Any other state change so long as the F mailbox, F private
state, and domain of mailboxes are not affected.

No environment state transition may affect the internal state of
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the F server.

let F_env_safety = new_definition (‘F_env_safety‘, "
(! (trace : trace_def).
F_env_safety trace =
(! (1 : num)

let t1 = (trace i)
and t2 = (trace(SUC i))
in (

“((get_trace_agent t2) = SYS_F) ==
let ss1 = (get_trace_state tl)
and ss2 = (get_trace_state t2)
in (
% no state change Y%
(ss1 = s8s2) \/
% a message arrives in the F mailbox %
(F_env_SEND ss1 ss2) \/
% any other state change that does not affect F
(F_env_arb ss1 ss2)
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Define F server state transition relation
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F server state transition relation (safety properties)

»*

These functions and predicates define the atomic state transition
relation (safety properties) for the F server.

These transitions consist of the F server reading a message from
its mailbox and sending a response message.
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* F_reads_msg
F reads a message from its mailbox and puts it in the work buffer.

F_reads_msg takes a global state (mailboxes) and F internal state
as input.

Its output is a new system state where the next readable message
in the F system mailbox has been read and placed into the "work"
buffer and the "next" pointer of the F mailbox has been advanced.
If there is no unread message in the mailbox, or if there is
already a message in the work buffer, the input system state is
returned unchanged.

let F_reads_msg = new_definition (‘F_reads_msg‘, "
(! ss .
F_reads_msg ss =
let (mbxs, Fs)

((get_trace_mbxs ss), (get_trace_Fs ss))

in
let mbx = (get_mbxs_mbx mbxs F_ID)
in
% Check if no messages or if message already in work buffer.
If so, return state unchanged. %
((("mbx_is_unread_msg mbx) \/ (Fs_get_flag Fs)) => ss |
% Otherwise, read message... %
(let (msg, new_mbx) = (read_mbx_msg mbx)
in

% put back the modified mailbox %
let new_mbxs = (put_mbxs_mbx mbxs F_ID new_mbx)
% put msg in work buffer ¥
and new_Fs = (Fs_put_buf Fs msg)
in
(put_trace_mbxs (put_trace_Fs ss new_Fs) new_mbxs)
))

")5s
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* F_reads

True if the second system state is reached from the first due to F
reading a message from its mailbox.

let F_reads = new_definition (‘F_reads®, "
(' sst ss2 .
F_reads ssl ss2 =
(ss2 = (F_reads_msg ssl1))
)
D HH

Y ————————————— ——— o o o e o e e e e B

* F_responds_msg
F responds to the message in its "work" buffer.
F_responds_msg takes a system state as input.

Its output is a new system state where the response message has
been sent and the work buffer emptied. If there is no message
already in the work buffer, the input system state is returned
unchanged.

Response messages are sent to the source of the message in the
work buffer (i.e., mbox ids = task ids). The message id is the
same as that of the request message, and the message data is a
function of the data in the request message.

let F_responds_msg = new_definition (‘F_responds_msg‘, "
(! ss (F_func:num->num).
F_responds_msg ss F_func =
let (mbxs, Fs) = ((get_trace_mbxs ss), (get_trace_Fs ss))
in
% Check if work buffer has a message.
If not, return state unchanged. %
(("Fs_get_flag Fs) => ss |
% Otherwise, create response message... %
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(let (rgst, new_Fs) = (Fs_get_buf Fs) % new_Fs has empty buffer ¥
in
let src = (get_msg_sndr rqst) and mdata = (get_msg_data rgst)

and mid = (get_msg_id rgst)

in

let response = (cons_msg F_ID (F_func mdata) mid)
in

% put message in destination mailbox %
let new_mbxs = (put_mbxs_msg mbxs src response)
in
(put_trace_mbxs (put_trace_Fs ss new_Fs) new_mbxs)
))
)
")

'/. ______________ - -——— - —-— -—

* F_responds

True if the second system state is reached from the first due to F
responding to a message in its work buffer.

____________________ -—- %

let F_responds = new_definition (‘F_responds‘, "
(! ss1 ss2 (F_func:num->num).
F_responds ssl1 ss2 F_func =
(ss2 = (F_responds_msg ss1 F_func))
)
")

In english:

For all elements of the trace, tl1 and t2, vhere t2 is the
immediate successor to tl and where the agent in t2 is F
the states in t1 and t2 must be identical
or the state transition must satisfy the safety
properties for one of the possible state transitions

Valid state transitions for F are as follows:



1) Reading a message from the F system mailbox and sending a

response message to the sender.

let F_safety = new_definition (‘F_safety‘, "
(! (trace : trace_def) (F_func:num->num).
F_safety trace F_func =
(! (i : num)
let t1 = (trace i)
and t2 = (trace(SUC i))
in (
((get_trace_agent t2) = SYS_F) ==>
let ss1 = (get_trace_state t1)
and ss2 = (get_trace_state t2)
in (
% no state change %
(((get_trace_tlabel t2)
% or a legal tramsition Y%

(((get_trace_tlabel t2) = FREADS) /\ (F_reads ssl ss2)) \/
FRESPONDS) /\

(((get_trace_tlabel t2)
(F_responds ss1 ss2 F_func))
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Define F server progress properties
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STUTTER) /\ (ssi1

-4

ss2)) \/

* F server state progress properties

These properties assert that the F server will eventually read all

messages and send responses.

Assuming that the work buffer is eventually emptied, performing a
F_read operation will read the next unread message in F’s mailbox.
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F_reads_progress guarantees that the read will eventually happen.
An (eventually) empty work buffer is guaranteed by the progress
property on the F_responds operation. In this way we guarantee
that all input messages (requests) will eventually be read and
generate responses.

This method of specifying progress properties is possible because
of the way we wrote the safety properties. They were written to
only cause a state change when conditions were correct so that the
operation could be performed. Otherwise, performing either
operation causes no state change. Thus, our progress properties
specify "busy-waiting" on the part of the server.

This method is essentially that of UNITY.

o/. - - e o e o e e e

* F_reads_progress

A progress property for the ‘‘F’’ system call that asserts that,
starting from any point in the trace, F will eventually perform an
F_reads operation.

In english:

For all “‘i’’ (viz., a trace_element in a trace)
there is some ‘‘j’’ (also a trace_element in the trace)
such that j is later in the trace than i
and whose agent is SYS_F (i.e., the agent responsible for the
transition)

and the reason for the state transition is
a F_reads_msg step

and in all intermediate steps between i and j
a F_reads_msg step did not occur.

let F_reads_progress = new_definition (‘F_reads_progress‘,
"(! (trace : trace_def)
F_reads_progress trace =
(! (i : num)
(? (j : num) .



(i <= j) /\
(get_trace_state(trace (SUC j)) =
(F_reads_msg (get_trace_state(trace j))))

* F_responds_progress

A progress property for the ‘‘F’’ system call that asserts that,
starting from any point in the trace, F will eventually perform an
F_responds operation.

In english:

For all “‘i’’ (viz., a trace_element in a trace)
there is some ‘‘j’’ (also a trace_element in the trace)
such that j is later in the trace than i
and whose agent is SYS_F (i.e., the agent responsible for the
transition)
and the reason for the state transition is
a F_responds_msg step
and in all intermediate steps between i and j
a F_responds_msg step did not occur.

let F_responds_progress = new_definition (‘F_responds_progress‘,
"(! (trace : trace_def) (F_func:num->num).
F_responds_progress trace F_func =
(! (i : num)
(? (j : num)
(i <= j) /\
(get_trace_state(trace (SUC j)) =
(F_responds_msg (get_trace_state(trace j)) F_func))
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b =————————— - -—

* F_progress
The progress properties for the F system call.

---------- %
%
let F_progress = new_definition (‘F_progress‘, "
(! (trace : trace_def) (F_func:num->num).
F_progress trace =
(F_reads_progress trace) /\
(F_responds_progress trace F_func)

)
")
%
'/. ______ - . = = — —— — ———

* F_env_progress

The progress properties for the F system call environment.

There are no progress properties defined because the server is
purely reactive, so this property is always TRUE.

let F_env_progress = new_definition (‘F_env_progress‘, "
(! (trace : trace_def)
F_env_progress trace =
T
)
")

VARSI 2250330333533 35 535553555355 3553555355355 S PSP ISP S5 5>> > H4

Define F initial state
<€ <LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKL Y

initial state

* environmental requirements for initial system state
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The requirements on the system state consist of structural
consitency requirements on the data, which must remain invariant
in every state in a trace, and initial policy conditions (e.g.,
that mailboxes are initially empty).

The environment does not specify any initial conditions on the F
server’s internal state.

* F’s requirements for initial internal state

248

F’s requirements for its initial internal state are that its work

buffer is empty.

* ==== =

%

/A ——
* F_good_init_mbxs

The environmental requirements on the intial system state that are

due to system policy.

We require that all mailboxes are initially empty. We require th

is

as a convenience, since it is easier than, for example, specifying

the relationship between request and response messages in the
initial state.

let F_good_init_mbxs = new_definition (‘F_good_init_mbxs‘, "
(! (mbxs : mboxes) .
F_good_init_mbxs mbxs =
(! mbx . (mbx IN (rng mbxs)) ==>
("mbx_is_unread_msg mbx)
)
)
"I

At -— -

* F_env_init
The complete definition of a good initial system state.

The initial system state is correct if it is self-conistent and

if
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it satisfies all policy requirements.

The consistency of the system state, once established for the
initial state, must be preserved by all state transitions as an
invariant (i.e., we have to prove that it is invariant).

let F_env_init = new_definition (‘F_env_init‘, "
(! (trace : trace_def)
F_env_init trace =
% require at least one trace element so that we have an initial state ¥
% ((LENGTH trace) > 0) /\
let init_t = (EL O trace)’
let init_t = (trace 0)
in
let mbxs = (get_trace_mbxs (get_trace_state init_t))
in (
(F_env_invariant mbxs) /\
% self-consistency %
(good_mbxs mbxs) /\
% policy req’s %
(F_good_init_mbxs mbxs)
)
)
D HH

'/. _________________ - = o o —_—

* F_init
The definition of a good internal state for the F server.

The work buffer must be empty (i.e., there is no response
pending) .

F cannot specify any initial conditions on the mailboxes, whose
initial condition is reserved for the environment.

________________ %

let F_init = new_definition (‘F_init‘¢, *
(! (trace : trace_def)
F_init trace =
% no need to require at least one trace element because already



specified by F_env_good_trace. Y
% let init_t = (EL O trace)
let init_t = (trace 0)

in
let Fs = (get_trace_Fs (get_trace_state init_t))
in (
("Fs_get_flag Fs)
)
)
'l);;

o/. ______________________

* F_system_specification

let F_system_specification = new_definition
(‘F_system_specification®, "
F_system_specification =
{ trace : trace_def |
((F_env_init trace) /\
(F_env_safety trace) /\
(F_env_progress trace)) ==
((F_init trace) /\
(F_safety trace) /\
(F_progress trace))
}
n);;
%

close_theory();;

A.7 OS-env.ml

*

File: 0S-env.ml
Version: 0.0
Date: 10/23/96

*

*

961023. Added transition labels.
L Tpuym— %
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(AR>S 35S PS5 5 55> 555 5555555 5395555592220 30555555554
Specification of the 0S environment.

Use this for proving composition of F and FG.
The environment is all the other processes.

<€KLL LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKLKL Y

loadt ‘aux/init.ml‘;; new_theory_safe ‘OS-env‘;; load_library
‘sets‘;; load_parent ‘F-FG‘;;

./. ----------- - -

* 0S_env_invariant

The conditions of the system state, once established for the
initial state, that must be preserved by all state transitions as
an invariant

let 0S_env_invariant = new_definition (‘0OS_env_invarjiant®, *
(! mbxs : mboxes .
0S_env_invariant mbxs =
% F server must have mailbox %
(F_ID IN (dom mbxs)) /\
% FG server must have mailbox %
(FG_ID IN (dom mbxs))
)
D IHH

l/. ____________ - -

* 0S_env_SEND_F

Returns TRUE if the cause of the state transition between ssl1 and
Ss2 is a message arriving in the F mailbox. The message must have
a sender id other than F_ID or FG_ID, because the 0S did not send
the message.

____________ %

let 0OS_env_SEND_F = new_definition (‘0OS_env_SEND_F*‘, "
(! (ssl1 ss2 : trace_state)
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0S_env_SEND_F ss1 ss2 =

let
and
and

in (

(mbxsl, mbxs2) = ((get_trace_mbxs ss1), (get_trace_mbxs ss2))
internalsl = (get_trace_not_mbxs ssl1)
internals2 = (get_trace_not_mbxs ss2)

Fmbxl = (get_mbxs_mbx mbxsi F_ID)
Fmbx2 = (get_mbxs_mbx mbxs2 F_ID)
FGmbx1 = (get_mbxs_mbx mbxsl FG_ID)
FGmbx2 = (get_mbxs_mbx mbxs2 FG_ID)

((dom mbxsi) = (dom mbxs2)) /\
(internalsl = internals2) /\
(FGmbx1 = FGmbx2) /\

(? msg .

'/. ___________________ ———— -

let sndr = (get_msg_sndr msg)
in (
(sndr IN (dom mbxsl)) /\
“(sndr = F_ID) /\
“(sndr = FG_ID) /\
((put_mbx_msg Fmbxl msg) = Fmbx2)

* (JS_env_SEND_FG

Returns TRUE if the cause of the state transition between ssl1 and
ss2 is a message arriving in the FG mailbox. The message must have
a sender id other than F_ID or FG_ID, because the 0S did not send
the message.

let OS_env_SEND_FG = newv_definition (‘0S_env_SEND_FG‘, "
(! (ss1 ss2 : trace_state)
0S_env_SEND_FG ssl1 ss2 =

let (mbxsi, mbxs2) = ((get_trace_mbxs ss1), (get_trace_mbxs ss2))

and internalsl = (get_trace_not_mbxs ss1)
and internals2 = (get_trace_not_mbxs ss2)

in

let FGmbxi = (get_mbxs_mbx mbxsi FG_ID)
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and FGmbx2 = (get_mbxs_mbx mbxs2 FG_ID)

and Fmbx1i = (get_mbxs_mbx mbxsi F_ID)
and Fmbx2 = (get_mbxs_mbx mbxs2 F_ID)
in (

((dom mbxs1) = (dom mbxs2)) /\
(internalsl = internals2) /\
(Fmbx1 = Fmbx2) /\
(? msg .
let sndr = (get_msg_sndr msg)
in (
(sndr IN (dom mbxs1)) /\
“(sndr = F_ID) /\
“(sndr = FG_ID) /\
((put_mbx_msg FGmbx1i msg) = FGmbx2)

'/. ___________________ - -

* (0S_env_ard

Returns TRUE if the cause of the state transition between ss1 and
ss2 is a state change to any state components other than the 0S
mailboxes, the internal state, and the domain of the mailboxes.

e

let OS_env_arb = new_definition (‘0S_env_arb‘, "
(! (ss1 ss2 : trace_state)
0S_env_arb ssi1 ss2 =

let (mbxsi, mbxs2) = ((get_trace_mbxs ss1), (get_trace_mbxs ss2))

and internalsl = (get_trace_not_mbxs ssl1)
and internals2 = (get_trace_not_mbxs ss2)
in
let Fmbxl = (get_mbxs_mbx mbxsil F_ID)
and Fmbx2 = (get_mbxs_mbx mbxs2 F_ID)
and FGmbx1l = (get_mbxs_mbx mbxsi FG_ID)
and FGmbx2 = (get_mbxs_mbx mbxs2 FG_ID)
in (

((dom mbxs1i) = (dom mbxs2)) /\

(internalsl = internals2) /\

(Fmbx1 = Fmbx2) /\
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(FGmbx1 = FGmbx2)
)

")

* 0S_env_safety
In english:

For all elements of the trace, t1 and t2, wvhere t2 is the
immediate successor to tl1 and vhere the agent in t2 is not an 0S
agent

the states in t1 and t2 must be identical

or the state transition must satisfy the safety

properties for one of the possible state transitions

Valid state transitions for the 0S environment are as follows:
1) A message arriving in a system mailbox.
2) A message being read from a non-system mbox.

No environment state transition may affect the internal state of
the 0S.

let 0S_env_safety = new_definition (‘OS_env_safety*,
"(! (trace : trace_def).
0S_env_safety trace =
(! (i : num).
let t1 = (trace i)
and t2 = (trace(SUC i))
in (
(" (get_trace_agent t2 = SYS_F) /\
“(get_trace_agent t2 = SYS_FG)) ==>
let ss1 = (get_trace_state t1)
and ss2 = (get_trace_state t2)
in (
(ss1 = 882) \/
(0S_env_SEND_F ssi ss2) \/
(0S_env_SEND_FG ss1 ss2) \/
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(0S_env_arb ssl1 ss2)

* 0S_env_progress

There are no 0S environment progress properties.

________________ - -—=="%

let 0S_env_progress = new_definition (‘0S_env_progress®,
(! (trace : trace_def)
0S_env_progress trace =
T
)
“Yis

AR5 5 3553555335535 5355555555 5555555533 5555559555555 555 5555 3 51

Define initial state
<< <€<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LKL Y,

l/. e o e e et e e D e D e T B S D <. S S S P P T T D T D . D e S S S S S P S e P S S e e A e S S D —

initial state

* environmental requirements for initial system state

The requirements on the system state consist of structural
consitency requirements on the data, which must remain invariant
in every state in a trace, and initial policy conditions (e.g.,
that mailboxes are initially empty).

The environment does not specify any initial conditions on the
0S’s internal state.

h - S ——
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* 0S_good_init_mbxs

The environmental requirements on the intial system state that are
due to system policy.

We require that all mailboxes are initially empty. We require this
as a convenience, since it is easier than, for example, specifying
the relationship between request and response messages in the
initial state.

............. %

let 0S_good_init_mbxs = new_definition (‘0OS_good_init_mbxs‘, "
(! (mbxs : mboxes)
0S_good_init_mbxs mbxs =
(! mbx . (mbx IN (rng mbxs)) ==>
("mbx_is_unread_msg mbx)

)

i IHH

% ———————————— - e e e e i e - e e e e e o e e e e

* 0S_env_init
The complete definition of a good initial system state.

The initial system state is correct if it is self-conistent and if
it satisfies all policy requirements.

The consistency of the system state, once established for the
initial state, must be preserved by all state transitions as an
invariant (i.e., we have to prove that it is invariant).

let 0S_env_init = new_definition (‘0OS_env_init‘, "
(! (trace : trace_def)
OS_env_init trace =
% need unique mailboxes for the servers Y%
“(F_ID = FG_ID) /\
let init_t = (trace 0)
in
let mbxs = (get_trace_mbxs (get_trace_state init_t))
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in (
(0S_env_invariant mbxs) /\
% self-consistency %
(good_mbxs mbxs) /\
% policy req’s %
(0S_good_init_mbxs mbxs)
)
)
i

close_theory();;

A.8 OS-sys.ml

* File: 0S-sys.ml
* Version: 0.0
* Date: 05/20/98

Replaced FG_func with universally quantified function.
*—ommen -- %

% >333333333333335333353533333333333555355355533553533533>35>55>>>
Specification of the 0S system.

The OS in this example consists of the F and FG system calls. The
specification says that the 0S will read messages from its F and
FG mailboxes and eventually send responses back, in the order that
the requests were sent.

The environment is all the other processes, and is defined in
0S-env.ml.

<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKLLLLKL Y
loadt ‘aux/init.ml¢;;
nev_theory_safe ‘0S-sys‘;;

load_library ‘sets‘;;
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load_parent ‘silobasic‘;; load_parent ‘F-FG‘;;

A >33>35333333D3333D33D333333IIDO3I3OOIDOOO53530333O053555535555>>

Define initial state
<< LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLCLLKL Y,

% ===

server ids

The mailbox ids of the 0S mailboxes. These are defined in F-FG.ml.

------ - == %

'/. —_—— P——

0S intermnal state
The internal state of the 0S.

The initial system state is defined by the environment
(0S-env.ml). The environment does not specify any initial
conditions on the 0S’s internal state.

The internal state is modifiable only by the 0S in the
specification, and not by the environment.

There is a different intermal state for each system call that
consists of a message queue. The queue is used to store messages
between the atomic actions of reading a message from the input
mailbox and of sending a response.

_________________ o/.

new_type_abbrev (‘msg_list, ":(msg_def)list");; new_type_abbrev
(‘0OSF_queue‘, ":msg_list");; new_type_abbrev (‘0OSFG_queue‘,
“:msg_list");;

new_type_abbrev (‘OSF_internal_state‘,":0SF_queue");;
nevw_type_abbrev (‘OSFG_internal_state‘,":0SFG_queue");;

nev_type_abbrev
(‘0OS_internal_state‘,":0SF_internal_state#0SFG_internal_state");;

FG state utility functions
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* 0Sis_get_Fis

Extracts the F internal state from an 0Sis intermnal state.

________ %

let 0Sis_get_Fis = new_definition (‘0OSis_get_Fis‘, "
(! (0Sis : OS_internal_state).
0Sis_get_Fis 0Sis = (FST 0Sis)
)
A

* 0Sis_get_FGis

Extracts the FG internal state from an 0Sis internal state.

______________ —— —_— - - '/.
let 0Sis_get_FGis = new_definition (‘0OSis_get_FGis‘, "
(! (0Sis : 0OS_internal_state).
0Sis_get_FGis 0Sis = (SND 0Sis)
)
“i;
./. __________ - — —

* 0Sis_put_Fis

Replaces the F internal state in an 0Sis internal state.

let 0Sis_put_Fis = nevw_definition (‘OSis_put_Fis‘, "
(! (0Sis : OS_internal_state) (newFis : OSF_internal_state) .
0Sis_put_Fis 0Sis newFis =
let FGis = (0OSis_get_FGis 0Sis) in
(nevFis,FGis)

")
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* 0Sis_put_FGis

Replaces the FG intermal state in an 0Sis internal state.

S - %

let 0Sis_put_FGis = new_definition (‘0OSis_put_FGis‘, "
(! (0Sis : 0S_internal_state) (newFGis : OSFG_internal_state).
0Sis_put_FGis 0Sis nevFGis =
let Fis = 0Sis_get_Fis 0Sis in
(Fis,newFGis)
)
")

'/. ________ ——
* 0Sis_get_Fq

Extracts the F internal queue from an 0Sis internal state.

let 0Sis_get_Fq = new_definition (‘0Sis_get_Fq‘, "
(! (0sis : OS_internal_state).
0Sis_get_Fq 0Sis = (0Sis_get_Fis 0Sis)
)
")is

'/. ................................... -————

* 0Sis_get_FGq

Extracts the FG internal queue from an 0Sis internmal state.

let 0OSis_get_FGq = new_definition (‘0Sis_get_FGq‘, "
(! (0sis : 0S_internal_state).
0Sis_get_FGq 0Sis = (0Sis_get_FGis 0Sis)
)
")

% ——————— o e e e e o —— e e e e e e

* OSFis_put_Fgq

Replaces the F internal queue in an OSF internal state.
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let OSFis_put_Fq = new_definition (‘OSFis_put_Fq‘, "
(! (Fis : OSF_internal_state) (newFq : OSF_queue).
OSFis_put_Fq Fis newFq = (newFq)
)
A

% ———mmmm e - ——— e ———

* OSFGis_put_FGq

Replaces the FG internal queue in an OSFG internal state.

let OSFGis_put_FGq = new_definition (‘0SFGis_put_FGq‘, "
(! (FGis : OSFG_internal_state) (newFGq : OSFG_queue).
OSFGis_put_FGq FGis newFGq = (newFGq)
)
“)i;

A e
* 0Sis_put_Fgq

Replaces the F internal queue in an 0Sis internal state.

let 0Sis_put_Fq = new_definition (‘OSis_put_Fq‘, "
(! (0sis : OS_internal_state) (newFq : OSF_queue).
0Sis_put_Fq 0Sis newFq = (
let oldFis = (0OSis_get_Fis 0Sis) in
0Sis_put_Fis 0Sis (OSFis_put_Fq oldFis newFq)
)
)
")5s

y A —— - e e e e e e e e e e -_—

* 0Sis_put_FGq

Replaces the FG internal queue in an 0Sis internal state.
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let 0Sis_put_FGq = new_definition (‘0Sis_put_FGq‘, "
(! (0Sis : OS_internal_state) (newFGq : OSFG_queue).
0Sis_put_FGq 0Sis newFGq = (
let 0l1dFGis = (0Sis_get_FGis 0Sis) in
0Sis_put_FGis 0Sis (OSFGis_put_FGq 0l1dFGis newFGq)
)
)
")

* 0Sis_put_Fq_msg

Adds a message to the end of the F internal queue in an 0Sis
internal state.

let 0Sis_put_Fq.msg = new_definition (‘OSis_put_Fq_msg‘, “
(! (0Sis : 0S_internal_state) (msg : msg_def).
0Sis_put_Fq_msg 0Sis msg = (
let oldFq = (0Sis_get_Fq 0Sis)
in
(0Sis_put_Fq
0Sis
(SNOC msg oldFq)
)
)
)
")is

'/. ___________ - -—— —_——

* 0Sis_put_FGq_msg

Adds a message to the end of the FG internal queue in an 0Sis
internal state.

let 0Sis_put_FGq_msg = new_definition (‘0Sis_put_FGq_msg‘, "
(t (0Sis : OS_internal_state) (msg : msg_def).
0Sis_put_FGq_msg 0Sis msg = (
let 01dFGq = (0Sis_get_FGq 0Sis)
in
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(0Sis_put_FGq

0Sis

(SNOC msg 0l1dFGq)
)

)

")

f ———— e

* 0Sis_Fq_pending

TRUE if there is at least one unread msg in the F queue.

let 0Sis_Fq_pending = new_definition (‘0Sis_Fq_pending‘, "
(! (0Sis : 0S_internal_state) .
0Sis_Fq_pending 0Sis =
let Fq = (0Sis_get_Fq 0Sis)
in
(0 < (LENGTH Fq))

i IHH

A _——— e ————————————————

* 0Sis_FGq_pending

TRUE if there is at least one unread msg in the FG queue.

263

let 0Sis_FGq_pending = new_definition (‘0Sis_FGq_pending‘, "
(! (0Sis : 0OS_internal_state)
0Sis_FGq_pending 0Sis =
let FGq = (0Sis_get_FGq 0Sis)
in
(0 < (LENGTH FGq))
)
“Yis

'/. ___________
* 0Sis_Fq_get_msg

%



Returns the next unread message in the queue. Automatically
removes the message from the queue and returns the updated 0Sis
state along with the msg.

UNDEFINED if there are no unread messages. Safe if used with
‘‘0Sis_Fq_pending’’, as follows:

(0Sis_Fq_pending 0Sis) => (0Sis_Fq_get_msg 0Sis) |

let 0Sis_Fq_get_msg = new_definition (‘0Sis_Fq_get_msg‘, "
(! (0Ssis : 0OS_internal_state)
0Sis_Fq_get_msg 0Sis =
let Fq = (0Sis_get_Fq 0Sis)
in
let msg = (HD Fq)
and newFq = (TL Fq)
in
(msg, (0Sis_put_Fq 0Sis newFq))
)
")

Y —mmmmm e - e
* 0Sis_FGq_get_msg

Returns the next unread message in the queue. Automatically
removes the message from the queue and returns the updated 0Sis

state along with the msg.

UNDEFGINED if there are no unread messages. Safe if used wvith
‘‘0Sis_FGq_pending’’, as follows:

(0Sis_FGq_pending 0Sis) => (0Sis_FGq_get_msg 0Sis) |

___________ _———— - o/.

let 0Sis_FGq_get_msg = new_definition (‘0Sis_FGq_get_msg‘, "
(! (0Sis : 0OS_internal_state)
0Sis_FGq_get_msg 0Sis =
let FGq = (0Sis_get_FGq 0Sis)
in
let msg = (HD FGq)
and newFGq = (TL FGq)
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in
(msg, (0Sis_put_FGq 0Sis newFGq))
)
")

nev_type_abbrev (‘0OS_trace_state‘, ":mboxes#0S_internal_state");;
nev_type_abbrev (‘0S_trace_element‘,
":Agent#TLabel#0S_trace_state");; new_type_abbrev (‘0S_trace_def‘,
“:num->0S_trace_element");;

0/. —_— e 2 . o e e e i o e o e o o e e e 2 o e

get_0Strace_agent

*

let get_0Strace_agent = nev_definition (‘get_OStrace_agent‘, "
(! (tel : OS_trace_element).
get_0OStrace_agent tel = (FST tel)
)
")

h e e ———————————— —_—

* get_OStrace_tlabel

___________________ —_— - - - n/.

let get_OStrace_tlabel = new_definition (‘get_0Strace_tlabel‘, "
(! (tel : OS_trace_element).
get_0Strace_tlabel tel = FST(SND tel)
)
")

'/. _______________ L
*» get_(OStrace_state

let get_0OStrace_state = new_definition (‘get_0Strace_state‘, "
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(! (tel : 0S_trace_element).
get_0OStrace_state tel = SND(SND tel)
)
")

266

'/. ____________
* get_0Strace_mbxs

%

let get_OStrace_mbxs = new_definition (‘get_0Strace_mbxs‘, "

(! (ts : 0OS_trace_state).
get_OStrace_mbxs ts = (FST ts)
)
“)is

'/. _______ —— -

* get_(OStrace_not_mbxs

let get_0Strace_not_mbxs
(! (ts : OS_trace_state).
get_0OStrace_not_mbxs ts = (SND ts)
)
")

new_definition (‘get_0Strace_not_mbxs°‘,
g

'/. ____________ -_
= get_0OStrace_is

let get_0Strace_is = new_definition (‘get_0OStrace_is‘, "
(! (ts : 0OS_trace_state).
get_0Strace_is ts = (SND ts)
)
"5

A ——— -
* put_0Strace_mbxs




let put_0OStrace_mbxs = new_definition (‘put_OStrace_mbxs‘, "
(! (ts : 0S_trace_state) (new_mbxs : mboxes)
put_OStrace_mbxs ts new_mbxs =
let (old_mbxs, 0Sis) = ts
in
(nev_mbxs, 0Sis)
)
)i

% ——— -— -— —-— - —_—

* put_0Strace_is

_____________ - ---- %

let put_0OStrace_is = new_definition (‘put_0Strace_is‘, "
(! (ts : 0S_trace_state) (new_0Sis : 0S_internal_state)
put_OStrace_is ts new_0Sis =
let (mbxs, 0ld_0Sis) = ts
in
(mbxs, new_0Sis)

")

Y ————mm e ——— o o e e o o e

- - %

let get_0OStrace_Fis = new_definition (‘get_0OStrace_Fis‘, "
(! (ts : 0OS_trace_state).
get_0OStrace_Fis ts = (0Sis_get_Fis (get_0Strace_is ts))
)
"5

A —
* get_0Strace_FGis

let get_0OStrace_FGis = new_definition (‘get_0Strace_FGis‘, "
(! (ts : OS_trace_state).
get_0Strace_FGis ts = (0Sis_get_FGis (get_OStrace_is ts))
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")

o e

* put_0OStrace_Fis

let put_0OStrace_Fis = new_definition (‘put_0OStrace_Fis‘, "
(! (ts : 0OS_trace_state) (new_Fis : OSF_internal_state)
put_OStrace_Fis ts new_Fis =
let old_is = (get_0OStrace_is ts)

in
let new_is = (0Sis_put_Fis old_is newvw_Fis)
in
(put_0Strace_is ts new_is)
)
")

Y ———rm e

* put_0OStrace_FGis

let put_0OStrace_FGis = new_definition (‘put_OStrace_FGis‘, "
(! (ts : OS_trace_state) (new_FGis : OSFG_internal_state)
put_0OStrace_FGis ts new_FGis =
let old_is = (get_0Strace_is ts)

in
let new_is = (0Sis_put_FGis old_is new_FGis)
in
(put_0OStrace_is ts new_is)
)
")

h ———— - e

* cons_0OStrace_state

let cons_0Strace_state = new_definition (‘cons_OStrace_state‘, "

(! (newmbxs:mboxes)
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(newFis:0SF_internal_state)
(newFGis : OSFG_internal_state) .
cons_QOStrace_state newmbxs newFis newFGis =
(newmbxs, (newFis,newFGis))
)
")

a/. ____________________________

* cons_0Strace_el

let cons_0Strace_el = nev_definition (‘cons_0OStrace_el‘, "
(! (tagent:Agent) (tlabel:TLabel) (tstate:0S_trace_state) .
cons_0OStrace_el tagent tlabel tstate =
(tagent,tlabel,tstate)
)

")

YAPSS 35555555 5555555555223 235555 3355355355555 $53 5599555933953

Define environment state transition relation
€< LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLCLLLLLLLL Y

'/._ _____ -

*x
environment state transition relation (safety properties)

These functions and predicates define the state transition
relation (safety properties) for 0S environment, which consists of
tasks other than the servers.

The environment state transition relation is defined in the file
0S-env.ml.

. meccmee %

VAR>S 355 D5 5555555555535 35555353 353533535553 553553 PSIIP LSS S

Define 0S state transition relation
<<<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL Y,
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'/. —— g—

0S state transition relation (safety properties)

These functions and predicates define the atomic state transition
relation (safety properties) for the 0S.

These transitions consist of the 0S reading a message from one of
its mailboxes and sending response messages. The 0S can either
read one message from one of its mailboxes or it can respond to a
message that it has already read.

We specify the 0S as having unlimited buffering capability to
store messages that have been read but for wvhich responses have
not yet been sent, but do not require this. A progress property
insures that responses will eventually be sent. An implementation
will realistically have only limited buffering capacity, but,
because of the progress property, any amount of buffering, even
none, can satisfy the specification.

'/. ___________ - - e e e e e e e e e e

* 0S_reads_F_msg
0S reads a message from its F mailbox and puts it in the F queue.
0S_reads_F_msg takes a trace state as input.

Its output is a new state where the next readable message in the F
system mailbox has been read and placed into the corresponding
queue and the "next" pointer of the mailbox has been advanced. If
there is no unread message in the mailbox the input state is
returned unchanged.

let OS_reads_F_msg = newv_definition (‘OS_reads_F_msg‘, "
(! ss
0S_reads_F_msg ss =
let mbxs = (get_OStrace_mbxs ss)
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and 0Sis = (get_0OStrace_is ss)

in

let Fmbx = (get_mbxs_mbx mbxs F_ID)
in

% Check if no messages. If so, return state unchanged. %
(("mbx_is_unread_msg Fmbx) => ss |

% Otherwise, read message... %
(let (msg, new_Fmbx) = (read_mbx_msg Fmbx)
in

% put back the modified mailbox ¥
let new_mbxs = (put_mbxs_mbx mbxs F_ID new_Fmbx)
% put msg in queue %
and new_0Sis = (0Sis_put_Fq_msg 0Sis msg)
in
(put_0OStrace_mbxs (put_OStrace_is ss new_0Sis) new_mbxs)
))

")

Y —mmmmmmmmme e —————— e
= 0S_reads_F

True if the second system state is reached from the first due to
0S reading a message from its mailbox.

let 0S_reads_F = new_definition (‘0OS_reads_F‘, "
(! ssi ss2 .
0S_reads_F ss1 ss2 =
(ss2 = (0S_reads_F_msg ss1))
)

")

'/. ______ -

* 0S_reads_FG_msg

0S reads a message from its FG mailbox and puts it in the FG
queue.

0S_reads_FG_msg takes a trace state as input.

Its output is a nev state where the next readable message in the
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FG system mailbox has been read and placed into the corresponding
queue and the "next" pointer of the mailbox has been advanced. If
there is no unread message in the mailbox the input state is
returned unchanged.

e %

let 0S_reads_FG_msg = new_definition (‘0OS_reads_FG_msg‘, "
(! ss .
0S_reads_FG_msg ss =
let mbxs = (get_0Strace_mbxs ss)
and 0Sis = (get_OStrace_is ss)
in
let FGmbx = (get_mbxs_mbx mbxs FG_ID)
in
% Check if no messages. If so, return state unchanged.
(("mbx_is_unread_msg FGmbx) => ss |

% Otherwise, read message... %
(let (msg, new_FGmbx) = (read_mbx_msg FGmbx)
in

% put back the modified mailbox %
let new_mbxs = (put_mbxs_mbx mbxs FG_ID new_FGmbx)
% put msg in queue %
and new_0Sis = (0Sis_put_FGq_msg 0Sis msg)
in
(put_OStrace_mbxs (put_0Strace_is ss new_0Sis) new_mbxs)
))
)

40 IHH

/A —— -
= 0S_reads_FG

True if the second system state is reached from the first due to
0S reading a message from its mailbox.

let 0S_reads_FG = nev_definition (‘0S_reads_FG*‘, "
(! ss1 ss2 .
0S_reads_FG ssl1 882 =
(ss2 = (0S_reads_FG_msg ss1))
)
")
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* 0S_responds_F_msg

0S responds to a message in its F queue.

0S_responds_F_msg takes a system state as input.

The output is a nevw system state where the message at the head of
the queue has been removed, and a response message has been sent.

If there is no message in the queue, the input state is returmned
unchanged.

—mmmmmee - —-- - %

let 0S_responds_F_msg = new_definition (‘0OS_responds_F_msg‘, *
(! ss (F_func:num->num).
0S_responds_F_msg ss F_func =
let mbxs = (get_0Strace_mbxs ss)
and 0Sis = (get_OStrace_is ss)
in
% Check if F queue has a message.
If not, return state unchanged. %
((~(0Sis_Fq_pending 0Sis)) => ss |

% Otherwise, create response message... %
(let (rqst, new_0Sis) = (0Sis_Fq_get_msg 0Sis)
in
let src = (get_msg_sndr rqst) and mdata = (get_msg_data rqst)
and mid = (get_msg_id rqst)
in
let response = (cons_msg F_ID (F_func mdata) mid)
in

% put message in destination mailbox Y%
let new_mbxs = (put_mbxs_msg mbxs src response)
in
(put_0Strace_mbxs (put_0Strace_is ss new_0Sis) new_mbxs)
)
)
")

h ———m—————— e - - —-——

* 0S_responds_F
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True if the second system state is reached from the first due to
0S responding to a message in its queue.

let 0OS_responds_F = new_definition (‘0S_responds_F‘, "
(! ss1 ss2 (F_func:num->num).
0S_responds_F ssl ss2 F_func =
(ss2 = (0S_responds_F_msg ss1 F_func))
)
")

./. ____________
* 0S_responds_FG_msg

0S responds to a message in its FG queue.

0S_responds_FG_msg takes a system state as input.

The output is a new system state where the message at the head of
the queue has been removed, and a response message has been sent.

If there is no message in the queue, the input state is returned
unchanged.

R %

let 0S_responds_FG_msg = new_definition (‘0OS_responds_FG_msg‘, "
(! ss (FG_func:num->num).
0S_responds_FG_msg ss FG_func =
let mbxs = (get_OStrace_mbxs ss)
and 0Sis = (get_OStrace_is ss)

in
% Check if FG queue has a message.
If not, return state unchanged. %
((~(0Sis_FGq_pending 0Sis)) => ss |
% Otherwise, create response message... %
(let (rgst, new_0Sis) = (0Sis_FGq_get_msg 0Sis)
in

let src = (get_msg_sndr rqst) and mdata = (get_msg_data rqst)
and mid = (get_msg_id rqgst)

in

let response = (cons_msg FG_ID (FG_func mdata) mid)

in
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7% put message in destination mailbox ¥
let newv_mbxs = (put_mbxs_msg mbxs src response)
in
(put_OStrace_mbxs (put_0Strace_is ss new_0Sis) new_mbxs)
)
)
A

. - -
* 0S_responds_FG

True if the second system state is reached from the first due to
0S responding to a message in its queue.

---- ———- %

let 0OS_responds_FG = new_definition (‘OS_responds_FG*, "
(! ss1 ss2 (FG_func:num->num).
0S_responds_FG ss1 ss2 FG_func =
(ss2 = (0S_responds_FG_msg ss1 FG_func))
)
")

'/. __________ e e e e e —
* 0S_safety

In english:

For all elements of the trace, tl and t2, where t2 is the
immediate successor to tl1 and where the agent in t2 is 0S
the states in t1 and t2 must be identical
or the state transition must satisfy the safety
properties for one of the possible state transitions

Valid state transitions for 0S are as follows:

Reading request messages from 0OS system mailboxes and sending
responses.

let 0S_safety = new_definition (‘0S_safety‘,
"(!(trace : 0S_trace_def) (F_func:num->num) (FG_func:num->num).
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0S_safety trace F_func FG_func =
(! (i : num)

let t1 = (trace i)

and t2 = (trace(SUC i))

in (
“(get_OStrace_agent t2 = ENV) ==>
let ssl = (get_0OStrace_state t1)
and ss2 = (get_OStrace_state t2)
in (

% no state change %

(sst = ss82) \/

% or a legal tramsition %
((((get_0Strace_tlabel t2)
((((get_0Strace_tlabel t2)

0S_reads_FG ss1 ss2)) \/
((((get_0OStrace_tlabel t2) = FRESPONDS) /\

0S_responds_F ss1 ss2 F_func)) \/
((((get_0OStrace_tlabel t2) = FGRESPONDS) /\

0S_responds_FG ss1 ss2 FG_func))

FREADS) /\ 0S_reads_F ssl ss2)) \/
FGREADS) /\

% DOO5553533DD23233DI3IDDDD3D3DD33I3DIIIDIIIIIIDI3335533555555>5>>

Define 0S progress properties
<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKLKL Y,

'/. ———— - s o o o o

* =

0S state progress properties

We have written our safety properties so that they are always
enabled, but leave the state unchanged if conditions are not
right. In this way, we simplify writing the progress properties to
merely assert that, at any point in the trace, a transition that
satisfies a particular safety property will eventually occur. This
approach is essentially that of UNITY. Alternatively, ve can think
of it as "weak fairmess", because steps are guaranteed to be
executed infinitely often, but they are not guaranteed to be



enabled infinitely often and therefore are not guaranteed to ever
happen, depending on the particular step.
* %

0/. _______ A —
* 0S_reads_F_progress

A progress property that asserts that, starting from any point in
the trace, the 0S will eventually perform an 0S_reads_F operation
after some intervening series of non-0S_reads_F steps.

In english:

For all “‘i’’ (viz., a trace_element in a trace)
there is some ‘‘j’’ (also a trace_element in the trace)
such that j is later in the trace than i
and whose agent is not ENV (i.e., a system agent is
responsible for the tramsition)
and the reason for the state transition is
a 0OS_reads_F_msg step
and in all intermediate steps between i and j
a 0OS_reads_F_msg step did not occur.

___________ - - - %

let OS_reads_F_progress = new_definition (‘0S_reads_F_progress®,
"(! (trace : 0S_trace_def)
0S_reads_F_progress trace =
(! (i : num)
(? (j : num)

(i <= j) /\

(get_0OStrace_state(trace(SUC j)) =

(0S_reads_F_msg (get_0Strace_state(trace j))))

./. -------------- - -
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* 0S_responds_F_progress

A progress property that asserts that, starting from any point in
the trace, the 0S will eventually perform an 0S_responds_F
operation after some intervening series of non-0S_responds_F
steps.

In english:

For all ‘“i’’ (viz., a trace_element in a trace)
there is some ‘‘j’’ (also a trace_element in the trace)
such that j is later in the trace than i
and wvhose agent is not ENV (i.e., a system agent is
responsible for the transition)
and the reason for the state transition is
a 0OS_responds_F_msg step
and in all intermediate steps between i and j
a 0S_responds_F_msg step did not occur.

let 0S_responds_F_progress =
new_definition (‘0OS_responds_F_progress®,
“(! (trace : 0S_trace_def) (F_func:num->num)
0S_responds_F_progress trace F_func =
(¢t (i : num)
(? (j : num)

(i <= j) /\
(get_OStrace_state(trace(SUC j)) =
(0S_responds_F_msg (get_0Strace_state(trace j)) F_func))

'/. ______________ - - — e e

* 0S_reads_FG_progress

A progress property that asserts that, starting from any point in
the trace, the (0S will eventually perform an 0S_reads_FG operation
after some intervening series of non-0S_reads_FG steps.



In english:

For all ‘‘i’’ (viz., a trace_element in a trace)
there is some ‘‘j’’ (also a trace_element in the trace)
such that j is later in the trace than i
and vhose agent is not ENV (i.e., a system agent is
responsible for the transition)
and the reason for the state transition is
a 0OS_reads_FG_msg step
and in all intermediate steps between i and j
a 0S_reads_FG_msg step did not occur.

__________ - %

let 0S_reads_FG_progress = new_definition (‘0S_reads_FG_progress°,
"(! (trace : 0S_trace_def)
0S_reads_FG_progress trace =
(! (i : num)
(? (3 : num)
(1 <= j) /\
(get_0Strace_state(trace(SUC j)) =
(0S_reads_FG_msg (get_OStrace_state(trace j))))

'/. —_— —_— ————

* 0S_responds_FG_progress

A progress property that asserts that, starting from any point in
the trace, the 0S will eventually perform an 0S_responds_FG
operation after some intervening series of non-0S_responds_FG
steps.

In english:

For all “‘i’’ (viz., a trace_element in a trace)
there is some ‘‘j’’ (also a trace_element in the trace)
such that j is later in the trace than i
and whose agent is not ENV (i.e., a system agent is
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responsible for the transition)
and the reason for the state transition is
a 0S_responds_FG_msg step
and in all intermediate steps between i and j
a 0S_responds_FG_msg step did not occur.

............ - %

let 0S_responds_FG_progress =
new_definition (‘0OS_responds_FG_progress‘,
“(! (trace : 0S_trace_def) (FG_func:num->num).
0S_responds_FG_progress trace FG_func =
(! (i : num)
(? (j : num)
<= j) /\
(get_0Strace_state(trace(SUC j)) =

(0S_responds_FG_msg (get_0Strace_state(trace j)) FG_func))

l/. ________ - ——— Y — —— - — ——
* 0S_progress

The progress properties for the 0S system calls.

%
let 0S_progress = new_definition (‘0OS_progress‘, "
(1 (trace : 0OS_trace_def)
0S_progress trace =
(0S_reads_F_progress trace) /\
(0S_reads_FG_progress trace) /\
(0S_responds_F_progress trace) /\
(0S_responds_FG_progress trace)
)
P IHH
%

% OOO33D32D33O3O33D232IDO2DIIIIIIIIIIIIIIIIDIIDIIIIDIIDIIIIDIIIIIIIID>D>
Define initial state
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<<€ << LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKL Y,

initial state

The environment defines the initial conditions on the system
state. Only the initial conditions on the OS5 internal state are
defined here.

The 0S’s requirements for its initial internal state are that its
queues are empty.

¥ ST S ST TIESESS=SSSS===ss 0/.

% ——————— ——— e r e ————

The definition of a good internal state for the 0S.

The queue must be empty (i.e., there are no responses pending) for
all servers.

0S cannot specify any initial conditions on the mailboxes, whose
initial condition is reserved for the environment.

let 0S_init = new_definition (‘0S_init‘, "
(! (trace : 0S_trace_def)
0S_init trace =
let init_t = (trace 0)
in
let 0Sis = (get_OStrace_is (get_0OStrace_state init_t))
in (
~(0Sis_Fq_pending 0Sis) /\
~(0Sis_FGq_pending 0Sis)
)
)
")i;

close_theory();;
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A.9 letconv.ml

hm———————— - -

* File: letconv.ml

* Version: 0.0

* Date: 04/04/96

e ——— - --%

% SO333333233DD3O3DDI0O33DODIIIIIIIIDIIDIIIIIIDIDIIDIIIIIDIIIIIDD>D
Conversions for let statements.

<<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKLKLLLKLKL Y
% Safe matching %

let mustUnify tml tm2 =
(true, (match tml tm2)) ? (false,([]1,(1)) ;;

genSubstPat and helpers

Generate a term suitable as the pattern to SUBST, given a
higher-level description of where substitutions are desired.
(e.g. see convCond, where the pattern "A:* = (X => B | C)" is
used to generate a pattern for substituting the test expr of
the conditional ("X marks the spot")).

LR BN IR R B R I

%

letrec dropx plist =
( if (plist = []) then
0
else if ((fst(dest_var(snd(hd plist)))) = ‘X‘) then
(dropx (tl plist))
else
((hd plist) . (dropx (tl plist)))
)
? (failwith ‘dropx‘);;

letrec getx plist =
( if (plist = []1) then
(failwith ‘getx: empty plist‘)
else if ((fst(dest_var(snd(hd plist)))) = ‘X‘) then
(snd (hd plist))
else
(getx (tl plist))
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)
? (failwith ‘getx‘);;

let genSubstPat pat data =
( let info = mustUnify pat data
in

(if (not (fst info)) then
(failwith ‘genSubstPat: pat dat do not match‘)

else
let ipat (inst [] (snd(snd info)) pat) in
let fills = dropx (fst(snd info))
and xtm getx (fst(snd info))
in

((subst fills ipat),xtm))

)
? (failwith ‘genSubstPat‘);;

let expand_let_pair_CONV tm =
if (is_let tm) then
let (bod,exp) = (dest_let tm)
in
(if not (is_pair exp) then
(if (is_pabs bod) then
let eqThm = (REFL tm) in
let subThm =
(SYM (ISPEC exp PAIR)) in
let (pt,xt) =
(genSubstPat "B = ~“(mk_let("A:®->sx" “X:#&"))"
(concl eqThm))
in
(SUBST (subThm,xt] pt eqThm)
else
(failwith ‘expand_let_pair_CONV: simple let‘))
else
(failwith ‘expand_let_pair_CONV: already paired‘))
else
(failwith ‘expand_let_pair_CONV: not let‘) ;;

A.10 siloprojection.ml

h——————- —————— _—
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* File: siloprojection.ml

* Version: 0.0

= Date: 02/28/96

== - -%

% DO3333555335553533332335D333DDD3IDD33D33DID3330O335D2333333355>>5>
Definitions and theorems for projectionms.

All theorems in this library are based on the definition of
"project_f_lst".

<< LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKLKL Y,

loadf ‘aux/init.ml‘;; newv_theory_safe ‘siloprojection®;;
load_parent ‘silomorelists‘;; load_library ‘arith‘;;

* project_f_lst

Given a list of type * and a boolean filter function, returmns a
list of the elements of the input list that satisfy the filter
function, in their original order.

Can be used to project a list of elements that satisfy the
function (or, using negation, to filter out elements for which the
function is false).

let project_f_1lst =
nev_recursive_definition false SNOC_Axiom ‘project_f_lst‘
“(! (f : (*->bool))
(project_f_1st £ ([1 : (#)list) = ([J: (#)list))
) /\
(!t (f : (¥=>bool)) (d : (#)) (t : (=)list)
(project_£f_1lst £ (SNOC d t) =
(£ 4&) =
(SNOC d (project_f_lst f t))
| (project_f_lst f t)
)
)
DA
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let member_projection = prove_thm(‘member_projection‘,
“(r(l:(* list)) (f:(*->bool)) (x:=)
(MEMBER x (project_f_l1lst f 1) ==> f x)
)",
SNOC_INDUCT_TAC THEN
REPEAT GEN_TAC THEN
REWRITE_TAC [project_f_lst] THENL [
REWRITE_TAC [MEMBER]
COND_CASES_TAC THENL [
REWRITE_TAC [MEMBER_SNOC] THEN
STRIP_TAC THENL [
sym_ASM_PICK_TAC "(x:s) = x’" THEN
ASM_REWRITE_TAC []
mod_ASM_PICK_TAC
"1f x. MEMBER x(project_f_1lst f (1:(* list))) ==> f x"

(SPECL ["f: (‘—)bool) " ; Ny ? :‘“] ) THEN
RES_TAC
]
ASM_REWRITE_TAC (]
]

)i

let projection_member = prove_thm(‘projection_member‘,
“(1(1l: (s 1list)) (£f:(*->bool)) (x:=*)
((f x) /\ (MEMBER x 1)) ==>
(MEMBER x (project_f_lst f 1))
)",
SNOC_INDUCT_TAC THEN
REPEAT GEN_TAC THEN
REWRITE_TAC [project_f_lst] THENL [
REWRITE_TAC [MEMBER]
REWRITE_TAC [MEMBER_SNOC] THEN
REPEAT STRIP_TAC THENL ([
ASM_REWRITE_TAC [MEMBER_SNOC])
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RES_TAC THEN

ASSUME_TAC (SPEC "(f:*->bool) x" EXCLUDED_MIDDLE) THEN
POP_ASSUM DISJ_CASES_TAC THEN

ASM_REWRITE_TAC [MEMBER_SNOC]

)i

let member_projection_list = prove_thm(‘member_projection_list®,
"(t(1:(* list)) (f:(s->bool)) (x:=)
(MEMBER x (project_f_lst f 1) ==> MEMBER x 1)
",
SNOC_INDUCT_TAC THEN
REPEAT GEN_TAC THEN
REWRITE_TAC [project_f_lst] THEN
ASSUME_TAC (SPEC "(f:*->bool) x" EXCLUDED_MIDDLE) THEN
POP_ASSUM DISJ_CASES_TAC THEN
ASM_REWRITE_TAC [] THENL [
REWRITE_TAC [MEMBER_SNOC] THEN
STRIP_TAC THENL [
ASM_REWRITE_TAC []
RES_TAC THEN
ASM_REWRITE_TAC []
]

STRIP_TAC THEN

IMP_RES_TAC member_projection THEN
RES_TAC THEN

ASM_REWRITE_TAC [MEMBER_SNOC]

let suc_less_eq = prove_thm(‘suc_less_eq‘,
"(!'m n.
(m <= n) ==> (m <= SUC n)
)II’
CONV_TAC ARITH_CONV
)is
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let less_suc_eq_less_eq = prove_thm(‘less_suc_eq_less_eq‘,

"(!m n.
(m <= n) = (m < SUC n)
)u,
CONV_TAC ARITH_CONV
)i

let length_projection = prove_thm(‘length_projection®,
“(1(1l:(= list)) (f:(*->bool))
(LENGTH (project_f_lst f 1)) <= (LENGTH 1)
)II’
SNOC_INDUCT_TAC THEN
REWRITE_TAC ([project_f_lst] THENL [
REWRITE_TAC [LESS_EQ_REFL]
REPEAT GEN_TAC THEN

COND_CASES_TAC THENL [
ASM_REWRITE_TAC [LENGTH_SNOC; LESS_EQ_MONO]

REWRITE_TAC [LENGTH_SNOC] THEN

mod_ASM_PICK_TAC
"1f. (LENGTH(project_f_1lst f (1:(* list)))) <=

(LENGTH (1:(* 1list)))"
(SPEC "f:(*->bool)") THEN

IMP_RES_TAC suc_less_eq
]

P

let project_snoc_true = prove_thm(‘project_snoc_true‘,
“(1(1:(* list)) (£f:(*->bool)) (x : =)
(f x) ==> ((project_f_1lst £(SNOC x 1)) =
(SNOC x(project_f_1lst f 1)))
",
REWRITE_TAC [project_f_lst] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []

)i

let project_snoc_false = prove_thm(‘project_snoc_false‘,



)i

)5

"(1(1:(* list)) (f:(*->bool)) (x : )
“(f x) ==> ((project_f_lst £(SNOC x 1)) =
(project_f_1lst £ 1))
PR
REWRITE_TAC [project_f_lst] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []

let length_project_snoc_true =

prove_thm(‘length_project_snoc_true‘,
"(1(1:(* list)) (f:(*->bool)) (x : =)

(f x) ==> ((LENGTH(project_£f_lst £(SNOC x 1))) =

(SUC(LENGTH(project_f_1st £ 1))))
)u’
REWRITE_TAC [project_f_lst] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC [LENGTH_SNOC]

let length_project_snoc_false =
prove_thm(‘length_project_snoc_false‘,
"(1(1:(* 1list)) (£f:(*->bool)) (x : =)

“(f x) ==> ((LENGTH(project_f_lst f£(SNOC x 1))) =

(LENGTH(project_£f_1st f 1)))
)u’
REWRITE_TAC [project_f_lst] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []
)i

let length_project_leq_snoc =

prove_thm(‘length_project_leq_snoc‘,

"(1(1:(* 1list)) (£:(*->bool)) (x : =)
(LENGTH(project_f_1st f 1)) <=
(LENGTH(project_f_1st f(SNOC x 1)))

)"’

REPEAT GEN_TAC THEN

REWRITE_TAC [project_f_lst] THEN
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ASSUME_TAC (SPEC “(f:*->bool) x" EXCLUDED_MIDDLE) THEN
POP_ASSUM DISJ_CASES_TAC THENL [
ASM_REWRITE_TAC [LENGTH_SNOC;LESS_EQ_SUC_REFL;]
ASM_REWRITE_TAC [LESS_EQ_REFL]
]
)i

let last_cons = prove_thm(‘last_cons‘,
“(t (1st:* list) (h:s).
“(NULL 1st) ==> ((LAST (CONS h 1st)) = (LAST 1st))
)",
LIST_INDUCT_TAC THEN
REWRITE_TAC [NULL] THEN
REWRITE_TAC [LAST_DEF] THEN
REWRITE_TAC [LENGTH;PRE] THEN
REWRITE_TAC (num_CONV "1";SEG]
)i

let el_length_last = prove_thm(‘el_length_last‘,
"(! (1st:* list) (h:=) .
((EL. (LENGTH 1st) (CONS h 1st)) = (LAST (CONS h 1lst)))
)",
LIST_INDUCT_TAC THENL
L
REWRITE_TAC [LENGTH;EL;LAST_DEF ;SEG;PRE;num_CONV "1"]

REPEAT GEN_TAC THEN
ASSUME_TAC
(SPECL ["h:=";"1lst:(* 1list)"]
(CONJUNCT2 NULL_DEF)
) THEN
REWRITE_ASM_PICK_TAC
"NULL(CONS (h:*) 1lst) = F"
[SYM_RULE NOT_DEF]
(1 THEN
IMP_RES_TAC (SPEC "(CONS (h:=*) 1lst)" last_cons) THEN
ASM_REWRITE_TAC [LENGTH;EL;TL]
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let length_snoc_tl = prove_thm(‘length_snoc_tl°,
"(! (lst:= list) (x:=)
“(NULL 1lst) ==>
((LENGTH (SNOC x(TL 1st))) =
(LENGTH 1st)
)
",
REPEAT STRIP_TAC THEN
REWRITE_TAC [LENGTH_SNOC] THEN
IMP_RES_TAC (SPEC "lst:» list" CONS) THEN
sym_ASM_PICK_TAC
"CONS(HD 1st)(TL 1st) = (1lst:= list)"
THEN
ONCE_ASM_REWRITE_TAC [] THEN
REWRITE_TAC [LENGTH;TL]
)i

let length_snoc_snoc = prove_thm(‘length_snoc_snoc‘,
"(! (1st:* list) (x x’:%)
“(NULL 1st) ==
((LENGTH (SNOC x’ (SNOC x(TL 1lst)))) =
(LENGTH (SNOC x’ 1st))
)
)",
REPEAT STRIP_TAC THEN
REWRITE_TAC [LENGTH_SNOC] THEN
IMP_RES_TAC (SPEC "lst:* list" CONS) THEN
sym_ASM_PICK_TAC
"CONS(HD 1st)(TL 1lst) = (1lst:* list)"
THEN
ASSUM_LIST(\asl.
GEN_REWRITE_TAC
(RAND_CONV o ONCE_DEPTH_CONV) [] [(el 1 asl)])
THEN
REWRITE_TAC [LENGTH]
)i

let el_length_snoc = prove_thm(‘el_length_snoc‘,
"(! (1st:* list) (x:=)



EL (LENGTH 1st) (SNOC x 1lst) = x
o,
REPEAT GEN_TAC THEN
ASSUME_TAC (SPECL ["x:#";"1lst:s list"] SNOC_NOT_NULL) THEN
IMP_RES_TAC CONS THEN
sym_ASM_PICK_TAC
"CONS (HD(SNOC x 1st)) (TL(SNOC x 1lst)) = SNOC (x:#*) lst"
THEN
ONCE_ASM_REWRITE_TAC [] THEN
ASSUME_TAC (SPEC "LENGTH (lst:* list)" LESS_O_CASES) THEN
POP_ASSUM DISJ_CASES_TAC THENL [
sym_ASM_PICK_TAC
“0 = LENGTH (1st:* list)" THEN
IMP_RES_TAC LENGTH_NIL THEN
ASM_REWRITE_PICK_TAC
["(1st:* list) = [J"]
[LENGTH_NIL] THEN
REWRITE_TAC [LENGTH;EL;HD;SNOC]

IMP_RES_TAC LENGTH_NOT_NULL THEN
IMP_RES_TAC length_snoc_tl THEN
sym_ASM_PICK_TAC
"Ix. LENGTH(SNOC (x:*)(TL 1st)) = LENGTH 1lst" THEN
mod_ASM_PICK_TAC
"1 (x:*). LENGTH 1lst = LENGTH(SNOC x(TL 1st))*"
(SPEC "x:*") THEN
ASM_REWRITE_PICK_TAC
["LENGTH 1st = LENGTH(SNOC (x:#*)(TL 1st))"]
{1 THEN
KEEP_ASM_TAC
["LENGTH 1lst = LENGTH(SNOC (x:=)(TL 1lst))";
"“NULL (1st:s list)";
"“NULL(SNOC (x:=) 1lst)";
] THEN
ASM_REWRITE_TAC [TL_SNOC] THEN
REWRITE_TAC [el_length_last] THEN
ASSUME_TAC (SPECL ["x:*";"lst:* list"] TL_SNOC) THEN
REWRITE_ASM_PICK_TAC
“TL(SNOC (x:=) 1st) = (NULL 1lst => [] | SNOC x(TL 1st))"
(]
["“NULL (1lst:s list)" ] THEN
sym_ASM_PICK_TAC
"TL(SNOC (x:=*) 1lst) = SNOC x(TL 1lst)" THEN
IMP_RES_TAC CONS THEN
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ASM_REWRITE_TAC [LAST]
]
Y5

let projectl_def = prove_thm(‘projecti_def‘,
"(1(1:(* 1list)) (f:(*->bool)) (eli : =) (il : num)
((f eli) /\
(i1 < LENGTH 1) /\
(EL i1 1 = eli)
) ==
(7 i2 .
(i2 < LENGTH (project_f_lst f 1)) /\
(EL i2 (project_f_lst f 1) = eli) /\
(i2 <= i1)
)
",
SNOC_INDUCT_TAC THEN
REPEAT STRIP_TAC THEN
REWRITE_TAC [project_f_lst] THENL [
EXISTS_TAC "il:num" THEN
ASM_REWRITE_TAC [LESS_EQ_REFL]

REWRITE_ASM_PICK_TAC
“i1 < (LENGTH(SNOC (x:*) 1))"
[LENGTH_SNOC; SYM_RULE less_suc_eq_less_eq;LESS_OR_EQ]
a
THEN
POP_ASSUM DISJ_CASES_TAC THENL [
ASSUM_LIST
(\asl. ASSUME_TAC
(MP (SPECL [
"il:num";
“1:(* list)";
] EL_SNOC
)
(el 1 asl)
)
) THEN
REWRITE_ASM_PICK_TAC
"EL i1(SNOC (x:*) 1) = eli"
Q
("!(x:*). EL i1(SNOC x 1) = EL i1 1"]
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THEN
mod_ASM_PICK_TAC
“If eli il.
f eli /\ i1 < (LENGTH (1:(* list))) /\ (EL il 1 = eli)
(?i2.
i2 < (LENGTH(project_f_1lst f 1)) /\
(EL i2 (project_f_l1lst f 1) = eli) /\
i2 <= i1)"
(SPECL ["f:(#->bool)";"eli:*";"il:num"])
THEN
RES_TAC THEN
COND_CASES_TAC THEN
REWRITE_TAC [LENGTH_SNOC] THEN
EXISTS_TAC "i2:num" THEN
IMP_RES_TAC
(SPECL ["i2:num";" (LENGTH(project_f_lst f (1l:= list)))"]
LESS_SUC)
THEN
ASM_REWRITE_TAC (] THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP (SPECL [
"i2:num";
"(project_f_1lst f 1:(* list))";
] EL_SNOC
)
(el 17 asl)
)
)
THEN
ASM_REWRITE_TAC []
EXISTS_TAC "(LENGTH (project_f_lst f (l:#* list)))" THEN
ASSUME_TAC (SPECL ["1l:# list";"x:*"] el_length_snoc) THEN
TRASH_ASSUM
“!(f:+->bool) eli il.
f eli /\ i1 < (LENGTH 1) /\ (EL i1 1 = eli) ==
(?i2.
i2 < (LENGTH(project_f_lst f 1)) /\
(EL i2(project_f_1lst £ 1) = eli) /\
i2 <= i1)" THEN
REWRITE_ASM_PICK_TAC
“EL i1(SNOC (x:*) 1) = eli"



0

(i1 = LENGTH (1:#* list)"] THEN
REWRITE_ASM_PICK_TAC

"EL(LENGTH 1) (SNOC x 1) = (x:=)"

Q

["EL(LENGTH 1)(SNOC x 1) = eli:*"] THEN
REWRITE_ASM_PICK_TAC

"“(f:*->bool) eli”

0]

["eli = x:=" ] THEN
ASM_REWRITE_TAC [] THEN
REWRITE_TAC

[LENGTH_SNOC; length_projection;

LESS_SUC_REFL;el_length_snoc]

)i

let el_snoc_same = prove_thm(‘el_snoc_same°‘,
"(1(1:(* list)) (eli x : =) (i : num)
((i < LENGTH 1) /\ (EL i(SNOC x 1) = eli)) ==
(EL i 1 = eli)
),
REPEAT STRIP_TAC THEN
IMP_RES_TAC EL_SNOC THEN
sym_ASM_PICK_TAC
"EL i(SNOC (x:*) 1) = eli" THEN
ASM_REWRITE_TAC []
)i

let project_order = prove_thm(‘project_order‘,
“(t(1l:(* list)) (f:(*->bool)) (ell el2 : =) (il j1
((f eli) /\ (£ elj) /\
(i1 < LENGTH 1) /\
(j1 < LENGTH 1) /\
(EL i1 1 = eli) /\
(EL j1 1 = elj) /\
(i1 <= j1)
) ==
(7 i2 j2 .

: num)
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((i2 < LENGTH (project_f_1st f 1)) /\
(j2 < LENGTH (project_f_1lst f 1)) /\
(EL i2 (project_f_1st f 1) = eli) /\
(EL j2 (project_f_1lst f 1) = elj) /\
(i2 <= j2)

)
),
SNOC_INDUCT_TAC THEN
REWRITE_TAC [project_f_lst] THENL [
REWRITE_TAC [LENGTH;NOT_LESS_0]
REPEAT STRIP_TAC THEN
COND_CASES_TAC THENL [
REWRITE_ASM_PICK_TAC
*j1 < (LENGTH(SNOC (x:=) 1))*“
(LENGTH_SNOC; SYM_RULE less_suc_eq_less_eq;LESS_OR_EQ]
0
THEN
POP_ASSUM DISJ_CASES_TAC THENL [
ASSUM_LIST
(\asl. ASSUME_TAC
(SYM_RULE
(MP (SPECL ["il:num";"j1:num";"LENGTH(1l:* list)"]
LESS_EQ_LESS_TRANS
)
(CONJ (el 3 asl) (el 1 asl))
)
)) THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP (SPECL ["1:= list";"elj:*";"x:*";"j1:num"]
el_snoc_same
)
(CONJ (el 2 asl) (el 5 asl))
)
) THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP (SPECL ["1:* list";"eli:s";"x:*";"i1:num"]
el_snoc_same
)
(CONJ (el 2 asl) (el 7 asl))
)



) THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP
(SPECL
["f:#->bool";"eli:*";"elj:*";"il :num";"jl:num"]
(el 12 asl)
)
(LIST_CONJ
[(el 11 asl);(el 10 asl);(el 3 asl);(el 4 asl);
(el 1 asl);(el 2 asl);(el 6 asl)]
)
)
) THEN
POP_ASSUM (X_CHOOSE_TAC “"i2:num") THEN
POP_ASSUM (X_CHOOSE_TAC "j2:num") THEN
MAP_EVERY EXISTS_TAC ["i2:num";"j2:num"] THEN
UNDISCH_TAC
"i2 < (LENGTH(project_f_l1lst f (1:* list))) /\
j2 < (LENGTH(project_f_1lst £ 1)) /\
(EL i2(project_f_1lst f 1) = eli) /\
(EL j2(project_f_lst f 1) = elj) /\
i2 <= j2"
THEN
STRIP_TAC THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP
(SPECL
{("i2:num" ; "LENGTH(project_f_lst £ (l:=* list))"]
(LESS_SUC)
)
(el 5 asl)
)
) THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP
(SPECL
("j2:num"; "LENGTH(project_f_lst £ (l:* list))"]
(LESS_SUC)
)
(el 5 asl)
)
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) THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP (SPECL [
"i2:num";
“(project_f_lst f 1:(= list))";
] EL_sNOC
)
(el 7 asl)
)
) THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP (SPECL [
"j2:num”;
"(project_f_lst f 1:(= list))";
] EL_SNOC
)
(el 7 asl)
)
) THEN
ASM_REWRITE_TAC [LENGTH_SNOC]

TRASH_ASSUM
"1 (f:*#->bool) (ell el2:s) il ji1.
f eli /\
f elj /\
i1 < (LENGTH 1) /\
j1 < (LENGTH 1) /\

(EL i1 1 = eli) /\
(EL j1 1 = elj) /\
i1 <= j1 ==>

(?i2 j2.

i2 < (LENGTH(project_f_lst f 1)) /\
j2 < (LENGTH(project_f_1st f 1)) /\
(EL i2(project_f_1st f 1) = eli) /\
(EL j2(project_f_lst f 1) = elj) /\
i2 <= j2)*
THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP
(SPECL ["(SNOC (x:=) 1)";
"f:s~->bool";
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"eli:"';
"il:num"]
projectl_def
)
(LIST_CONJ [(el 8 asl);(el 6 asl);(el 5 asl)])
)
) THEN
POP_ASSUM (X_CHOOSE_TAC “i2:num") THEN
UNDISCH_TAC

“i2 < (LENGTH(project_f_lst f(SNOC (x:*) 1))) /\
(EL i2(project_f_1st f(SNOC x 1)) = eli) /\
i2 <= i1"

THEN

STRIP_TAC THEN

MAP_EVERY EXISTS_TAC
["i2:num";"LENGTH(project_f_1lst f (1:* list))"] THEN

ASSUM_LIST

(\asl. ASSUME_TAC
(SYM_RULE
(MP (SPECL ["1l:+ list";"f:s->bool";"x:="]
project_snoc_true
)
(el 5 asl)
)
)) THEN
ASM_REWRITE_TAC [] THEN
sym_ASM_PICK_TAC
"SNOC (x:*)(project_f_1lst f 1) = project_f_lst f£(SNOC x 1)"
THEN
REWRITE_ASM_PICK_TAC
"j2 < (LENGTH(project_f_lst £(SNOC (x:#*) 1)))"
[LENGTH_SNOC;SYM_RULE less_suc_eq_less_eq]
["project_f_1st £(SNOC (x:*) 1) = SNOC x(project_f_lst f 1)"]
THEN

IMP_RES_TAC length_project_snoc_true THEN

ASM_REWRITE_TAC [LESS_SUC_REFL] THEN

KEEP_ASM_TAC

["j1 = LENGTH (1:# list)";
"EL j1(SNOC (x:#) 1) = elj";
1 THEN
REWRITE_ASM_PICK_TAC
"EL j1(SNOC (x:*) 1) = elj"
[el_length_snoc]
{("j1 = LENGTH (1:+ list)"]
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THEN
ASM_REWRITE_TAC [el_length_snoc]
]
REWRITE_ASM_PICK_TAC
"j1 < (LENGTH(SNOC (x:%) 1))"
[LENGTH_SNOC; SYM_RULE less_suc_eq_less_eq; LESS_OR_EQ]
0

THEN
POP_ASSUM DISJ_CASES_TAC THENL [
ASSUM_LIST
(\asl. ASSUME_TAC
(SYM_RULE
(MP (SPECL ["il:num";"j1:num";"LENGTH(1l:= list)"]
LESS_EQ_LESS_TRANS
)
(CONJ (el 3 asl) (el 1 asl))
)
)) THEN
ASSUM_LIST

(\asl. ASSUME_TAC
(MP (SPECL ["1:=» list“;"elj:t";“x:t";"jl:num"]
el_snoc_same
)
(CONJ (el 2 asl) (el 5 asl))
)

) THEN

ASSUM_LIST

(\asl. ASSUME_TAC
(MP (SPECL ["1l:#* list";"eli:#*";"x:*";"il:num"]
el_snoc_same
)
(CONJ (el 2 asl) (el 7 asl))
)

) THEN

ASSUM_LIST

(\asl. ASSUME_TAC
(MP

(SPECL
[("f:*->bool";"eli:*";"elj:*";"il:num";"j1:num"]
(el 12 asl)

)

(LIST_CONJ
[(el 11 asl);(el 10 asl);(el 3 asl);(el 4 asl);
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(el 1 asl);(el 2 asl);(el 6 asl)]
)
)
) THEN
POP_ASSUM (X_CHOOSE_TAC "i2:num") THEN
POP_ASSUM (X_CHOOSE_TAC "j2:num") THEN
MAP_EVERY EXISTS_TAC ("i2:num";"j2:num"] THEN
UNDISCH_TAC
"i2 < (LENGTH(project_f_1st f (l:= list))) /\
j2 < (LENGTH(project_f_1lst £ 1)) /\
(EL i2(project_f_lst f 1) = eli) /\
(EL j2(project_f_1lst f 1) = elj) /\
i2 <= j2"
THEN
STRIP_TAC THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP
(SPECL
["i2:num" ;"LENGTH(project_£f_1lst f (1l:* list))"]
(LESS_SUC)
)
(el 5 asl)
)
) THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP
(SPECL
("j2:num";"LENGTH(project_£f_lst f (1:# list))"]
(LESS_SUC)
)
(el 5 asl)
)
) THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP (SPECL [
"i2:num”;
"(project_f_lst f 1:(s list))";
] EL_SNGC
)
(el 7 asl)
)
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) THEN
ASSUM_LIST
(\asl. ASSUME_TAC
(MP (SPECL [
"j2:num";
"(project_f_1st f 1:(= list))";
] EL_SNOC
)
(el 7 asl)
)
) THEN
ASM_REWRITE_TAC [LENGTH_SNOC]
REWRITE_ASM_PICK_TAC
"EL j1(SNOC (x:%) 1) = elj"
[el_length_snoc]
["j1 = LENGTH (1:+* list)"]
THEN
REWRITE_ASM_PICK_TAC
"~ (f:«->bool) x"
0
["(x:*) = elj"]
THEN
KEEP_ASM_TAC
["~(f:+«->bool) elj";
“(f:#->bool) elj"
]
THEN
RES_TAC
]

)5

close_theory ();;

A.11 mapdefs.ml




* Version: 0.0
* Date: 11/18/96

961011. Fixed map_up_FGs to check if fromF_FG
instead of just fromF to simplify
map up of FG operations.

961014. Changed mk_fg _msg_list and mk_g _msg_list
to use get_mbx_unread_msgs.

961023. Added transition labels.

R ittt -%

7% >33333533335333333533553333333333333333D3333303533333D33>>3>55>>
Definitions for mapping of composition of F and FG servers to
0S-sys.

<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKLKL Y,

loadt ‘aux/init.ml‘;; loadt ‘aux/letconv.ml‘;; new_theory_safe
‘mapdefs‘;; load_library ‘sets‘;; load_parent ‘silobasic‘;;
load_parent ‘silomorelists‘;; load_parent ‘silolists‘;;
load_parent ‘siloprojection‘;; load_parent ‘F-FG‘;; load_parent
‘0S-env‘;; load_parent ‘0S-sys‘;; load_parent ‘silomappings‘;;

_____________ ———— —_— ———— - o/.

let fromF = new_definition(‘fromF‘,
"(! msg : msg_def .
fromF msg = (get_msg_sndr msg = F_ID)

True if the sender id of the input message is FG_ID.

__________ ———— - —_— -%
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let fromFG = new_definition(‘fromFG°,
"(! msg : msg_def .
fromFG msg = (get_msg_sndr msg = FG_ID)

%

let fromF_FG = new_definition(‘fromF_FG‘,
"(! msg : msg_def .
fromF_FG msg =
((fromF msg) \/ (fromFG msg))
)ll
)is

* £filtmbxF_FG

Given a mailbox, returns the same mailbox minus any messages sent
by the F or FG servers. The presence and relative order in the
mailbox of all other messages is unaffected. The composition of ~
and fromF_FG insures that the filter passes only messages that

wvere not sent by the servers.

- %

let filtmbxF_FG = new_definition(‘filtmbxF_FG*,
“(! mbx:mbox_def .
filtmbxF_FG mbx =
let mnext = get_mbx_next mbx
and msgs = get_mbx_msgs mbx
in
let newmnext =
(LENGTH (project_f_lst ($~ o fromF_FG)

(SUBSEQ mnext msgs)))

in (

cons_mbx newmnext (project_f_lst ($~ o fromF_FG) msgs)

)
)II
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Y e e
* projectF

Given a mailbox, returns only the messages sent by the F server,
in their original order.

let projectF = new_definition(‘projectF*,
"(! mbx:mbox_def .
projectF mbx =
let mnext = get_mbx_next mbx
and msgs = get_mbx_msgs mbx
in
let newmnext =
(LENGTH (project_f_lst (fromF)
(SUBSEQ mnext msgs)))
in (
cons_mbx newmnext (project_f_lst (fromF) msgs)

'/' ___________
* projectFG

Given a mailbox, returns only the messages sent by the FG server,
in their original order.

- ———

let projectFG = new_definition(‘projectFG‘,

"(! mbx:mbox_def .
projectFG mbx =
let mnext = get_mbx_next mbx
and msgs = get_mbx_msgs mbx
in
let newmnext =

(LENGTH (project_f_lst (fromFG)
(SUBSEQ mnext msgs)))

in (
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cons_mbx newmnext (project_f_lst (fromFG) msgs)

F A s TR

* map_up_mbxs

Given the mailboxes of a system state, returns all mailboxes
unmodified, except the F and FG mailboxes, from which all the
messages from the F and FG servers have been filtered.

e %

let map_up_mbxs = new_definition(‘map_up_mbxs‘,
"(! mbxs:mboxes .
map_up_mbxs mbxs =
let 01dFmbx = (get_mbxs_mbx mbxs F_ID)
and 01dFGmbx = (get_mbxs_mbx mbxs FG_ID)
in
let newFmbx = (filtmbxF_FG oldFmbx)
and newFGmbx = (£filtmbxF_FG 01dFGmbx)
in (
put_mbxs_mbx
(put_mbxs_mbx mbxs F_ID newFmbx)
FG_ID
newFGmbx

fh ————mmrm e o o o i e e 2 i o i = 2k o o

* map_up_Fs

Given a system state at the server level, returns the internal
state queue for the F service call.

let map_up_Fs = new_definition(‘map_up_Fs‘,
“"(!fi:F_internal_state.
map_up_Fs fi =
% let fi = get_trace_Fs ss
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in %
let fi_flag = Fs_get_flag fi
and fi_buf = get_Fs_buf fi
in (
%If empty buffer then return empty queue,
("fi_flag) => ([]:msg_def list) |
%else filter out messages from the FG server./
((fromF_FG fi_buf)) =>
([] :msg_def list) |
([fi_bufl)

% ——————— —_——— ———

* get_mbx_unread_msgs

Returns the unread messages in a mailbox, or an empty list if
there are no unread messages.

let get_mbx_unread_msgs = new_definition (‘get_mbx_unread_msgs‘,
"(! (mbx : mbox_def)
get_mbx_unread_msgs mbx =
let msgs = (get_mbx_msgs mbx)
and nxt = (get_mbx_next mbx)
in
(mbx_is_unread_msg mbx) => (newBUTFIRSTN nxt msgs) |
(] : (msg_def)list

'/. _____________________ e e, ———————————————— e ——
* mk_g _msg_list

Given a system state at the server level, returns a list of
messages from the F mailbox and internal state that corresponds to
messages in the FG server internal queue. These messages vere
already processed by the FG server and their data values have

already had the G function applied to them.
""""" %
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let mk_g_msg_list = nev_definition(‘mk_g_msg_list°‘,
"(! ss: trace_state.
mk_g msg_list ss =
let fi = get_trace_Fs ss
and fmbx = (get_mbxs_mbx(get_trace_mbxs ss)F_ID)
in
let fi_flag = Fs_get_flag fi
and fi_buf = get_Fs_buf fi
and fmbxmsgs = (get_mbx_unread_msgs fmbx)
in
let fmsgs = (project_f_lst fromFG fmbxmsgs)
and fbuf = ((("fi_flag) \/ ("fromFG fi_buf)) =>
([] :msg_def 1list) |
(fi_buf]
)
in (
APPEND fbuf fmsgs

Y e e e —————
* mk_fg _msg _list

Given a system state at the server level, returns a list of
messages from the FG mailbox and internal state that corresponds
to messages in the FG server internal queue. These messages vere
already processed by the F server and have F(G(x)) as their data
values.

let mk_fg_msg_list = new_definition(‘mk_fg_msg_list‘,
“(! ss: trace_state.
mk_fg_msg_list ss =
let fgi = get_trace_FGs ss
and fgmbx = (get_mbxs_mbx(get_trace_mbxs ss)FG_ID)
in
let fgi_flag = FGs_get_flag fgi
and fgi_buf = get_FGs_buf fgi
and fgmbxmsgs = (get_mbx_unread_msgs fgmbx)
in
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let fgmsgs = (project_f_lst fromF fgmbxmsgs)

and fgbuf = (((“fgi_flag) \/ (“fromF fgi_buf)) =>
(0[] :msg_def 1list) |
[fgi_buf]

in (
APPEND fgbuf fgmsgs

h ——- - e

* mk_par_msg_list

Given a system state at the server level, returns a list of
messages from the os mailboxes and internal state that corresponds
to the messages in the FG server internal queue. These messages
have either G(x) or F(G(x)) as their data values.

____________ -— ——— - %

let mk_par_msg_list = new_definition(‘mk_par_msg_list‘,
“(! ss: trace_state.
mk_par_msg_list ss =
let glst = (mk_g_msg_list ss)
and fglst =(mk_fg_msg_list ss)
in (APPEND fglst glst)

h ———————m e -— - P -

* map_up_FGs

Given a system state, returns the internal state queue for the FG
service call.

____________________ - %

let map_up_FGs = new_definition(‘map_up_FGs‘,
"(! fgi: FG_internal_state.
map_up_FGs fgi =
% let fgi = get_trace_FGs ss
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in %

let fgi_flag = FGs_get_flag fgi
and fgi_buf = get_FGs_buf fgi
and fgi_q = FGs_get_queue fgi

in (
(("fgi_flag) \/ (fromF_FG fgi_buf)) =>
fgi_q |
(SNOC fgi_buf fgi_q)
)

'/. _________ - -—

* map_up_state

Maps the system state for the F and FG server composition to the
system state of the 0S.

let map_up_state = new_definition(‘map_up_state‘,
"(!(lowss:trace_state)
map_up_state lowss =
let mbxs = (get_trace_mbxs lowss)
in
let newmbxs = map_up._mbxs mbxs
and newfs = map_up_Fs(get_trace_Fs lowss)
and nevfgs = map_up_FGs(get_trace_FGs louss)
in (cons_0Strace_state newmbxs newfs newfgs)

'/. ___________________ -

* map_up_element

Maps a trace element from a composed system trace to a trace
element of the 0S.
________ - %4

let map_up_element = new_definition(‘map_up_element®,
" (! (lowtel:trace_element)
map_up_element lowtel =
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let ltagent = get_trace_agent lowtel
and ltlabel = get_trace_tlabel lowtel
and ltstate = get_trace_state lowtel
in
cons_0Strace_el ltagent ltlabel (map_up_state ltstate)
)II
)i

%

* map_up_trace

Maps a trace in the composed system to a trace in the complete 0S
specification.

_____ — - - - %

let map_up_trace = nev_definition(‘map_up_trace‘,
"(!(lowtrace:trace_def)
map_up_trace lowtrace = (map_up_element o lowtrace)
)u
)i

close_theory();;
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Appendix B

Example Template Instantiations

This appendix contains two instantiations of the example template from chapter 7,
as described in section 7.10. The functions are defined as F_func, G.func, and FG_func,
and the proof that (F_func(G_func(z)) = FG_func(z)) is defined as proveF _FG.

The only difference between the two instantiations of the template are the defini-
tions of the specific functions F_func, G_func, and FG_func, and the proof proveF _FG.

Otherwise, the proofs are identical and can be carried out almost automatically.

B.1 First Instantiation

loadt ‘aux/init.ml¢;;

loadt ‘aux/letconv.ml‘;;
new_theory_safe ‘instancelf;;
load_library ‘sets‘;;



load_parent ‘silobasic‘;;
load_parent ‘F-FG‘;;

load_parent ‘0OS-env‘;;
load_parent ‘0S-sys‘;;
load_library ‘arith‘;;
load_library ‘more_arithmetic‘;;
load_parent ‘composeF-FG‘;;
load_parent ‘safety‘;;
load_parent ‘mapFprogress‘;;
load_parent ‘mapFGreadsprog‘;;
load_parent ‘mapFGrespondsprog‘;;

The definition of the system call F.

This system call accepts a value ‘v’ in its request message and
returns a value F(v) = v + 1 in the response.

let F_func = nev_definition (‘F_func‘, "
(! (mdata : msg_data)
F_func mdata =
(mdata+1)
)
“)is

The FG system call accepts a value ‘v’ in its request message and
passes the value G(v) to the F server.

For demonstration purposes, we specify G(v) as (v+2).
When combined with F(v) = (v+1), the response of the FG server will
be (v+3).

--- %

let G_func = new_definition (‘G_func‘, "
(! (mdata : msg_data)
G_func mdata =
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(mdata+2)

The 0S system call FG accepts a value ‘v’ in its request message and

returns the value FG(v) in the response.

For demonstration purposes, we specify FG(v) as (v+3).
In the proof we show that the composition of the F and FG servers
implements this function.

let FG_func = nev_definition (‘FG_func‘, *
(! (mdata : msg_data)
FG_func mdata =
(mdata+3)
)
")

% >333353533333333555355333333333335335D333333333553353533535>>5>>
The things that we must prove in order to show that the
composition is correct:

1)Composition step.

2)Map up safety properties (initial state and tramsitionmns),
and shov data refinement of external state preserves environment
transitions.

3)Map up liveness properties.

<L LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLCLLLCLLLLKL %

let composition_step = new_definition(‘composition_step‘,
"(!trace. composition_step trace =
((0S_env_init trace) /\ (0S_env_safety trace) /\
(F_init trace) /\ (F_safety trace F_func) /\
(FG_init trace) /\ (FG_safety trace G_func)
(F_env_init trace) /\ (F_env_safety trace) /\
(FG_env_init trace) /\ (FG_env_safety trace))

)u
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let map_safety_step = nev_definition(‘map_safety_step‘,
"(!trace. map_safety_step trace =
0S_env_init trace /\
0S_env_safety trace /\
F_init trace /\
FG_init trace /\
F_safety trace F_func /\
FG_safety trace G_func ==>
0S_init (map_up_trace trace) /\
0S_safety (map_up_trace trace) F_func FG_func /\
(0S_env_init (map_up_trace_mbxs trace) /\
0S_env_safety (map_up_trace_mbxs trace))
)ll
)i

let map_progress_step = new_definition(‘map_progress_step‘,
“"(ltrace. map_progress_step trace =

0S_env_init trace /\

0S_env_safety trace /\

F_init trace /\

FG_init trace /\

F_safety trace F_func /\

FG_safety trace G_func /\

F_reads_progress trace /\

F_responds_progress trace F_func /\

FG_reads_progress trace /\

FG_responds_progress trace G_func ==
0S_reads_F_progress (map_up_trace trace) /\
0S_responds_F_progress (map_up_trace trace) F_func /\
0S_reads_FG_progress (map_up_trace trace) /\
0S_responds_FG_progress (map_up_trace trace) FG_func

)u
)i

AR SSS55 53555559 5552505599 2322220055535 5SS S>> 555> S P $ S5
The assumption that must be true for the composition proof

to succeed. Viz., F 0 G = FG
€< <LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LKL Y,

'/. ........................ ———— ———

= proveF_FG
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_______ %

let proveF_FG = prove_thm(‘proveF_FG°¢,
"(!x. (F_func(G_func x) = (FG_func x))
)u,
GEN_TAC THEN
REWRITE_TAC [F_func;G_func;FG_func] THEN
CONV_TAC ARITH_CONV
DI

let prove_instancel = prove_thm(‘prove_instancel‘,
"(!trace.
composition_step trace /\
map_safety_step trace /\
map_progress_step trace
),
GEN_TAC THEN
CONJ_TAC THENL [
REWRITE_TAC ([composition_step] THEN
STRIP_TAC THEN
MP_TAC (SPECL ["trace:trace_def";"F_func:num->num";
"G_func :num->num"]
composeF_FG)
THEN
ASM_REWRITE_TAC []
CONJ_TAC THENL [
REWRITE_TAC [map_safety_step] THEN
STRIP_TAC THEN
MP_TAC (SPECL (["trace:trace_def"]
map_up_init)
THEN
MP_TAC (SPECL ["trace:trace_def";"F_func:num->num";
"G_func :num->num" ; "FG_func : num~>num"]
map_up_transitions)
THEN
MP_TAC (SPECL ["trace:trace_def";"F_func:num->num";
“G_func :num->num")
map_up_env)
THEN
ASM_REWRITE_TAC [assumption;proveF_FG] THEN
REPEAT STRIP_TAC THEN



ASM_REWRITE_TAC []

REWRITE_TAC [map_progress_step] THEN
STRIP_TAC THEN
MP_TAC (SPECL [“trace:trace_def";"F_func:num->num";
"G_func :num->num"]
map_F_responds_progress)
THEN
MP_TAC (SPECL ["trace:trace_def";"F_func:num->num";
*G_func : num->num"]
map_F_reads_progress)
THEN
MP_TAC (SPECL ["trace:trace_def";"F_func:num->num";
"G_func :num->num"]
map_FG_reads_progress)
THEN
MP_TAC (SPECL ["trace:trace_def";"F_func:num->num";
*G_func :num->num" ; "FG_func: num->num"]
map_FG_responds_progress)
THEN
ASM_REWRITE_TAC [assumption;proveF_FG] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC (]

close_theory();;

B.2 Second Instantiation

loadt ‘aux/init.ml‘;;
loadt ‘aux/letconv.ml‘;;
new_theory_safe ‘instancel‘;;
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load_library ‘sets‘;;
load_parent ‘silobasic‘;;
load_parent ‘F-FG‘;;
load_parent ‘0OS-env‘;;
load_parent ‘0S-sys‘;;
load_library ‘arith‘;;
load_library ‘more_arithmetic‘;;
load_parent ‘composeF-FG*;;
load_parent ‘safety‘;;
load_parent ‘mapFprogress‘;;
load_parent ‘mapFGreadsprog‘;;
load_parent ‘mapFGrespondsprog‘;;

The definition of the system call F.

This system call accepts a value ‘v’ in its request message and
returns a value F(v) = v * 2 in the response.

- -- -~

let F_func = new_definition (‘F_func‘, "
(! (mdata : msg_data)
F_func mdata =
(mdata = 2)
)
")

The FG system call accepts a value ‘v’ in its request message and
passes the value G(v) to the F server.

For demonstration purposes, we specify G(v) as (v+2).

__________ -_— - — '/.

let G_func = new_definition (‘G_func‘, "
(! (mdata : msg_data)
G_func mdata =
(mdata+2)
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")

h ——— e e ———— —_——

* FG_func

The 0S system call FG accepts a value ‘v’ in its request message and
returns the value FG(v) in the response.

For demonstration purposes, we specify FG(v) as (2v+4).
In the proof we show that the composition of the F and FG servers
implements this function.

- - - --- - %

let FG_func = new_definition (‘FG_func‘, "
(! (mdata : msg_data)
FG_func mdata =
((2 *= mdata) + 4)
)
")

% OOOOO5333333333533333333D3335353333II33333333333305D>>350335>>>>
The things that we must prove in order to show that the
composition is correct:

1)Composition step.
2)Map up safety properties (initial state and tramsitions),
and show data refinement of external state preserves environment
transitions.
3)Map up liveness properties.
<<<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKLLLL Y

let composition_step = new_definition(‘composition_step‘,
"(!trace. composition_step trace =
((0S_env_init trace) /\ (0OS_env_safety trace) /\
(F_init trace) /\ (F_safety trace F_func) /\
(FG_init trace) /\ (FG_safety trace G_func)
(F_env_init trace) /\ (F_env_safety trace) /\
(FG_env_init trace) /\ (FG_env_safety trace))

)u



let map_safety_step = nev_definition(‘map_safety_step‘,
"(!trace. map_safety_step trace =
OS_env_init trace /\
0S_env_safety trace /\
F_init trace /\
FG_init trace /\
F_safety trace F_func /\
FG_safety trace G_func ==>
0S_init (map_up_trace trace) /\
0S_safety (map_up_trace trace) F_func FG_func /\
(0S_env_init (map_up_trace_mbxs trace) /\
0S_env_safety (map_up_trace_mbxs trace))
)ll
)i

let map_progress_step = new_definition(‘map_progress_step‘,
“(!trace. map_progress_step trace =

0S_env_init trace /\

0S_env_safety trace /\

F_init trace /\

FG_init trace /\

F_safety trace F_func /\

FG_safety trace G_func /\

F_reads_progress trace /\

F_responds_progress trace F_func /\

FG_reads_progress trace /\

FG_responds_progress trace G_func ==
0S_reads_F_progress (map_up_trace trace) /\
0S_responds_F_progress (map_up_trace trace) F_func /\
0S_reads_FG_progress (map_up_trace trace) /\
0S_responds_FG_progress (map_up_trace trace) FG_func

)II
)i

VAP SSSI55555 55550022023 353> > 55555555 DD 5SS S 859 S eeda ol
The assumption that must be true for the composition proof

to succeed. Viz., F o G = FG
€< <LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKLKLKLKL Y

A
* proveF_FG
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let proveF_FG = prove_thm(‘proveF_FG‘,
“(1x. (F_func(G_func x) = (FG_func x))
)u,
GEN_TAC THEN
REWRITE_TAC (F_func;G_func;FG_func] THEN
CONV_TAC ARITH_CONV
)i

let prove_instancel = prove_thm(‘prove_instancel’,
“(ttrace.
composition_step trace /\
map_safety_step trace /\
map_progress_step trace
)",
GEN_TAC THEN
CONJ_TAC THENL (
REWRITE_TAC [composition_step] THEN
STRIP_TAC THEN
MP_TAC (SPECL ["trace:trace_def";"F_func:num->num";
"G_func :num->num"]
composeF_FG)
THEN
ASM_REWRITE_TAC (]
CONJ_TAC THENL [
REWRITE_TAC [map_safety_step] THEN
STRIP_TAC THEN
MP_TAC (SPECL ["trace:trace_def"]
map_up_init)
THEN
MP_TAC (SPECL ["trace:trace_def";"F_func:num->num”;
“G_func :num->num" ; "FG_func :num->num"]
map_up_transitions)
THEN
MP_TAC (SPECL ["trace:trace_def";"F_func:num->num";
"G_func :num->num"]
map_up_env)
THEN
ASM_REWRITE_TAC [assumption;proveF_FG] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []

%
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REWRITE_TAC [map_progress_step] THEN
STRIP_TAC THEN
MP_TAC (SPECL (["trace:trace_def";"F_func:num->num";
*"G_func :num->num"]
map_F_responds_progress)
THEN
MP_TAC (SPECL ("trace:trace_def";"F_func:num->num";
"G_func:num->num"]
map_F_reads_progress)
THEN
MP_TAC (SPECL ("trace:trace_def";"F_func:num->num";
"G_func:num->num"]
map_FG_reads_progress)
THEN
MP_TAC (SPECL (["trace:trace_def";"F_func:num->num";
"G_func :num->num” ; "FG_func :num~->num"]
map_FG_responds_progress)
THEN
ASM_REWRITE_TAC [assumption;proveF_FG] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []

close_theory();;
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