
Automated Analysis for Digital
Forensic Science: Semantic Integrity Checking

Tye Stallard and Karl Levitt
Department of Computer Science

University of California, Davis
One Shields Avenue, Davis, CA, 95616 USA�

stallard,levitt � @cs.ucdavis.edu

Abstract

When computer security violations are detected, com-
puter forensic analysts attempting to determine the relevant
causes and effects are forced to perform the tedious tasks of
finding and preserving useful clues in large networks of op-
erational machines. To augment a computer crime investi-
gator’s efforts, the approach presented in this paper is an
expert system with a decision tree that uses predetermined
invariant relationships between redundant digital objects
to detect semantic incongruities. By analyzing data from a
host or network and searching for violations of known data
relationships, particularly when an attacker is attempting
to hide his presence, an attacker’s unauthorized changes
may be automatically identified. Examples of such invari-
ant data relationships are provided, as are techniques to
identify new, useful ones. By automatically identifying rele-
vant evidence, experts can focus on the relevant files, users,
times and other facts first.

1. Introduction

Even without proper preparation for a computer attack,
relevant evidence of a security violation can be automat-
ically identified. If attackers make their presence clear of
course, detection is not difficult. Yet, if they attempt to con-
ceal their activity, they still have changed the state of the
system, leaving footprints through the unknown side effects
of their activity.

If cursory investigations were useful and identification
of novel cases was more efficient, administrators and devel-
opers may find it valuable to spend the time to learn from
their security mistakes. Automated analysis of technical ev-
idence is an obvious approach. With an automated tech-
nique, system administrators who identify an anomaly may
quickly make a preliminary diagnosis of their system. Be-
yond the savings of a forensic expert’s time, for example in

law enforcement, the repeatability of the investigative pro-
cess at the technical level is important. Instead of an opinion
based upon a person’s best effort and limited resources, the
reasoning process and the evidence upon which the deduc-
tions were made are documented, transparent and determin-
istic. Even if invariant relationships between digital objects
that detect attackers become common knowledge, they can
still prove effective. As opposed to static signatures such as
which ports are open and closed in a firewall policy, where
attackers can trivially change their activity to avoid detec-
tion, an attacker must change the system so that a set of dig-
ital objects fails to behave in an expected manner, which
this approach may detect.

Currently the primary factor limiting the evidence pro-
cess is the number of qualified technicians. The majority of
digital evidence processed by law enforcement today is on
computers used as instruments of traditional crimes, such
as a threatening email rather than a threatening letter. Al-
though a minority of prosecuted cases, crimes in which the
computer is the target are important as well. This differ-
ence in the number of cases is due to many factors includ-
ing workload of investigators, familiarity with technology
crime and likelihood of a successful conviction. This paper
will focus primarily on computers as the target of crime.

The kinds of evidence available will be related to the
sophistication of the attacker. A novice with little experi-
ence, no custom-built tools and no effort made to remove
evidence will leave obvious signs. Anomalous log entries
would be a simple example, but finding directories with
the default names used by common root kits used to hide
evidence is useful as well. chkrootkit [12] is an open
source project that uses this signature based approach. An
experienced attacker on the other hand, will attempt to cre-
ate an illusion to the administrator that a security viola-
tion never occurred. Malicious alteration of the operating
system’s kernel code, through an unauthorized kernel mod-
ule for example, will corrupt the results of even a trusted,
statically-compiled binary used to detect surreptitious activ-

ity.

The attacker may meticulously delete log files and other
evidence of his presence. Yet side effects of his presence
may still exist. Consequences of his surreptitious activity,
that he doesn’t realize were left behind, doesn’t have the ac-
cess privileges to eliminate, or simply doesn’t have the time
to remove, will remain. Only the perfect attacker will be
able to perfectly recreate the state of the system as it was
before the security violation.

Formalizing the intrusion response process for consistent
repeatability purposes, and automating it for practical ones,
is critical. While work has been done to frame the prob-
lem of digital forensics [3], most of the advances have been
at the evidence collection and preservation stages of an in-
vestigation. Concepts and approaches have been invented
to manage complexity and arbitrary levels of abstraction in
software development. An expert system can do this for the
analysis stage of cyber crime investigations.

Few projects have focused on recovery from a success-
ful attack. The “Diagnosis, Explanation and Recovery from
Break-Ins” (DERBI) [17] project at SRI used a procedu-
ral reasoning system to analyze data. If data was collected
after an attack, it could search for patterns of attacker ac-
tivity based on known procedures for subverting security.
In addition, Elsaesser and Tanner present an approach [5]
which automatically generates hypotheses of computer at-
tacks, simulates them on the target configuration and ap-
plies plan recognition techniques [10] to search for support-
ing data.

On the other hand, the approach presented in this paper,
which examines evidence for violations of specified rela-
tionships between data in existing software architectures,
is a form of integrity checking first studied in the Clark-
Wilson Integrity Model [2]. By applying that model to a
database, for example, a formal specification of relation-
ships between fields in tables of the database is checked
to verify data consistency and database integrity. These are
known as constrained data items (CDI).

Currently, the intrusion response process is either depen-
dent upon highly trained investigators (who become over-
loaded) or a proprietary product such as EnCase [8]. Cur-
rent products designed for forensic analysis gather data ac-
cording to procedures intended for law enforcement. Yet the
sophistication of computer crimes, has greatly outpaced ad-
vances in the analysis of evidence limited to such low lev-
els of abstraction. In general, investigators are now given
too much data to analyze and the increasing trend will con-
tinue. The solution is to automate simplistic tasks for the in-
vestigator and encode expertise into a program that can au-
tomatically make deductions that are relevant to an expert.

2. Approach

The process is to first find data objects with redundan-
cies that must exist in a secure system. The second step is to
search though evidence collected from the system in ques-
tion for contradictions. To extend the approach, it is possi-
ble to hypothesize potential scenarios, then search for evi-
dence that rules out the incorrect ones.

Once collected and preserved, raw data on digital me-
dia must be aggregated in a rational way into more abstract
objects. Without automated interpretation, many layers of
abstraction will cause an investigator’s time to become the
bottleneck in an investigation. Ignoring hidden or encrypted
data for the moment, even examining the contents of thou-
sands of files may leave elementary questions unanswered
if the investigator is not utilizing the correct programs to
parse and interpret the data. Operating systems and their ap-
plications normally build digital objects (in this paper, un-
derstood to be abstractions) using lower level abstractions,
Since this is usually invisible to the user, this step may seem
obvious. Yet since these are the very mechanisms attack-
ers subvert to hide their presence, the raw data must be
independently interpreted and organized, and is therefore
part of the forensic analysis process. If data is encrypted or
steganographicly hidden, iteration between data collection
and analysis steps of the forensic process must occur.

2.1. Identification of invariant relationships

Mechanisms such as audit trails, firewall logs, IDS and
application logs, and accounting records, intended for se-
curity enforcement or monitoring purposes obviously pro-
vide a direct means for the investigator to learn the sequence
of events leading to a security breach. Yet these mecha-
nisms may not have been installed and configured in the first
place, they may have been maliciously disabled or their out-
put may have been deleted through log file rotation, or al-
tered by an attacker’s log wiping program. Modern com-
puters though, through their operating systems and applica-
tions, store massive amounts of information even in a de-
fault configuration. File system metadata, log files from the
default logging configuration and application-specific file
formats are examples. Unlike a database with an efficient
data model that has been put into third normal form, there
are redundancies in this information.

Data sources from more than one administrative domain
will provide more reliable and less refutable deductions. For
example, one may correlate audit trail entries to an applica-
tion level log, or network connection log entries to the out-
put of a network intrusion detection system. Technically,
this is not complicated: send a duplicate of a logging en-
try to a designated logging host. An attacker would require
access at the user and root level, or access on two sepa-

rately secured machines for example, to make the data ap-
pear to be legitimate and self-consistent. Said differently,
it would be more difficult for the attacker to make a real-
istic illusion of a normal system. For operational reasons
though, separate administrative domains are not always im-
plemented.

If data sources from more than one administrative do-
main cannot be aggregated, then the potential exists for the
attacker to have created a complete body of evidence that is
self-consistent. Either evidence leading to the cause of the
policy violation could be eliminated, or it may have been
doctored to lead to a false conclusion. This is why it is im-
portant to document the evidence that leads to a conclusion.
If that evidence is later found to be untrustworthy, so must
the conclusion. Again, at any point, an explanation system
can be queried to present the evidence and rules upon which
a conclusion has been made.

An invariant relationship is a specification (a form of pol-
icy) between digital objects that holds true in for system op-
erating in an authorized state. Of course the simplest invari-
ant relationship between two digital objects is the identity
property: for a given object, such as a log file entry, a copy
of it exists elsewhere. Use of this property with log file cen-
tralization is particularly effective when an attacker adds,
deletes or modifies suspicious log entries on the penetrated
host. In this scenario, it is easy for the investigator to com-
pare the log file and the remote copy on a trusted central-
ized log server, searching for differences. If an unauthorized
difference exists, since the assurance of the logging mech-
anism has been compromised, future log entries from that
host cannot be considered trustworthy because entries may
have been forged, edited or eliminated.

The DERBI [17] system noted duplication of some, but
not all, data in the utmp and wtmp files in Solaris UNIX.
These files are accounting records that collect the log-in and
log-out times of each user, in addition to system reboots and
shutdowns. If an attacker modifies one and not the other, or
modifies both, but inconsistently, his presence may be de-
tected. Unfortunately, the mechanism that records these data
is common to both, so if it is compromised, both logs will
be consistently unreliable. Another simple, but effective in-
variant DERBI noted was that log entry timestamps must al-
ways be monotonically increasing. Chronological gaps and
log entries out of chronological order are highly suspicious.

Tsutomo Shimimora describes in Takedown [13] an ele-
gant invariant relationship about log files; they should never
grow smaller. It was effective because he configured them to
be backed up on a log host and was able to compare the size
of a log file to a copy from some period in the past. Only at-
tackers would edit them in a way that decreased their size.

While focusing on invariant relationships in common
software is useful, discovering subtle redundancies in cus-
tom software and configurations will allow defenders to

automate their “home-field advantage.” These site-specific
“semantic tripwires” or characteristics, not easily learned by
attackers, can help incident handlers find an attacker’s un-
intended side effects. Incident handling personnel will be
able to automate decision making for commonly encoun-
tered scenarios thereby accelerating the search for evidence
and solving more incidents or understanding them better.

Automatically identifying data that contradicts itself be-
cause of an attacker’s activity will aid the investigator.
Based on these contradictions and other readily available
information, it may be possible to identify the possible ex-
planations and hopefully the most reasonable one.

2.2. Automating the expert

Once you have eliminated the impossible, what-
ever’s left, however improbable, is the truth. [4]

Evidence may be suspicious through analysis, whereby
all legitimate reasons for its presence are eliminated and
there still not being an explanation. To identify these contra-
dictions, this approach uses a forward chaining, rule-based,
expert system. Its working knowledge is the body of evi-
dence. The invariant relationships between digital objects
are encoded into the expert system’s knowledge base. The
ontology is based upon the objects experts use to under-
stand the system in question: memory usage statistics at the
kernel level, users, privileges and files for an operating sys-
tem, network events for a network intrusion detection sys-
tem, and tables and transactions for a database, for exam-
ple. At whatever level of abstraction, an object has a related
context, or using Minksy’s terminology [11], frame. The ex-
pert system searches through the data, eliminating those that
conform to a known legitimate specification or invariant re-
lationship, and highlights exceptions. These exceptions are
semantic contradictions. Figure 1 is an example of such a
decision tree with the goal of determining the set of users
who may have changed the contents of a file. In this case,
the reason to initiate the analysis, or “trigger,” was the fact
that the file in question was modified, but this could be for
any reason: manual or automated. For example, the admin-
istrator may have a hunch or anonymous tip there is a prob-
lem, or an intrusion detection system triggered the forensic
expert system to search for suspicious activity. If no users
are found (i.e., the lower left branch is reached), that file
is considered suspicious. A specific suspicious datum will
have significance to investigators based upon the goal of
the investigation and the nature of the anomaly.

The expert system’s purpose, at the contradiction detec-
tion stage, is to eliminate irrelevant data. Since a forward
chaining inference engine will find all true deductions of
all the facts, it is useful in only a limited context. Like
any program, a forward chaining program’s working knowl-
edge consumes memory and its inference calculations con-

Trigger:
File Modified

Were any users
logged in?No Yes

File:
World writable?

File:
Group writable?

Owner logged in?

Root logged in?

Suspects = All
users logged in

Suspects = Group
members logged in

Suspects = Suspects + owner

Suspects = Suspects + root"Impossible"

No

No

No

No

Yes

Yes

Yes

Yes

Figure 1. Prototype decision tree

sume computational resources. Since most evidence is not
directly relevant to the purposes of an investigation, if for-
ward chaining was the only approach used throughout an in-
vestigation, the expert system would be swamped calculat-
ing the logical implications of irrelevant data (recursively).
The investigator will want to focus the process to the rele-
vant facts.

2.3. Hypothesis testing

To extend this approach, the iteration between forward
and backward chaining inference engines may prove most
useful. Based upon the contradictory evidence identified by
one or more forward chaining inference engines, the use of
a backward chaining expert system, such as automated diag-
nosis [5], to calculate the implications of those deductions
would be useful to direct the search for and limit the col-
lection of evidence. For a given set of facts, the hypothesis
with the most supporting evidence could be pursued until
evidence is found that refutes its assertion, or the investiga-
tor determines the purposes have been met. The knowledge
base would consist of hypotheses and the modes to collect
evidence that support them.

For example, a forward chaining expert system may be
able to deduce that a file was changed because an unautho-
rized user had root privileges. A backward chaining ex-
pert system with the goal of identifying the damage con-
sequences of a policy violation could use this deduction to
calculate that root privileges on that host would imply the

user had obtained root access to certain other hosts in the
network such as in NetKuang [18]. This deduction by the
goal based, backward chaining system would accelerate the
search for related evidence. A forward chaining approach
would need to examine all the files on all the hosts (includ-
ing obviously unrelated hosts) to come to a similar conclu-
sion.

One piece of data, or working knowledge, can be asso-
ciated with multiple goals. With multiple goals, users or
investigating agencies may prioritize them differently. As
the knowledge base becomes more elaborate, and the ex-
pert system has multiple courses of action to choose from,
the investigator can assert a preliminary hypothesis and then
verify it later. A scenario such as “Let’s assume now that
this email is authentic and corroborate it later with evidence
from a different jurisdiction,” is commonplace. At any point
during the investigation as in any explanation system, the
expert system can present the evidence and the reasoning
process upon which a conclusion has been made.

Instead of a purely ad hoc process of collecting data, a
goal-oriented expert system can help prioritize tasks for in-
vestigators based on heuristics. For example, the most easily
available data, the most volatile data (that will soon disap-
pear), or that data which will make deductions with strong
assurance shall be collected first.

While not an easy task (as shown in [5]), formalizing the
reasoning process for the investigation is important. Metic-
ulously eliminating incorrect possible explanations for an
event, leaving only the most reasonable explanation is a crit-

File System
metadata

XML
Representation

TCT

TCT
"body"

Perl

Figure 2. Data flow through the prototype implementation

ical process.
Investigators should be able to produce evidence sup-

porting the working hypothesis. For example, “Evi-
dence found on the suspect’s computer contained a
program, known to be used by hackers, that leaves a spe-
cific file on the victim’s computer, such as this file found in
the evidence on the penetrated host.” To show that other ex-
planations are less convincing or impossible, alternative hy-
potheses, and the evidence that refutes them, would be
produced as well. “The network intrusion detection sys-
tem and firewall logs recorded a network connection from
the suspect’s computer’s address during the time in ques-
tion and because of the network configuration, no one else
could have done that.” The attacker’s method and activi-
ties may be modeled on experience with other attackers.
Such a model may be based upon attack modeling lan-
guages such as JIGSAW [16].

3. Prototype

To confirm the utility of a forward chaining expert sys-
tem in this context, a prototype was written. Since a file on a
host can typically be modified only when its owner is logged
in, one can check that its modification time (from its inode)
is during a login session of its owner (from lastlog). If
not, the file, its owner and the modification time may be
considered suspicious and worthy of attention. This asser-
tion of course is a simplification. When the owner is not
logged in, if world or group writable, others are able
modify it. In addition, a cron job, the root user or its dae-
mon processes may modify it, and setuid programs may
further complicate matters. Common valid exceptions may
be added to the knowledge base. As more expertise is en-
coded and automated, an expert’s time can be spent on more
novel situations. Although useful evidence may have been
deleted legitimately (e.g., log rotation implemented by a cir-
cular buffer) or the real user may have subsequently over-
written the modification time, only a perfect attacker will
leave no evidence whatsoever. The key is to automate the
search for impossibilities based upon the semantics of nor-
mally recorded data.

“User X was logged in from time A to time B”
“File Y, owned by X, was modified at time C”

Table 1. Types of JESS facts in the prototype

A prototype of this contradiction detection approach was
implemented by using a collection of C programs and Perl
scripts called “The Coroner’s Toolkit” [6] (TCT) to auto-
mate data collection and an expert system called The Rule
System for the Java Platform (a.k.a. JESS) [7] to automate
its analysis. TCT can gather evidence including the record
of user login sessions in the file lastlog and thirteen
fields of metadata from every file on the host in a file called
body). A Perl script parses the lastlog and body files,
then produces an XML structured document. Figure 2 is a
diagram of the flow of forensic evidence to a standard for-
mat.

The prototype then parses this XML document and as-
serts two kinds of facts in JESS’s working knowledge (See
Table 1). After input validation checks (e.g., Verify �����),
the knowledge base directs the JESS engine to check that
the last modification time for every file was during a login
session of its owner (e.g. Verify ����� and �	���). It ig-
nores files last modified before the first entry in lastlog
by adding a login session from time “0” to the first ses-
sion’s login time to JESS’s working knowledge (asserted
facts). The same is done for file access times and the time
of last change to the inode. The prototype uses a reasoning
process similar to that illustrated in Figure 1. Differences
include the “trigger” and file permissions; the prototype an-
alyzes all setuid files (not just those that were modified)
and does not consider a file’s permission mode settings in
its checks. When any of these invariant relationships (Ta-
ble 2) are violated, a message is printed highlighting the ex-
ception. Figure 3 is a graphical representation of this pro-
cess.

The hypothetical scenario that guides the test of the pro-
totype is that of a UNIX host, in a default configuration with
network access, that does not send its logging data to a re-
mote host. An attacker has successfully penetrated its se-
curity by simply sniffing the root user’s password from

Forensic
deductions

XML
Representation

Java XML
library

Decision
tree

JESS

Alert #1
 Contradiction...
Alert #2
 Contradiction...
...

Figure 3. Process to produce deductions

������� owns
���
	�� ��

������	���� ���������������������� ���
	�� ���� ������� �! � ��������
������	���� ����������#" ��$%	&�
'(�)�
	�� ���� ������� �! � ��������
������	���� ������������+*!� ��� � �)�
	�� ���� ������� �! � ��������

Table 2. Relationships of times as JESS facts

the network and logged in. A common technique to avoid
detection is to use root privileges to delete syslog en-
tries recorded by the vulnerable root application during the
buffer overflow and edit lastlog to remove the record of
the victim’s sessions. In this case the logs do not need to
be edited since the misuse is difficult to detect. Although a
clear text, remote, root login session itself may be consid-
ered suspicious today, on the network and at the host, it ap-
pears a legitimate login has occurred. The attacker down-
loads, compiles and installs a malicious loadable kernel
module (adore [15]) to hide files on the hard drive and
processes from the administrator and is careful not to mod-
ify any files that a file integrity checker may monitor. Fur-
ther suppose the network administrator later detects a vio-
lation in policy such as port scanning activity originating
from the compromised host.

3.1. Apparatus

The “victim” host has an Intel-based CPU with
RedHatTMLinux version 7.3 installed and fully patched as
of 12 December 2002. The Coronor’s Toolkit [6] version
1.09 is installed and is configured with an unroutable net-
work address. The attacker’s tools include netcat [9]
version 1.10 for network access and the adore [15] load-
able kernel module to subvert system calls by utilities
designed to detect the attacker’s presence.

The digital forensic analysis host is also an Intel-based
CPU with RedHatTMLinux version 7.1 installed. The Coro-
nor’s Toolkit [6] version 1.09, in conjunction with Java
XML libraries and The Rule System for the Java Platform

(JESS) [7] version 5.1, are installed which are used by the
prototype.

3.2. Procedure

The following steps implemented the above scenario:

1. Install operating system and TCT on the “victim” host.

2. Simulate normal operation (update packages, lo-
gin/logout multiple times).

3. Assume attacker gained access by using a network
sniffer to steal the root password and logs in as
root.

4. Attacker downloads netcat [9], sets up an unautho-
rized back door and logs out.

5. Attacker uses the netcat back door to gain unautho-
rized access and uploads adore.

6. Attacker compiles and runs adore, then hides suspi-
cious directories and processes.

7. Simulate hacker activity while concealed.

8. Administrator notices suspicious activity and discov-
ers subverted host.

9. Administrator logs in as the real root user and col-
lects TCT body of evidence.

10. Administrator uses netcat to move TCT body of ev-
idence to a remote host for analysis.

11. Forensic analyst runs the prototype expert system on
the body of evidence.

3.3. Prototype output

Of the three inode times in each of 64 programs in TCT’s
body.S file, the subset of all setuid programs on the file
system, only the access times on the programs used by the
simulated attacker were highlighted. Yet there was one un-
expected result: during the period when only the attacker
was logged in and hidden, there was a file that was accessed
yet he didn’t intentionally touch.

� File /usr/lib/sendmail owner 0 accessed 1040020537
No users logged in at time 1040020537

With the fact that the simulated attacker did not open
that file or use a program related to the mail subsys-
tem, this message was perplexing. Upon further inves-
tigation, it was found that /usr/lib/sendmail is
a link that was accessed while no users were logged
in. Its target though, (through a chain of 3 links)
/usr/sbin/sendmail.sendmail, was last ac-
cessed at 1040019174 when root was logged in.
If the sendmail daemon, running between root lo-
gin sessions, accessed the link, it would have accessed the
target as well. If a cron job had run updatedb to up-
date the database used by locate, all the files would
have been accessed at the same time. An interesting pos-
sibility lies in the fact that when a user (or intruder) ex-
ercises the file name completion feature in a user shell
such as the Bourne-Again Shell (/bin/bash) or Turbo C
shell (/bin/tcsh), the shell program updates a file’s in-
ode access time if it is a link, but not otherwise. This is
not a complete reason since /usr/lib is not a com-
mon directory in the $PATH environment variable. The
explanation is that the attacker executed ls -R, a recur-
sive listing of /usr/lib and updated the access time
field of the link’s inode. Given this evidence and reason-
ing process, it would be another reason for the investi-
gator to be suspicious about activity on that host at that
particular time. Similarly, directory access times are up-
dated via the use of cd. With this experience, new ob-
jects could be instantiated in the knowledge base to
consider this new situation, thereby automating it in the fu-
ture.

With regards to performance of JESS (written in Java),
on a 747 Mhz Intel Pentium III CPU, the Linux time util-
ity, averaged over ten runs, averaged 6.2 seconds elapsed
real time between invocation and termination. It averaged
4.6 seconds elapsed user CPU time and averaged 0.1 sec-
onds system CPU time. The XML formatted input file con-
taining data on 64 files and 25 login sessions was 31146
bytes in size.

The following is output from the program indicating user
“0” (a.k.a root) was the only “suspect” logged in when
both were changed and modified, but no users were logged
in when they were accessed (a semantic contradiction):

� File /usr/bin/rsh owner 0 changed 1023294327
Suspects: 0

� File /usr/bin/rsh owner 0 accessed 1040018508
No users logged in at time 1040018508

� File /usr/bin/rsh owner 0 modified 995975720
Suspects: 0

� File /usr/bin/rlogin owner 0 changed 1023294327
Suspects: 0

� File /usr/bin/rlogin owner 0 accessed 1040018508
No users logged in at time 1040018508

� File /usr/bin/rlogin owner 0 modified 995975720
Suspects: 0

The following are two exemplars of JESS facts about file
access times (seconds since the epoch, 1 January 1970):

� (mactime (file /usr/bin/rsh) (uid 0) (mod-
ify 995975720) (access 1040018508) (change
1023294327))

� (mactime (file /usr/bin/rlogin) (uid 0) (mod-
ify 995975720) (access 1040018508) (change
1023294327))

The following are four exemplars of login session JESS
facts including the session fabricated to ignore files before
the first login session entry:

� (session (login 0) (logout 1039567500) (uid 0))
� (session (login 1040020260) (logout 1040020402)

(uid 0))
� (session (login 1040018760) (logout 1040020260)

(uid 0))
� (session (login 1040018280) (logout 1040018280)

(uid 0))

Although the knowledge base is an initial attempt, an ex-
perienced hacker can still be detected. Selecting just these
anomalous directories and sorting them by time can provide
a time line of events relevant to an investigation. Although
avoiding detection is still possible, attackers will need to
write, upload and always use their own tools they know do
not change file system inodes. Journaling file systems will
further complicate their attempt to hide.

3.4. Future work

Identifying new semantic redundancies, such as between
logs of popular applications and operating system logs,
would create a more realistic model of an operational sys-
tem. The development of techniques to determine the be-
havior of digital artifacts left by programs is important to
this process. As stated before, the best invariant relation-
ships specified in the knowledge base will be general, sim-
ple in nature, and are only violated by users with ill intent.

Many invariant relationships, though, will be the obvious
ones that a person would not bother to check throughout
the system, yet once automated, are effective. To find non-
obvious relationships, the knowledge base designer would
need to identify an object, monitor its behavior and the be-
havior of related objects. The best digital objects will be
nonvolatile, verifiably authentic, complete and unaltered.
Useful information may still be derived from less than ideal
sources. An approach to finding these relationships would
be to find a mechanism that affects two or more objects that
would reasonably be expected to be found after a success-
ful computer intrusion. Functional dependencies may lead
to data redundancies [14]. A different way would be to find
two or more objects related to the same condition; poten-
tially an attacker would change one and not the other. This
is similar to the confinement problem [1]. The knowledge
base engineer is attempting to detect information flow be-
tween objects in a system and use this knowledge of redun-
dancy to detect an attacker’s presence and activity.

4. Conclusion

The approach presented in this paper shows it is possi-
ble to answer useful forensic questions by using data from
common mechanisms that may not have been intended for
security. It is possible to do so with no preparation before
an attack. This post facto analysis is an extensible approach
that can be evolved to include more semantic data relation-
ships specific to host, network and application abstraction
layers. In addition, these relationships may be able to be
detected and verified in an automated fashion in systems
that have functional redundancies. Although it is possible
that the minimum amount of information may not exist to
completely solve the crime, an imperfect attacker will leave
clues.

References

[1] M. Bishop. Computer Security: Art and Science, pages 439–
472. Pearson Education, Inc., 2003.

[2] D. D. Clark and D. R. Wilson. A comparison of commercial
and military computer security policies. In IEEE Symposium
on Security and Privacy, pages 184–194, 1987.

[3] DFRWS. DFRWS A roadmap for digital forensics research,
2001. Digital Forensic Research Workshop, Utica, New
York.

[4] S. A. C. Doyle. The Hound of the Baskervilles. The Strand
Magazine, 1901.

[5] C. Elsaesser and M. Tanner. Automated diagnosis for
computer forensics. Technical report, The Mitre Cor-
poration, 24 September 2001. Cited 1 June 2003
http://www.mitre.org/ work/tech papers/ tech papers 01/ el-
saesser forensics/.

[6] D. Farmer and W. Venema. The Coroner’s
Toolkit. Online, 1999. Cited 1 June 2003
http://www.porcupine.org/forensics/tct.html.

[7] E. J. Friedman-Hill. Jess, The Rule System for the
Java Platform. Technical report, Sandia National Lab-
oratories, Livermore, CA, 2002. Cited 1 June 2003
http://herzberg.ca.sandia.gov/jess.

[8] Guidance Software. EnCase. Online, 2003. Cited 1 June
2003 http://www.guidancesoftware.com.

[9] H. (hobbit@atstake.com). Netcat 1.10 for Unix,
20 March 1996. Cited 15 December 2002
http://www.atstake.com/research/tools/nc110.tgz.

[10] H. A. Kautz. A formal theory of plan recognition and its im-
plementation. In J. F. Allen, H. A. Kautz, R. Pelavin, and
J. Tenenberg, editors, Reasoning About Plans, pages 69–125.
Morgan Kaufmann Publishers, San Mateo (CA), USA, 1991.

[11] M. Minsky. A framework for representing knowledge. In
The Psychology of Computer Vision, pages 211–277. Mc-
Graw Hill, New York, 1975.

[12] N. Murilo and K. Steding-Jessen. chkrootkit v. 0.37. Techni-
cal report, Pangeia Informatica LTDA, SRTVS 701 Ed Pala-
cio do Radio II s. 304, Brasilia, DF, 70340-000, BR, 2002.
Cited 1 June 2003 http://www.chkrootkit.org.

[13] T. Shimomura and J. Markoff. Takedown. Warner Books,
December 1996.

[14] D. A. Simovici, D. Cristofor, and L. Cristofor. Impurity mea-
sures in databases. Acta Informatica, 28(5):307–324, 2002.

[15] Stealth (stealth@teamteso.net). Adore Linux Kernel
Module, 2001. Cited 1 June 2003 http://www.team-
teso.net/releases/adore-0.42.tgz.

[16] S. J. Templeton and K. Levitt. A requires/provides model
for computer attacks. In Proceedings of the New Security
Paradigms Workshop, Cork Ireland, Sept. 19-21, 2000.

[17] D. W. M. Tyson. DERBI: Diagnosis, Explanation and
Recovery from computer Break-Ins. Cited 1 June 2003
http://www.ai.sri.com/

�

derbi/, 2000.
[18] D. Zerkle and K. Levitt. NetKuang - a multi-host config-

uration vulnerability checker. In Proceedings of the Sixth
USENIX UNIX Security Symposium, July 1996.

