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Abstract

An Intrusion Tolerance Approach for Protecting Network Infrastructures

bv

Steven Cheung

Doctor of Philosophy in Computer Science
University of California at Davis

Professor Karl N. Levitt, Chair

We present intrusion tolerance, a new approach for protecting network infras-
tructures, and apply it to two core components: routers and domain name systems (DNS).
Previous work on intrusion detection was concerned only with detecting suspicious activ-
ities. Our intrusion tolerance approach, a significant extension of this prior work, brings
fault tolerance into the intrusion detection field, and includes detection of violations of
security policies, system diagnosis to identify misbehaving network components, and auto-
mated response to prevent an attack from propagating and to restore operational status.

Based on this new view of intrusion detection, we investigated three sub-problems
in securing a network infrastructure. First, we present an efficient message authentication
scheme for link state routing. Previous approaches such as public-key based schemes either
are very expensive computationally or have other limitations. In contrast, our scheme is
scalable to large networks, is applicable to routing protocols that use multiple-valued cost
metrics, and is applicable even when link states change frequently.

Second, we present a novel detection-based solution to protect network infras-
tructures from routers that incorrectly drop packets and misroute packets. We developed
failure models for routers, and designed protocols that detect and respond to those misbe-
having routers. Based on reasonable assumptions, we proved that our protocols have the
following properties: (1) Good routers never incorrectly claim another router as misbehav-
ing; (2) Misbehaving routers can be identified; (3) Misbehaving routers will eventually be
removed.

Third, we present a detection-response approach for protecting DNS. A compro-

il



mise to DNS may cause denial of service (when a client cannot locate the network address
of a server) and entity authentication to fail (when host names are used to specify trust
relationships among hosts). In our approach, we characterize DNS clients, DNS servers,
and our DNS wrapper using formal specifications. Qur DNS wrapper enforces a security
goal for DNS: Name servers only use DNS data that are consistent with those disseminated
by the corresponding authoritative DNS servers. Based on the specifications, we imple-
mented a DNS wrapper prototype and show by measurements that it does not significantly

degrade DNS’ performance.
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Chapter 1

Introduction

Through a myriad of applications, including electronic mail, WWW, and elec-
tronic commerce, computer networks play an increasingly important role in many aspects
of our lives. Security incidents like the Melissa macro virus [11], the “smurf” ICMP! denial
of service attacks [9], the IP spoofing and TCP connection hijacking [8], and the Morris’
Internet worm [65], demonstrate how vulnerable current computer systems and networks
are to attacks. The costs of security breaches can be very high: unauthorized information
disclosure, loss of data integrity, and system degradation or unavailability. Thus network
security becomes crucial.

Most of the existing network security work concerns confidentiality, data integrity,
user authentication, and non-repudiation all on an end-to-end basis. In contrast, protecting
the underlying network infrastructures has received little attention until recently—when
we have become more aware of how vulnerable our existing network infrastructures are
to attacks and of their severe impacts. End-to-end security can be foiled by attacks that
exploit vulnerabilities in the network infrastructures. For example, a compromised router
can drop packets to cause denial of service. In this dissertation, we describe our work
on protecting two core components of network infrastructures—routers and domain name
systems—both of which are security critical.

Attacks on routing infrastructures can be classified as follows: packet generation
(e.g., masquerading as a certain host or router to send forged packets), packet alteration

(e.g., modifying link state information of routing control packets or modifying data packets

'ICMP stands for “Internet Control Message Protocol”, an integral part of the Internet Protocol (IP)
that handles error and control messages.



in transit), packet removal (e.g., dropping routing control packets or data packets to cause
denial of service), misrouting (e.g., routing packets in the “wrong” direction so that they
will take longer or forever to reach their destinations), and breach of confidentiality (e.g.,
performing traffic analyses or eavesdropping on data packets).

The use of tools like Secure Sockets Layer (SSL), Pretty Good Privacy (PGP), and
Secure Shell (SSH) has become widespread for protecting the confidentiality and integrity
of data packets. For example, web browsers are equipped with SSL to enable secure
information transmission (e.g., sending credit card numbers) from a machine to another
over an insecure network. However, using encryption and message authentication schemes
on an end-to-end basis cannot prevent data packets from being removed or misrouted in
the network. To fill this gap, we present protocols that detect and respond to misbehaving
routers to protect packets from denial of service attacks.

Routers exchange control packets to inform other routers about their status (e.g.,
up/down link states and link costs®). Based on the routing control packets received, a
router computes a routing table that is used to forward incoming packets toward their
destinations. Usually there is no need to protect the secrecy of routing control packets.
However, protecting the integrity and the authenticity of these control packets is security
critical. If an attacker can successfully forge or modify routing control packets, the routers
that use the incorrect information in those control packets may route packets incorrectly.
As a result, packets may suffer from long delays or may not reach their lestinations. To
protect the integrity and the authenticity of routing control packets, message authentication
schemes have been proposed for routing protocols. Previous work either is very expensive
computationally (e.g., public-key based message authentication schemes) or has certain
limitations (e.g., the maximum clock skew among routers must be bounded by a specified
threshold). We present an efficient message authentication scheme for link state routing
that does not have these limitations.

In a domain name system (DNS), distributed name servers collaborate to provide
name service (e.g., mapping host names to IP addresses). Many network applications, such
as file transfer, remote login, WWW, and electronic mail, depend on DNS in a security

related fashion. For example, if an attacker can cause a client to use incorrect DNS data,

*There are different cost metrics (also called distance metrics) for routing protocols: for example, all
links have the same cost, the cost of a link depends on its bandwidth capacity, or the cost of a link depends
on the bandwidth available.



the client may not be able to obtain the IP address of a mail server and thus cannot com-
municate with it. In other words, DNS attacks can cause denial of service. As another
example, if the DNS mapping for www.cnn.com is compromised, an attacker may be able
to direct web browsers looking for the news web site to one that gives out counterfeit news.
If the web browser does not authenticate the server, the user may use the counterfeit news
as if they were genuine. Some applications (e.g., Unix rlogin) use name-based authenti-
cation. Attacking DNS could change the name-to-address mapping, and hence may allow
an attacker’s machine to masquerade as a trusted machine. Our approach for protecting
DNS is driven by formal specifications. We develop formal specifications to characterize
DNS clients and DNS servers and to define a security goal: A DNS server should only
use DNS data that are consistent with those disseminated by the corresponding authorita-
tive sources. We present a DNS wrapper, also characterized by formal specifications, that
enforces the security goal.

We call our approach intrusion tolerance because it is based on prior work on
intrusion detection and fault tolerance. Intrusion detection (e.g., {18, 27, 38, 46]) is a
retrofit approach to improve the security of computer systems and networks. Intrusion
detection systems detect and report security policy violations. To live with the existing
systems and network infrastructures (i.e., the legacy system problem), intrusion detection
improves their security with minimal changes to them. Because of the huge costs and the
difficulties in building useful yet secure systems, we may not be able to replace the existing
(insecure) computer and network systems by secure systerns in the near future-or perhaps,
never.

In an advanced fault tolerant system, the handling of an error can involve the
following steps: error detection, damage assessment, reconfiguration, and recovery. Cur-
rent attempts at intrusion detection are much less ambitious, typically relying on attack
detection that triggers a message to be sent to a security officer. Thereafter it is the re-
sponsibility of the human security officer to deal with the situation, e.g., to remove an
offending user or site, to request additional audit logs for a particular user, or to save audit
logs as evidence. We envision that human intervention at this level will not be feasible for
much longer, particularly when long delays for human response have high costs, and attacks
may rapidly propagate. Our work is a first step towards an expansive view of intrusion
detection, which includes detection of security policy violations, system diagnosis for iden-

tifying misbehaving components, and automated response (e.g., system reconfiguration) to



prevent propagation of an attack or to restore the operational status of the system.
The main contributions of this dissertation towards this new goal for intrusion

detection are summarized as follows:

e Presents an intrusion tolerance approach for protecting two key components of net-
work infrastructures, namely routers and domain name systems: Detection is only a
part of the control loop. Our approach includes detection, diagnosis, and response.
Formalism is an integral part of our approach, which includes modeling of system
components, characterizing system components using formal specifications, and prov-
ing properties of the solutions. Most of the existing intrusion detection works are
ad-hoc in nature; it is difficult to assess the benefits of deploying those solutions. We
hope our work can serve as a stepping stone towards a methodology that employs

formalism to achieve a higher level of assurance for detection-based solutions.

e Presents a first detection-based message authentication scheme3: Our message au-
thentication scheme is up to two orders of magnitude faster than an MD5/RSA dig-
ital signature scheme. Detection-based approaches are conventionally considered as
the second line of defense. We show that when prevention-based approaches are too
expensive or restrictive to use, a detection-response approach may be an attractive

alternative.

e Presents techniques and protocols to detect and respond to routers that maliciously
drop or misroute packets*: This is an initial detection-based approach for protecting
routing infrastructures from denial of service attacks. Based on reasonable assump-
tions, we prove important properties of our protocols regarding soundness (i.e., no
false positive), completeness (i.e., no false negative), and responsiveness (i.e., ability

to restore the operational status of a network).

e Presents a wrapper-based solution to protect DNS: Our security goal for DNS is to
ensure that protected DNS servers only use DNS data that are known to be consis-
tent with those disseminated by the corresponding authoritative servers. We employ
formal specification to describe DNS servers and our DNS wrapper, used to filter

out DNS messages destined for a protected server that may cause violations of our

3An earlier version of this message authentication work was published as [14].
4 An earlier version of this work for protecting routing infrastructures from denial of service was published
as [15].



security goal. Based on the specification of the DNS wrapper, we implemented a
DNS wrapper prototype and evaluated its performance. Our experimental results
show that the DNS wrapper is effective against cache poisoning attacks and certain
spoofing attacks, and the wrapper does not have a significant impact on the name

server response time and the CPU overhead.

The outline for the rest of this dissertation is as follows. Chapter 2 describes
our efficient message authentication scheme for link state routing. Chapter 3 presents our
techniques and protocols for protecting routing infrastructures from misbehaving routers
that drop packets incorrectly or misroute packets. Chapter 4 describes our scheme for
protecting domain namesystems. Chapter 5 concludes this dissertation and suggests future

work.



Chapter 2

An Efficient Message
Authentication Scheme for Link

State Routing

2.1 Introduction

Routers exchange routing control packets to share their current states. Based
on these control packets, routers construct their routing tables to efficiently forward pack-
ets from source to destination. If routing infrastructure components (such as routers or
inter-router links) are faulty, misconfigured, or compromised, then the exchange of routing
control packets may be affected, resulting in improper or incorrect routing in the net-
work. In particular, the network may suffer from degradation of service, unavailability, or
misrouting of packets.

Potential attacks on routing infrastructures can be classified as follows:

e Packet generation: A router masquerades as a different router to send erroneous
control packets, replays stale control packets, or floods the network with excessive

control or data packets.

e Packet alteration: A router modifies control or data packets in transit. For example,

the cost, the ordering, or the freshness information of control packets may be altered.

e Packet removal: A router removes control packets to prevent information about net-



work changes from propagating to other routers, or removes data packets in transit

to effect denial of service.

e Misrouting: A router misroutes control or data packets so that they will take longer

(or forever) to reach their destinations.

e Breach of confidentiality: A router eavesdrops data and control packets, or performs

traffic analysis.

To protect routing control traffic from some of these threats, approaches that
support data authenticity (used to provide both proof of data origin and data integrity),
ordering, and freshness of control packets have been proposed. Examples are Perlman’s
[50, 51] work on link state routing protocols, Finn’s [20] report on dynamic routing pro-
tocols, Kumar’s and Crowcroft’s [34] paper on inter-domain routing protocols, Murphy’s
and Badger’s [47] paper on OSPF, Smith’s and Garcia-Luna-Aceves’s [63] paper on BGP,
Hauser’s, Przygienda’s, and Tsudik’s [26] paper on link state routing, Sirois’s and Kent’s
[62] paper on Nimrod, and Smith’s, Murthy’s, and Garcia-Luna-Aceves’s {64] paper on
distance vector routing protocols.

This chapter presents an efficient message authentication scheme for protecting
control packets in link state routing. Previous work such as [50, 51, 47, 26] either is
very expensive computationally or has certain limitations, which will be discussed in Sec-
tion 2.2. We use a detection-diagnosis-recovery approach, which is intrusion detection
(e.g., [18, 38, 46, 27]) augmented with system diagnosis and reconfiguration (e.g., [52]).
This approach is also used in Chapter 3 and in Bradley, et al.’s paper [6, 7] on protecting
routing infrastructures from routers that incorrectly drop packets and misroute packets.
Our main goal is to minimize the cost of performing link state update authentication when
the network components function normally, which occurs most of the time. In our scheme,
a router 7 uses a key k£ and a symmetric-key based data authentication scheme (e.g., a
keyed-hash scheme) to sign a link state update. The link state update with the signature
is disseminated to all other routers. A receiving router optimistically accepts the routing
update as if it were authenticated. At a designated time!, router r will then release the
key k. When the key k arrives, the receiving router verifies the authenticity of the key

using a secure and efficient method called hash chaining [36]. Then the verified key will

Section 2.3.4 discusses how to choose a safe key release time so that an attacker cannot use the released
key to successfully forge control packets.



be used to verify the authenticity of the link state update using the symmetric-key based
data authentication scheme. Note that signature generation and verification can be done
using a symmetric-key based data authentication scheme, which is orders of magnitude
more efficient than a digital signature scheme. If erroneous routing updates are detected,
a distributed diagnosis protocol will be activated to locate the misbehaving routers. Then
network reconfiguration will be performed to logically disconnect those routers to restore
the operational status of the network.

This chapter is organized as follows: Section 2.2 reviews related work on link
state update authentication. Section 2.3 details and analyzes our scheme, called optimistic
link state verification. Section 2.4 compares our work with related work, and discusses

variations and limitations of our scheme.

2.2 Background: Link State Update Authentication

In link state routing?, every router constructs link state updates® (LSUs) that
describe the status of the links incident to the router, and distributes those updates to
all other routers. As networks are generally not fully connected, a technique known as
flooding is used for LSU distribution. When a router receives an LSU that it has not
received previously, the router forwards the LSU (essentially) unchanged to its neighbors,
except the one from which the LSU was received. To make flooding more robust, a router
sends an acknowledgement to the neighbor from which it receives an LSU. If the sender
does not receive an acknowledgement after a certain time threshold, it will re-transmit the
LSU. Based on the LSU received, a router computes the shortest paths to all destinations.
Because those computations are performed independently by all routers on the same set of
LSUs, networks using link state routing converge to a stable state quickly (as opposed to
distance vector routing). To protect routers from using erroneous LSUs to compute their
routing tables, data authentication is needed to cope with forged LSU generation and LSU
modification. Specifically, an attacker may masquerade as a particular router and generate
a forged LSU. Moreover, an LSU may be modified by a compromised intermediate router
or an active inter-router link attack.

Data authentication schemes can be broadly classified as symmetric-key based and

2Examples of link state routing protocols are OSPF [45], IS-IS [28], a proprietary protocol used in the
Internet core system known as SPREAD, and a proprietary routing protocol used in the ARPANET [40].
3Link state updates are also called link state advertisements.



asymmetric-key based. In a symmetric-key based data authentication scheme, also called
a message authentication code (MAC) scheme, a message is signed and verified using the
same key. To use a direct MAC scheme for LSU authentication on a network that has n
routers, in the worst case?, each router needs to maintain (n — 1) keys® and the network as
a whole needs to maintain O(n?) keys. Moreover, every router would need to sign and to
send (n—1) LSUs—one for each router—instead of one LSU as in existing link state routing
protocols. Because a router cannot verify the authenticity of LSUs not destined for it, a
misbehaving router could send different LSUs to different routers, causing inconsistency
problems such as routing loops. Thus a direct MAC scheme for LSU distribution is both
insecure as well as expensive in terms of processing and network bandwidth overheads.
Perlman’s seminal work [50, 51] uses an asymmetric-key based scheme, also called
a digital signature scheme, for data authentication in LSU distribution and public key
distribution. In a digital signature scheme, a message is signed using a private key and
verified using the corresponding public key. Murphy and Badger {47] proposed a design,
based on digital signatures, to securely distribute LSUs and public keys in OSPF. A digital
signature scheme seems to be a good candidate for solving the LSU distribution problem—
only O(n) key-pairs are needed for the entire network, and a signed LSU can be verified

6 to generate

by all routers. However, as pointed out in [47], it may be very expensive
and to verify digital signatures. The number of signatures needed to be verified by a
router depends on several factors: the number of routers in the network, the grouping of
routers into neighborhoods/areas’, the frequencies of link state changes and LSU refreshes,
the number of internal and external distinguishing subnets®, and the particular routing
protocol used. In OSPF, because the route to each external subnet is advertised in a

separate LSU, there may be tens of thousands of those LSUs. To relieve the performance

*Partitioning a large network into neighborhoods could reduce the number of keys stored in a router be-
cause (most) routers in different neighborhoods do not need to exchange their link states directly; designated
routers of every neighborhood exchange LSUs among themselves.

5A direct MAC scheme that does not employ pairwise-keys is not suitable for LSU authentication.
Specifically, using a shared key for all routers, or having routers share a key with each of their neighbors and
using hop-by-hop LSU authentication cannot protect the network from compromised intermediate routers.
The former is used in OSPF version 2[43] cryptographic authentication; routers on a network/subnet uses
a secret shared key and a MAC scheme to authenticate routing protocol packets.

®Experimental results [47] show that it takes at least 270 microseconds to verify an RSA [57] signature
with the 512-bit key size using a SPARC-20 and the GNU MP library.

TAn area is a set of connected networks, hosts, and routers.

8A subnet is internal if the subnet and the router reside in the same autonomous system and external
otherwise.
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impact, Murphy and Badger suggested a few possibilities: (1) using extra hardware in
routers to offload LSU signing and LSU verification; (2) changing the OSPF protocol to
reduce the frequency of performing LSU verification by packing external routes from the
same area in larger aggregates; (3) verifying LSU signatures periodically or on demand.
Our work explored the last option.

Hauser, Przygienda, and Tsudik [26] presented a scheme to reduce the cost of
LSU authentication. Their scheme is based on a technique called hash chains, which
was proposed by Lamport [36]. A hash chain of length ¢ is a list [H(r), ..., HHr),
..., HY(r), H%r)], where r is a secret quantity, H is a one-way hash function, and
HEYr) = H(H i(r)). If H%(r) can be sent to a verifier securely, the authenticity of
H?=(r) can be verified by applying the function H to H®"*(r) i times. where 1 <i < ¢—1.
Examples of proposed one-way hash functions are MD5 [56] and SHA [48]. In Hauser, et
al.’s scheme?, two hash chains with different seeds Tup and Tdown are used to represent the up
and down state of a link. The originating router uses its private key to sign a message that
includes H e(rup), H(Tg4own), and the current time T and floods the message. A receiving
router can verify the authenticity of that message using the public key of the originating
router. Let A be the time interval between consecutive LSU releases. At time T + 1A, the
originating router releases either He‘i(rup) or H % (r4own), depending on the status of the
link. This scheme virtually eliminates the need to perform expensive public-key encryption
and decryption. Signing and verifying digital signatures are replaced by applications of a
hash function, which are orders of magnitude faster. Despite the cost reduction, there are
a few drawbacks to the scheme. First, the scheme cannot efficiently handle multiple-valued
link states because the costs of generating, verifying, and storing many hash chains may be
higher than those of using digital signatures [26]. The need for multiple-valued link states
arises when link costs depend on traffic load, and when a border router advertises link

0 or in other areas within

costs for destinations that reside in other autonomous systems'
the same autonomous system. Second, Hauser, et al. showed that the maximum clock skew
among routers must be less than 3A. Otherwise, an adversary may be able to forge an
incorrect LSU that is considered to be fresh and authentic by some routers. Finally, the

scheme is not suitable for handling frequent link state changes because the hash chains are

®Hauser, et al. also presented a variation of their scheme for a relatively stable network. See [26] for
details.

% An autonomous system is a group of networks and routers under the control of a single administrative
authority.
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pre-computed assuming certain fixed time intervals between consecutive LSUs. Choosing
A to be a very small quantity has two problems—the originating router needs to generate
and to store long hash chains, and routers have to be very tightly synchronized (c.f., the

clock skew problem discussed above).

2.3 Optimistic Link State Verification

Our approach is inspired by work done in the fault tolerance community—error
detection, diagnosis, and recovery, specifically. Our scheme is called optimistic link state
verification (OLSV). OLSV, like a digital signature scheme, enables a router, say p, to
disseminate a signed LSU that can be verified by other routers. Moreover, no other routers
can successfully forge p’s LSU. OLSV is much more efficient than a digital signature scheme
when the network infrastructure is not compromised (which is the common case), yet OLSV
does not have the limitations of other schemes (e.g., [26]), discussed in Section 2.2.

In OLSV, a receiving router optimistically accepts an LSU before it can be verified.
At a designated time, the key used to sign this LSU will be released. In Section 2.3.4, we
discuss how to choose a safe key release time so that an attacker cannot use the key to
successfully forge control packets. When the router receives a key used to authenticate the
LSU, it will first verify the authenticity of the key using hash chaining. The verified key
is then used to verify the authenticity of the LSU using a MAC scheme. If the verification
process detects an erroneous LSU, the receiving router reports from which neighbor(s)
that erroneous LSU was received. A distributed diagnosis protocol is activated to identify
the misbehaving router(s); we will discuss how link attacks are handled later. Based on
the diagnosis result, the misbehaving router(s) are logically removed from the network to

restore its operational status.

2.3.1 Assumptions

We consider a network of routers that use a link state routing protocol. We use a
graph G to represent the network, with vertices representing routers and edges representing
communication links. If two routers share a link, we call them neighbors. A router that
correctly executes the routing protocol is called a good router; otherwise, it is called a bad
router. A router may be bad due to a software/hardware fault, a misconfiguration, or a

malicious attack. A failed/compromised link is called a bad link; otherwise, it is called
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a good link. For example, an attacker may compromise a link between two routers by
modifying routing control packets sent over it. An LSU includes several fields: originating
router id, sequence number, age, and link state data. The sequence number field is used
to provide an ordering among LSUs. With a protected sequence number field, replay and
reordering attacks can be detected. The age field is used to support freshness; stale LSUs
can be prevented from propagating in the network. A router increments the age field of an
LSU before forwarding it to its neighbors. Because the age of an LSU needs to be modified
by intermediate routers, the age field is excluded in LSU authentication computation. We

make the following assumptions:

1. The network remains connected after the removal of bad routers and bad links.

2. There exists a secure public-key distribution protocol. Perlman [50, 51] and Murphy
and Badger [47] proposed security protocols for distributing the public keys of routers.

OLSV assumes that every router knows the public keys of all routers.

3. Every router has a local clock, and the maximum clock skew between any two good
routers is bounded by a quantity, say e. That is, the difference between the clocks of
any two routers is less than or equal to € at any time. A secure network time protocol
may be used to synchronize the clocks of routers to bound the maximum clock skew.
Moreover, we assume that the ratio of clock rates!! (or clock frequencies) between
the fastest clock and the slowest clock among good routers is bounded by a quantity,

say c.

4. The total delay—propagation, queueing, and processing delays—for sending a packet

using flooding is bounded by a quantity, say ¢.

5. There are no adjacent bad routers. This assumption is used to simplify the description

of OLSV. We will discuss how this assumption can be removed in Section 2.4.

6. There exists a one-way hash function. Examples of proposed one-way hash functions
are MD5 and SHA. We use H to denote a one-way hash function. Given a random

quantity y, it is computationally infeasible to find z such that y = H(z). Moreover,

''We use Lamport’s definition of clock rate [35]: Let C(t) denote the value of the clock C at physical
time t. (A discrete clock can be modeled by a continuous function with an error of up to 1/2 “tick”.) If
we assume that C(¢) is a continuous and differentiable function of ¢, then the rate of clock C at time ¢t is
represented by dC(t)/dLt.



13

for a random quantity z, it is computationally infeasible to find an z’ # z such that

H(z) = H(z").

7. There exists a cryptographically strong random number generator: The generated

numbers are unpredictable, are uniformly distributed, and have long cycles.

8. A secure digital signature scheme is used. Digital signatures can be generated using
a cryptographic hash function and a public-key cipher such as MD5 and RSA. We
denote the digital signature of a message m signed using p’s private key by Sp(m).
Without knowing p’s private key, it is computationally infeasible to generate Sp(m')

for a new message m’.

9. A secure MAC scheme, which includes a MAC generator MACG, is used. Tsudik’s
[68] keyed-hash scheme and HMAC [33] are examples of MAC schemes. Moreover,
they are significantly less expensive than digital signature schemes such as MD5/RSA.
We use M ACG(m) to denote the MAC generated by MACG using a key k£ on a mes-
sage m. Without knowing k, it is computationally infeasible to generate M ACG(m')

for a new message m'.

2.3.2 Protocol Overview

Our OLSV protocol is sub-divided into three parts, namely sender, receiver, and
recovery. Every router runs a sender process, a receiver process, and a recovery process.
The sender process generates keys and uses them to generate a MAC for every LSU.
These LSUs and the associated MACs are then flooded to other routers as in existing
link state routing protocols. The keys are released to other routers at designated times.
Section 2.3.3 details the sender process. The receiver process optimistically accepts LSUs
(as if they were authenticated) and uses them to compute the local routing table. When
the corresponding keys arrive, the receiver process verifies the authenticity of the LSUs
received. Section 2.3.4 details the receiver process. When the receiver process detects an
erroneous LSU, the recovery process is activated. A recovery process is responsible for
diagnosis and reconfiguration. Diagnosis is used to locate misbehaving routers. Based
on the diagnosis results, reconfiguration is used to logically disconnect those misbehaving
routers from the network to restore its operational status. Section 2.3.5 details the recovery

process. The recovery process is designed to counter router attacks. To counter “active”
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link attacks!?, neighboring routers use a MAC scheme to authenticate LSUs forwarded
between them!3. Because a router usually has few neighbors, a secret key can be manually
set up or established using a key-exchange protocol for each neighboring router pair, and
many existing efficient MAC schemes are applicable to authenticate LSUs sent between
neighboring routers. For the sake of clarity, we omit this LSU authentication between

neighboring routers in the subsequent description of our protocol.

2.3.3 Sender Process

The sender process generates keys using hash chaining, signs LSUs, and distributes
keys and signed LSUs to other routers.

Before a router can sign LSU, the sender process generates a random quantity
7 and constructs a hash chain of length ¢ using  and a one-way hash function A. Then
the sender process composes a key-chain anchor (KCA) message that contains the router
id, the current time T, and H%(r) and signs it with the private key of the router. Then
the signed KCA message (id, T, Hé(r), S;q(id, T, H%(r))) is distributed to other routers via
flooding.

The quantities H®"i(r), where 1 < i < ¢, are used as keys to generate MACs
for LSUs. A hash-chained key (HCK) message (id,i, H¢~i(r)) is released to other routers
at time T + 1A, where A is the time interval between consecutive key releases. In fact,
the sender process only needs to release an HCK if the corresponding H¢"i(r) is used to
generate a MAC.

To make OLSV secure, H¢i(r) is used to generate MACs for LSUs only before
time T + 1A — 7, where 7 is a value that we will derive later. When the sender process
wants to send an LSU at time ¢, where T+ (i — 1)A — 7 < t < T +4A — 7, it uses H¢i(r)
as the key to generate the MAC. The signed LSU message (LSU, ¢, MACG ge-i(,\(LSU, 1))
is then flooded to other routers. Figure 2.1 depicts the chronological order of the actions

performed by the sender process.

21n active link attacks, an attacker may remove, modify, or forge control packets sent over a link.

13As we will see, our scheme will still work even if we do not perform additional LSU authentication
between neighboring routers. Specifically, a link failure may be viewed as a router failure in OLSV. The
routers incident to a failed link will detect the failure and cease the neighbor relationship. Consequently, the
failed link will not be used. However, using a MAC scheme to authenticate LSUs sent between neighboring
routers can prevent link attacks without affecting the connectivity of the network.
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Figure 2.1: The Sender Process.
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2.3.4 Receiver Process

The receiver process determines if a signed LSU is acceptable, verifies the authen-
ticity of keys received. and verifies the authenticity of signed LSUs received.

When the receiver process gets a KCA with a digital signature S;q(id, T, H%(r)),
it verifies the authenticity of the KCA using the public key of router id. A verified KCA
with T “reasonably” close to the current clock value of the router is accepted and stored.

The receiver process optimistically accepts (LSU, i, JV[ACGH:_,-(,.)(LSU,-L')), a
signed LSU, if the receiving time is less than T +iA —e. (Note that the router ¢d in LSU
can be used to determine the corresponding T'.)

When an HCK message (id, i, k) is received, the authenticity of the HCK is verified
by applying the hash function H to k one or more times. Similar to Hauser, et al.’s scheme,
the verification process is more efficient if the last verified HCK is stored and used. For
example, if the last verified HCK message (id,i — 1, H¢~'*1(r)) is stored, then verifying
the HCK message (id,i,k) only consists of computing H(k) and comparing H(k) with
HE+1(r). Otherwise, it takes 7 applications of H to verify the HCK if the KCA (or H(r))
is used. A verified HCK message (id,i, H¢%(r)) is then used to verify the authenticity of
LSU. For a signed LSU message (LSU,i,mac), H*"*(r) is used to generate the MAC of
(LSU, i) and the resulting value is compared to mac. If erroneous LSUs are detected, the

recovery process is activated.

Theorem 1 If we set T > 2¢ + ad, then an adversary cannot generate an erroneous LSU
whose originating router id corresponds to a good router and have the erroneous LSU
accepted by good routers without being detected. Moreover, a good router always accepts a

signed LSU generated by another good router.

Proof: Recall that the originating router id releases the HCK message (id,i, H*7(r))
at time T + 7A. At that time, the clock values of good routers are at least T + 1A — €.
By requiring good routers not to accept LSUs signed with H® i(r) after T + iA — ¢, the
key H®i(r) will not be useful to an adversary to generate erroneous LSUs by the time
the adversary receives the HCK message. Note that r is a random quantity and H®7(r),
where i < j < ¢, are released after the time H® i(r) is released. Moreover, knowing
H&*(r), where 1 < k < 4, is not useful to determine H®~*(r). Thus the adversary cannot

determine H¢~(r) in time to generate an erroneous LSU and have it accepted by a good






