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Abstract

Entity authentication and key distribution are central cryptographic problems in distributed

computing|but up until now, they have lacked even a meaningful de�nition. One consequence is

that incorrect and ine�cient protocols have proliferated. This paper provides the �rst treatment

of these problems in the complexity-theoretic framework of modern cryptography. Addressed

in detail are two problems of the symmetric, two-party setting: mutual authentication and

authenticated key exchange. For each we present a de�nition, protocol, and proof that the

protocol meets its goal, assuming the (minimal) assumption of pseudorandom function. When

this assumption is appropriately instantiated, the protocols given are practical and e�cient.
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1 Introduction

1.1 Context

For centuries, cryptographic protocols were designed by trial and error. A scheme was proposed,

and people tried to break it. If they didn't succeed then, after a while, the scheme was assumed

to be adequate. History has shown that the success rate of this method is not too impressive:

proposed protocols were often broken, sometimes years after they were �rst put forward.

The early 1980s saw the proposal of a fundamental and radical idea to get beyond iterative,

attack-responsive design of cryptographic protocols: Goldwasser and Micali [21], followed by Blum-

Micali [7] and Yao [39], suggested that security could be proved under \standard" and well-believed

complexity theoretic assumptions (e.g., the assumed intractability of factoring). The methodology

which they identi�ed has come to be known as \provable security." Achieving it for a given problem

of interest entails providing (i) a de�nition of the goal, (ii) a protocol, and (iii) a proof that the

protocol meets its goal, assuming some standard complexity-theoretic assumption holds true.

By 1985 provable security had been achieved for probabilistic encryption [21], pseudorandom

number generation [7, 39] and digital signatures [23]. It was then the opinion of many researchers

that provable security was in hand for all of the \basic" cryptographic primitives. Attention turned

to other issues, such as reducing the complexity assumptions needed to achieve provable security

or increasing the e�ciency of the constructions.

As it happens, the belief that provable security had been achieved for all of cryptography's

basic primitives was wrong; there remained a crucial set of unformalized goals which were well-

known to applied cryptographers and those who had tried to build secure distributed system. These

goals involve entity authentication and associated problems key distribution. We now turn towards

describing these objectives.

1.2 Informal problem statement

Entity authentication is the process by which an agent in a distributed system gains con�dence in

the identity of a communication partner. More often than not, the entity authentication process

is coupled with the distribution of a \session key" which the partners can later use for message

con�dentiality, integrity, or whatever else. These are central problems in computing practice,

for without their resolution distributed computing cannot realistically get o� the ground. This

importance is re
ected in the enormous amount of attention that these problems have received in the

literature; literally hundreds of papers have been written and protocols proposed and implemented.

Yet entity authentication for the distributed environment rests on no satisfactory formal foun-

dations. This is more than an academic complaint. We are speaking of an area in which an informal

approach has often lead to work which is at worst wrong, and at best only partially analyzable. In

particular, an alarming fraction of proposed authentication protocols have subsequently been found

to be 
awed. It is therefore desirable that con�dence in an authentication protocol should stem

from more than a few people's inability to break it. In fact, in the tradition of provable security

discussed above, each signi�cant entity authentication goal should be formally de�ned and any

candidate protocol should be proven to meet its goal under a standard cryptographic assumption.

Of course the de�nition must properly model the real-world characteristics of the problem at hand,

the protocols must be practical, and the proofs must be \meaningful" for practice.
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Problems in authentication and authenticated key distribution come in various 
avors: there

may be two parties involved or more; the authentication may be unilateral or mutual; parties might

(the symmetric case) or might not (the asymmetric case) share a secret key.

This paper focuses on two versions of the the two-party, mutual, symmetric case. In the mutual

authentication problem the parties engage in a conversation in which each gains con�dence that it

is the other with whom he speaks. In the authenticated key exchange problem the parties also want

to distribute a \fresh" and \secret" session key.1 Despite their signi�cance and long histories, both

problems lack any modern, complexity-theoretic treatment. In particular, the primitives and tools

formalized and understood in the theoretical community today (e.g. encryption, signatures, zero-

knowledge [22], proofs of knowledge, identi�cation) don't seem adequate to treat these problems.

1.3 Provable security for entity authentication

We provide entity authentication and key distribution with provable security, raising these goals

to the same level as primitives such as encryption, pseudorandom generators, or digital signatures.

In particular, we o�er protocols whose security can be guaranteed from weak complexity-theoretic

assumptions, bringing assurance to an area which has been fraught with uncertainty.

The de�nitional ideas needed to treat these problems are novel. Notions like indistinguishability

[21, 22] and simulatability [22] which were so successful in formalizing other cryptographic primitives

are not enough for this setting. In fact, we have to begin by re-de�ning the very model which

underlies the communication.

Model. It has been pointed out in many places that one di�culty in laying foundations for en-

tity authentication has been the lack of an appropriate model for authentication in the distributed

environment. We specify an appropriate model. To be fully general here, we assume that all com-

munication among interacting parties is under the adversary's control. In particular, the adversary

can read the messages produced by the parties, provide messages of her own to them, modify mes-

sages before they reach their destination, and delay messages or replay them. Most importantly,

the adversary can start up entirely new \instances" of any of the parties, modeling the ability of

communicating agents to simultaneously engage in many sessions at once; this gives us the ability

to model the kinds of attacks that were suggested by [6]. Formally, each party will be modeled by

an in�nite collection of oracles which the adversary may run. These oracles only interact with the

adversary, they never directly interact with one another. See Section 3.

Note how this di�ers from the models underlying notions such as interactive proofs [22] or secure

function evaluation [38, 20]. In the former case the communication is trusted and it is one of the

parties who may be adversarial; in the later case, individual parties may be good or bad, but their

communication proceeds in a simple and orderly manner. In neither case is there an analogue to

the notion of sessions.

Definitions. In the presence of an adversary as powerful as the one we de�ne, it is unclear what

it could possibly mean to be convinced that one has engaged in a conversation with a speci�ed

1 At �rst glance it might seem unnecessary for two parties who already share a key a to come up with another

key �. One reason a new key is useful is the necessity of avoiding cross-session \replay attacks" |messages copied

from one session being deemed authentic in another| coupled with an insistence on not attempting to carry \state"

information (e.g., a message counter) across distinct sessions.
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partner; after all, every bit communicated has really been communicated to the the adversary,

instead. We deal with this problem as follows.

As has often been observed, an adversary in our setting can always make the parties accept

by faithfully relaying messages among the communication partners. But this behavior does not

constitute a damaging attack; indeed, the adversary has functioned just like a wire, and may as

well not have been there. The idea of our de�nition of a mutual authentication is then simple but

strong: we say that a protocol is secure if the only way that an adversary can get a party to accept

is by faithfully relaying messages in this manner. In other words, any adversary e�ectively behaves

as a trusted wire, if not a broken one. Formalizing this simple idea is not so simple; the main tool

will be a notion of matching conversations .

To de�ne authenticated key exchange it is necessary to capture a protocol's robustness against

the loss of a session key: even if the adversary gets hold of one, this should not compromise anything

but the session which that key protects. We model this requirement by allowing the adversary to

obtain session keys just by asking for them. When this inquiry is made, the key is no longer

fresh, and any partner's key is declared unfresh, too. Fresh keys must remain \protected." We

formalize the adversary's inability to gain any helpful information about them along the lines of

formalizations of security for probabilistic encryption [21, 16, 17].

Protocols. Having de�ned mutual authentication and authenticated key exchange, we provide

protocols to achieve these ends. Four protocols are speci�cally discussed in this paper. Protocol

MAP1, which is an extension of the protocol 2PP of [6], is a mutual authentication protocol for

an arbitrary set I of players. Protocol MAP2 is an extension of MAP1, allowing arbitrary text

strings to be authenticated along with its 
ows. Protocol AKEP1 is a simple authenticated key

exchange which uses MAP2 to do the key distribution. Protocol AKEP2 is a particularly e�cient

authenticated key exchange which introduces the idea of \implicitly" distributing a key; its 
ows

are identical to MAP1, but it accomplishes a key distribution all the same. The primitive required

for all of these protocols is a pseudorandom function.

Our protocols are simpler than previous ones. Our ability to attain provable security while

simultaneously simplifying the solutions illustrates an advantage of having a clear de�nition of what

one is trying to achieve; lacking such a de�nition, previous solutions encumbered their protocols

with unnecessary features.

Proofs. Assuming that pseudorandom functions exist, each protocol that we give is proven to

meet the de�nition for the task which this protocol is claimed to carry out. The proofs for MAP1

and AKEP1 are given in this paper; the proofs for MAP2 and AKEP2 are omitted because they

are essentially identical.

1.4 Design for practice

Provably secure protocols are not usually e�cient. Ours are an exception to this rule. Every proto-

col presented in this paper is e�cient in terms of rounds, communication, and computation. This

e�ciency was designed into our protocols in part through the choice of the underlying primitive|

namely, a pseudorandom function.

In theory, pseudorandom functions and other important cryptographic primitives (one-way

functions, pseudorandom generators, digital signatures) are equivalent [26, 24, 18, 33], since the
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existence of any one of these implies the existence of the others.2 In practice, pseudorandom

functions (with the right domain and range) are a highly desirable starting point for e�cient

protocols in the symmetric setting. The reason is that beginning with primitives like DES and

MD5 one can construct e�cient pseudorandom functions with arbitrary domain and range lengths,

and these constructions are themselves provably secure given plausible assumptions about DES and

MD5. See Section 6 for discussion of these issues.

Our proofs are not so bad as to render the reductions meaningless for cryptographic practice. In

other words, if one had a practical method to defeat the entity authentication, this would translate

into a practical method to defeat the underlying pseudorandom function.

1.5 History and related work

Unsatisfactory protocols for entity authentication and key distribution have been leading researchers

steadily towards establishing �rm foundations. An important step in the process was that of Bird,

Gopal, Herzberg, Janson, Kutten, Molva and Yung [6]. They drew attention to this area by pointing

to new classes of attacks, called \interleaving attacks," which they used to break existing protocols,

and they suggested a protocol (2PP) defeated by none of the interleaving attacks they considered.

The recognition of interleaving attacks helped lead us to the formal model of Section 3, and our

MAP1 protocol is an extension of 2PP. However, while an analysis such as theirs is useful as a way

to spot errors in a protocol, resistance to interleaving attacks does not make a satisfactory notion

of security; in particular, it is easy to construct protocols which are insecure but defeated by no

attack from the enumeration. When our work was announced, the authors of [6] told us that they

understood this limitation and had themselves been planning to work on general de�nitions; they

also told us that the CBC assumption of their paper [6, De�nition 2.1] was intended for proving

security under a general de�nition.

Mentioned in the introduction of [6] is an idea of \matching histories." Di�e, van Oorschot

and Wiener [11] expand on this to introduce a notion of \matching protocol runs." They re�ne

this idea to a level of precision adequate to help them separate out what are and what are not

\meaningful" attacks on the protocols they consider. Although [11] stops short of providing any

formal de�nition or proof, the basic notion these authors describe is the same as ours and is the

basis of a de�nition of entity authentication. Thus there is a clear re�nement of de�nitional ideas

�rst from [6] to [11], and then from [11] to our work.

The failure of the informal approach to designing correct authentication protocols has led to

widespread recognition of the need for better foundations. By now the continued absence of a

formal de�nition is a recognized de�ciency. See, for example, [11] and [5, p. 59].

A di�erent line of work aimed at improving the design and analysis of entity authentication

protocols begins with the paper of Burrows, Abadi and Needham [8]. This \logic-based" approach

attempts to \reason" that an authentication protocol is correct as it evolves the set of \beliefs" of

its participants. This idea is useful and appealing, but it has a serious defect: a correctness proof

does not guarantee that the protocol is right, only that it lacks the 
aws in reasoning captured

by the underlying logic. Thus while a negative result implies that something is wrong, a positive

2 We remark that the existence of a secure mutual authentication protocol implies the existence of a one-way

function, as can be shown using techniques of [25]; thus mutual authentication also exists if and only if one-way

functions do.
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result gives no assurance that everything is all right.

The notion of a zero-knowledge \proof of knowledge" [22, 13, 35, 9, 14, 3] has underlied iden-

ti�cation protocols in the smart card model. But the de�nition of an interactive proof does not

attempt to model attacks in which responses of entities are played o� against one another, as

is required for the distributed setting. Furthermore, (unilateral) authentication is not \proving

knowledge" of a secret insofar as it is is fundamentally irrelevant that an agent A \knows" a in

the sense that it can be extracted by a simulator: all that is important is that the good party can

prove his identity and a bad party can't.

More closely related to the approach we adopt is the idea of a non-transferable proof, a notion

for (asymmetric, unilateral) authentication due to Feige, Fiat and Shamir [13]. Here an (honest)

claimant P interacts with a (cheating) veri�er ~V , and then a ( ~V -conspiring cheating) prover ~P

tries to convince an (honest) veri�er V that she ( ~P ) is really P . This appealing de�nition models

a world of smart-card claimants and untrusted veri�ers|but, again, not a distributed system of

always-running processes.

Entity authentication is not to be confused with message authentication or signing [23]; here

the goal is to authenticate a document rather than an entity, and the model is di�erent. We will

see, however, that message authentication is a useful tool for entity authentication.

Much discussed in the literature is the \ma�a fraud" (or \grandmaster chess problem"), in

which an adversary faithfully relays messages between communication partners; in some settings

(cf. [10]) this constitutes a damaging attack. Protection against such attacks is addressed in [12].

As we discussed, however, the faithful relaying of messages by an adversary does not, in our setting,

constitute an attack; indeed, this is the basis of our de�nition of mutual authentication.

1.6 Future directions

The communication model we have introduced in this paper is captures attacks that are realistic

threats in practice but not addressed by other models. It would make sense to return to known

primitives, such as zero-knowledge proofs, and investigate their security in the more stringent

setting we suggest.

2 Preliminaries

Notation. Let f0; 1g� denote the set of �nite binary strings, f0; 1g1 the set of in�nite ones,

and f0; 1g�L the set of binary strings of length at most L. The empty string is written �. When

a, b, c, : : : are strings used in some context, by a : b : c : � � � we denote an encoding of these strings

such that each constituent string is e�ciently recoverable given the encoding and the context of

the string's receipt. In our protocols, concatenation will usually be adequate for this purpose. A

function is e�ciently computable if it can be computed in time polynomial in its �rst argument. A

real-valued function �(k) is negligible if for every c > 0 there exists a kc > 0 such that �(k) < k�c

for all k > kc.

Protocols. The protocols we consider are two party ones, formally speci�ed by an e�ciently

computable function � on the following inputs:

1k | the \security parameter" | k 2 N.
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i | the \identity of the sender" | i 2 I � f0; 1gk.

j | the \identity of the (intended) partner" | j 2 I � f0; 1gk.

a | the \secret information of the sender" | a 2 f0; 1g�.

� | the \conversation so far" | � 2 f0; 1g�.

r | the \random coin 
ips of the sender" | r 2 f0; 1g1.

The value of �(1k; i; j; a; �; r) = (m; �; �) speci�es:

m | the \next message to send out" | m 2 f0; 1g� [ f�g.

� | the \decision" | � 2 fA;R; �g.

� | the \private output" | � 2 f0; 1g� [ f�g.

Explanation. I is a set of identities which de�nes the players who can participate in the protocol.

Although our protocols involve only two parties, the set of players I could be larger, to handle the

possibility (for example) of an arbitrary pool of players who share a secret key. Elements of I will

sometimes be denoted A or B (Alice and Bob), rather than i; j; we will switch back and forth

irrationally between these notations. We stress that A;B (and i; j) are variables ranging over I

(not �xed members of I), so A = B (or i = j) is quite possible. Note that the adversary is not a

player in our formalization.

The value a that a player sees is the private information provided to him. This string is

sometimes called the long-lived key (or LL-key) of a player. In the case of (pure) symmetric

authentication, all players i 2 I will get the same LL-key, and the adversary will be denied this

key. In general, a LL-key generator G associated to a protocol will determine who gets what initial

LL-key (see below).

The value \�" is supposed to suggest, for m, that the \the player sends no message." For �,

it means that \the player has not yet reached a decision." For �, it means \the player does not

currently have any private output." The values A and R, for �, are supposed to suggest \accept"

and \reject," respectively. We denote the t-th component of � (for t 2 f1; 2; 3g) by �t.

Acceptance usually does not occur until the end of the protocol, although rejection may occur at

any time. Some protocol problems, such as mutual authentication, do not make use of the private

output; these protocol are concerned only with acceptance or rejection. For others, including key

exchange protocols, the private output of a party will be what this party thinks is the key which

has been exchanged. It is convenient to assume that once a player has accepted or rejected, this

output cannot change.

To each protocol is associated its number of moves,R. In general this is a polynomially bounded,

polynomial time computable function of the security parameter; in all our protocols, however, it is

a constant.

The LL-Key Generator. Associated to a protocol is a long-lived key generator (LL-key genera-

tor) G(1k; �; rG). This is a polynomial time algorithm which takes as input a security parameter 1k,

the identity of a party � 2 I [ fEg, and an in�nite string rG 2 f0; 1g
1 (coin 
ips of the generator).

For all of the protocols of this paper, the associated LL-key generator will be a symmetric

one, where for each i; j 2 I we have that G(1k; i; rG) = G(1k; j; rG); while, on the other hand,

G(1k;E; rG) = �. The value of G(1k; i; rG) will just be a pre�x of rG (that is, a random string). The

length of this pre�x will vary according to the protocol we consider.
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The presence of the LL-key generator allows us to consider protocols which we could not consider

if we built a particular generator into our de�nition. For example, we can consider symmetric

protocols which require that there be public information known to all parties. In this manner, the

formalization of a protocol does not need to change depending on the particular setting. Although

we will not need this extra generality in this paper, it seems useful to present.

3 A Communication Model for Distributed Security

We will now formulate a model appropriate for de�ning authentication and key distribution goals

in the distributed environment. The situation we address is one where communication between

players is entirely controlled by the adversary. The adversary can deliver messages out of order and

to unintended recipients, and she can concoct messages of her own choosing. What is more, the

adversary can conduct as many sessions as she pleases amongst the players, and she can control,

for each, who is attempting to authenticate to whom.

Formally the adversary E is a probabilistic machine3 E(1k; aE; rE) equipped with an in�nite

collection of oracles �s
i;j , for i; j 2 I and s 2 N. Oracle �s

i;j models player i attempting to

authenticate player j in \session" s. Adversary E communicates with the oracles via queries of

the form (i; j; s; x) written on a special tape. The query is intended to mean that E is sending

message x to i, claiming it is from j in session s. The query will, in our model, be answered by

�s
i;j ; the manner in which this response is computed is given by the following \experiment."

Running The Protocol. Running a protocol � (with LL-key generator G) in the presence of

an adversary E, using security parameter k, means performing the following experiment:

(1) Choose a random string rG 2 f0; 1g
1 and set ai = G(1

k; i; rG), for i 2 I , and set aE =

(1k;E; rG).

(2) Choose a random string rE 2 f0; 1g
1 and, for each i; j 2 I , s 2 N, a random string rsi;j 2

f0; 1g1.

(3) Let �si;j = � for all i; j 2 I and u 2 N. (The variable �si;j will keep track of the conversation

that �s
i;j engages in.)

(4) Run adversary E on input (1k; aE; rE), answering oracle calls as follows. When E asks a query

(i; j; s; x), oracle �s
i;j computes (m; �; �) = �(1k; i; j; ai; �

s
i;j : x; r

s
i;j) and answers with (m; �).

Then �si;j gets replaced by �si;j : x.

We point out that in response to an oracle call, E learns not only the outgoing message but also

whether or not the oracle has accepted or rejected. (For convenience of discourse, we often omit

mention of the latter.) According to the above, E doesn't learn the oracle's private output. For

some problems (such as authenticated key exchange) we will need to give the adversary the power

to sometimes learn these private outputs. Such an extension is handled by specifying a new kind of

oracle query and then indicating how the experiment is extended with responses to the new class

of queries.

The Benign Adversary. It is useful for some of our de�nitions to consider a certain particularly

friendly kind of adversary. An adversary is called benign if it is deterministic and restricts its action

3 Adversaries can be uniform or non-uniform, and the results of this paper hold in both cases, with uniform

adversaries requiring a uniform complexity assumptions and non-uniform adversaries requiring non-uniform ones.
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to choosing a pair of oracles �s
i;j and �t

j;i and then faithfully conveying each 
ow from one oracle to

the other, with �s
i;j beginning �rst. In other words, the �rst query E makes is (i; j; s; �), generating

response �1; the second query E makes is (j; i; t; �1), generating response �1; and so forth. While

the choice of i; j; s; t is up to the adversary, this choice is the same in all executions with security

parameter k.

Time. In a particular execution of a protocol, the adversary's i-th query to an oracle is said to

occur at time � = �i 2 R. We intentionally do not specify f�ig, except to demand that �i < �j when

i < j. Conforming notions of time include \abstract time," where �i = i, and \Turing machine

time," where �i = the i-th step in E's computation, when parties are realized by interacting Turing

machines. Another conforming notion of time (but a harder one to formalize) is \real time," where

�i the exact time when the i-th query is made, when parties are realized by interacting computers.

A Single Model For Many Goals. We have not yet de�ned any particular goal; we have

only speci�ed the adversarial model in which these goals are formulated. Indeed, this same model

underlies a large collection of authentication and key-distribution goals. In the following, we de�ne

mutual authentication and authenticated key exchange, but we stress that these de�nitions can be

easily extended to ones for related problems, including unilateral and three-party authentication.

4 Entity Authentication

A central notion in formalizing entity authentication goals is that of a matching conversation.

4.1 Matching Conversations

We will de�ne mutual authentication (MA) by an experiment involving the running of adversary E

with security parameter k. When E terminates, each oracle �s
i;j has had a certain conversation

�si;j with E, and it has reached a certain decision � 2 fA, R, �g. Whether or not � is a secure MA

protocol is de�ned in terms of the distribution on these conversations and decisions. One way to

think of it is that each execution will be classi�ed as either \good" or \bad," depending on whether

or not the adversary managed to subvert this particular run. We now turn towards distinguishing

the good runs from the bad.

Definition. Fix an execution of an adversary E (that is, �x the coins of the LL-key generator, the

oracles, and the adversary). For any oracle �s
i;j we can capture its conversation (for this execution)

by a sequence

K = (�1; �1; �1); (�2; �2; �2); : : : ; (�m; �m; �m):

This sequence encodes that at time �1 oracle �
s
i;j was asked �1 and responded with �1; and then,

at some later time �2 > �1, the oracle was asked �2 and answered �2; and so forth, until, �nally,

at time �m it was asked �m and answered �m. Adversary E terminates without asking oracle �s
i;j

any more questions.

Suppose oracle �s
i;j has conversation pre�xed by (�1; �1; �1). Then if �1 = � we call �s

i;j an

initiator oracle; if �1 is any other string we call �s
i;j a responder oracle.

We now de�ne matching conversations. For simplicity we focus on the case where R is odd; the

case of even R is analogous and is left to the reader. Explanations follow the formal de�nition.
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Figure 1: Anatomy of a matching conversation for a 3-move protocol. The left-hand conversa-

tion matches the right-hand one. Omitting arrows associated to �3 (lower right), the right-hand

conversation matches the left-hand one.

De�nition 4.1 (matching conversations) Fix a number of moves R = 2�� 1 and an R-move

protocol �. Run � in the presence of an adversary E and consider two oracles, �s
A;B and �t

B;A,

that engage in conversations K and K0, respectively.

(1) We say that K0 is a matching conversation to K if there exist �0 < �1 < : : : < �R and

�1; �1; : : : ; ��; �� such that K is pre�xed by

(�0; �; �1); (�2; �1; �2); (�4; �2; �3); : : : ; (�2��4; ���2; ���1); (�2��2; ���1; ��)

and K0 is pre�xed by

(�1; �1; �1); (�3; �2; �2); (�5; �3; �3); : : : ; (�2��3; ���1; ���1) :

(2) We say that K is a matching conversation to K0 if there exist �0 < �1 < : : : < �R and

�1; �1; : : : ; ��; �� such that K0 is pre�xed by

(�1; �1; �1); (�3; �2; �2); (�5; �3; �3); : : : ; (�2��3; ���1; ���1); (�2��1; ��; �) :

and K is pre�xed by

(�0; �; �1); (�2; �1; �2); (�4; �2; �3); : : : ; (�2��4; ���2; ���2); (�2��2; ���1; ��)

Explanation. Case (1) de�nes when the conversation of a responder oracle matches the conver-

sation of an initiator oracle. Case (2) de�nes when the conversation of an initiator oracle matches

the conversation of a responder oracle.

Let us paraphrase our de�nition. Consider an execution in which �s
A;B is an initiator oracle

and �t
B;A is a responder oracle. If every message that �s

A;B sends out, except possibly the last, is

subsequently delivered to �t
B;A, with the response to this message being returned to �s

A;B as its

11



own next message, then we say that the conversation of �t
B;A matches that of �s

A;B. Similarly, if

every message that �t
B;A receives was previously generated by �s

A;B , and each message that �t
B;A

sends out is subsequently delivered to �s
A;B , with the response that this message generates being

returned to �t
B;A as its own next message, then we say that the conversation of �s

A;B matches the

one of �t
B;A. Note that this second condition is easily seen to imply the �rst one.

We comment that the party who sends the last 
ow (�s
A;B, above) can't \know" whether or not

its last message was received by its partner, so when this oracle accepts accepts, it cannot \know"

(assuming this last message to be relevant) whether or not its partner will accept. This asymmetry

is an inherent aspect of authentication protocols with a �xed number of moves, giving a certain

information bene�t to the party who refrains from putting in the last word.

We will say that oracle �t
j;i has a matching conversation with oracle �s

i;j if the �rst has con-

versation K0, the second has conversation K, and K0 matches K. Either party, here, may be the

initiator.

4.2 Mutual Authentication

We now de�ne mutual authentication, provide a simple protocol for it, and, assuming the existence

of pseudo-random function, prove this protocol meets our de�nition.

Definition. We require that any mutual authentication protocol have R � 3 rounds. We implicitly

make this assumption in our de�nition and throughout the remainder of this paper.

In a mutual authentication protocol, when a party accepts with a certain conversation K, that

party believes that there is some other party who engaged in a matching conversation K0. Just

saying this wouldn't be enough: we also need that parties accept in the absence of an adversary.

Let No-MatchingE(k) be the event that there exist i; j; s such that �s
i;j accepted and there is no

oracle �t
j;i which engaged in a matching conversation. The de�nition of a mutual authentication is

as follows:

De�nition 4.2 (secure mutual authentication) We say that � is a secure mutual authentica-

tion protocol if for any polynomial time adversary E,

(1) (Matching conversations ) acceptance.) If oracles �s
A;B and �t

B;A have matching conversa-

tions, then both oracles accept.

(2) (Acceptance ) matching conversations.) The probability of No-MatchingE(k) is negligible.

Restating this may make it clearer. The �rst condition says that if each party's messages are

faithfully relayed to one another, than the parties accept the authentication of one another. The

second condition calls an execution good if for each accepting conversation K by an oracle �s
i;j

there exists a matching conversation K0 by some oracle �t
j;i, and bad otherwise. We require that

the probability of a bad execution be negligible.

Uniqueness Of Matching Partner. One consequence of the de�nition worth stating is that

an oracle's matching partner is unique. More formally, let Multiple-MatchE(k) be the event that

some �s
i;j accepts, and there are at least two distinct oracles �t

j;i and �t0

j;i which have had matching

conversations with �s
i;j . We can show the following.

12



Aa RA
- Ba

[B :A :RA : RB]a
�

[A :RB]a
-

Figure 2: Protocol MAP1: a mutual authentication of any two principals, A and B, among a set

of principals I who share a key a.

Proposition 4.3 Suppose � is a secure MA protocol. Let E be any polynomial time adversary.

Then the probability of Multiple-MatchE(k) is negligible.

The proof is given in Appendix C. We comment that in all of our protocols the probability of

Multiple-MatchE(k) is not just negligible but exponentially small, being at most TE(k)
2 � 2�k where

TE(k) is the (polynomial) number of oracle calls of the adversary.

Authenticating Messages. Message authentication via pseudo-random functions [18, 19] is a

tool in our entity authentication protocols. Let f be a pseudorandom function family [18]. Denote

by fa: f0; 1g
�L(k) ! f0; 1gl(k) the function speci�ed by key a. In general, the length of the key,

the length L of the input to fa, and the length l of the output, are all functions of the security

parameter. Here we assume the key length is just k, and, for our �rst protocol (MAP1) it su�ces

to assume L(k) = 4k and l(k) = k.

For any string x 2 f0; 1g�L(k) de�ne [x]a = (x; fa(x)); this will serve as an authentication of

message x [18, 19]. For any i 2 I , [i : x]a will serve as i's authentication of message x.

A Protocol For Mutual Authentication. Our �rst protocol (called \MAP1," for \mutual

authentication protocol one") is represented by Figure 2. Alice (A) begins by sending Bob (B) a

random challenge RA of length k. Bob responds by making up a random challenge RB of length k

and returning [B :A :RA : RB]a. Alice checks that this message is of the right form and is correctly

tagged as coming from B. If it is, Alice sends Bob the message [A :RB]a and accepts. Bob checks

that this message is of the right form and is correctly tagged as coming from A, and, if it is, he

accepts. We stress that checking the message is of the right form, for A in the second 
ow, includes

checking that the nonce present in the message is indeed the same nonce she sent in the �rst 
ow;

similarly for B with respect to checking the third 
ow. We comment that A = B is permitted;

these are any two identities in the set I .

Theorem 4.4 (MAP1 is a secure MA) Suppose f is a pseudorandom function family. Then

protocol MAP1 described above and based on f is a secure mutual authentication.

The proof of Theorem 4.4 appears in Appendix A.

Unpredictability Of Challenges. We comment that MAP1 (and every other protocol of

this paper) does not meet its de�nition if its random challenges (RA and RB) are taken to be

13



Aa RA :Text1
- Ba

[B :A :RA : RB :Text1 :Text2]a
�

[A :RB :Text3]a
-

Figure 3: Protocol MAP2: Flows for an authenticated exchange of three text strings.

arbitrary nonces. (A nonce is a value used at most once.) The challenges must be unpredictable;

a predictable nonce (like a sequence number) won't work.

Out-Of-Band Data. Notice that A is not present in the �rst 
ow, even though, \in practice," B

may need this information to select the \right" shared key a. Formally, this identi�er is irrelevant;

in practice, it might be communicated \out of band," or it might be authenticated along with the

other exchanged messages, as we now describe.

Authenticated Exchange Of Text. For most applications, it is useful to combine a mutual

authentication with an exchange of authenticated data, so that an accepting party accepts not only

the identity of a partner, but also has con�dence that data associated to protocol 
ows originates

with this partner. A protocol to accomplish this, derived from MAP1, is shown in Figure 3. Here

the Texti strings are authenticated along with the rest of the exchanged messages. As illustrated

in the next section, one use of these strings is to carry an encryption of a fresh session key, thereby

accomplishing an authenticated key exchange.

We will not, in this paper, give any formal de�nition of the authenticated exchange of text

goal. We give the MAP2 only to serve as intuition for the derivation of the AKEP1. However the

de�nitions of authenticated key exchange and formal proof of correctness of AKEP1 that we will

provide later will be independent of discussions of authenticated exchange of text.

Security Of 2PP. Combining ideas from our proof of Theorem 4.4 with a lemma from [2], we

can show that a special case of the protocol 2PP of [6] meets our de�nition of a secure mutual

authentication. Speci�cally, assume that the \encryption" function E being used in 2PP is a

PRF; assume nonces are instantiated with random values; and assume jI j = 2 and authenticating

parties are guaranteed to have distinct identities. The CBC Lemma of [2] (stated here informally

as Lemma D.1) says that the function being used in their protocol, namely the CBC of E, will also

be a PRF. Given this, one can trace through our proof as given in Appendix A and check that it

extends.

Discussion. Our de�nition is very strong|perhaps the strongest possible natural de�nition. In

asking that 
ows match exactly it may be criticized as too strong; as pointed out by [11], certain

parts of protocol 
ows might be \irrelevant" for the authentication, and perhaps one ought to allow

them to be ignored in matching. Such extensions seem valuable, especially for the asymmetric case.

The case where all protocol 
ows (except authenticated text strings, if present) are ignored may

be particularly interesting.
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5 Authenticated Key Exchange

We specify a formal de�nition for authenticated key exchange (AKE). As mentioned in the in-

troduction, mutual authentication protocols can usually be extended to distribute keys. We will

appropriately extend MAP1 to AKEP1 and prove that it meets our de�nition. We will also specify

AKEP2, the \implicit" key distribution protocol associated to MAP1; this protocol manages to

distribute a key with no added communication overhead.

Session Keys. We wish to say what it means for a MA protocol � to be a secure AKE. Fix

S = fSkgk2N with each Sk a distribution over f0; 1g�(k), for some polynomial �(k). The intent of

an AKE will be both to authenticate entities and to distribute a \session key" sampled from Sk.

When a player accepts, his private output will be interpreted as the session key which he has

computed. Formally, the session key � will be de�ned by �3. For simplicity, we assume that an

accepting player always has a string-valued private output of the right length (that is, if �2 = A

then �3 2 f0; 1g
�(k)), while a non-accepting player has a session key of � (that is, if �2 2 fR; �g

then �3 = �).

Session Key Freshness. An important property that we want of a protocol that distributes

session keys is that the compromise of one of these keys should have minimal consequences overall.

For example, its revelation should not allow one to subvert subsequent authentication, nor should

it leak information about other (as yet uncompromised) session keys. To capture this requirement,

we extend the interaction of the adversary with its oracles by adding a new type of query, as follows:

we say that the adversary can learn a session key �si;j of an oracle �s
i;j by issuing to the oracle a

distinguished reveal query, which takes the form (i; j; s; reveal). The answer returned by the oracle

is �si;j .

To quantify the power of an adversary who can perform this new type of query, we require

some additional de�nitions. Initially, each oracle �s
i;j is declared unopened, and so it remains

until the adversary generates a reveal query (i; j; s; reveal). At this point, the oracle is declared

opened. We say that an oracle �s
i;j is fresh if the following three conditions hold: First, �s

i;j has

accepted. Second, �s
i;j is unopened. Third, there is no opened oracle �t

j;i which engaged in a

matching conversation with �s
i;j . When oracle �s

i;j is fresh, we will also say that \the oracle holds

a fresh session key." Intuitively, an oracle holds a fresh session key if that key is unavailable to the

adversary by trivial means.

Protecting Fresh Session Keys. We want that the adversary should be unable to understand

anything interesting about a fresh session key. This can be formalized along the lines of security of

probabilistic encryption; the particular formalization we will adapt is that of (polynomial) indistin-

guishability of encryptions [21, 16, 17]. We demand that at the end of a secure AKE the adversary

should be unable to distinguish a fresh session key � from a random element of Sk. We proceed as

follows.

After the adversary has asked all the (i; j; s; x) and (i; j; s; reveal) queries that she wishes to

ask, the adversary asks of a fresh oracle �s
i;j a single query (i; j; s; test). The query is answered

by 
ipping a fair coin b  f0; 1g and returning �si;j if b = 0, or else a random sample from Sk if

b = 1. The adversary's job is to guess b. To this end, she outputs a bit Guess, and then terminates.

Let Good-GuessE(k) be the event that Guess = b, when the protocol is executed with security
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Aa1;a2 RA
- Ba1;a2

[B :A :RA : RB : f�ga2]a1
�

[A :RB]a1
-

Figure 4: Protocol AKEP1: The value � is the session key distributed.

parameter k; in other words, this is the probability the adversary has correctly identi�ed whether

she was given the real session key or just a sample from Sk. Let

advantageE(k) = max
n
0; Pr

h
Good-GuessE(k)

i
� 1

2

o
:

Secure AKE. We are now ready to give the main de�nition of this section. We refer the reader

to Section 3 for the de�nition of a benign adversary.

De�nition 5.1 (Authenticated Key Exchange (AKE)) Protocol � is a secure AKE over S =

fSkgk2N if � is a secure mutual authentication protocol, and, in addition, the following are true:

(1) (Benign adversary) keys according to Sk) Let B be any benign adversary and let �s
i;j and �t

j;i

be its chosen oracles in the experiment with security parameter k. Then both oracles always

accept, �si;j = �tj;i, and moreover this random variable is distributed according to Sk.

(2) (Session key is protected) Let E be any polynomial time adversary. Then advantageE(k) is

negligible.

The �rst condition says that if 
ows are honestly conveyed then a session key is agreed upon, and

this key is properly distributed. The second condition says that the adversary can't tell this session

key from a random string of the same distribution.

Comments. Since the protocol is assumed to be a secure mutual authentication, we know that if

oracles �s
i;j and �t

j;i have matching conversations then they both accept. From the �rst condition

it follows that they will also have the same session key.

It is now easier to see why it is only fair to talk about the adversary guessing session key /

random key for an oracle hiding a fresh session key. If the oracle pointed to by E is not fresh then

E already knows the key: If the oracle has not accepted then the key is � (and E sees whether

or not an oracle has accepted); if the oracle has been opened, then the adversary was provided

the session key; and if a matching partner has had its oracle opened, then once again E knows

the session key, as E can tell that this oracle engaged in a matching conversation. Of course our

assumption that E always points to a fresh oracle is just a convenient simpli�cation, in the sense

that we cannot stop an arbitrary adversary from pointing to an unfresh oracle (and there may well

be no fresh oracle to point to at all). But this is clearly not a situation which there is any need to

address.
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Protocol. Let S = fSkg be a family of samplable distributions on f0; 1g�(k). A protocol for

AKE over distribution S is derived from MAP2 by using the second text string to communicate an

encrypted key, as follows.

The parties share a 2k bit LL-key which we denote a1; a2. The �rst part, a1, is taken as the

key to the pseudo-random function family f , yielding a PRF fa1 : f0; 1g
�L(k)! f0; 1gk to be used

for message authentication; this time, L(k) = 5k + �(k) will su�ce. The second part, a2, is used

as a key to another pseudo-random family f 0 with the property that f 0a2 : f0; 1g
k ! f0; 1g�(k). A

probabilistic encryption of string � 2 f0; 1g�(k) is de�ned by f�ga2
def
= (r; f 0a2(r)��), with r selected

at random [18]. Party B chooses the session key � from Sk and sets Text2 to be f�ga2. The strings

Text1 and Text3 of MAP2 are set to �. This protocol, which we call AKEP1, is shown in Figure 4.

It is important that a2 (the key used for encryption) be distinct from a1 (the shared key used

for the message authentication). Formally, the LL-key generator G provides the parties i 2 I with

a 2k-bit shared key. The two keys need not be independent, however; the generator could set

ai = fa(i) (i = 1; 2) where a is a random k bit key and fa is a pseudo-random function.

Theorem 5.2 Let S = fSkg be samplable, and suppose f; f 0 are pseudo-random function families

with the parameters speci�ed above. Then the protocol AKEP1 based on f; f 0 is a secure AKE

over S.

The proof of this theorem is given in Appendix B.

Implicit Key Distribution. A more e�cient (in terms of communication complexity) AKE

protocol may be devised by using what we call an \implicit" key distribution. In this case, the


ows between A and B are the same as in MAP1, and one (or more) of the parameters already

present in the 
ows of MAP1 (sayRB) is used to de�ne the session key. Speci�cally, let S = fSkg be

a family of distributions given by Sk = g(Uk), for some deterministic, polynomial-time computable

function g, where Uk is the uniform distribution on k-bit strings; for example Sk = Uk and g the

identity, the most useful choice in practice. Again the parties share a 2k bit LL-key a1; a2, with a1
being used as the key in MAP1 (so L(k) = 4k). Let f 0 be a pseudorandom permutation family [28];

f 0a2 speci�es a permutation on f0; 1gk. De�ne the protocol AKEP2 by having its 
ows be identical

to MAP1, with a1 being used for message authentication. Each accepting party outputs session

key � = g(f 0a2(RB)). This protocol, which we call AKEP2, is shown in Figure 5. Modifying the

proof of Theorem 5.2 we can show the following:

Theorem 5.3 Let S = fSkg be given by Sk = g(Uk), for some polynomial time g. Suppose f; f 0 are

a pseudo-random function family and a pseudo-random permutation family, with the parameters

speci�ed above. Then the protocol AKEP2 based on f; f 0 is a secure AKE over S.

The assumption that f 0 is a pseudo-random permutation can be relaxed to f 0 being a pseudo-random

function at the cost of distribution on session keys being Sk = g(Vk), where Vk is pseudo-randomly

distributed.

Discussion. A potential concern about the de�nition is whether or not hiding information about

individual session keys is good enough. For example, is it possible that an adversary for a secure

AKE might be able to point to a pair of fresh oracles, holding keys � and �, and then be able to
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Aa1;a2 RA
- Ba1;a2

[B :A :RA : RB]a1
�

[A :RB]a1
-

� = g(f 0a2(RB)) � = g(f 0a2(RB))

Figure 5: Protocol AKEP2: The Implicit Key Exchange Protocol. The value � is the session key

\implicitly" distributed.

distinguish (�; �) from a pair of random keys (s1; s2) from Sk? We can show (proof omitted) that

this cannot happen under our de�nition of a secure AKE.

The formalization of the adversary's being unable to learn anything about a fresh session key

could also have been made by adapting the notion of \semantic security" of encryptions [21, 16, 17]

to our setting. Roughly, we would say the following. Let E be any polynomial time adversary

and let Qk
� be any collection of functions indexed by the security parameter k and possible views �

of the adversary. Then there exists an adversary E0 such that the following is true. If E could

correctly predict Qk
� on a fresh session key with probability p(k) then E0 could predict Qk

� on a

random, hidden sample of Sk with probability negligibly di�erent from p(k). Properly formalized,

this can be shown to be equivalent to the second condition in De�nition 5.1.

Our de�nition has been designed to ensure the following: after the key distribution protocol,

it should be possible to use the session key for any purpose for which an out-of band distributed

key could have been used. That is, the session key distributed by an AKE protocol may be used

as safely as one handed privately to each party by a trusted third party.

One consequence of the strength of our de�nition is to exclude some protocols which seem

to have traditionally been considered \secure." For example, let AKEP10 work just like AKEP1

except that, in the third move, the message authentication is computed under the newly distributed

session key �, instead of under the long-lived key a1. One can check that this protocol is not a

secure AKE under our de�nition. To see, intuitively, that our de�nition is right to exclude it, note

that it is possible to construct a protocol that is secure if � had been distributed out-of-band but

not if � is distributed by AKEP10.

Nonetheless weaker notions for protecting the security of a distributed key may be desirable

in some settings. For example, in some situations the intended usage of the session key is speci�c

and known, and a de�nition could be designed which ensured that the distributed session key was

secure enough to su�ce for the particular intended application (although it may not su�ce for

other applications). We believe such investigations would be useful and constitute interesting open

questions.
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6 From Theory to Practice

The provably secure protocols of the previous sections lead to e�cient and secure-in-practice proto-

cols when the pseudorandom functions in terms of which these protocols are described are correctly

and e�ciently instantiated. The purpose of this section is to illustrate some options for doing this.

We then move on to discuss some further implementation speci�cs.

6.1 Constructions of Practical Pseudo-Random Functions

We will suggest constructions of PRFs suitable for our purposes based on DES and secure hash

functions such as MD5. Let's begin by discussing the primitives.

Primitives. The algorithm of the DES speci�es for each 64 bit key a a permutation DESa
from f0; 1g64 to f0; 1g64. The viewpoint adopted here |suggested by Luby and Racko� [28, 29]|

is to regard DES as a pseudo-random permutation, with respect to practical computation.

The MD5 function [32] maps an arbitrary string x into a 128-bit string MD5(x). It is intended

that this function be a collision-free hash function, with respect to practical computation.

The Problem And Our Design Philosophy. Cryptographic practice provides good PRFs on

particular input lengths l (for example, DES for l = 64). In contrast, our protocols need PRFs for

arbitrary input lengths. In devising such PRFs, we prefer not to rely purely on heuristics. In most

cases we will rely on provably correct constructions of arbitrary length PRFs based on �xed length

PRFs and collision free hash functions, individually or in combination; the lemmas underlying our

constructions are summarized in Appendix D. The exception is the third construction given below;

we'll discuss it when we get there.

Notation. Let ga denote a PRF of l bits to l bits. Suppose y has length a multiple of l bits,

and write it as a sequence of l bit blocks, y = y1 : : :yn. The cipher block chaining (CBC) operator

de�nes

CBCg
a(y1 : : : yn) =

(
ga(y1) if n = 1

ga(CBC
g
a(y1 : : : yn�1)�yn) otherwise

Let H denote a collision free hash function of f0; 1g� to f0; 1g2l. Let H1(x) and H2(x) denote the

�rst l bits of H(x) and the last l bits of H(x), respectively. Finally hxil will denote some standard

padding of x to string of length a multiple of l bits; for example, always add a 1 and then add

enough zeroes to get to a length which is a multiple of l.

Constructions. We suggest three constructions of a PRF fa mapping long inputs to short

outputs. For each construction we discuss its security and e�ciency. Here l = 64, H = MD5,

g = DES. The key a has length 64 bits.

(1) The CBC PRF. Let fa(x) be the �rst l=2 bits of CBC
g
a(hxil : jhxilj), where jyj is the length of

y encoded as an l-bit string. This construction is justi�ed by Lemma D.1.4

4 Lemma D.1 does not require us to drop the last l=2 bits of the output. We drop them for two reasons. The �rst

is e�ciency. The second is speci�c to DES and will not be discussed here.
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(2) The CBC/Hash PRF. Let fa(x) be the �rst l=2 bits of ga(ga(H1(x))�H2(x)) = CBCg
a(H(x)).

This construction is justi�ed by Corollary D.3. In software this is signi�cantly more e�cient

than the CBC construction, requiring one hash and two DES operations.

(3) The Pure Hash PRF. Let fa(x) be the �rst l=2 bits ofH(x : a). This construction was suggested

in [36] as a message authentication code; we suggest the stronger assumption that it is a PRF.

However no standard assumption about H of which we are aware can be used to justify the

the security of this construction, and it should be viewed more as a heuristic than the two

constructions suggested above.5 In software, however, it is the most e�cient of the three

constructions.

All the above constructions are practical. However, since the security of the last construction is not

as well justi�ed as the �rst two, our overall preference is to use the CBC-Hash PRF for software

applications and the CBC PRF for hardware applications.

Similar constructions can be given using other primitives; for example the SHA instead of MD5,

etc.

We stress the importance, in our security considerations, of the CBC and Hash Lemmas of

Appendix D; the lack of such lemmas has lead in the past to more complex assumptions about the

security of CBC and other constructions (e.g., [6, De�nition 2.1]).

6.2 E�ciency and Implementation Issues in our Protocols

We suggest that the random challenges be 64 bits. We suggest each identity be encoded with 64

bits. (Remember that identities only need be unique among the space of parties that share the

secret key.) Even for the key exchange protocols, the parties only need share a 64-bit LL-key a;

two 64-bit keys a1 and a2 can be derived from a by setting a1 = ga(1) and a2 = ga(2), for a PRF g.

This method to create multiple e�ective keys from a single LL-key preserves all claims of provable

security. The PRFs used for message authentication and message encryption can be constructed

using any of the methods of the last subsection.

In implementation, redundant parts of the 
ows may be dropped. For example, the second 
ow

of MAP1 speci�ed in Figure 2 is [A :B :RA : RB]a = (A :B :RA : RB; fa(A :B :RA : RB)). But of

course it su�ces to send (RB; fa(A :B :RA : RB)) because A already knows the quantities A;B;RA.

Such optimizations may be made in other protocol 
ows. Such optimizations do not damage claims

of provable security.

When jI j = 2 and authenticating parties are guaranteed to have distinct identities, the identity A

in the second 
ow of MAP1 and derivative protocols may be dropped. This optimization does not

damage claims of provable security.

Protocol AKEP2 provides a particularly e�cient key exchange. The computational complexity

is minimally more than that of MAP1, and the communication complexity is identical. A useful

instantiation in this regard is to use f 0 = DES, exploiting the fact that DES is a permutation to

get a uniformly distributed session key.

5 See [4] for another viewpoint.
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f0; 1gL(k).

Most of this work was done while the �rst author was at the IBM T.J. Watson Research Center

and second author was at IBM Austin.
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A Proof of Theorem 4.4

We prove that MAP1 is a secure mutual authentication protocol under the assumption that f is a

PRF. The �rst condition of De�nition 4.2 is easily veri�ed; it merely says that when the messages

between A and B are faithfully relayed to one another, each party accepts. We now prove that the

second condition holds.

Fix an adversary E. Recall that the domain of our PRF is f0; 1g�L(k) and its range is f0; 1gk. In

the following, � will denote MAP1. In what follows we will be considering a variety of experiments

involving the running of E with its oracles. In order to avoid confusion, we will refer to the

experiment of running E with MAP1 (the experiment about which we wish to prove our theorem)

as the \real" experiment.

MAP1 With A g Oracle. Let g be a function of f0; 1g�L(k) to f0; 1gk. Let [x]g = (x; g(x)).

MAP1g denotes the protocol in which, instead of a shared secret a, the parties share an oracle for

g, and they compute [x]g wherever MAP1 asks them to compute [x]a. We de�ne the experiment

of running E for MAP1g to be the same as the experiment of running E for MAP1 except for

the following di�erence. There is no shared secret a; instead, the oracles �s
i;j all have access to a

common g oracle and compute their 
ows according to MAP1g. Note E is not given access to the

g oracle. When g = fa for randomly chosen a, this experiment coincides with the real experiment.

Of interest in our proof is the case of g being a truly random function; we call this the random

MAP1 experiment.

The Random MAP1 Experiment. In the random MAP1 experiment we select g as a random

function of f0; 1g�L(k) to f0; 1gk, and then run the experiment of running E with MAP1g. Recall

that No-MatchingE(k) denotes the event that there exists an oracle �s
i;j who accepts although

no oracle �t
j;i engaged in a matching conversation; we will refer to it also as the event that the

adversary is successful. Recall that an initiator oracle is one who sends a �rst 
ow (that is, it plays

the role of A in Figure 2) while a responder oracle is one who plays the opposite role (namely that

of B in the same Figure). Let TE(k) denote a polynomial bound on the number of oracle calls

made by E, and assume wlog that this is at least two.

Lemma A.1 The probability that the adversary E is successful in the random MAP1 experiment

is at most TE(k)
2 � 2�k.

Proof: We split the examination of acceptance into two cases.

Claim 1: Fix A;B; s. The probability that �s
A;B accepts without a matching conversation, given

that it is an initiator oracle, is at most TE(k) � 2
�k .

Proof. Suppose at time �0 oracle �
s
A;B sent the 
ow RA. Let

R(�0) = fR
0
A 2 f0; 1g

k : 9�; t such that �t
B;A was given R0

A as �rst 
ow at a time � < �0. g :

If �s
A;B is to accept, then at some time �2 > �0 it must receive [B :A :RA : RB]g for some RB. If

no oracle previously output this 
ow, the probability that the adversary can compute it correctly

is at most 2�k. So consider the case where some oracle did output this 
ow. The form of the 
ow

implies that the oracle which output it must be a �t
B;A oracle which received RA as its own �rst


ow. The probability of this event happening before time �0 is bounded by the probability that
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RA 2 R(�0), and this probability is at most [TE(k) � 1] � 2�k. If it happened after time �0 then

we would have a matching conversation. We conclude that the probability that �s
A;B accepts but

there is no matching conversation is at most TE(k) � 2
�k . 2

Claim 2: Fix B;A; t. The probability that �t
B;A accepts without a matching conversation, given

that it is a responder oracle, is at most TE(k) � 2
�k.

Proof. Suppose at time �1 oracle �
t
B;A received the 
ow RA and responded with [B :A :RA : RB]g.

If �t
B;A is to accept, then at some time �3 > �1 it must receive [A :RB]g. If no oracle previously

output this 
ow, the probability that the adversary can compute it correctly is at most 2�k. We

must now consider the case where some oracle did output this 
ow. The form of the 
ow implies

that the oracle which output it must be a �s
A;C oracle.

The interaction of a �s
A;C oracle with E has in general the form

(�0; �; R
0
A); (�2; [C :A :R0

A : R
0
B]g; [A :R0

B]g)

for some �0 < �2. For any such interaction, except with probability 2�k , there is a �u
C;A oracle

which output [C :A :R0
A : R

0
B]g at some time. If (u; C) 6= (t; B) then the probability that R0

B = RB

is at most [TE(k)�2]�2
�k, and thus the probability that the 
ow [A :R0

B]g leads �
t
B;A to accept is at

most [TE(k)�2] �2
�k. On the other hand suppose (u; C) = (t; B). It follows that �0 < �1 < �2 < �3,

R0
A = RA and R0

B = RB; that is, the conversations match. We conclude that the probability that

�t
B;A accepts but there is no matching conversation is at most TE(k) � 2

�k. 2

The probability that there exists an oracle which accepts without a matching conversation is at

most TE(k) times the bound obtained in the claims, which is TE(k)
2 � 2�k as desired.

The Proof Concluded. To conclude the proof, we argue by contradiction. Suppose that the

probability that adversary E is successful in the real experiment is not negligible. Then there

is an in�nite set K and a constant c such that for all k 2 K the probability of No-Matching(k)

in the real experiment is at least k�c. We will now construct a polynomial time test T which

distinguishes random functions from pseudo-random functions. T receives as an oracle a function

g: f0; 1g�L(k) ! f0; 1gk which is chosen according to the following experiment: 
ip a coin C, and

if C = 1 let g be a random function, else pick a at random and let g = fa. T 's job is to predict

C with some advantage. T 's strategy is to run the experiment of running E for MAP1g. In this

experiment, T itself simulates all oracles �s
i;j , answering E by running the protocol MAP1g in the

manner of these oracles. If E is successful (note that T can tell whether or not E succeeded) then

T predicts 0 (g is pseudo-random) else T predicts 1 (g is random). Lemma A.1 and our assumption

about the success of E when g = fa (the real experiment) imply that T has advantage k�d, for

some d > 0 and all k 2 K, contradicting the pseudo-randomness of f .

B Proof of Theorem 5.2

We prove that AKEP1 is a secure authenticated key exchange protocol under the assumption that

f; f 0 are PRFs.

The proof that AKEP1 is a secure mutual authentication protocol is analogous to the proof of

Theorem 4.4 given in Appendix A and is omitted. Condition (1) of De�nition 5.1 is easily veri�ed:
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the session key � is chosen in AKEP1 according to Sk and so in the presence of a benign adversary

the oracles certainly accept, and with this same key. We concentrate on the proof that condition (2)

of De�nition 5.1 is satis�ed.

Fix an adversary E. Recall that we are using two PRFs: fa1 : f0; 1g
�L(k) ! f0; 1gk and

f 0a2 : f0; 1g
k ! f0; 1g�(k). The �rst is for the authentication and the second is to encrypt the

session key. In what follows � will denote AKEP1, and the \real" experiment will denote the

experiment of running E for AKEP1.

AKEP1 With A g0 Oracle. Let g0 be a function mapping : f0; 1gk to f0; 1g�(k). Let Eg0(�; r) =

(r; g0(r)��). Let f�gg0 be the random variable resulting from picking r 2 f0; 1gk at random and

outputting Eg0(�; r). AKEP1
g0 denotes the protocol in which the parties share a secret a1 and an

oracle for g0. Whenever AKEP1 asks them to compute f�ga2 they compute f�gg0 . The experiment

of running E for AKEP1g
0

is the same as the experiment of running E for AKEP1 except that the

second part of the shared key, namely a2, is absent, and instead the oracles �s
i;j all have access to

a common g0 oracle and compute their 
ows according to AKEP1g
0

. E does not have access to g0.

When g0 = f 0a2 for randomly chosen a2, this experiment coincides with the real experiment.

The Random AKEP1 Experiment. In the random AKEP1 experiment we select g0 as a random

function of f0; 1gk to f0; 1g�(k), and then run the experiment of running E with AKEP1g
0

. As

before, let TE(k) denote a polynomial bound on the number of oracle calls made by E.

Lemma B.1 In the random AKEP1 experiment, advantageE(k) is negligible.

Proof: Let c > 0 be a constant. We will show that advantageE(k) � k�c for all su�ciently large k.

A view of E consists of all the oracle queries made by E, the responses to them, and E's own

coin tosses; that is precisely what E sees. We denote by view(k) the random variable whose value

is the view of the interaction of E with its oracles. A particular view will usually be denoted �.

We will be interested in two properties � may possess. If for any accepting oracle there exists an

oracle with a matching conversation then we say � is authentic. If (r1; y1); : : : ; (rn; yn) denote the

encryptions output by oracles in the transcript and r1; : : : ; rn are distinct then we say � is non-

colliding . Recall that b denotes the bit 
ipped in our answer to a test query in the de�nition of

measuring advantageE(k).

Now �x a particular authentic and non-colliding view �. Suppose E is pointing to (fresh) oracle

�s
A;B . Since �s

A;B has accepted and � is authentic, there is an oracle �t
B;A which engaged in a

matching conversation. This means the encryption for this conversation was selected by one of

the oracles (speci�cally, the one who played the role of the responder). The oracle's being fresh

means that any matching partner is unopened. Since � is non-colliding it follows that conditioned

on view(k) = �, the key �sA;B is uniformly distributed over Sk, and E's advantage in predicting the

bit b is 0.

Let Nk denote the set of non-authentic views and Ck the set of colliding views. We claim that

AKEP1g
0

, with g0 chosen at random, still remains a secure mutual authentication; the proof of this

is analogous to the proof of Theorem 4.4 and hence is omitted. Based on this claim, we know that

the probability of Nk is at most k�c=2 for large enough k. On the other hand the probability of Ck

is at most TE(k)
2 � 2�k which is at most k�c=2 for large enough k. Combined with the above we

conclude that E's advantage is at most k�c.
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The Proof Concluded. We argue by contradiction. Suppose that the probability that

advantageE(k) is not negligible in the real experiment. Then there is an in�nite set K and a

constant c such that for all k 2 K the advantage of E in the real experiment is at least k�c. We

will now construct a polynomial time test T which distinguishes random functions from pseudo-

random functions. T receives as an oracle a function g0: f0; 1gk ! f0; 1g�(k) which is chosen

according to the following experiment: 
ip a coin C, and if C = 1 let g0 be a random function,

else pick a2 at random and let g0 = f 0a2 . T 's job is to predict C with some advantage. T 's strategy

is to run the experiment of running E for AKEP1g
0

. In this experiment, T itself simulates all

oracles �s
i;j , answering E by running the protocol AKEP1g

0

in the manner of these oracles. In this

process T will itself select all the session keys for the oracles. T can answer the reveal queries for

oracles of which it selected they key; the probability that T must answer a reveal query for an

oracle whose key T didn't select is negligible. Finally E outputs (i; j; s; test). If T had not herself

chosen �si;j in the execution then T outputs 0; this happens with negligible probability. Else T now


ips a fair coin b. If b = 0 she returns �si;j , else she returns a random sample from Sk. Now E

outputs b0 = GuessE(k). T outputs 0 (g0 is pseudo-random) if b0 = b and 1 (g0 is random) otherwise.

Lemma B.1 and our assumption about the advantage of E when g0 = f 0a2 (the real experiment) im-

ply that T has advantage k�d, for some d > 0 and all k 2 K, contradicting the pseudo-randomness

of f 0.

C Proof of Proposition 4.3

The proof is by contradiction. Let E be a polynomial time adversary such that the probabil-

ity of Multiple-MatchE(k) is not negligible. We will show that � is not a secure MA protocol.

In what follows Multiple-MatchE1 (k) denotes the event that a responder oracle �t
j;i accepts and

there exist distinct (initiator) oracles �s
i;j ;�

s0

i;j which have had a matching conversation with �t
j;i.

Multiple-MatchE2 (k) denotes the event that an initiator oracle �s
i;j accepts and there exist distinct

(responder) oracles �t
j;i;�

t0

j;i which have had a matching conversation with �s
i;j . We split the proof

into two cases.

Claim C.1 Suppose the probability of Multiple-MatchE1 (k) is not negligible. Then � is not a secure

MA protocol.

Proof: We begin with the following observation. If responder oracle �t
j;i accepts and distinct

(initiator) oracles �s
i;j ;�

s0

i;j have had matching conversations with �t
j;i, then the �rst 
ow output

by the oracles �s
i;j ;�

s0

i;j is the same. Thus our assumption implies that there is an in�nite set K and

a constant c such that for all k 2 K the following is true: there exist i; j 2 I such that if initiator

oracles �1
i;j ;�

2
i;j are asked queries (i; j; 1; �) and (i; j; 2; �) respectively, then the probability that

the responses are the same is at least k�c. Based on this observation, we construct an adversary

E0 such that for all k 2 K the probability of No-MatchingE
0

(k) is at least k�c=jI j2, as follows.

E0 picks i; j 2 I at random. She makes query (i; j; 1; �) and lets �1
1 denote the response. Next she

makes the query (j; i; 1; �1
1) and lets �1

1 denote the response; let �1 denote the time at which this

happens. Next she makes the query (i; j; 2; �) and lets �2
1 denote the response; let �2 > �1 denote

the time at which this happens. If �2
1 6= �1

1 then E0 halts. Else E0 makes the query (i; j; 2; �1
1).

Beginning with the response to this query, E0 faithfully relays messages between �2
i;j and �1

j;i. One
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can check that oracles �2
i;j and �1

j;i accept (while no other oracles do). However, they have not

had matching conversations. The reason is that the query (i; j; 2; �) was made at time �2, but the

string �1
1 used as the next 
ow to �2

i;j was obtained (albeit from �1
j;i) at an earlier time �1 < �2.

Of course the reason it could serve as response is that �1
1 = �2

1. Our conclusion now follows from

the fact that the probability that �1
1 = �2

1 is at least k�c=jI j2 for all k 2 K, which concludes the

proof.

Claim C.2 Suppose the probability of Multiple-MatchE2 (k) is not negligible. Then � is not a secure

MA protocol.

Proof: We begin with the following observation. If initiator oracle �s
j;i accepts and distinct

(responder) oracles �t
j;i;�

t0

j;i have had matching conversations with �s
i;j , then the �rst 
ow provided

to the oracles �s
j;i;�

s0

j;i is the same, and the 
ows output by these oracles in response are also the

same. This observation will be re�ned before we build the adversary E0 defeating the mutual

authentication.

Let i; j 2 I and consider the following experiment. Make query (i; j; 1; �) and let �1
1 denote

the response. Now make queries (j; i; 1; �1
1) and (j; i; 2; �1

1) and let �1
1; �

2
1 denote the responses

respectively. Let pi;j(k) be the probability that �1
1 = �2

1 . Then our assumption implies that there is

an in�nite set K and a constant c such that for all k 2 K there exist i; j 2 I such that pi;j(k) � k�c.

E0 picks i; j 2 I at random. She then makes query (i; j; 1; �) and lets �1
1 denote the response. Next

she makes query (j; i; 1; �1
1) and lets �1

1 denote the response. Next she makes query (i; j; 1; �1
1) and

lets �1
2 denote the response; let �1 denote the time at which this happens. Now she makes query

(j; i; 2; �1
1) and lets �

2
1 denote the response; let �2 denote the time at which this happens. If �2

1 6= �1
1

then E0 halts. Else E0 makes the query (j; i; 2; �1
2). Beginning with the response to this query, E0

faithfully relays messages between �1
i;j and �2

j;i. One can check that oracles �1
i;j and �2

j;i accept

(while no other oracles do). However, they have not had matching conversations. The reason is

that the query (j; i; 2; �1
1) was made at time �2, but the string �2

1 used as the next 
ow to �2
j;i

was obtained (albeit from �1
i;j) at an earlier time �1 < �2. Of course the reason it could serve

as response is that �1
1 = �2

1 . Our conclusion now follows from the fact that the probability that

�1
1 = �2

1 is at least pi;j(k)=jI j
2 � k�c=jI j2 for all k 2 K, which concludes the proof.

We note that this proof exploited the fact that the number of moves in a mutual authentication

protocol is at least 3.

D Two Lemmas for Pseudo-Random Function Construction

We summarize here the lemmas justifying the constructions of PRFs given in Section 6. These

lemmas are from [2].

We recall the problem. We are given a PRF ga of l-bits to l-bits. We want a PRF which takes

longer inputs to l-bit outputs. In what follows m will denote an upper bound on the desired input

length. Formally l = l(k) and m = m(k) are both polynomially bounded functions of the security

parameter k, and the PRFs are members of parameterized families of functions etc. Discussions

here, however, will be informal. We will state things in terms of speci�c functions and omit mention

of k; the formal statements of the lemmas are easily reconstructed. We refer the reader to Section 6

for the de�nition of CBCg
a and hxil.
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Lemma D.1 (CBC Lemma, [2]) Suppose ga: f0; 1g
l ! f0; 1gl is a PRF. Then, for any poly-

nomially bounded m, fa(x) = CBCg
a(hxil) is a PRF from f0; 1gm to f0; 1gl. Also, f�a (x) =

CBCg
a(hxil : jhxilj) is a PRF from f0; 1g�m to f0; 1gl.

Although cipher block chaining is used in many places, Lemma D.1 provides the �rst justi�cation

of its use as a PRF (or MAC) which depends only on the security of the underlying function.

A hash function H speci�es for each k a map Hk: f0; 1g
� ! f0; 1gh(k). A collision seeking

algorithm is a polynomial time algorithm which on input 1k outputs a pair of distinct strings

x; y 2 f0; 1g�; we say the algorithm is successful if Hk(x) = Hk(y). We say that H is collision

free if every collision seeking algorithm has negligible success probability. In what follows we

will as usual shove the asymptotics under the rug and regard a collision free hash function as

H : f0; 1g�! f0; 1gh. Under the assumption that ga is a PRF andH is collision free, the CBC/Hash

PRF is provably secure. The following lemma is the �rst step.

Lemma D.2 (Hash Lemma, [2]) Suppose H : f0; 1g�! f0; 1gh is a collision free hash function

and ga: f0; 1g
h! f0; 1gl is a PRF. Then fa: f0; 1g

�m ! f0; 1gl de�ned by fa(x) = ga(H(x)) is a

PRF.

Since l = 64 (DES) and h = 128 (MD5) in our applications, the following simple corollary of the

above lemmas is worth stating. For completeness we give the simple proof. Assuming h = 2l, let

H1(x); H2(x) denote the �rst l bits and the last l bits of H(x), respectively.

Corollary D.3 ([2]) Let H : f0; 1g�! f0; 1g2l be a collision free hash function, and let ga: f0; 1g
l

! f0; 1gl be a PRF. Then fa: f0; 1g
�m ! f0; 1gl de�ned by fa(x) = ga( ga(H1(x))�H2(x) ) is a

PRF.

Proof: Regarding a 2l bit input y as a pair of l bit blocks, y = y1y2, let g
0
a(y) = CBCg

a(y) =

ga(ga(y1)�y2). Lemma D.1 says that g0a: f0; 1g
2l! f0; 1gl is a PRF. But fa(x) = g0a(H(x)). So fa

is a PRF by Lemma D.2.
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