
DEMIDS: A Misuse Detection System

for Database Systems

Christina Yip Chung, Michael Gertz, Karl Levitt

fchungy j gertz j levittg@cs.ucdavis.edu

Department of Computer Science, University of California at Davis

One Shields Avenue, Davis, CA 95616-8562, USA

Abstract

Despite the necessity of protecting information stored in database systems (DBS),
existing security models are insu�cient to prevent misuse, especially insider abuse by
legitimate users. Further, concepts for misuse detection in DBS have not been adequately
addressed by existing research in misuse detection. Even though there are available means
to guard the information stored in the database system against misuse, they are seldom
used by security o�cers because security policies of the organization are either imprecise
or not known at all.

This paper presents a misuse detection system called DEMIDS which is tailored to
relational database systems. DEMIDS uses audit logs to derive pro�les that describe
typical behavior of users working with the DBS. The pro�les computed can be used to
detect misuse behavior, in particular insider abuse. Furthermore, the pro�les can serve
as a valuable tool for security re-engineering of an organization by helping the security
o�cers to de�ne/re�ne security policies and to verify existing security policies, if there
are any.

Essential to the presented approach is that the access patterns of users typically form
some working scopes which comprise sets of attributes that are usually referenced together
with some values. DEMIDS considers domain knowledge about the data structures and
semantics encoded in a given database schema through the notion of distance measure.
Distance measures are used to guide the search for frequent itemsets describing the working
scopes of users. In DEMIDS such frequent itemsets are computed e�ciently from audit
logs using the database system's data management and query processing features.

1 Motivation

In today's business world, information is the most valuable asset of organizations and thus
requires appropriate management and protection. In this, database systems play a center role
because they not only allow the e�cient management and retrieval of huge amounts of data,
but also because they provide mechanisms that can be employed to ensure the integrity of the
stored data.

1

Reality, however, shows that such mechanisms for enforcing organizational security policies
are often not adequately used. There are various reasons for this. First, security policies are
often not known or not well speci�ed, making it di�cult or even impossible to translate them
into appropriate security mechanisms. This observation holds for both general security policies
as well as policies tailored to individual database users and applications. Second, and more
importantly, security policies do not su�ciently guard data stored in a database system against
\privileged users". For example, [CK96] has revealed that in computer systems the primary
security threat comes from insider abuse rather than from intrusion. This observation results in
the fact that much more emphasis has to be placed on internal control mechanisms of systems,
such as audit log analysis.

Security models as described in, e.g., [WSF79, Den86, JS90, SW92], to prevent misuse1 are
insu�cient to protect the information stored in database systems because of the increase in the
size of data to achieve a �ne grain control. More importantly, these models assume that security
policies of an organization are known, which, as mentioned before, is often not the case. Misuse
detection systems (MDSs)2 are a cost-e�ective compromise to establish and assure a certain
degree of security in a system. Nevertheless, concepts for misuse detection in database systems
have not been adequately addressed by existing MDSs which neither consider the structure and
semantics nor the �ne granularity of data in database systems.

In this paper we propose a misuse detection system tailored to relational database systems.
The system called DEMIDS (DE tection of MI suse in Database Systems) provides a rich set of
tools to derive user pro�les from audit logs. Such pro�les describe the typical behavior (access
patterns) of users in the system by specifying the typical values of features that are audited in
audit logs. The pro�les derived are used to detect misuse behavior. Although it can be used to
detect both intrusion and insider abuse, DEMIDS places emphasis on the detection of malicious
behavior by legitimate users who abuse their privileges. Hence the systems is particularly useful
for internal control. Our system can complement misuse detection at the operating system
layer because intrusion attempts that MDSs fail to detect at the operating system layer may be
detected as anomalous events at the database system layer. Further, the pro�les derived can
serve as a valuable tool for security re-engineering of an organization by helping the security
o�cer (SSO) to de�ne/re�ne security policies and to verify existing security policies, if there
are any. Finally, pro�les can be used to implement respective enforcing mechanisms in the
database systems using, e.g., triggers, assignment of privileges, or roles.

Essential to the proposed approach is that, given a database schema and associated applications,
the access patterns of users will form some working scopes comprising certain sets of attributes
that are usually referenced together with some values. The idea of working scopes is nicely
captured by the concept of frequent itemsets which are sets of features with certain values.
Based on the data structure and semantics (integrity constraints) encoded in the data dictionary
and the user behavior re
ected in the audit logs, DEMIDS de�nes a notion of distance measure
which measures the closeness of a set of attributes with respect to the working scopes. Distance
measures are used to guide the search for frequent itemsets in the audit logs by a novel data

1Misuse includes both insider abuse and intrusion.
2Intrusion Detection System IDS is often used instead of MDS. However, the term IDS is confusing under

the author's de�nition of intrusion and misuse. Since most systems detect both intrusion and insider abuses,

we will adopt the terminology MDS.

2

mining approach that takes advantage of the e�cient data processing functionality of database
management systems. Misuse, such as tampering with the integrity of data, then can be
detected by comparing the derived pro�les against the security policies speci�ed or against new
information (audit data) gathered about the users.

1.1 Related Work

The security goals of database systems are availability, con�dentiality and integrity [CFMS95].
Mandatory and discretionary access control models have been proposed for general computer
systems to achieve these goals [BLP73, Bib77, Dio81, HRU76]. Nevertheless, these mechanisms
typically operate on the �le and command/process level of operating systems, which is too
coarse for the �ner level of granularity of data in database systems.

There are various extensions of these security models to database systems. [Den86, JS90, SW92]
extend the concept of mandatory access control in relational database systems by allowing
polyinstantiation of data at the tuple level. [WSF79] provides a mapping between access
control in a DBS to that at operating system level. These mechanisms are fundamentally the
same as general mandatory access control models and hence su�er the same limitation of being
only applicable to an organization with known security policies. Further, polyinstantiations
come at the cost of increasing the number of tuples in the database.

Detection mechanisms are employed to complement the shortcomings of prevention mechanisms
[JV91, VL89, HDL+90, SCCC+96, FHSL96, LS98]. Nevertheless, concepts for misuse detection
in database systems have not been adequately addressed by existing misuse detection systems.
These systems typically reside on the operating system and/or network which work with �les
and system commands. The mapping between �les in operating systems to relations and
attributes in database systems is not exact and hence cannot closely re
ect the user behavior.
Moreover, auditing the user behavior at these layers is unsuited for misuse detection at the DBS
level because the semantics and structure of the data are not re
ected in such audit logs. Unlike
previous MDSs, such domain knowledge is considered by DEMIDS to derive user pro�les.

1.2 Terminology

In the rest of the paper we adopt the relational database model as the underlying data model
for DEMIDS. We assume a given database schema S = hR; ICi where R is a set of relation
schemas and IC is a set of integrity constraints that have to be satis�ed by every instance of
the database schema. A relation schema R 2 R is denoted by R = hA1; :::; Ani where each Ai

is an attribute. We denote the attributes associated with a relation schema R 2 R by attr(R),
and the attributes contained in the whole schema S by attr(S). The value of attribute Ai of
tuple t from an instance of a relation schema R is denoted by t:Ai

The integrity constraints considered in this paper include primary and foreign key constraints
imposed on relations in R. We furthermore assume that associated with the database is a set
of applications. A database application is considered to be a sequence of (parameterized) SQL
queries. Users interact with the database system through a set of operations which are either

3

issued by applications on behalf of the users, or directly by users in form of free form database
modi�cations as they are typically issued by, e.g., database administrators.

1.3 Organization of the Paper

The rest of the paper is organized as follows: In Section 2, we discuss the architecture of
DEMIDS, in particular its coupling with a given database system. In Section 3, we introduce
the notions of distance measure and frequent itemsets to capture the working scopes of users.
In Section 4, we present a novel data mining algorithm to discover pro�les for users based on
the idea of distance measure and frequent itemsets. In Section 5, the advantages of the Pro�ler
are discussed and its application to some scenarios is given. We conclude the paper in Section
6 with a summary and overview of future research.

2 Architecture

The proposed misuse detection system DEMIDS is tightly coupled to an existing database
system in that DEMIDS utilizes certain functionality of the system such as auditing and query
processing. DEMIDS consists of four components (Figure 1): (1) Auditor (2) Data Processor
(3) Pro�ler and (4) Detector.

Profiler

Detector Policies

Application Application Application Application

Auditor

Processor
Data

D

B

S

Audit
Session

Audit Log

Data

Profile

SuspisionLevel

Component

Data Storage

Data Flow

Dictionary

Figure 1: Components of DEMIDS's Architecture

4

The Auditor is responsible for collecting the audit data of users by auditing their queries through
the auditing functionality of the DBMS. A set of interesting features to audit is selected by
the security o�cer (SSO), depending on the security policy to establish or verify. For example,
if a security policy states that access to a set of sensitive attributes should be monitored, an
interesting feature would be the set of attributes (names) referenced in the queries. If fabrication
of data is the concern, new and old values of attributes in update and insert queries should be
audited. In general, we do not assume scenarios where \everything" is audited. The features
that have to be audited are selected by the SSO. In practice, features are selected depending
on whether the behavior and access patterns of particular users are of interest or whether the
usage of certain applications by certain users is of interest.

Monitored features are recorded in audit logs. In order for the auditing and log management
not to become a bottleneck of the database system and associated applications, it is possible to
periodically purge audit logs to another database system which then is also used by the other
components of DEMIDS.

The Data Processor is responsible for preprocessing the raw data in the audit logs, such as the
handling of missing values, converting the raw data into appropriate data structures and types
for the Pro�ler. More importantly, it groups the raw audit data into audit sessions. This is
a critical step because the way audit data are aggregated into audit sessions determines what
pro�les are generated. For instance, the data can be grouped according to users or roles adopted
by the users [SCFY96].3 User pro�les are generated in the former case and role pro�les in the
latter.

During the training stage, which is typically supervised by the SSO, the Pro�ler generates a
pro�le for each audit session. The Pro�ler consults the repository of domain knowledge, such
as the database schema, to guide its search for pro�les that satisfy certain interesting measures,
for example, a su�cient support. It is assumed that during the training stage, users do not
perform malicious behavior to train the Pro�ler and that there are enough data collected to
represent their typical behavior. For instance, in an o�ce system, the training stage can include
o�ce hours during weekdays (since most business operations are performed during o�ce hours
of weekdays) and the �rst and last few days of a month (to cover monthly operations). In
systems where users have well de�ned job descriptions, user behavior is fairly stable and the
training stage can last for a shorter period of time, for instance, only a few days.

During the monitoring stage, the Detector computes a score to determine if user activities are
suspicious. This can be achieved by comparing the new information (audit records) about user
activities against the corresponding pro�les derived during the training stage. Another way is
to compare the user pro�les against the security policy. Both the pro�les and security policies
in DEMIDS are speci�ed in a rule based format. Comparison of the pro�les and policies can
be based on the number of new rules, missing rules and rules with the same precondition but
di�erent consequents.

3A role is a collection of privileges necessary to accomplish a certain task.

5

3 Approach

In this section, we describe the main idea behind the concept of working scopes for users. We
then de�ne the notion of distance measure to capture the degree of \closeness" of a set of
attributes in a given database schema with respect to the working scopes. This is followed by
a description of the concept of frequent itemsets which employs distance measures to represent
the working scopes of users. The idea of frequent itemsets forms the basis for deriving user
pro�les.

3.1 Working Scopes

We conjecture that a user typically will not access all attributes and data in a schema and
databases respectively. Attributes used in a query are related through primary and foreign
key dependencies among the relations in a schema using join conditions. Therefore, the access
patterns of users will form some working scopes which are sets of attributes that are usually
referenced together with some values. A pro�le captures the idea of working scopes by specifying
the typical values of sets of features in an audit session.

Example 3.1 We use the sample database schema shown in Figure 2 as an example.

own Customer open

depend

CreditCard

Transaction

Branch

expDate

CCID

TID

SID
SavingsAC

CID custName
income

location

BID

amount

creditSID

debitSID

Figure 2: Sample Database Schema

This database schema can easily be derived from the information recorded in the data dictionary.
Let the set of features in audit sessions be the type of the query operation (queryType), the
sets of attributes referenced by the query (R:A = 1 if attribute A from relation R is referenced,
0 otherwise), the relation referenced by the insert query (relation), the values of attributes
(R:A:V al), and their new values (R:A:newV al) for update and insert queries. Suppose user
Teller is responsible for entering transactions by issuing database modi�cations of the type:

insert into transaction values(TID, amount, debitSID, creditSID)

where TID; amount; debitSID; creditSID are variables.

6

The working scope WS of Teller then would be:

WSTeller = fqueryType='insert', relation='transaction'g.

3.2 Distance Measure

Working scopes of users consist of attributes that are closely related in the database schema
and are often referenced together in database modi�cation statements (which, of course, can
include data retrieval statements). To capture the idea of \closeness" of attributes in a database
schema, we introduce the notion of distance measure. Our notion of distance measure is used
to guide the Pro�ler in discovering pro�les from audit sessions.

Considering a given database schema S, attributes are structurally close if they either belong
to the same relation or can be related by exploiting (a sequence of) foreign key dependencies.
This aspect is re
ected by the schema distance function.

De�nition 3.2 (Schema Distance Function)
Assume a database schema S with a set R of relation schemas. Given two attributes Ai 2
R;Aj 2 S where R; S 2 R, the pairwise schema distance between Ai and Aj, denoted by
PSDist(Ai; Aj), is de�ned as

PSDist(Ai; Aj) :=
ShortestDist(R; S)

maxfShortestDist(Rk; Rl) j Rk; Rl 2 Rg

Given a set of attributes fA1; : : : ; Ang � attr(S), the schema distance function is de�ned as

SchemaDist(A1; : : : ; An) := maxfPSDist(Ai; Aj)g

where ShortestDist(R; S) computes the shortest distance between two relations R and S in
the database schema based on primary and foreign keys by which R and S can be related. �

We normalize the distance measure by the maximum shortest distance between any pair Rk; Rl

of relations in the database schema so that the value of distance measure falls in the range of
0 to 1. The nearer the value of the distance measure to 1, the closer is the set of attributes.

Although two attributes are schematically close, this does not necessarily mean that they are
semantically close, too. Since we would like to derive a pro�le for each audit session, the access
patterns of the attributes in audit sessions should be considered in the distance measure as
well. In order to capture this aspect, we de�ne an access a�nity function which considers the
dynamic access patterns on the attributes.

De�nition 3.3 (Access A�nity Function)
Given a set A = fA1; : : : ; Ang � attr(S) of attributes contained in a database schema S. The
access a�nity of A, denoted by AA(A), is de�ned as

AA(A) :=
AAC(A)

maxfAAC(Ai1 ; : : : ; Aim) j fAi1 ; : : : ; Aimg � attr(S)g

7

where AAC(A1; : : : ; An) is the total number of audit records in the session such that each audit
record references all attributes A1; : : : ; An. �

Based on the schema distance function and access a�nity, we are now able to de�ne a distance
measure between a set of attributes that takes both structural and access properties of the
attributes involved into account.

De�nition 3.4 (Distance Measure)
Given a set A = fA1; : : : ; Ang � attr(S). The distance among the attributes in A, denoted by
Dist(A), is de�ned as

SWeight � SchemaDist(A1; : : : ; An) + (1� SWeight) � (1� AA(A1; : : : ; An)) �

We normalize the distance measure by choosing SWeight 2 R[0; 1]. Since the domain of
SchemaDist and AA is R[0; 1], Dist 2 R[0; 1].

SWeight is a value that has to be speci�ed by the SSO prior to the auditing and is used to
weigh the schema distance component. The higher the value for SWeight, the more important
is the schematic property in computing the distance measure, and vice versa. If users often
access attributes of relations that are related by some foreign key dependencies, then SWeight
can be set to a higher value.

Example 3.5 We use the sample database schema shown in Figure 2 to demonstrate how
our notion of distance measure re
ects the working scopes of users. We consider two sets of
attributes, namely S1 = ft.TID, t.amount, t.debitSID, t.creditSIDg and S2 = ft.TID,c.CIDg.4

S1 is the working scope of the user Teller while S2 is an arbitrary set of attributes.

The maximum distance between any pair of relations in the schema is 6, which is the distance
between attributes of relations CreditCard and Transaction. Hence we have:

SchemaDist(S1) = 0:0
SchemaDist(S2) = 4=6 = 0:67

Suppose in the audit session we have two audit records corresponding to the insert queries
shown in Example 3.1. Hence, AAC(t:T ID; t:amount; t:debitSID; t:creditSID) = 2 and the
access a�nity among the attributes in each set is

AA(S1) = 2=2 = 1:0
AA(S2) = 0=2 = 0:0

Suppose SWeight = 0:5, the distance measures of S1; S2 are then

Dist(S1) = 0:5 � 0:0 + (1� 0:5) � (1� 1:0) = 0:0
Dist(S2) = 0:5 � 0:67 + (1� 0:5) � (1� 0:0) = 0:33

The distance measure of S1 is very small because the attributes are closely related in the
database schema and are often referenced together in the queries. The distance measure for S2
is larger because the attributes are not only further apart in the database schema, but also not
referenced together in the queries.

4We use the notation R:A to denote attribute A from relation R. We use shorthands t to denote the relation

transaction and c for customer.

8

Since S1 has a smaller distance measure, features referencing this set of attributes would likely
fall into the same working scopes. Similarly, since S2 has a greater distance measure, features
referencing this set of random attributes would not be considered to be in the same working
scope.

3.3 Frequent Itemsets

We use the concept of frequent itemsets to describe the working scopes of users. A frequent
itemset is a set of features with values assigned to them. The set of features is selected by the
SSO. For instance, the timestamp of audit records is an interesting feature if we are interested
in the temporal aspect of user behavior. The sets of attributes referenced by the queries are
interesting too, especially if they belong to relations that are sensitive. The new and old values
of tuples of update queries are important if fabrication of data is concerned. The domain of
a feature Fi is denoted by Domain(Fi). For instance, if timestamp is recorded as the number
of seconds elapsed since a particular moment of time, then the domain of timestamp is real
numbers. The domain of userID can be strings. Since our notion of distance measure re
ects
the dependencies among relations as well as the access patterns of attributes in working scopes,
frequent itemsets are enriched by a distance measure component to capture such knowledge.

De�nition 3.6 (Frequent Itemset)
Given a set of features F = fF1; : : : ; Fmg audited in audit session AuditS. An itemset I for
F is de�ned as I := fF1 = f1; : : : ; Fm = fmg; [sup; dist]. I is said to be a frequent itemsets in
AuditS if

� Fi 2 F ; 1 � i � m

� fi 2 Domain(Fi); 1 � i � m

� sup � support(I; AuditS) � supThreshold

� dist � Dist(A1; : : : ; An) � distThreshold

where

� A1; : : : ; An are corresponding attributes for features F1; : : : ; Fm,

� supThreshold and distThreshold are user de�ned parameters, and

� support(I; AuditS) computes the number of audit records in AuditS that satisfy I.

Attributes corresponding to the features are those attributes referenced by the features. For
example, if feature R:A records whether attribute A from relation R is referenced in a query,
then the corresponding attribute is attribute A. If feature relation records which relation
is referenced by an insert query, then the corresponding attributes are the attributes of the
relation. Some features such as userID and timestamp do not have corresponding attributes in
the database schema. If the set of features do not reference any attribute, the distance measure
of this frequent itemset can be de�ned as zero.

9

supThreshold can be expressed in terms of the number of audit records or in terms of percentage
of audit records in the audit session. distThreshold is within R[0; 1]. supThreshold and
distThreshold are adjusted by SSO. The higher the value of supThreshold and the lower the
value of distThreshold, the more selective are the frequent itemsets. If tighter monitoring
is desired, for example, during the training stage, supThreshold and distThreshold should
be adjusted accordingly so that more selective frequent itemsets are discovered. Therefore,
only \very" typical user behavior is described in the pro�les. During the monitoring stage,
supThreshold can be lowered while distThreshold is raised to discover more frequent itemsets.
Mismatch between the frequent itemsets discovered in monitoring stage and those in the training
stage can trigger alarm to SSO.

The frequent itemsets of a user in an audit session correspond to the pro�le of the user in that
audit session. Audit data in the audit logs are grouped into separate audit sessions according to
some properties, such as grouping under the same userID. Let psession be a predicate grouping
the audit records in an audit session and I = fF1 = f1; : : : ; Fm = fmg a frequent itemset for
the audit session. Then a corresponding pro�le statement in rule-based format is

psession! F1 = f1 ^ : : : ^ Fm = fm:

The working scopes of users are sets of attributes that are often referenced together with certain
typical values. Therefore, sets of feature/value pairs can nicely represent the working scopes
of users. It should be mentioned that frequent itemsets are a better representation for working
scopes than clusters since objects in clusters are not tagged with values. Furthermore, it is
more appropriate to use frequent itemsets to describe working scopes than to use association
rules [AS94] since there is no causal relationship in the access of attributes in queries. Although
the pro�les for frequent itemsets are transformed to rules by the predicate describing the audit
session, the working scopes of users are represented by sets of feature/value pairs.

Frequent itemsets that are subsets of other frequent itemsets represent the same working scopes.
Therefore, we are interested in discoveringminimal frequent itemsets that cover smaller frequent
itemsets.

De�nition 3.7 (Minimal Frequent Itemset)
Given a set I = fI1; : : : ; Ing of frequent itemsets in an audit session AuditS. A frequent itemset
I 2 I is a minimal frequent itemset in AuditS if there is no other frequent itemset I 0 2 I such
that I � I 0. �

Example 3.8 Suppose we have a set of frequent itemsets I=fI; I 0g for audit session AuditS
where

I = fqueryType='select', t.amount=1, t.creditSID=1 g
I 0 = fqueryType='select', t.amount=1, t.creditSID=1, t.debitSID=1, c.custName=1 g.

I is not a minimal frequent itemset in I for AuditS because I 0 is a superset of I. I 0 is a minimal
frequent itemset in I for AuditS.

Frequent itemsets are evaluated by some interesting measures, such as minimality. It is impor-
tant that all frequent itemsets satisfying this measure are discovered. Therefore, we introduce
the notion of completeness.

10

De�nition 3.9 (Completeness)
A set of frequent itemsets I is complete in an audit session AuditS if I contains all minimal
frequent itemset in AuditS. �

We described our conjecture on the access patterns of users which form some working scopes,
and discussed how we can represent these working scopes by distance measures and frequent
itemsets. We have also introduced the notion of minimality and completeness to evaluate the
frequent itemsets discovered by the Pro�ler. In the next section, a data mining algorithm to
discover all minimal frequent itemsets from audit logs is presented.

4 Frequent Itemsets Pro�ler

In this section, we present a data mining algorithm for the Frequent Itemset Pro�ler to discover
the frequent itemsets from an audit session. The algorithm is tightly integrated with the
database system by storing the data in tables and by using SQL queries to take advantage of
the query processing capabilities of the DBMS.

We �rst describe the data structures and input to the Pro�ler before presenting the algorithm.
We establish several criteria for an evaluation of a Pro�ler and show that those criteria are
satis�ed by the proposed Pro�ler.

4.1 Data Structures

We assume that data about audit sessions are stored in a table called Session = hTID; feature;
fvaluei. Each audit record is assigned a unique TID. feature and fvalue store the fea-
ture/value pair of an audit record.

We use the tables F = hFIID;A;AV ali and FMaster = hFIID; sup; disti to store the itemsets.
Each itemset is assigned a unique FIID. A;AV al correspond to the feature/value pair of an
itemset. sup; dist are the support and distance measure of the itemsets. We use a separate
table FMaster to store the support and distance measure of itemsets because it is not desirable
to repeat them for each item in an itemset.

The table Lk = hsup; A1; A1:V al; : : : ; Ak; Ak:V ali stores the itemsets fA1 = A1:V al; : : : ; Ak =
Ak:V alg with support � supThreshold. Tables L1; : : : ; Ln (where n is the total number of
attributes in the database schema) are used to discover all itemsets with a su�cient support.
As described later, Lk is derived from Lk�1 and hence we only need to use two tables. However,
this method is not described in the algorithm for the sake of clear illustration.

Example 4.1 Table Session stores audit records:

queryType='select', t.TID=1, t.amount=1, t.debitSID=1, t.creditSID=0 with TID=1
queryType='select', t.TID=1, t.amount=0, t.debitSID=0, t.creditSID=1 with TID=2

Tables F and FMaster store itemsets:

fqueryType='select', t.TID=1, t.amount=1, t.debitSID=1g [100, 0.1],
fqueryType='select', c.income.Val='high', cc.CCID=1g [50, 0.2]

11

Table Session

TID Feature Fvalue
1 queryType 'select'
1 t.TID 1
1 t.amount 1
1 t.debitSID 1
1 t.creditSID 0
1 queryType 'select'
1 t.TID 1
1 t.amount 0
1 t.debitSID 0
1 t.creditSID 1

Table F

FIID A AVal
4-1 queryType 'select'
4-1 t.TID 1
4-1 t.amount 1
4-1 t.debitSID 1
3-1 queryType 'select'
3-1 c.income.Val 'high'
3-1 cc.CCID 1

Table FMaster

FIID sup dist
4-1 100 0.1
3-1 50 0.2

In the current prototype of DEMIDS, we use the Oracle8 server ([Ora97]) as our underlying
DBMS to store and process the audit data.

4.2 Algorithm

The algorithm to discover all minimal frequent itemsets in an audit session is divided into four
steps:

Step 1: Derive tables L1; : : : ; Ln where n is the total number of attributes in the database
schema. Insert all itemsets in L1; : : : ; Ln into F.

Step 2: Compute distance measure for itemsets in F. Store them in FMaster

Step 3: Prune frequent itemsets in F with distance measure > distThreshold.

Step 4: Prune non-minimal frequent itemsets in F. Update FMaster accordingly.

Step 1

(Initialization) F; FMaster ;

for (k=1;k � n; k++)
Lk ;
(Generate Lk from Lk�1)
insert into Lk

select count(unique R1.TID) as count,
com.A1, com.A1V al,
: : :
com.Ak, com.AkV al

from (select one.A1 as A1, one.A1V al as A1V al;
: : :
one.Ak�1 as Ak�1, one.Ak�1V al as Ak�1V al
two.Ak�1 as Ak, two.Ak�1V al as AkV al

12

from Lk�1 one, Lk�1 two
where one.A1=two.A1 ^

: : :
^ one.Ak�2=two.Ak�2

^ one.Ak�1 < two.Ak�1) com,
(select * from Session) R1;
: : :
(select * from Session) Rk

where R1.TID=R2.TID ^ : : :^ Rk�1.TID=Rk.TID
^ R1.feature=com.A1 ^R1.fvalue=com.A1V al
: : :
^ Rk.feature=com.Ak ^ Rk.fvalue=com.AkVal
^ count � supThreshold

(Insert all tuples of Lk into F)
F F

S
select A1; A1V al, : : : ; Ak; AkV al, count from Lk

Step 2

(Enumerate all itemsets in F)
for each tuple t in (select unique FIID from F)

(Find all items of this itemset)
S' select A;Aval from F

where F.FIID=t.FIID
(Comput support and distance measure for this itemset)
support select sup from Lk

where
V

t02S0 fAi=t'.A ^AiV al=t'.Avalg
distance computeDistance(S 0)
(Insert this itemset into F if it is a frequent itemset)
if (distance � distThreshold)
insert into FMaster values(t.FIID,support,distance)

computeDistance(S) is a function that computes the distance measure between a set of at-
tributes stored in table S.

Step 3

(Delete itemsets that are not frequent itemsets)
delete from F

where FIID not in (select FIID from FMaster)

Step 4

(Delete itemsets in F that are subset of others)
delete from F

where FIID = any
(Table one stores all itemsets that are subsets of others)
(select one.FIID

13

from F one, F two
where one.FIID < two.FIID and one.A=two.A and one.AVal=two.AVal
group by one.FIID, two.FIID
havingcount(one.FIID) =

(select count(*) from F where FIID=one.FIID))

(Update FMaster accordingly)
delete from FMaster where FIID not in (select FIID from F)

4.3 Analysis

Let I be the set of itemsets discovered by the algorithm for an audit session AuditS. We
claim that the algorithm is correct, i.e. all itemsets in I are frequent itemsets, that the itemsets
discovered are minimal, and that I is complete in AuditS.

Theorem 4.2 (Correctness)
All itemsets in I are frequent itemsets. That is, for each itemset I 2 I, the following two
conditions hold

(a) support(I; AuditS) � supThreshold, and

(b) Dist(I) � distThreshold. �

As shown in [AS94], itemsets of size k with high enough support can be discovered from
table Lk�1 because subsets of itemsets with support � supThreshold also have support �
supThreshold. Therefore, all itemsets with high enough support are inserted into F in Step 1.
Since itemsets are inserted into F in Step 1 only, they satisfy condition (a). Itemsets that are
not tight enough, i.e. with a too large distance measure, are pruned in Step 3. Once an itemset
is deleted, it is never inserted again. Thus, they also satisfy condition (b).

Theorem 4.3 (Minimality)
All itemsets in I are minimal frequent itemsets for AuditS, that is, there are no two itemset
I; I 0 2 I such that I 6= I 0 and I � I 0. �

This property holds because all itemsets that are not minimal are pruned in Step 3 of the
algorithm. Once an itemset is deleted, it is never inserted again. Hence all itemsets left are
minimal.

Corollary 4.4 :9Ii; Ij; Ik 2 I such that Ik = Ii [Ij. �

Theorem 4.5 (Completeness)
The set I of itemsets is complete for AuditS, that is, I comprises all minimal frequent itemset
from AuditS. �

The set of itemsets discovered is complete in the audit session because, as aforementioned, all
candidate itemsets with high enough support are inserted into F in Step (1), and an itemset is
deleted from F only if it is not a frequent itemset (Step 3) or if it is not minimal (Step 4).

14

5 Discussion

5.1 Comparison

Our Frequent Itemsets Pro�ler is a novel approach for deriving user pro�les. [AS94] proposed
the concept of association rules to represent pro�les of users. Algorithms based on association
rules attempt to discover the causal relationships among items in transactions (which, in our
case would be audit sessions). However, association rules are inappropriate to represent the
working scopes of users in database systems because there is no such causal relationship in the
access patterns of attributes in a query. Post-processing is necessary to prune those association
rules that represent the same working scope. Unlike association rules algorithms, our Frequent
Itemsets Pro�ler avoids discovering redundant rules that represent the same working scopes
since frequent itemsets are sets of feature/value pairs.

Another related approach, the clustering approach [Eve73], discovers sets of objects, so-called
clusters, that are close under a certain distance measure. However, the set of objects discovered
are not tagged with values and hence clusters cannot represent typical values of features in
working scopes. In addition, most clustering algorithms are not scalable to the size of the data.
Unlike clustering algorithms, our Frequent Itemsets Pro�ler discovers frequent itemsets by using
the data processing capability of the DBMS and hence is scalable to the size of audit data.
The algorithm to discover frequent itemsets exhibits similar features as hierarchical clustering
algorithm, which is illustrated by Corollary 4.4. Hierarchical clustering algorithms continuously
merge smaller sets of objects into larger clusters step by step. Our algorithm takes advantage
of the data processing power of DBMS by pruning non-minimal frequent itemsets in one delete
query.

More importantly, we use the notion of distance measure to capture the domain knowledge
encoded in a database schema, and to guide the search of interesting frequent itemsets. Since
consecutive queries may correspond to similar tasks, they can be aggregated together. For
example, consecutive audit records of the same query type within a certain time window can
be aggregated into one audit record. The notion of distance measure then would be useful in
identifying sets of attributes that correspond to the working scopes of users for these queries.

5.2 Scenarios

Here we give two scenarios to illustrate the e�ectiveness of our Frequent Itemsets Pro�ler. We
use the example described in Section 3.1. Suppose user Teller issues the insert query often
enough during the training stage. A corresponding frequent itemset discovered for Teller

would be:

INormal = fqueryType =
0 insert0; relation =0 transaction0g

Scenario 1: In the �rst scenario, suppose in an audit session, Teller misuses his privileges to
steal credit card information about the customers by issuing the query

select ccID, expDate, C.custName
from CreditCard CC, own O, Customer C
whereC.CID = O.CID and O.CID = CC.CID

15

A corresponding frequent itemset discovered by DEMIDS the would be

IMisuse1 = fqueryType='select', cc.CID=1, o.CID=1, c.CID=1, cc.CCID=1, cc.expDate=1g

This change of interest of Teller at the schema level is illustrated by the di�erence between
the set of attributes occuring in the frequent itemset IMisuse1 and that in INormal.

It is worth mentioning that supThreshold can be set to a higher level during the training stage
so that only frequent itemsets corresponding to typical user behavior are discovered. In case user
Teller only issues the misuse query infrequently and the detection of such abuse is required,
the threshold can be lowered during the monitoring stage to detect those infrequent queries.
Mismatch of this outliner behavior against the typical behavior detected by the Detector can
trigger alarm to the SSO.

Scenario 2: The second scenario involves a �ner level of granularity of misuse. Suppose Teller
does not change the set of attributes he usually references. He tries to transfer money from
other accounts to his account badAccount illegally by issuing the following query very often in
an audit session:

insert into transaction values (TID, amount, debitSID, badAccount)5

A frequent itemset discovered by the Pro�ler can be:

IMisuse2 = fqueryType =
0 insert0; relation =0 transaction0; transaction:creditSID:newV al =0

badAccount0g

Frequent itemset IMisuse2 consists of the same set of attributes as frequent itemset INormal.
But there is an additional piece of information - the credit account is often badAccount. This
represents a change of interest of Teller at the tuple level, which again can trigger alarm.

6 Conclusions and Future Work

In this paper we have presented the concepts and architecture underlying DEMIDS, a misuse
detection system for relational database systems. DEMIDS provides security o�cers a means
to derive user pro�les from audit logs recording various features of accesses to the databases
system through users and applications. The derived user pro�les describe the typical user
behavior in terms of typical access patterns against certain information structures (relations,
attributes, and data) of a database. Derived pro�les provide a security o�cer with a means
not only to verify/re�ne existing security policies, but also to establish security policies as part
of the security re-engineering of a given database system.

In particular, DEMIDS considers the data structure and semantics speci�ed in the database
schema through the notion of distance measure. Such domain knowledge is used to guide the
Frequent Itemsets Pro�ler to search for frequent itemsets which can e�ectively represent the
working scopes of users. Our Frequent Itemsets Pro�ler is capable of discovering all those
minimal frequent itemsets in audit sessions by taking advantage of the query processing power
of the DBMS. We have illustrated the e�ectiveness of our Frequent Itemsets Pro�ler in detecting
misuse by several scenarios.

5TID; amount; debitSID are variables

16

We have conducted an evaluation of our Frequent Itemsets Pro�ler based on synthesized data.
We are in the process of acquiring medical and �nancial data (as well as underlying database
schemas and associated applications) to conduct further analysis and would like to conduct
analytical analysis on the performance of the Pro�ler. E�ectiveness of the Detector can be
evaluated by asking a user knowing the security policies to attempt to defeat the system by
acquiring a treasure buried in the database.

One of our future research directions is to investigate other means to de�ne the notion of
distance measure, such as de�ning distance measures among attribute values, and using a
di�erent formulation other than the linear relationships encoded in foreign key dependencies.

We are also interested in considering other domain knowledge to guide the discovery of pro�les.
Groups of values for features can be replaced by some other values of higher level of abstraction.
For instance, scores of range 10-20, 20-50, 50-90, 90-100 can be replaced by 'very low', 'low',
'high', 'very high' respectively. Introducing a certain degree of imprecision to the feature values
helps to reveal regularities in the data. Such classi�cation can be obtained from the SSO, or
can be derived by considering the statistical distribution of feature values in an audit session.

Another interesting research issue is to derive pro�les for roles. A user may perform di�erent
and unrelated tasks during his/her interaction with the database system, but roles are more
closely tied to the functions or tasks performed. Role pro�les may give rise to more regular
patterns than user pro�les since functions or tasks operate on data that are related and there
is a more static set of sequences of operations. The challenge is to identify portions of the
audit data that correspond to the same role. If the roles are not known to the SSO but users
execute scripts on a regular basis to perform routine tasks, the scripts would serve to identify
the roles the users take. In case that the user interacts with the database system through
some application such as forms and reports, these applications perform well-de�ned database
modi�cations on behalf of the user, and thus can be the basic units to identify the roles.

References

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules. In Jorgeesh Bocca, Matthias Jarke, and Carlo Zaniolo, (editors), Proceedings
of the 20th VLDB Conference, 487{499, 1994. Morgan Kaufmann Publishers.

[Bib77] K. J. Biba. Integrity considerations for secure computer systems. Technical Report
ESD-TR-76-372, MITRE Corp., Redford, MA, 1977.

[BLP73] D. E. Bell and L.J. La Padula. Secure computer systems: mathematical founda-
tions. Technical Report ESD-TR-73-278, MITRE Corp., Redford, MA, Nov 1973.

[CFMS95] Silvana Castano, Maria Grazia Fugini, Giancario Martella, and Pierangela Sama-
rati. Database Security. Addison-Wesley, 1995.

[CK96] Carter and Katz. Computer crime: an emerging challenge for law enforcement.
FBI Law Enforcement Bulletin, 1{8, December 1996.

[Den86] Dorothy E. Denning et. al. Secure distributed data view: security policy and
interpretation for class A1 multilevel secure relational database system. Technical
Report A002, SRI International, 1986.

17

[Dio81] L.C. Dion. A complete protection model. In Proceedinges of the IEEE Symposium
on Research in Security and Privacy [OAK], 49{55, 1981.

[Eve73] Brian Everitt. Cluster Analysis. John Wiley & Sons - New York, 1973.

[FHSL96] Stephanie Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longsta�. A sense of
self for unix processes. In Proceedinges of the IEEE Symposium on Research in
Security and Privacy [OAK], 120{128, 1996.

[HDL+90] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and D. Wolber.
A network security monitor. [OAK], 296{304, 1990.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Je�rey D. Ullman. Protection in oper-
ating systems. Communications of ACM, 19(8):461{471, August 1976.

[JS90] S. Jajodia and R. Sandhu. Polyinstantiation integrity in multilevel relations. In
Proceedinges of the IEEE Symposium on Research in Security and Privacy [OAK],
pages 104{115, 1990.

[JV91] H. Javitz and A. Valdez. The SRI IDES statistical anomaly detector. [OAK], pages
316{326, 1991.

[LS98] Wenke Lee and Salvatore J. Stolfo. Data mining approaches for intrusion detection.
In Proceedings of the 7th USENIX Security Symposium (SECURITY-98), pages
79{94, Berkeley, January 26{29 1998. Usenix Association.

[OAK] Proceedings of the IEEE symposium on research in security and privacy.

[Ora97] Oracle8 Server Concepts, Release 8.0. Part No. A54643-01, Oracle Corporation,
Redwood City, California, 1997.

[SCCC+96] Stuart Staniford-Chen, Steven Cheung, Richard Crawford, Mark Dilger, Jeremy
Frank, James Hoagland, Karl Levitt, Christopher Wee, Raymond Yip, and Dan
Zerkle. GrIDS-A graph based intrusion detection system for large networks. In
Proceedings of the 19th National Information Systems Security Conference, 1996.

[SCFY96] Ravi Sandhu, Edward Coyne, Hal Feinstein, and Charles Youman. Role-based
access control models. IEEE Computer, 29(2):38{47, February 1996.

[SW92] K. Smith and M. Winslett. Entity modelling in the MLS relational model. In
Proceedings of the International Conference on Very Large Data Bases, Vancouver,
British Columbia, Canada, 1992.

[VL89] H. S. Vaccaro and G. E. Liepins. Detection of anomalous computer session activ-
ity. In Proceedinges of the IEEE Symposium on Research in Security and Privacy
[OAK], pages 280{289, 1989.

[WSF79] C. Wood, R. C. Summers, and E.B. Fernandez. Authorization in multilevel
database models. Information Systems, 4(2):155{161, 1979.

18

