
A Requires/Provides Model for Computer Attacks

Steven J. Templeton
Dept. of Computer Science

University of California, Davis
templets@cs.ucdavis.edu

Karl Levitt
Dept. of Computer Science

University of California, Davis
levitt@cs.ucdavis.edu

Abstract – Computer attacks are typically described
in terms of a single exploited vulnerability or as a
signature composed of a specific sequence of events.
These approaches lack the ability to characterize
complex scenarios or to generalize to unknown at-
tacks. Rather than think of attacks as a series of
events, we view attacks as a set of capabilities that
provide support for abstract attack concepts that in
turn provide new capabilities to support other con-
cepts. This paper describes a flexible extensible
model for computer attacks, a language for speci-
fying the model, and how it can be used in security
applications such as vulnerability analysis, intru-
sion detection and attack generation

Introduction

Traditionally computer attacks are described in
terms of the single vulnerability exploited in the
attack: a buffer overflow in sendmail, a race
condition in rdist, a denial-of-service by sending
pings to a broadcast IP address, etc. While such
single-point attacks are a frequent occurrence, in
isolation they are of little significance. Today’s
serious attacks are complex, multi-stage scenar-
ios that coordinate the effects of various single-
point attacks to reach goals not otherwise attain-
able. Such attacks can involve bypassing multi-
ple security mechanisms and the use of numer-
ous computer systems. The complexity and so-
phistication of these attacks indicate highly mo-
tivated adversaries and suggest the high value of
the attackers’ goals. Consequently, methods to
understand, predict and identify these scenario
attacks are important challenges for computer
security research.

Typically, scenario attacks are described using
the specific sequence of actions the attack uses
to reach some specific goal. Such descriptions
are useful for communicating the details of a
specific attack or building specialized signatures
for use in attack detection, but lack the ability to

generalize beyond the stated scenario or to be
utilized as a sub-goal in more complex attacks.
As an alternative to describing attacks using ex-
plicit signatures we describe a model of attacks
based on the requirements of the abstract com-
ponents of the attack, the capabilities the com-
ponents provide to satisfy the requirements of
other components, and a method for composing
the components into complete attacks. Because
this model does not require a priori knowledge
of a particular scenario, we can implicitly de-
scribe numerous unknown attacks.

Central to our model is our attack specification
language, JIGSAW. JIGSAW provides a con-
venient tool for describing attack components in
terms of capabilities and concepts. The language
also allows detailed specification of the system
being modeled and has extensions to support
construction of security applications such as in-
trusion detection systems.

In this paper we will describe with examples
how attacks can be modeled using our method.
We include illustrative examples in JIGSAW
and discuss how this model can be used to create
intrusion detection, attack analysis, and attack
generation systems. We also discuss how the
model can be extended to include policy re-
quirements, incorporate both signature and
anomaly based intrusion detection systems, cre-
ate retargetable sensors, and automated re-
sponse.

Scenario Attacks – an example

Two computers, kafka and sartre, have a trust
relation in that kafka may execute commands on
sartre using rsh1. To exploit a vulnerability in

1 See [7] for a full description of the RSH protocol
including analysis and exploits.

rsh, an attacker on host spock causes a synflood
denial-of-service attack against kafka. [see fig-
ure 1].

SynFlood is a single point flooding attack that
exploits a vulnerability of the TCP protocol.
This attack prevents a target host from accepting
new connections to the particular port. By
sending large numbers of TCP syn packets to a
port on the target host, but never responding to
the syn/ack the target returns, the attacker can
prevent the target from opening new connections
to that port. This works because the target host
holds open a connection for each syn packet it
receives while waiting for the initiator to re-
spond. Because the queue that handles the con-
nections is of limited size, by creating a large
number of these half-open connections, the at-
tacker exhausts the queue on the target host.
Eventually, the waiting connections on the target
host will time-out and they will be reset, which
opens the queue for new connections. However,
if the attacker is able to send packets to the tar-
get faster than the connections are reset, the tar-
get host will be prevented from responding to
new connections.

Assuming the target port is TCP/11111 on kafka,
while the synflood is active, packets for new
connections to this port will be discarded. This
effectively prevents kafka from responding to
packets sent to this port. Meanwhile spock then
sends syn packets to the rsh port on sartre and

monitors the time and what starting sequence
number sartre specifies spock should use to send
the ack packet. By using this information, the
attacker can now guess what sequence number a
connection from kafka to sartre would use.
Knowing this, spock sends a syn packet to the
rsh port on sartre, with the source address and
port in the packet forged to be k a f k a ,
TCP/11111. Sartre sends the syn/ack packet to
kafka, but due to the denial-of-service, kafka is
not responding (if it responded it would realize it
did not start the connection and reset). Spock
now sends an ack packet, again claiming to be
from kafka, and using the sequence number he
guessed sartre would have sent to kafka. As-
suming the sequence number matches, the
packet is accepted as if it had originated from
kafka. The data portion of this packet can con-
tain commands to be executed via rsh. There-
fore, this attack provides the capability to exe-
cute arbitrary code on the target computer.

This example illustrated the key elements of a
scenario attack. It uses a combination of single
point attacks (plus other activity not necessarily
by itself an attack), to exploit a vulnerability that
could not be directly exploited. Both the syn-
flood attack and the sequence number probing
are required for the forged packets to be ac-
cepted. The single-point attack is the synflood;
the higher-order vulnerability is in the rsh trust
relation.

This specific scenario was easy to describe,
however many variants can be created. The large
number of variant scenarios is the primary chal-
lenge in describing these attacks. We identify
five types of variants:

• Mutation
• Resequencing
• Substitution
• Distribution
• Looping

These are described below.

 Mutation is the simplest method to create vari-
ants. This involves altering the attribute values
of the attack events. Changing a host IP address,
port number, or username are examples. These

1

kafka

sartre

spock

2

3

4

5

Figure #1: RSH Connection Spoofing

1: synflood initiated on kafka
2: spock probes sartre for starting sequence number info
3: spock sends spoofed packet to sarte
4: sartre responds to kafka, but kafka is not responding
5: spock sends spoofed packet sartre expected to get from

kafka. data includes body of attack.

are trivial variants, easily captured by using
variables in the attack description.

Resequencing refers to modifications in the or-
der of events. The synflood in our example
needs to be in effect to prevent kafka from re-
sponding. As a variant, rather than start the syn-
flood first, the synflood could occur after the
sequence number probe. [see figure 2]. As long
as each event is positioned so that the capabili-
ties it provides are available when required, the
attack can hold2.

Substitution replaces one attack in the scenario
with another equivalent attack. In our example,
replacing the synflood with any attack that
would prevent kafka from responding to packets

sent by sartre, and not negate other requirements
would work. These include single point attacks
such as a packet-storm3, cable grounding4, or a
ping-of-death5. Such event equivalency is a

2 Success of the attack is a different problem. This is
discussed in section.
3 packet storm: typically an extremely high volume of
packets being sent between two computers resulting
in complete saturation of the network. This is com-
monly caused by tricking two or more computers to
go into a feedback like mode responding to the re-
sponse of the other.
4 cable grounding: physical damage to the network
wire, e.g. sticking a straight pin through coax to short
inner and outer conductors.
5 ping-of-death: a generic term for a ping w/ packet
data of size or content that causes the recipient to halt
or go into a long reset cycle. Can also refer to packets
which cause the recipients kernel to halt.

powerful method for creating new scenarios.
Any event that provides the capabilities of an-
other and remains non-interfering6 can replace
the original event in the scenario. This includes
single-point and scenario attacks. For example,
the buffer overflow vulnerability in Linux 5.1
imapd could be exploited to gain root access to
kafka and reboot it. Alternately, by exploiting a
buffer overflow in a cgi script on the web-server
for the group, the attacker could execute code as
httpd. Using this he could identify usernames
and attempt to crack passwords. With a user-
name/password pair the attacker could log on to
kafka and as the user and cause a denial of serv-
ice to the desired port. Both attacks are event

equivalent.

Rather than vary the denial-of-service attack,
anything that is event equivalent to the sequence
number guessing, or forged packet send could
replace these events in the example. If the over-
all goal of the attack was to allow execution of
arbitrary code on sartre, then any combination
of events that leads to that goal will be function-
ally equivalent. For example, rather than exploit
the rsh trust relation, it may be possible to ex-
ploit a NIS password trust relation[6]. Clearly,
even for this simple scenario, a multitude of
permutations exist.

6 This refers to the situation, where the effects of one
concept (on certain capability instances) conflicts
with those of another concept. E.g. one denial-of-
service collaterally causes denial-of-service on a host
required to be available for the attack.

Figure 2: variations in connection spoofing timing.

ynfl o od

S end forged packets
S eq umber probe

typical t iming relation lternate

eq.e<sp.s

sf.s<sp.s, sf.e>sp.es

The typical timing relation for connection spoofing is to start the synflood and continue it throughout the attack.
An alternate starts the synflood late, but it is active when the forged packets are sent. The timing relation shows
that the forged packets (sp) must be sent during the synflood (sf), the forged packets can not be sent before the
sequence number probe (seq) has terminated.

Distribution creates variants by use multiple
values for the same attribute throughout the at-
tack. For example, rather than use spock to syn-
flood kafka alone, the attacker could use spock,
kirk, and sulu. Or, rather than use real IP ad-
dresses, since the synflood requires no response
randomized, fake IP addresses could be used.
Distribution can cause an explosion in the num-
ber of events that make up the scenario.

Looping variants repeat some portion of the sce-
nario multiple times. This can be done intention-
ally to create variants to defeat detection, how-
ever looping is a natural occurrence in many
attacks. For example, the number of packets a
synflood attack requires to initially exhaust the
targets queue, and the frequency of additional
packets required to keep it full will depend on
the systems involved. Similarly, the number at-
tempts to guess the correct sequence number
may vary. The number is to some extent stati-
cally a function of the system configuration, but
also can vary due to dynamic issues such as
network and CPU load.

Some complex attacks such as a worm are con-
ceptually recursive attacks. Once the worm has
successfully propagated to a new host, it copies
in its body, and repeats the process on other
hosts. These also generate looping-like variants;
the actual path of the worm will vary from site
to site.

In addition to the many ways to create variants
just stated, the variety of single-point attacks is
an additional issue. Single-point attacks are the
building blocks of attack scenarios, and by sub-
stitution, can give rise to an uncountable number
of variants. Because these provide the attacker
with an arsenal of exploits to find some means to
reach their goal, the sheer number of attacks in-
creases the difficulty of identifying all possible
attacks.

Clearly, numerous possible scenario attacks can
be created. Specifying each individually would
be impossible. For other than the most restricted
examples, explicitly describing all variants
would be combinatorially infeasible, and doing
so requires that all possible variants are known.
Because explicit descriptions frequently contain

event sequences that are included in descriptions
of others, using explicit signatures requires
many event sequences.

In order to eliminate these problems we do not
use explicit signatures. Rather, we define sce-
nario attacks in terms of the abstract components
(concepts) of the attack. Each concept is de-
scribed locally without specifying with which
other concepts it will link. We define only the
capabilities required by a concept, and the capa-
bilities it can provide to others. In this way, link-
age occurs naturally using the requires/provides
metaphor.

Now that we have some understanding of what
we mean by a scenario attack, problems in speci-
fying them explicitly, and the basis of our solu-
tion, we will describe how we model them.

Our Model

We describe attacks as the composition of ab-
stract attack “concepts”. Each concept requires
certain capabilities that must occur for a par-
ticular instance of the concept to be entailed.
Each concept may also provide specific capa-
bilities to other concepts. Also defined for each
concept are the required relations between the
attribute values of the capabilities. These include
details such as operating system, host/port num-
bers, and cover any required timing relations.

Capabilities

Capabilities are the information required or the
situation that must exist for a particular aspect of
an attack to occur. For example, a successful
telnet login requires a valid username/password
and the telnet service to be available on a par-
ticular port. It also requires network access to
the telnet host, that the host is running, and that
the telnet host can authenticate the user. More
formally, capabilities are a semantic object that
encapsulates a number of semantically typed
attributes. These allow descriptions of particular
capability instances and a means of relating one
capability to another. Capabilities are the atomic
elements in our model. The generalized capabil-
ity is a template for instances of the capability.

Some capabilities form the links between con-
cepts in the model. Others represent the lowest
level objects in the model, that is, they define the
limit of what is modeled and what is assumed to
exist outside the model. For example, rather than
model a SynFlood, we assume they exist and
consider their effects only.

Related to external capabilities is system con-
figuration information. Because vulnerabilities
are tied to specific software versions, and the
particular hardware and system configuration
determine the scenario attacks that can be suc-
cessful, detailed information about the computer
system must be included in the model. Including
configuration moves the model from abstract
attacks to those feasible in a specific system.
This is particularly important when considering
the effects of known vulnerabilities in a particu-
lar scenario.

Concepts

Concepts define abstract situations that form
subtasks in a scenario attack. Defined for each
concept are requirements that must be satisfied if
an instance of the concept is to hold. These are
Boolean relations on capabilities and configura-
tions. If the requirements are met, then the con-
cept specifies a mapping from the requirements
to new capabilities. These capabilities are now
available to support other concepts.

Typically concepts refer to subtasks of the sce-
nario, but can also be proscribed policy state-
ments. In this way the model includes composi-
tions that would violate some desired policy.
These specify goals of concern. When incorpo-
rated into an intrusion detection system, these
would be included in the reportable concepts,
i.e. those concepts for which we should generate
some alert.

Inherent implication. In many cases, the exis-
tence of a capability necessarily implies the
presence of another. For example, if host A is
prevented from sending a packet X to host B,
then host B is prevented from receiving packet
X. If host B is prevented from receiving packet
X, then host B is prevented from sending reply
packet Y back to host A. Here the capability of

preventing transmission of one packet implies
prevention of receipt of the packet by another
host and similarly prevents the host from re-
sponding to the packet. Such implication chains
are common in our attack model. Concepts de-
fining each local implication must be explicitly
stated. [see figure 3]

DoS Host

DoS Comm

DoS Port X

Crash

Packet Storm

SynFlood

Prevent_Receive

Figure #3: Model Fragment Illustrating hierarchical
relation of capabilities and implication chains.

Explicit Implication

Central to our model are the following features.
These are common to all scenario attacks.

Multiple events can provide equivalent capabili-
ties

This is the key concept of our model. An at-
tacker can use different actions to support the
same goal. Many different probes will return
equivalent information; many different DoS at-
tacks will have the same effect on the target
system. By specifying the required capabilities
of an attack we capture all possible means of
supporting it without specifying explicitly what
will provide it. By specifying the provided capa-
bilities of an attack we capture how the attack
could be used without specifying explicitly what
will use it.

Attack scenarios may have many variants
Because attacks are composed of subtasks, re-
placing a subtask with any other that provides
equivalent capabilities without removing other
required capabilities, will result in a valid vari-
ant. The more complex the scenario is, the more
variants that are possible.

Exploits can be combined in unknown ways to
create sophisticated attacks.

Because of the large number of variants, we will
not know all possible scenarios explicitly. As
new exploits are discovered and added to the
model, they can combine in ways not originally
realized. A clever series of actions could cause a
DoS attack not previously considered.

Attacks compose based on provided/required ca-
pabilities.

Scenario attacks are created by taking actions
that support the requirements of the next stage of
the attack. To read a file, a file handle is re-
quired. To get a file handle requires authoriza-
tion or a correct guess. Authorization requires an
account with sufficient privileges to access the
file and authentication as the proper user.
Authentication can be provided by presenting a
valid username/password, or by hijacking the
authentication service, and so on. In this way
we create chains of capabilities that form tem-
plates for scenarios.

Known exploits/vulnerabilities/actions form ter-
minals in the model.

As a practical means of limiting the extent of the
model we utilize known single-point attacks or
security relevant actions as the boundary of what
is included in the model.

Attack events can be defined locally with out
knowledge of how they will be used.

We can describe the effects of a SynFlood attack
without knowing how it might be used in any
particular scenario. We also can describe the
requirements for the SynFlood to be successful
without knowing how these could be met. This
allows us to construct the building blocks of
scenario attacks locally and allow the events to
link naturally using the requires/provides
mechanism.

The strength of this method is that concepts are
defined locally without a priori knowledge of the
specific attacks that could incorporate the con-
cept. While typically we use the study and
analysis of known (or theorized) attacks and
vulnerabilities to identify concepts, this method
allows us to focus on the abstract relation be-
tween events and information rather than the
cataloging of specific scenarios.

By defining concepts locally we facilitate the
collaboration of security researchers. Anybody
can create new concepts and add them to the
model. They do not require knowledge of the
entire model, only how their concepts will be
used locally.

As a means of formally specifying our model we
have developed the language JIGSAW. This
language and examples of its use are described
next.

JIGSAW

A model in JIGSAW consists of two sections:
specification of the capability templates, and
specification of the model concepts in terms of
the capabilities.

Capabilities

A capability specification is a named collection
of typed attribute value pairs. Types can be sim-
ple (such as integer or string) or complex. These
include IP addresses, port/services, host configu-
ration, dates/times, and sets of items. [see figure
4(a)].

System configuration information is expressed
much like capabilities. Each network device or
logical element (e.g. Ethernet segment) is de-
scribed separately using templates for that de-
vice type. Configuration information will in-
clude device types, OS (if relevant), applicable
software and version numbers, as well as device
types and driver versions. If a new concept re-
quires additional configuration information, this
information must be collected and incorporated
into the model.

Figure 4(a): An Example Capability Specification – Prevent Packet Send

capability capability_x is
ip_addr: ip_addr_type;
port_set: set of port;
start_time: time_type;
end_time: time_type;

end.

Figure 4(b): An Example Concept Specification – RSH Connection Spoofing

concept RSH_Connection_Spoofing is

requires
Trusted_Partner: TP;
Service_Active: SA;
PreventPacketSend: PPS;
extern SeqNumProbe: SNP;
ForgedPacketSend: FPS;

with
TP.service is RSH, #- The service in the trust relation is RSH
PPS.host is TP.trusted, #- The blocked host is the trusted partner
FPS.dst.host is TP.trustor, #- The spoofed packets are sent to the trustor
SNP.dst.host is TP.trustor, #- The probed host is the trustor
FPS.src is [ND.host,PPS.port] #- claimed source of forged packets is blocked

SNP.dst is [SA.host,SA.port] #- The probed host must be running RSH on the
 SA.port is TCP\RSH, #- normal port

SA.service is RSH, #-

SNP.dst is FPS.dest #- probed host must be where forged packets are sent

active(FPS) during active(PPS)#- forged packets must be sent while DOS is active
end;

provides
 push_channel: PSC;

remote_execution: REX;
with

PSC.from <- FPS.true_src; #- Capability to move code from attacker to RSH server
PSC.to <- FPS.dst; #-
PSC.using <- RSH; #-

REX.from <- FPS.true_src; #- Capability to execute code on remote host
REX.to <- FPS.dst; #-
REX.using <- RSH; #-

end;

action
true -> report (“RSH Connection Spoofing: TP.hostname”)

end;
end.

Concepts

Concepts specify a set of required capabilities,
mapping requirements, the provided capabilities
and the value assignments for them. Each con-
cept statement begins with the keyword concept
and an identifying name. Each concept statement
will have a requires block and a provides
block, and optionally an action block. [See fig-
ure 4(b)] The requires section lists the types of
capabilities and configuration information the
concept uses, along with a label for each in-
stance used in the concept. Capabilities defined
external to the model are prefixed with the key-
word extern. Typically these refer to vulner-
abilities originating outside of the model. Next
in the requires’ with section, any relations that
must hold between the required capabilities are
stated. These form a conjunctive list of Boolean
expressions. The language includes a number of
operators defined for the data types common to
the model. Examples are text comparison op-
erators, set and temporal relations. A number of
system functions, such as the Hostname() are
also included. Additional functions can be speci-
fied as required to extend the ontology.

If all the statements in the requires’ with section
are true for some instance of the capabilities, the
concept holds and the statements in the provides
section come into play. Similar to the requires
section, the provides section begins by listing
the capabilities needed. In this case however,
these are the new capabilities that are provided
by the concept. The provides’ with section
specifies value bindings from the required capa-
bilities to the provided capabilities. Conceptu-
ally, when capabilities satisfying the requires are
present, new capabilities with the bound values
are asserted.

Including the keyword extends and the name of
a defined concept after the concept name allows
us to specify simple inheritance. Child concepts
inherit all characteristics of the parent, but must
satisfy all additional requirements of the child
and will provide all additional capabilities of the
child. Concepts defined using the prefix ab-
stract refer to concepts that are only in the
model when extended. For example, the abstract

concept “install_tool” is used as a template for
concepts involving specific tools.

In order to provide support for using a JIGSAW
model for intrusion detection systems, concepts
have an optional action section. This consists of
a list of guarded statements that are evaluated
when the concept is active. Actions are used to
report information to security personnel, other
CIDF compliant IDSs, retarget sensors, or take
some automated response. As this is outside the
intended focus of this paper, readers interested
in this and other details of the JIGSAW lan-
guage are referred to the forthcoming technical
report on the U. C. Davis Global Guard project.

Applications of the Model

Attack Discovery

Our model can be used to discover new attacks.
We have found that from a pedagogical stand-
point, jus can lead to interesting conclusions. For
example, by analyzing the effects of Ethernet
MAC control PAUSE packets and the ARP
protocol we discovered an exploit to allow un-
authorized root logons. Sending a flood of
PAUSE packets will cause some switches to
block all traffic to a network segment. Such a
flood can be induced on certain hosts by crash-
ing the kernel while flooding the computer with
packets. While the network is segmented, we
can transmit counterfeit ARP reply packets,
which would cause packets destined to a NIS
server on a different segment to be redirect to a
compromised local host running a fake authenti-
cation server, allowing us to fraudulently vali-
date the logon. [See figure 5]

When implemented in software and given an
attack concept as a goal, we can automatically
discover how attacks could compromise a target.
This was readily seen when a proof-of-concept
program was tried on a subset of the model.

Mid-level Intrusion Detection

This model provides a natural mechanism for
correlating observed activity into scenario at-
tacks. Because the strength of our model is in
correlating events, and low-level exploit detec-
tion is best done using specialized detectors, we

define our IDS effort as a mid-level system and
rely on the output of other systems. Concepts
specified as external indicate what sensors will
be required by the IDS, and what details the sen-
sor must provide. For efficiency, implementation
will require consideration of at what level sen-
sors should be utilized. In practice this will be
determined by the available information pro-
vided by other IDSs. Those systems that provide
signatures of scenarios can be readily added into
the model by adding a complementary external

concept.

Because many low level attacks are unrelated or
do not compromise the system, by sending alerts
only when events correlate, we can significantly
reduce the number of false positives.

As part of the UC Davis Global Guard project
we are designing a correlating IDS that incorpo-
rates our model and the output of CIDF [8]
compliant intrusion detection systems as inputs
to our system. CISL[4] reports are wrapped with
JIGSAW concepts that describe the capabilities
the detected “intrusion” provides. In this way we
can interface to any compliant IDS. For exam-
ple, port scans provide capabilities about what
an attacker knows about your system. A buffer
overflow provides capabilities including lo-
cal_execution_as_user and DoS_process.

Extensibility. Because concepts are defined lo-
cally, new attacks can be incorporated with
minimal effort. Attacks that provide only previ-
ously defined capabilities will need no work
other than to be wrapped to express those capa-
bilities. If a new capability is also defined, the
capability will must also be specified and some
concept must be specified to use it. If this is a
variant of another capability, inference chaining
concepts are all that is needed.

Another advantage of this method is its ability to

utilize anomaly and specification based IDS as
sensors. By discovering what an anomaly can
provide for an attack we can wrap it for use as a
sensor. While such meta-analysis of these detec-
tion systems is mostly unknown, what is known
is promising. For example, the self/nonself work
of Forrest[5] primarily detects buffer overflows.
Depending on the specific process involved,
these can predict remote-to-user, local-to-user or
local-to-root attacks. Similarly Tripwire[9] can
be used to identify capabilities linked to changes
in specific files (for example .rhosts). Similarly
the specification based intrusion detection work
of Ko[10,11] can be wrapped to state the capa-
bilities a particular violation of the specification
would provide.

Prediction. An interesting result of our model is
that when a concept holds, we can state that the
capabilities provided exist, not that they have
been acted upon. For example, if a concept in-

Z YXS

1

A

2

3

45

6
7

1) A floods S with packets, then crashes OS.
2) Vulnerability in S causes flood of Ethernet MAC

control PAUSE packets to be sent to switch.
3) Vulnerability in switch causes network

segments to be isolated from each other.
4) Y sends ARP reply packets that claim MAC of

Y is MAC for Z, the NIS server.
5) Y telnets to X.
6) X authorizes telnet via Z, but ARP spoofing

redirects packets to Y.
7) Fake authentication process on Y fraudulaently

validates telnet for Y.
** SUCCESS! **

Figure #5: Ethernet PAUSE / ARP reply Scenario.

dicting that a particular sensitive file could be
read, we do not yet know that it has been, or
even if the attacker knows they have this ability.
This gives our IDS the ability to predict what the
attacker could do, and to provide some level of
warning to prevent the event from occurring.

Automated Response. In an IDS context, our
model extends readily to support limited auto-
mated response. By removing a capability that
supports a concept we can remove the capabili-
ties that the concept provides. Because the
model is defined in terms of capabilities, we
have already defined possible actions. In the
previous example, the read could be prevented
by automatically encrypting the file, changing
permission bits, terminating the attackers con-
nection, etc. We must stress that such responses
are “authorized” attacks and will have ramifica-
tions perhaps not unlike true attacks.
Implementers must be careful to accurately
evaluate the cost of any action, and be aware
that the automated response may be the true goal
of the attacker.

Related work

Other work in describing scenario attacks has
been limited to descriptions of explicit signa-
tures of scenarios without consideration of how
they might compose into more elaborate sce-
narios. [13] use descriptions of limited scenarios
specified in a C-like language, STATL, in their
intrusion detection system, NetStat. Attacks are
defined in terms of specific events indicating
state transitions. The terminal state in a STATL
description, when reached implies the attack has
occurred. Currently, over 50 attack signatures
are defined for NetStat. Each of these are dis-
tinct specific signatures. Any correlation of
events is explicitly defined and limited to the
individual signatures included. While some vari-
ants are captured by the descriptions, any new
scenario will require a complete new signature.

The IDIOT project[12] uses colored petri
nets[32] to represent signatures of attacks. The
petri nets specify a partial ordering of the UNIX
commands that are executed in an attack. This is
different from our work in that signatures are in
terms of specific commands; there is no linkage

of attacks; no local specification of attack com-
ponents, and no notion of the requires/provides
ontology. The significance of IDIOT to this
project is that there is a similarity between our
linkages of concepts and colored petri nets. Petri
nets are a powerful way of modeling systems
and have been extended in a multitude of ways
to handle a variety of systems.

Configuration checkers such as COPS[3] and
SATAN[2] use a number of tools to test for
system vulnerabilities. These are interesting be-
cause they do not just look at single host vulner-
abilities, but vulnerabilities of a networked sys-
tem. Besides looking for specific listed vulner-
abilities these incorporate search based vulner-
ability analysis from SU-Kuang[1] and Net-
Kuang[14]. These search for configuration set-
tings that cause an exploitable vulnerability and
are not limited to simple vulnerabilities in isola-
tion, but look for sequences of events that could
be exploited. Unfortunately, they have only fo-
cused on a few high-level vulnerabilities. Also,
their model of UNIX security is intrinsic to the
tools’ code, and therefore not available for other
security uses.

Future Work

This model is incredibly rich and suggests many
directions for work. A few are described here.

Attack Generation. A related and somewhat
shadowy application of our model is in the
automated generation of attacks. It differs from
attempting to identify vulnerabilities in that it is
not given complete knowledge of the system,
and from an IDS in that rather than sensors, it
must use attack scripts to interact with its envi-
ronment. Such a system would probe and attack
repeatedly until it found a scenario that reached
its goal. While this tests the limits of present day
planning and expert systems, limited simulations
of this have been promising, and we have pro-
posed using it as a tool in evaluating IDSs.

Formal Theory of Attacks. By modeling attacks
formally we can prove statements about the at-
tacks such as the absence of a scenario that can
attain some goal, or that removal of a vulner-
ability will (or will not) eliminate the potential

for any attack to reach a particular goal. We
have begun looking at notation and axioms to-
ward this end in the near future.

Nondeterminism. Attacks do not succeed every
time. In order to function with real world at-
tacks, an attacker must contend with many un-
predictable situations. For example, exploiting
race conditions typically require multiple at-
tempts before succeess. DoS attacks that use
packet floods to consume resources contend for
these resources with other packets on the net-
work. These attacks only lower the probability
of a non-DoS packet getting through. Also, for
some attacks service cannot be more than de-
graded – the attack may need to get packets
through itself.

In order to construct a successful attack, we need
to properly evaluate the likelihood of its success.
This can determine which resources and how
many are used. Consider a DoS attack on a large
e-commerce site. If the attack cannot consume
sufficient bandwidth the attack will be a failure.
Similarly, if the attack uses to many resources or
uses them improperly the likelihood the attack
will be detected early will increase. A sophisti-
cated attacker would consider the likelihood of
success vs. the likelihood that the attack would
be detected.

Conclusions

Traditional methods of modeling attacks fail to
adequately capture the complexity of scenario
attacks. Methods limited to describing simplistic
signatures or single-point exploits are not capa-
ble of generalizing to unknown attacks. The re-
quire/provides model presented here eliminates
these problems and can utilize the strengths of
earlier methods. Because attack concepts are
defined locally the model can be constructed
without prior knowledge of the attacks that will
be covered by the model. The JIGSAW lan-
guage provides a convenient method for con-
structing the model and can be used to construct
mid-level intrusion detection systems

References

[1] Baldwin, R. W. (1991) Kuang: Rule-based security
checking. In Kolstad, Rob. Daemons and dragons:
the COPS security auditor. (tutorial) UNIX Review
v9.n3 (March, 1991)

[2] Farmer, Dan, and Venema, Wietse (1995) SATAN:
Security Administrator's Tool for Analyzing Net-
works, http://www.fish.com/~zen/satan/satan.html

[3] Farmer, Dan, and Spafford, Eugene. (1990) The
COPS security checker system. In Proceedings of
the Summer 1990 USENIX Conference, June 1990.

[4] Feiertag, R., Kahn, C., Porras, P., Schnackenberg,
D., Staniford-Chen, S., Tung, B. (1999) A Common
Intrusion Specification Language (CISL). At
http://gost.isi.edu/projects/crisis/cidf/cisl_current.txt

[5] Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff,
T. A Sense of Self for UNIX processes. Proceed-
ings of 1996 IEEE Symposium on Computer Secu-
rity and Privacy, 1996

[6] Garfinkel S. and Spafford, E. (1997) Practical Unix
and Internet Security, 2nd ed., O’Reilly and Asso-
ciates, pp. 584-87

[7] Guha, B.; Mukherjee, B. (1997) Network security
via reverse engineering of TCP code: vulnerability
analysis and proposed solutions. IEEE Network,
vol.11, (no.4), IEEE, July-Aug. 1997. p.40-8.

[8] Kahn, C., Porras, P., Staniford-Chen, S. and Tung,
B.(2000) A Common Intrusion Detection Frame-
work. Submitted to the Journal of Computer Secu-
rity.

[9] Kim, G. and Spafford, E. H. (1997) Tripwire: A
Case Study in Integrity Monitoring. In D. Denning
and P. Denning, editors, Internet Beseiged: Coun-
tering Cyberspace Scofflaws, Addison-Wesley,
1997.

[10] Ko C.C.W. (1996) Execution Monitoring of Secu-
rity-Critical Programs in a Distributed System: A
Specification-Based Approach, Ph.D. Thesis, Uni-
versity of California at Davis, August 1996

[11] Ko, Calvin, Fink, George, and Levitt, Karl (1997)
Execution Monitoring of Security-critical Programs
in Distributed Systems: A Specification-based Ap-
proach, In Proceedings of the 1997 IEEE Sympo-
sium on Security and Privacy, pp. 134-144

[12] Kumar, S. and Spafford, E. H (1994) A Pattern-
Matching Model for Intrusion Detection
PROCEEDINGS OF THE NATIONAL
COMPUTER SECURITY CONFERENCE; pp. 11-
21; Baltimore, MD; Coast TR 95-06

[13] Vigna G. and Kemmerer, R., (1998) NetSTAT: A
network-based intrusion detection approach, Pro-
ceedings of the 14th Annual Computer Security
Applications Conference, Scottsdale, Arizona, De-
cember 1998

[14] Zerkle, Dan and Levitt, Karl (1996) NetKuang – A
multi-host configuration vulnerability checker. In

Proceedings of the 6th USENIX UNIX Security
Symposium. San Jose, CA. July 1996, p.195-2

