Automated Analysis for Digital Forensic Science
By

TYE BROWN STALLARD
B.S. (Willamette University) 1996

THESIS
Submitted in partial satisfaction of the requirements for the degree of
MASTER OF SCIENCE
in
Computer Science
in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA
DAVIS

Approved:

Committee in charge

2002

—1—

Automated Analysis for Digital Forensic Science

Copyright 2002
by
Tye Brown Stallard

Contents

1 Introduction

1.1

Thesis organization L

2 Background

2.1
2.2

Scenario and Motivationo Lo 0oL
Related Work e
2.2.1 Existing digital forensic analysis
Keywordsearch o o
“Thumbnail analysis”
File extension verificationo oL
Checksum database
2.2.2 Research projects L

3 A model for computer forensics

3.1 Datacollection e e e e
3.1.1 Purpose, means and investigating agency
3.1.2 Characteristics of data to be collected as evidence

Physical location Lo o L
Volatility o o
Ownership e
Trustworthiness
Abstraction
3.1.3 Legalissues e
Law enforcement
Non-law enforcement
4 Approach

4.1 Data aggregation L Lo e e
4.1.1 Example data-sharing standard
41.2 Benefits e e e e
4.1.3 Iteration between data analysis and collection

4.2 Identification of invariant relationships
421 Exampleso e

Identity propertyo
File access times
wtmp and utmp Lo
Shrinking log files oo .

= N

© oo o o Ot

10

10
11

12
13
13
14
14
15
15
16
16
17
18
18

Sequential inodes oo

4.3 Automated evidence analysis o Lo,
4.3.1 Expert systems Lo
4.3.2 Contradiction detection 0oL
4.3.3 Hypothesis testing o L oL

Corroborationo e

4.4 Response e e e e e

5 Prototype

5.1 Architecture L. L e e e

5.2 Experiment
52.1 Researchgoal
5.2.2 Scenarioo
5.23 Apparatus. e
524 Procedure
525 Results

Example output o oo
Example working knowledgeo L.
Summary e e e e e

6 Implications

6.1 Approach e
6.2 Future work oL
6.2.1 Invariant discovery Lo o
6.2.2 Hypothesis Testing L o Lo
6.2.3 Model of attacker L
6.2.4 Fault tolerance o

7 Conclusion

7.1 Results. o e e e
7.2 Extensions. o 0 e e e e e e e e e e
Bibliography

A An example rule base

—iv—

37
37
40
40
40
41
41
42
42
43
44

45
46
47
47
48
50
50

53
53
54

55

58

Acknowledgments

No work is the product of an exclusively solitary effort and this thesis is no ex-
ception. Without the volunteer efforts of the technical community, this work would not
have been completed. I'd like to thank Dan Farmer and Wietse Venema, for The Cornor’s
Toolkit, Ernest Friedman-Hill for JESS, Donald Knuth for TgX, Leslie Lamport for IXTEX,
the Free Software Foundation and developers for Emacs and the rest of the GNU software
suite, RedHat' " Inc. for their Linux distribution and the Linux kernel development team.
Open source software is something technical researchers sometimes take for granted, without
which progress in academia would be slower.

Many individuals helped me in this thesis. I'd like to thank Chris Wee and Becky
Bace for the exceptional technical and corporate experience they shared with me. The Secu-
rity Laboratory staff, Patty Graves, Jeff Rowe and Poornima Balasubramanyam, provided
engaging brainstorming (including the half baked ideas), advice and conversation. My the-
sis committee, Karl Levitt, Matt Bishop and Felix Wu provided not only their funding and
time, but also thought-provoking insights related (and unrelated) to this thesis. I'd like to
thank Robin Roberts for her mentorship over the years. Most importantly, I'd like to thank
my family for their consistent warmth and support.

Finally, Id like to thank DARPA for funding this research.

Tye Brown Stallard
December 2002
Computer Science

Automated Analysis for Digital Forensic Science

Abstract

Flaws in system security may persist for the foreseeable future. Yet, software de-
velopers and system administrators are not learning from security mistakes because
identifying the cause of a computer intrusion is time-consuming, tedious and unlikely
to yield definitive results. Investigations are fraught with data volatility, privacy and
legal issues as well. When intrusions are detected, computer forensics analysts are
swamped in evidence because of the large volume of data encountered, the dearth
of trained investigators and the lack of automated techniques to analyze computer
crime data. An expert system with a decision tree that uses predetermined invariant
relationships between redundant digital objects (like an application log entry and
an audit trail) to detect semantic incongruities could augment a computer crime in-
vestigator’s efforts. By analyzing data from a system and searching for violations
of known data relationships, an attacker’s changes to the system may be automat-
ically identified. Examples of such invariant data relationships are provided, as are
techniques to identify new, useful ones. A requirement for such a system is to have
the evidence available in a standard machine-readable format. A prototype of this
general approach has been written, integrating The Coroner’s Toolkit and JESS, The
Expert System Shell for the Java Platform, that automatically identifies files that
have been modified, accessed or changed when their owners were not logged in. By
automatically identifying relevant evidence, experts can focus on the relevant files,

users, times and other facts first.

Chapter 1

Introduction

The best way to stop a computer attack is to prevent it from happening. If an
attack does occur, being prepared for it by implementing preventative measures is the best
way to effectively and efficiently react and recover. A clear policy of what is and is not al-
lowed disambiguates the administrator’s job. Consistently executed procedures of software
maintenance and user management, and properly configured authorization and access con-
trol enforcement mechanisms prevent misuse. Logging mechanisms, whose logs are stored
securely, empower the defender to look into a computer’s or network’s past to determine
the causes and effects of computer misuse. Periodic backups will stop data loss and corrup-
tion. Unfortunately, these steps are not always taken. In a world of imperfect hardware,
software and people, with budget, time and knowledge constraints, perfect security cannot
be achieved. To understand security violations, experts require tools and techniques to
augment their skills. This is the role of digital forensics.

When most people think of “forensics,” they think of police detectives at the
scene of a murder for example, collecting blood samples, fingerprints and taking pictures.
A crime has occurred and a law enforcement agency is gathering evidence, identifying a
suspect and building a case against the alleged perpetrator. This process is as old as the
legal system. For common crimes, the problems and approaches to solving mysteries are
familiar. The state establishes motive, means and opportunity for a suspect of a violation

of a specific law, and tries him or her in court to obtain a conviction. Although technology

CHAPTER 1. INTRODUCTION 3

crimes may appear novel, their nature remains the same. The motivations of criminals
rarely change, but their methods do. So do the challenges to law enforcement. Since the
buying habits of technology consumers dictate new and improved features, technology is
usually designed with functionality and cost as primary concerns, not security. Yet, now
that society increasingly relies upon proper operation of information technology, criminals
are increasingly using and targeting computers. This leads to a dilemma for those trying to
detect, prosecute or prevent a crime from occurring. They have the responsibility to stop
crime, but not the means.

The perfect solution would be an unambiguous way to apply and enforce the law
in a way that mistakes never occur. Of course this will never happen. Fallible technology
is installed and operated until it breaks. Often, this is actually acceptable. For example, it
is common knowledge that credit card fraud occurs, but financial companies, a technology-
intensive industry, recognize, quantify and accept it. They do this because they calculate
how much fraud and business interruption they can tolerate according to their business
plan. Home users may not be so methodical, but go through a similar process. Due to the
unreliability of computers, users learn not to depend on them. They will just reboot their
computers if the software freezes. Unless there is a viewable side effect, most users would
never know if their personal files had been stolen or maliciously, yet subtlety altered.

If computers will have imperfect security for the foreseeable future and crime will
go unprevented, what can be done to at least learn from experience? Answering questions of
method, intent, means, culpability, motive and loss resulting from cyber crime is the domain
of computer forensics. Forensic science is the application of science to the law. Although
no automated analysis tools that have knowledge of the semantics of the evidence are
currently available, this thesis shows it is possible to apply techniques of computer science
to the huge amount of digital evidence gathered in an investigation. Using automated data
normalization and expert system reasoning, a program can calculate simple deductions that
can help answer questions of illegal activity. Major uses of an expert system for computer
forensics include investgation of federal, state, and local law violations as well and corporate

policy and contract violations.

CHAPTER 1. INTRODUCTION 4

1.1 Thesis organization

This thesis is organized into seven chapters. Chapters 1 and 2 introduce the
subject matter and context into which this thesis fits. Chapter 3 elaborates on issues upon
which most digital forensic work has focused: gathering the input (raw data) to the forensic
analysis process. Chapter 4, the core of this thesis, presents my general approach and
will include specific examples, noting the various stages of an automated computer crime
investigation. To show the feasibilty of this approach, chapter 5 presents a prototype and
the results of its use in a simulated computer intrusion. Finally, chapters 6 and 7 discuss
applications, perspectives and implications of this approach to computer forensics and some

summary thoughts.

Chapter 2

Background

Digital forensic science, or computer forensics, is a new discipline in an old field:
forensic science. Forensic science, defined as “the application of science and engineering to
the law,” is an established scientific discipline with a great deal of history. Due to society’s
increasing reliance on information technology and the inevitability of crime, the need for
substantive advances in digital forensic science is important. The following is one definition

of the discipline:

The use of scientifically derived and proven methods toward the preservation,
collection, validation, identification, analysis, interpretation, documentation,
and presentation of digital evidence derived from digital sources for the purpose
of facilitation or furthering the reconstruction of events found to be criminal, or
helping to anticipate unauthorized actions shown to be disrupting to planned
operations. - DFRWS [11]

Work has been done to apply existing forensic science techniques to the digital
realm, but there is a great distance to go. The amount of evidence law enforcement alone
has to process has increased every year. Supervisory Special Agent Mark Pollitt, of the FBI
Laboratory’s Computer Analysis Response Team (CART), stated at the 2002 University of
Idaho Forensics Workshop that by the end of 2002, CART will have processed approximately
500 terabytes of digital evidence.

Currently the primary factor limiting the evidence process is the number of qual-
ified technicians. The majority of digital evidence processed by law enforcement today is

on computers used as instruments of traditional crimes, such as a threatening email rather

CHAPTER 2. BACKGROUND 6

than a threatening letter. Although a minority of procecuted cases, crimes in which the
computer is the target are important as well. This difference in the number of cases is due
to many factors including workload of investigators, familiarity with technology crime and
likelihood of a successful conviction. This thesis will focus primarily on computers as the

target of crime.

2.1 Scenario and Motivation

If you tell the truth you don’t have to remember anything - Mark Twain

Suppose I, the network administrator responsible for computer security, get a
telephone call informing me that one of my hosts is scanning and attacking other hosts
on the Internet. Since the IP source address of the attacks to the victim may have been
spoofed, to confirm the complaint, I will monitor the local network for malicious activity.
Malicious network activity is detected. At this point, I must make a decision based upon
available information, corporate policy and time constraints.

A known policy violation exists and the importance of the host to my organization
is known. The likelihood of learning whether this incident was perpetrated by a single
person or coordinated among multiple attackers is unpredictable, as is realizing that this
attack may be a single instance of a set of related events. As the network administrator,
I can choose between performing a full investigation, according to sound forensic evidence
practices, or not. The typical answer is to investigate if the host is important, such as a
mission critical server, or if valuable data is housed there. If the host belongs to an end user
and user data can be recreated or restored, the operating system will just be re-installed.

Neither option is optimal. If we ignore the computer intrusion or reinitialize the
system, no lessons can be learned. Perhaps there is a common software vulnerability that
can be fixed. Perhaps there is a system configuration problem common to hosts through-
out the network than can be exploited again. Maybe the user was tricked into installing a
Trojan horse keystroke logger that delivered passwords or trade secrets to the company’s
competition. None of these possibilities can be ruled out if there is no evidence to examine.

Just as importantly, experience with vulnerable software, poor practices and inadequate

CHAPTER 2. BACKGROUND 7

procedures cannot be shared with peers, within the company or in the community, if these
problems are never pursued. Finally, corporate liability may be incurred. “Downstream
liability,” where a company is liable for the malicious activity of its users, authorized and
unauthorized, creating damage elsewhere on the network is a possibility. A standard prac-
tice of ignoring malicious activity could also be construed as negligence or malfeasance of
management if corporate operations fail.

On the other hand, given the state of information technology and likelihood for
mischief, always performing a full investigation would be cost prohibitive. Each investigation
will be time intensive and the local expertise of the company, a critical and finite resource,
will be preoccupied with the investigation and not contributing to corporate productivity.
Since proper seizure of data and documenting the state of the system is important, system
down time could be a significant factor directly affecting customers and the productivity of
employees. Finally, there is the potential for corporate liability to be incurred. The subject
of an investigation may sue, for violation of an expectation of privacy for example, and if
contraband is found, even unrelated to the investigation, the company is responsible for it.

The need exists for a diagnostic capability to rapidly answer operational questions
and deal with the legal issues later. Just as fire fighters seek to save lives and property first,
and legal staff determine culpability of suspects later, computer crime fighters must first
perform triage to systems. With insights learned from formal, digital forensic investigations,
in the future it may be possible to design systems with forensics in mind. More reliable,
trustworthy and efficient mechanisms that aid the investigator would help. Common oper-

ational questions today though, are broad and ambiguous in nature:

e How did they get in?

How long have they been in?

What are they doing now?

What did they get?
e How do we get them out?

e How can we prevent a recurrence?

CHAPTER 2. BACKGROUND 8

e How can we deceive the attacker?

e How can we identify incriminating evidence on the attacker’s host?

Answers to these questions may be approximated based upon evidence left behind
by the attacker. The kinds of evidence available will be related to the sophistication of the
attacker. A novice with little experience, no custom-built tools and no effort made to remove
evidence will leave obvious signs. Anomalous log entries would be a simple example, but
finding directories with the default names used by common root kits used to hide evidence
is useful as well. chkrootkit [28] is an open source project that uses this signature based
approach. An experienced attacker on the other hand, will attempt to create an illusion
to the administrator that a security violation did not occur. Malicious alteration of the
operating system’s kernel code, through an unauthorized kernel module for example, will
corrupt the results of even a trusted, statically compiled binary used to detect surreptitious
activity. The attacker will also meticulously edit log files and other evidence of his presence.
Hopefully, side effects of his presence though will still exist. Consequences of his activity,
that he either doesn’t realize or doesn’t have the time and access privileges to eliminate,
will remain. Only the perfect attacker will be able to perfectly recreate the state of the

system as it was before the security violation.

2.2 Related Work

2.2.1 Existing digital forensic analysis

The current generation of forensics tools is based upon the hard drive as the basic
unit of evidence. Many tools focus on duplication of data. To ensure the forensic integrity
of evidence, a trustworthy image of every location data may reside on the disk is necessary.
Work has been done on reliable imaging (not just duplication of allocated disk blocks),
such as the Linux dd utility, and for specific hardware formats. Disk imaging tools have
no analysis capability. The list of publicly available and peer reviewed automated analysis

techniques is short. While this is not an exhaustive survey, the state-of-the-art automated

CHAPTER 2. BACKGROUND 9

forensics techniques are unsophisticated and evidence analysis is highly dependent upon the

expertise of the examiner.

Keyword search

The most common analysis technique is to search for strings of characters. Known
as a keyword search, investigators assemble a list of words specific to the investigation
and words commonly used in criminal investigations for example, and look for matches on
digital media seized as evidence. By searching the physical media, the investigator not
only searches every file in the file system, but the blocks marked as unused as well. In
addition, this technique searches slack space; those data locations contained within the list
of disk blocks allocated to a file, but outside its contents. This is data left over from deleted
files, but whose disk blocks were recycled and not yet overwritten. Unfortunately for the
investigator, the capacity of disk drives is growing at a much higher rate than their data
transfer rates. Searching a single hard drive takes a long time. To aggravate this situation,
as investigators learn more through the investigation, new words may be added to the “dirty
word” list, which necessitates another search of the entire drive. An approach to mitigate
the waiting time for keyword searches is to index all printable strings on the hard drive once.
Although this takes hours, subsequent searches are fast and need not be predetermined.

Often, the most useful evidence collected is that which the suspect believed was
deleted and forever unavailable to law enforcement. This easy source of incriminating
evidence is an artifact of current software implementations and misconceptions of end users.
Changes in either will make the job of the digital forensic evidence examiner much more
difficult. With the conspicuous exception of the FBI [18], EnCase [35] by Guidance Software
is the most popular forensic collection and analysis product of law enforcement. Guidance
Software has a statement on the disk wiping utility that ships with Microsoft Windows XP

operating system:

The scrubbing feature is part of Windows XP, but it is not all that it was thought
to be. It is a command line tool that is difficult to use, time consuming and
nothing more than a good wiping utility. The average computer user will not
know how to use it and even if it is used, evidence artifacts still remain in certain
file systems. Guidance Software [24]

CHAPTER 2. BACKGROUND 10

I find it a precarious situation for law enforcement to depend on the combination

of the ignorance of users and the poor usability of disk wiping utilities to catch criminals.

“Thumbnail analysis”

For files that do not have printable strings, simple keyword searches do not work.
Images are a typical example. The common technique for examination of images is to
simply present thumbnails of the images to the investigator to quickly look at many images
at a time. Though looking at an image does not take special technical skills, determining
its relevance may. Using this approach, the only way to accelerate the investigation is to

increase the number of investigators.

File extension verification

When suspects were found to be changing the file name extensions of files to
obfuscate their content (specifically, changing an image file to appear to be an executable
binary), a technique was developed that simply compared the first few bytes found in the
file to the first few bytes expected based upon the file name extension. For example, for a
file that has a JPG file name extension, one would expect the standard JPEG header at the

beginning of its contents.

Checksum database

With thousands of files on a typical home computer or many more on an ISP’s
server, an efficient method of identifying (and ignoring) unaltered, common files is needed.
When suspects were found to be hiding evidence by renaming files to the same names found
in standard operating systems or software applications, this problem was aggravated. By
collecting a database of cryptographic hashes of files from legitimate software packages and
comparing the hashes of files from the body of evidence, an investigator can identify and
ignore common files. This idea was formalized and standardized in the National Software
Reference Library (NSRL) at the National Institute of Standards and Technology (NIST).

Law enforcement has similar databases of evidence found at crime scenes such as inks,

CHAPTER 2. BACKGROUND 11

fibers, firearms and fingerprints for example. To extend this idea, the Hashkeeper Database
project [6] was created collecting cryptographic hashes of contraband files and has been

successful in aiding investigators.

2.2.2 Research projects

There have been a number of projects that have applied artificial intelligence tech-
niques to the prevention and detection of computer attacks, particularly audit trail analysis
and intrusion detection. An example is eXpert-BSM [26] which is a forward-reasoning ex-
pert system designed for real-time analysis of Sun Solaris audit trail data (collections of
system calls). It was designed for intrusion detection and preventing a security violation
and is based upon a forward-chaining, rule-based knowledge base: P-BEST, which reasons
directly from the raw data. If the costs of storing audit trail data were justifiable, it would
be a rich source of data to learn the causes and effects of an attack that succeeded.

Few projects have focused on recovery from a successful attack. The “Diagnosis,
Explanation and Recovery from Break-Ins” (DERBI) [42] project at SRI used a procedural
reasoning system [29] to analyze data. If data was collected after an attack, it could search
for patterns of attacker activity based on known procedures for subverting security. In
addition, Elsaesser and Tanner present an approach [13] which automatically generates
hypotheses of computer attacks, simulates them on the target configuration and applies
plan recognition techniques [23] to search for supporting data.

My approach, which examines evidence for violations of specified relationships
between data in existing software architectures, is a form of integrity checking first studied
in the Clark-Wilson Integrity Model [4]. By applying that model to a database, for example,
a formal specification of relationships between fields in tables of the database is checked to
verify data consistency and database integrity. These are known as constrained data items

(CDI). Tripwire [22] is an application of integrity checking to system security.

Chapter 3

A model for computer forensics

“Now, a few words on looking for things. When you go looking for something
specific, your chances of finding it are very bad. Because, of all the things in the
world, you're only looking for one of them. When you go looking for anything
at all, your chances of finding it are very good. Because, of all the things in the
world, you're sure to find some of them.” - Darryl Zero [46]

A perfect computer attack would leave no unintentional evidence of its existence.
The unknown or unintended side effects of the attacker’s activity though, can give a defender
an idea of what happened. An unknown configuration file of a hacker tool or forgotten log
entry can be a significant clue. When an attacker attempts to hide his presence though,
creating a realistic illusion may be difficult. A key contribution of this approach is to use
multiple sources of such side effects and apply automated reasoning techniques to identify
and characterize activity attributed to an attacker. Since human experts will always be
required to deal with human attackers, due to the unwieldy amount of actual and potential
data available to a computer crime investigator, automating as much of the data collection
and analysis process as possible is critical. Reliable automated differentiation of relevant
and irrelevant evidence would be an achievement.

To these ends, encoding an expert system with a decision tree that uses predeter-
mined invariant relationships between digital objects to detect semantic incongruities could
aid an investigator of computer crime. The first step is to identify those useful relationships
between specific digital objects in a system that could indicate the activity of an attacker.

Next is to collect that data from a potential or actual crime scene. Finally, automated

12

CHAPTER 3. A MODEL FOR COMPUTER FORENSICS 13

data aggregation and analysis of the body of evidence will identify those specific data that
violate the expected model of the system. Depending on the context of the application of
this approach and the maturity of the automated reasoning knowledge base, the potential

exists for automated response as well.

3.1 Data collection

Despite the common belief that the Internet provides anonymity, there is a great
deal of data available to the investigator to answer relevant questions. On the other hand,
it is the rare instance that enough evidence exists to prove beyond a reasonable doubt
that a specific individual was responsible for some specific illegal activity. Fortunately, not
all relevant questions are necessarily intended for criminal prosecution. Depending on the
purpose of the investigation, characteristics of different types of data, such as volatility, may
aggravate or mitigate the process. There are nontechnical factors to be considered as well.
Much has been written about the legal issues that surround the collection of data to be
used as evidence [30]. The applicable laws written long ago, are often difficult to apply to
modern computers and their networks. The legal standard of “best evidence” for instance,
is overkill for all but litigable purposes. Yet, there’s no way to tell before the completion of

an investigation if it’s worth the time and effort to follow formal procedures.

3.1.1 Purpose, means and investigating agency

The purpose of the investigation will direct the types of data collected and affect
the means by which it is collected. In the traditional forensic analysis example, law en-
forcement agencies will collect digital evidence in order to support a legal argument that
a crime has occurred. Due to evidentiary rules, they physically seize the storage media
and duplicate it. Analysts only examine copies of the original data and may be required
to compare cryptographic hashes to the originals to verify that the data copied correctly.
On the other hand, for an organization that only wants to stop a denial of service, it would
be illogical to bring the system offline in order to physically isolate the potential evidence.

Instead, they may use the data on the affected and related hosts directly (rather than a

CHAPTER 3. A MODEL FOR COMPUTER FORENSICS 14

forensic copy for evidence purposes) to determine a solution. A company searching for a
rogue, trusted insider, may search for incriminating evidence against a suspect, but not
pursue litigation for fear of public humiliation. Data collected need not convince a jury, but
only the target of the internal investigation. In yet another scenario, an insurance company
may write a cybersecurity policy that reimburses a company for computer attacks but not
for technical mistakes. They would only collect data to determine if the consequences of
a loss of service were intentional or unintentional. Finally, an individual may intentionally
allow his or her personal machine to be penetrated in order to learn the technique and
underlying vulnerability that was exploited. Collecting access control logs would yield no
new information because the owner is the only user. Core dumps, images of memory and

error codes, for example, would help in locating the vulnerability in source code.

3.1.2 Characteristics of data to be collected as evidence

Physical location

Whether it is a distributed denial of service [17], a fast moving worm affecting
thousands of hosts [37], or an astronomer tracking down a 75 cent accounting error leading
to evidence of hacking and international espionage [39], system administrators use many
sources of data to identify and implement a solution to a problem. RFC 3227 [2], “Guidelines

for Evidence Collection and Archiving,” identifies many locations of evidence:

Here is an example order of volatility for a typical system.

- registers, cache

- routing table, arp cache, process table, kernel statistics,
memory

- temporary file systems

- disk

- remote logging and monitoring data that is relevant to the
system in question

- physical configuration, network topology

- archival media

CHAPTER 3. A MODEL FOR COMPUTER FORENSICS 15

Volatility

Data volatility is a critical issue because highly relevant data, such as the owner
of a malicious process, is easily lost. For reasons of storage capacity not all relevant data
can be recorded in nonvolatile storage. For reasons of practicality though, storing all data
ever created would not be reasonably searchable. System call audit trails, such as BSM [21]
or WinNT C2 auditing, are examples of thorough, but unwieldy evidence trails. In a literal
sense, they can explain everything that lead to the insecure state of the computer, but the
relevant and irrelevant data cannot be distinguished and the data volume is enormous. As
time passes, relevant information may be lost due to events such as memory being reused for
another process or a system reboot. A common technique for attackers with unauthorized
access is to hide a file by running a process with an open file descriptor. The file itself is
then deleted. This allows the attacker’s process to read and write data to the file system in
a place the administrator cannot access through the file system. To the administrator, that
location on the disk appears to be unallocated. When the process ends, the file descriptor is
released and the location on disk is then vulnerable to being overwritten. Given the passage
of enough time, though data in nonvolatile storage can be lost as well to events such as log

file rotation and the reuse of archival media.

Ownership

To actually collect the data, its physical location is important, as is its volatility,
but these are not the only factors. Gaining administrative access (e.g. identifying the
owner, location and authentication credentials) is just a matter of policy and procedure,
but is a real problem. Seeking the source or just documenting effects of malicious behavior
often crosses administrative boundaries. Whether between departments, companies or even
countries, those seeking potential evidence require the cooperation of those responsible for
remote systems. If voluntary cooperation fails, law enforcement can exercise the privilege
to force compliance. Of course, cooperation between law enforcement agencies, especially
between sovereign nations, may not be fruitful either. For time-sensitive data (as most is),

efficient cooperation not only lowers the cost and time of an investigation, but can actually

CHAPTER 3. A MODEL FOR COMPUTER FORENSICS 16

be the difference between success or failure.

As in the nontechnical world, basing deductions on uncorroborated evidence is
risky. In the technical realm, because data can be easily altered and the process automated,
one must be skeptical of the veracity of all data. From an investigative perspective, evidence
from more than one administrative domain that do not contradict eachother lends credence
to the legitimacy of the evidence. A designated remote log host is an uncomplicated way
to replicate logging data to a different administrative domain that creates many problems

for the attacker hiding his presence. This requires prescience.

Trustworthiness

Since attackers can trivially alter data that may be used as evidence, the trust-
worthiness of the data is affected by the stage of the attack in which data collection occurs.
Collecting data before an attack is a proactive way to be able to quickly react on reliable
data. Administrators become familiar with events that normally occur and their relative
frequency. If promptly detected, collecting data during an attack can provide the admin-
istrator the most relevant data with the least amount of overhead. Examples of such data
include the attacker’s actual keystrokes or just those network packets sent between the at-
tacker and the compromised host. Collection of data only after an attack has occurred,
which is the common case, causes complications. Questions of completeness and veracity
can never be fully answered because the potential always exists that the attacker altered
sources of evidence maliciously or normal processes altered the data innocently. The ability
to determine what happened in the system depends on the sophistication of the attacker and
the expertise of the investigator. Unfortunately, tools that cover the tracks of an attacker

are much more common than those that uncover those tracks.

Abstraction

The type of data collected has a direct effect on the questions that may be an-
swered. Data collected at a level of abstraction (one set of objects and the relationships

between them), such as the users, terminals, and times in operating system login logs, may

CHAPTER 3. A MODEL FOR COMPUTER FORENSICS 17

answer useful questions, but be unable to answer questions at a lower level of abstraction
(“Why did the login daemon record these values in this login entry?”). Access logs for
example, may allow one to determine what user accessed what resource at what time. Like
credit card receipts and videotapes for a convenience store robbery, these logs can be useful
in recreating a sequence of events that occurred during an intrusion. Error logs and au-
dit trails (system call logs) on the other hand, can explain a sequence of events within an
application. At this level of abstraction, it may be possible to determine what caused the
application to crash or perform unauthorized actions. Network intrusion detection systems,
firewall logs and stored packet streams are another level of abstraction and forms of auditing
that are often in a different administrative domain than the potential victim hosts they are
designed to protect. As Carrier [3] points out, some abstractions discard information from
the things they represent whereas other abstractions lose no information: lossy versus non-
lossy abstractions. A network intrusion detection alert, for example, simplifies the actual
data packets the alert was based on, whereas an ASCII character requires all seven bits to

be represented.

3.1.3 Legal issues

In traditional crime scene forensics, the process law enforcement agency follows to
collect evidence is a highly formalized and regulated endeavor. To protect the rights of the
innocent and guilty alike, rules of evidence have been established that manage what evidence
may be taken into custody by the state, how it is handled and if it may be presented in court.
Traditional crime scene forensic procedures, though, have not transferred well to computer
crime. In a literal sense, digital objects exist in a physical sense in their given storage
media. Yet as opposed to handwriting, bullet rifling marks or DNA samples, digital objects
are infinitely malleable and perfectly replicable. Archival media, such as the Compact Disc-
Recordable (CDR) standard, may be writable only once, but in an operating computer
system, data on the hard drive, swap file, main memory, caches and registers can and do
change frequently. In spite of the legal complications digital evidence poses, data is still

collected for investigations with purposes other than criminal or civil litigation.

CHAPTER 3. A MODEL FOR COMPUTER FORENSICS 18

Law enforcement

In the United States, rules of evidence have numerous origins including English
Common Law, the Bill of Rights, legislation and court case precedents. Common standards
of practice that comply with existing law, have not yet matured in the collection of computer
crime evidence. In the United States, under the Federal Rules of Evidence, and the rule of
“Best Evidence” in particular, to prove the content of a document, the “original copy” is

required. The Federal Rules address computer data specifically:

“[i]f data are stored in a computer or similar device, any printout or other output
readable by sight, shown to reflect the data accurately, is an “original.” Fed. R.
Evid. 1001(3) [30]

While many copies of the same data may be created by being output to some form
“readable by sight” each is considered an “original” for legal purposes. An argument can
be made that only the physical instantiation of computer data, its storage media, should
be considered the original. The final interpretation was a compromise though, so that

computer data could be useful as legal evidence.

“While strictly speaking the original of a photograph might be thought to be
only the negative, practicality and common usage require that any print from
the negative be regarded as an original. Similarly, practicality and usage confer
the status of original upon any computer printout.” Advisory Committee Notes,
Proposed Federal Rule of Evidence 1001(3) (1972). [30]

Finally, it is possible to present an automated analysis of evidence in court even

though a person has not performed this part of the computer crime investigation.

“Federal Rule of Evidence 1006 permits parties to offer summaries of voluminous
evidence in the form of “a chart, summary, or calculation” subject to certain
restrictions.” CCIPS section: V.D.2 [30]

Non-law enforcement

Whereas law enforcement agencies have strict legal requirements for collecting and
handling evidence, a company for example, with no intention of seeking legal relief, does
not. If employees have an expectation of privacy or if the company is collecting data on

behalf of a law enforcement agency, certain laws will still apply. Once a legal expectation

CHAPTER 3. A MODEL FOR COMPUTER FORENSICS 19

of privacy has been eliminated, since the company owns all the computers and networks
concerned, it owns and can collect the data as well. From the perspective of a computer
crime investigator, more data to analyze is good.

Companies may actually have a legal disincentive to collect and store data. Their
data backup and document retention (or deletion) policies exist to reduce corporate liability
in the case of court subpoenas. When the company is aware of a policy or legal violation,
there may be a responsibility to react. Although historical data may show the culpability
of a suspect in a violation, it also may show the culpability of the corporation to different
violations. Yet even though storage media and local area network bandwidth are inexpen-
sive, since most data are useless, the liability and management costs outweigh the data’s
utility. System call audit trails are an example. So another rule of thumb is not to log any
data that is not regularly used.

Organizations receive contradicting advice. During an investigation, collection of
a great deal of data is advantageous. Between investigations though, time and budget
constraints dictate a minimum level of data collection. Automatic, dynamic adjustment
of the quality and volume of logging, analogous to a motion sensor that triggers a video
camera, could meet these opposing requirements. Though legal standards for how to collect
and preserve evidence are becoming common, answers to questions such as what data to
collect, when to collect it and what level of abstraction of data to store are still an inexact
art.

To address these issues, an automated approach, to reduce the challenge of data
volatility, that is deterministic, for purposes of repeatability and consistency required in
legal settings, would address difficult problems faced by investigators today. Knowledge
engineers could design a knowledge base relating data from various levels of abstraction in
a system, considering issues of trustworthiness based on the data’s source, so that instead of
re-learning how components of a system interact during every investigation, knowledge can
be saved and reused. This allows experts to focus on new problems that arise and require

judgment an automated system cannot provide.

Chapter 4

Approach

Currently, a computer forensic examiner begins to analyze data at the lowest layer
of abstraction, physical locations on disk, and continues in an ad hoc process up the layers
of abstraction of the operating system. While the brute force approach of examining every
physical address on the media may ensure meticulousness, the cost in time and resources
make it unusable in common scenarios. If investigating crime is more expensive than ignor-
ing it, it will be ignored. If cursory investigations were possible and identification of novel
cases was more efficient, administrators and developers may find it valuable to spend the
time to learn from their mistakes. If identification of the most egregious violations of law
was more efficient, caseloads for law enforcement, where evidence standards are the high-
est and budgets are limited, could be better prioritized. Automated analysis of technical
evidence is an obvious approach.

Even if logging data and technical evidence are collected, if not examined, no
insight can be gained. To analyze the body of evidence available, the investigator must first
learn what information has been collected, then answer questions with it. Currently, this
process is either dependent upon highly trained investigators (who become overloaded) or
a proprietary product such as EnCase [35]. Current products designed for forensic analysis
gather data according to procedures intended for law enforcement and provide arguably
simplistic functionality for law enforcement specific purposes, which limit their utility. The

sophistication of computer crimes, has greatly outpaced advances in the analysis of evidence

20

CHAPTER 4. APPROACH 21

at such low levels of abstraction. In either case, investigators are given too much data to
analyze now and it will continue to increase. The solution is to automate simplistic tasks
for the investigator and encode expertise into a program that can automatically make
deductions that are relevant to an expert.

Obviously, detection of malicious activity is much more difficult when looking only
at individual magnetic flux representing logical zeros and ones on physical digital media. So
first, raw evidence must be aggregated in a rational way into more abstract objects. Ignoring
hidden or encrypted data for the moment, even examining the contents of thousands of files
may leave elementary questions unanswered if the investigator is not utilizing the correct
programs to parse and interpret the data. Since operating systems and their applications
normally build digital objects (in this thesis understood to be abstractions) using lower
level abstractions, which is invisible to the user, this step may seem obvious. Yet since
these are the very mechanisms attackers subvert, the raw data itself must be independently
interpreted and organized and is therefore part of the forensic analysis process. At this
point, standard analysis techniques may be applied. Then, using abstract digital objects
that computer users take for granted, it is possible for a program to automatically search
for and detect violations of invariant relationships between objects previously established
by forensic experts. An invariant relationship is a specification (a form of policy) between
digital objects that holds true in a system operating in an authorized state. A positive side
effect of automating this process is that the assumptions and specific evidence leading to a

deduction will be documented.

4.1 Data aggregation

Common standard practices after computer intrusions are to either reinitialize and
reinstall the operating system or do a full forensically sound investigation. To accelerate a
full investigation or when “best evidence” procedures aren’t required, such as an internal
corporate investigation, or a personal system, evidence could still be stored and shared in a
standard format and its analysis automated using the approach described herein. Caseloads

for law enforcement, where evidence standards are the highest, may be prioritized as well,

CHAPTER 4. APPROACH 22

for example by identifying those cases with evidence to support a claim, and those cases
that cannot be proved.

When solving a problem, such as how an attacker penetrated security counter-
measures, experts don’t usually think of computer data in terms of physical media. They
think about files, users and activity like an InterRelay Chat (IRC) conversation. By sharing
evidence at the level of abstraction desired, investigations would cost less and be completed
faster. A standard set of objects or a common language for technical evidence would provide
many benefits.

The process by which law enforcement collects and stores data that may be used
as evidence is the legal standard of “best evidence.” While the legal standard of “best
evidence” has its merits, it is not ideal for all computer investigations. Even in investiga-
tions for law enforcement purposes where “best evidence” is the minimum standard, since
evidence is only shared in its most basic form, its storage media, analyzing the evidence is
time and labor intensive. Instead of only sharing the physical media, if a data standard
was established to share evidence at higher levels of abstraction, software and organizations

would gain benefits.

4.1.1 Example data-sharing standard

Though an exhaustive examination of the subject is beyond the scope of this work,
a technical standard, such as an XML DTD, may include attributes of objects at various

levels of abstraction such as the following Microsoft Outlook email example:

1. Raw data (logical ones and zeros only)
2. Aggregated data

(a) Application
i. Text of message
ii. Sender/receiver
ili. Sent/received time

iv. Mail servers that delivered the message

CHAPTER 4. APPROACH

v. ESMTP ID for each mail server
vi. Message-1D

vii. Content-type

viii. User-Agent

4

ix. Data specific to the “.pst” format
x. Embedded message
A. Forwarded message
B. Message replied to
C. Attachment
(b) Operating system
i. Host name, path to file and name of file
ii. Owner/group of file
iii. Modification/access/creation times of file
iv. Previous modification/access/creation times (from an MFT in NTFS)
v. Microsoft Universal Identifier (UID)
vi. Disk locations of data
vii. Audit trail information (userID etc.)
viii. Related temporary files
(c) Hardware
i. Unique identifier for storage media

ii. Make/model of storage media
3. Metadata

(a) Identity of individual who collected the data
(b) Time stamp of when it was collected
(c) Cryptographic checksum of raw data
(d) Tool that collected the original data

(e) Tool that aggregated (interpreted) the data

23

CHAPTER 4. APPROACH 24

(f) Sources of data (Abstract concepts may be inferred from multiple sources.)

i. Sender’s host
ii. Sender’s mail server
iii. Email attachment virus checker activity log

iv. Receiver’s host

4.1.2 Benefits

The definition of a language for technical evidence or the formalization of a stan-
dard set of digital objects at various levels of abstraction would separate the data aggre-
gation process from its analysis. Automating the data aggregation process for forensic
purposes will allow for more efficient use of an expert’s time. Once in a standard machine-
readable format, automated exchange of data can occur.

Once interpreted by trusted programs (as opposed to potentially subverted pro-
grams) and aggregated into a standard format, evidence could be shared yet the output
of the analysis and the process by which it was analyzed could be concealed. Between
prosecution and defense attorneys for example, this may be an important distinction. Both
parties could have a common understanding about the facts of the evidence, but analyze
it in different ways to support their respective theories. For example, two investigative
firms are retained by opposing counsel. One has special expertise network flow analysis,
whereas the other focuses on proprietary aspects of operating systems. Each has developed
a valuable knowledge base of invariant data relationships in its domain of expertise. The
evidence is not sensitive, but the knowledge bases are. Independent analysis of the same
evidence could become at least feasible, if not common practice. Data could be shared and
analyzed in different ways to corroborate conclusions independently.

In addition, new possibilities for evidence sharing policies could be created. Instead
of disclosing either none of the data or all the data in its most raw form, by sharing data
at the level of abstraction permitted, such as network events from an intrusion detection
system, but not network packets, restrictions based upon that level of abstraction could be

enforced. This could be useful when sharing evidence between federal, state and local law

CHAPTER 4. APPROACH 25

enforcement authorities or when two or more corporations need to cooperate in one context,

but compete in others.

The national discussion, development and adoption of common data-sharing and
communications protocols would greatly improve the ability to share information
across jurisdictions. A tightly integrated data-sharing approach, engineered into
the next generation of investigative solutions, would provide the foundation for
national cyber-attack information databases. Michael Vatis [45]

Organizations with different priorities could collect low-level technical evidence
with relevance to their respective goals (See section 3.1.1). While law enforcement orga-
nizations will collect technical data with the purpose of solving and prosecuting a serious
crime with significant damages, a company in the course of normal operations will not.
A company will collect data in order to maintain operations, optimize them or prevent
exfiltration of proprietary data. A risk analysis of what data to collect, preserve and an-
alyze should eventually reflect its impact on the company’s profit and loss statement. On
the other hand, a loose collection of computer security aficionados, with no corporate rev-
enue stream to protect, may be more interested in collecting forensic data based upon the

popularity of software with a security flaw and the impact on the community. Below is a

non-exhaustive list of purposes for collecting data with forensic investigation applications:
e Seriousness of a committed crime
e Effect on corporate revenue (or profit & loss statement)
e Cost of replacement (of a proprietary data set for example)
e Simplicity of solution (in order to solve the easy problems first)
e Potential for loss of life
e Potential opportunity cost (of a stolen proprietary data set for example)
e Popularity of software with a security flaw

If organizations that collect data for different purposes were able to export it to
a common format, an analysis tool would not have to support countless formats specific to

hardware, operating systems, file systems and applications. Likewise, given a set of data

CHAPTER 4. APPROACH 26

described by this common forensic standard, it could be analyzed by different tools, written

and operated for different purposes.

4.1.3 Iteration between data analysis and collection

Searching for hidden meaning, such as a steganographically hidden message, is
obviously data analysis, but the output could be considered part of the process of data
collection. The hidden message is at a higher level of abstraction than the document or
image that conceals it. The description of a Microsoft Word document, an abstract object
itself, is really the aggregation and interpretation (or analysis) of blocks and sectors on
disk which are just objects of a lower level of abstraction. Even the interpretation of bits
into ASCII characters is a type of analysis. So normalizing raw data in order to construct
an XML document of evidence is a type of analysis. A more esoteric example, but one
that I have encountered, was an email in a Microsoft Outlook inbox with an attachment
of a presentation slide of an image of a screen shot of a spreadsheet. Although this may
appear to be a contrived and therefore anomalous example, because email was the means the
organization used to store and share business documents, it was not unreasonable. Without
automated interpretation, enough layers of abstraction, even with benign intent, will cause

an investigator’s time to become the bottleneck in an investigation.

4.2 Identification of invariant relationships

Mechanisms such as audit trails, firewall logs, IDS and application logs, and ac-
counting records, intended for security enforcement or monitoring purposes obviously pro-
vide a direct means for the investigator to learn the sequence of events leading to a security
breach. Yet these mechanisms may not have been installed and configured in the first place,
they may have been maliciously disabled or their output may have been deleted through log
file rotation, or altered by an attacker’s log wiping program. Modern computers, through
their operating systems and applications, store massive amounts of information even in a
default configuration. File system metadata, log files from the default logging configuration

and application-specific file formats are examples. Unlike a database with an efficient data

CHAPTER 4. APPROACH 27

model that has been put into third normal form, there are redundancies in this information.
By looking for these redundancies, and the mechanisms from which they arise, it is possible

to elucidate relationships in the data that should always hold true.

4.2.1 Examples

Identity property

Of course the simplest invariant relationship between two digital objects is the
identity property. In other words, for a given object such as a log file entry, a copy of it
exists elsewhere. Use of this property with log file centralization is particularly effective
when an attacker adds, deletes or modifies suspicious log entries on the penetrated host. In
this scenario, it is easy for the investigator to compare the log file and the remote copy on a
trusted centralized log server, searching for differences. If an unauthorized difference exists,
since the assurance of the logging mechanism has been compromised, future log entries from
that host cannot be considered trustworthy because entries may have been forged, edited

or eliminated.

File access times

An operating system’s file system stores metadata useful to the computer crime
investigator. In Linux’s EXT2 and UNIX’s UFS for example, a file’s metadata, such as
owner, permissions and last access time, are stored in a data structure known as an inode.
For every file, the modification time (mtime), access time (atime) and time of the last
change of the inode (ctime) are recorded. With knowledge of the semantics of each of these
fields, an inherent redundancy becomes apparent: although a file’s inode may change at any
time, since a file modification changes the modification time, the inode itself must change

as well. Therefore, for a given file, the ctime field must never be less than the mtime field.

wtmp and utmp

The DERBI [42] system, designed at SRI, noted duplication of some, but not all,

data in the utmp and wtmp files in Solaris UNIX. These files are accounting records that

CHAPTER 4. APPROACH 28

collect the log in and log out times of each user, in addition to system reboots and shut-
downs. If an attacker modifies one and not the other, or modifies both, but inconsistently,
his presence may be detected. Unfortunately, the mechanism that records these data is
common to both, so if it is compromised, both logs will be consistently unreliable. Another
simple, but effective invariant DERBI noted was that log entry time stamps must always
be monotonically increasing. Chronological gaps and log entries out of chronological order

are highly suspicious.

Shrinking log files

Tsutomo Shimimora describes in Takedown [33] an elegant invariant relationship
about log files; they should never grow smaller. Tt was effective because he configured them
to be backed up on a log host and able to compare the size of a log file to a copy from some

period in the past. Only attackers would edit them in a way that decreased their size.

Sequential inodes

When an attacker subverts the security of a computer, a common technique is to
replace system binaries with Trojan horses that conceal the attacker’s presence. A rootkit
replaces important operating system programs such as last, ps, netstat and 1sof used
by the administrator with different programs with the same name that appear to behave
correctly, but prevent detection of the attacker. To do so, the attacker first uploads the
source code and compiles and creates the Trojan horse. Or, he just uploads the precompiled
binary, then moves the original and renames the Trojan horse. In either case, the file system
of the host to be subverted allocates new disk space for the Trojan horse. Robert Lee, a
speaker at SANS 2001, Baltimore and formerly of the Air Force Information Warfare Center,
noticed the file system in many operating systems allocates disk space and the associated
inodes in sequential order. The side effect is that files created at the same time, such
as initial installation, have inode numbers in a small range. When an attacker replaces a
system binary, well after system installation, the inode number allocated to the Trojan horse

is much greater than the system binaries in that directory. Thus by examining the inodes

CHAPTER 4. APPROACH 29

allocated to system binaries, it is possible to detect unauthorized substitutions. Similar
conclusions might be drawn from the allocation of process ID numbers or disk blocks. To
generalize this result, by examining the mechanisms at a lower layer of abstraction in a
system, patterns that occur normally and have been violated may lead to useful deductions

at a higher level of abstraction.

4.3 Automated evidence analysis

The process to automate evidence analysis is to identify relevant evidence then
reason with it for the purposes of the investigation. While users, administrators and experts
will have relevant information; automatically identifying data that contradicts itself because
of an attacker’s activity will aid the investigator. Based on these contradictions and other
readily available information, it may be possible to identify the possible explanations and

hopefully the most reasonable one. The process is similar to software debugging:

Fortunately, most bugs are simple and can be found with simple techniques.
Examine the evidence in the erroneous output and try to infer how it could
have been produced. Look at any debugging output before the crash; if possible
get a stack trace from a debugger. Now you know something of what happened,
and where. Pause to reflect. How could that happen? Reason back from the
state of the crashed program to determine what could have caused this. Brian
Kernigan [25]

4.3.1 Expert systems

An expert system is a program designed to simulate a human expert in a given
subject domain. It has an inference engine that works with a knowledge base that contains
facts, rules and relationships about the subject matter. Two algorithms an inference engine
may use to calculate conclusions are forward chaining and backward chaining.

Definition 4.5: Forward-Chaining

Inference strategy that begins with a set of known facts, derives new facts using
rules whose premises match the known facts, and continues this process until
a goal state is reached or until no further rules have premises that match the
known or derived facts. - Durkin [8]

Definition 4.7: Backward-Chaining

CHAPTER 4. APPROACH 30

Inference strategy that attempts to prove a [sic] hypothesis by gathering sup-
porting information.

A backward-chaining system begins with a goal to prove. If first checks the
working memory to see if the goal has been previously added. ... The system
then checks to see if the goal rule’s premises are listed in the working mem-
ory. Premises not listed then become new goals (also called subgoals) to prove,
that may be supported by other rules. This process continues in this recursive
manner, until the system finds a premise that is not supported by any rule - a
primitive. - Durkin [9]

4.3.2 Contradiction detection

Once you have eliminated the impossible, whatever’s left, however improbable
is the truth. - Sherlock Holmes [7]

By making simple deductions and highlighting suspicious data, an expert system
will allow investigators to focus their attention more efficiently. Data can be suspicious
either with or without analysis. An example of suspicious evidence without analysis would
be the traditional approach of identifying a signature of a common hacker technique such
as naming a directory one or more space characters (e.g. “/dev/ 7). The name appears
blank and authorized users tend to overlook the directory’s presence thus hiding the hacker’s
activity.

Evidence may also be suspicious through analysis, whereby all legitimate reasons
for its presence are eliminated and there still not being an explanation. In other words, if
all the evidence is of legitimate activity, semantic contradictions shouldn’t exist. To identify
these contradictions, I use a forward chaining, rule-based, expert system. Its working
knowledge is the body of evidence and the invariant relationships between digital objects
are encoded into the expert system’s knowledge base. The ontology is based upon the
objects experts use to understand the system in question: memory usage statistics at the
kernel level, users, privileges and files for an operating system, network events for a network
intrusion detection system, tables and transactions for a database, for example. At whatever
level of abstraction, an object has a related context, or using Minksy’s terminology [27],
frame. The expert system searches through the data, eliminating those that conform to a
known legitimate specification or invariant relationships, and highlights exceptions. These

exceptions are semantic contradictions. The implication, once all legitimate reasons have

CHAPTER 4. APPROACH 31

Trigger:
File Modified

Were any users

(No logged in? q Yes

File:
No Worldwritable? vyeg]
File: Suspects = All
No Groupwritable? vyeg v userslogged in

Suspects = Group

f members logged in

Owner logged in?
Yes '

l No
v— Suspects = Suspects + owner

Root logged in?

v =y

"Impossible" Suspects = Suspects + root

Figure 4.1: Prototype decision tree

been eliminated, would be that an attacker has subverted the system’s security by altering
login logs, or had unauthorized privileges, for example. Figure 4.1 is an example of such
a decision tree with the goal of determining the set of users who may have changed the
contents of a file. In this case, the reason to initiate the analysis, or “trigger,” was the
fact that the file in question was modified, but this could be for any reason: manual or
automated. For example, the administrator may have a hunch or anonymous tip there is
a problem, or an intrusion detection system triggered the forensic expert system to search
for suspicious activity. If no users are found (i.e., the lower left branch is reached), that file
is considered suspicious. A specific suspicious datum will have significance to investigators

based upon the goal of the investigation and the nature of the anomaly.

A problem that requires an expert around fifteen minutes to solve is a reasonable
problem for an expert system. If the problem is more complex, try to break it
into sub-topics, each of which you could solve with a single expert system. -
Durkin [10]

I believe this is a good general heuristic for designing a knowledge base because

the problem to be solved is not so complicated the knowledge is huge, yet not so small,

CHAPTER 4. APPROACH 32

a small external program would be easier to implement. The expert system’s purpose, at
the contradiction detection stage, is to eliminate irrelevant data. Since a forward chaining
inference engine will find all true deductions of all the facts is useful in only a limited context.
Like any program, a forward chaining program’s working knowledge consumes memory and
its inference calculations consume computational resources. If forward chaining was the only
approach used throughout an investigation, since most evidence is not directly relevant to
the purposes of an investigation, the expert system would be swamped calculating the logical
implications of irrelevant data (recursively). The investigator will want to focus the process

to the relevant facts.

4.3.3 Hypothesis testing

Debugging involves backwards reasoning, like solving murder mysteries. Some-
thing impossible occurred, and the only solid information is that it really did
occur. So we must think backwards from the result to discover the reasons.
Once we have a full explanation, we’ll know what to fix and, along the way,
likely discover a few other things we hadn’t expected. Brian Kernigan [25]

To extend this approach, the iteration between forward and backward chaining
inference engines may prove most useful. Based upon the contradictory evidence identified
by one or more forward chaining inference engines, the use of a backward chaining expert
system, such as automated diagnosis [13], to calculate the implications of those deductions
(with relevance to the investigating agency) would be useful to direct the search for and
limit the collection of evidence. For a given set of facts, the hypothesis with the most
supporting evidence could be pursued until evidence is found that refutes its assertion, or
the investigator determines the purposes have been met. The knowledge base would consist
of hypotheses and the modes to collect evidence that support them.

For example, a forward chaining expert system may be able to deduce that a
file was changed because an unauthorized user had root privileges. A backward chaining
expert system with the goal of identifying the damage consequences of a policy violation
could use this deduction to calculate that root privileges on that host would imply the user
had obtained root access to certain other hosts in the network such as in NetKuang [47].

This deduction by the goal based, backward chaining system would accelerate the search

CHAPTER 4. APPROACH 33

for related evidence. A forward chaining approach would need to examine all the files on
all the hosts (including obviously unrelated hosts) to come to a similar conclusion.

One piece of data, or working knowledge, can be associated with multiple goals.
With multiple goals, users or investigating agencies may prioritize them differently. As the
knowledge base becomes more elaborate, and the expert system has multiple courses of
action to choose from, the investigator can assert a preliminary hypothesis and then verify
it later. A scenario such as “Let’s assume now that this email is authentic and corroborate
it later with evidence from a different jurisdiction,” is commonplace. At any point during
the investigation as in any explanation system, the expert system can present the evidence
and the reasoning process upon which a conclusion has been made.

Instead of an ad hoc process of collecting data, an expert system can help prioritize
tasks for investigators. It can be goal-oriented, based on heuristics. For example, the most
easily available data, administratively speaking (i.e. Section 3.1.2), is collected first, or the
most volatile data that will disappear (i.e. Section 3.1.2) is collected, or that data which

will make deductions with strong assurance is collected (i.e. Section 3.1.2).

Corroboration

For another example, if a deduction is reached and the investigator identifies that
its assurance is a high priority, to corroborate the facts, the expert system could increase
the priority of the search for supporting evidence.

Data sources from more than one administrative domain will provide more reliable
and less refutable deductions. For example, one may correlate audit trail entries to an
application level log, or network connection log entries to the output of a network intrusion
detection system. Technically, this is not complicated: send a duplicate of a logging entry
to a designated logging host. An attacker would require access at the user and root level,
or access on two separately secured machines for example, to alter the data to make the
evidence appear legitimate. Said differently, it would be more difficult for the attacker
to make a realistic illusion of a normal system. For administrative or operational reasons
though, separate protection domains are not always implemented. Hence the analysis of

7

data in one administrative domain, and verifying that it is “self-consistent,” is of practical

CHAPTER 4. APPROACH 34

utility.

If data sources from more than one administrative domain cannot be aggregated,
then the potential exists for the attacker to have created a complete body of evidence that
is self-consistent. Either evidence leading to the cause of the policy violation could be
eliminated or it may have been doctored to lead to a false conclusion. This is why it is
important to document the evidence that leads to a conclusion. If that evidence is later
found to be untrustworthy, so must the conclusion. Again, at any point, the explanation
system can be queried to present the evidence and rules upon which a conclusion has been

made.

4.4 Response

When an implmentation of this approach is used on a body of evidence, how to
interpret the results and how to act on the output are important issues. There are number
of reasons a piece of evidence may be identified as suspicious. Some reasons are errors in
the knowledge base. Others are related to the data with which the expert system reasons
or the mechanisms that collect it.

As the knowledge base is being developed, the primary reason for apparently sus-
picious evidence will be an inadequate model of the system. Since a model is a simplification
of the relationships of components in a system, an oversimplified model will not take into
account common legitimate scenarios of evidence. The best invariant relationships speci-
fied in the knowledge base will be general and simple in nature and are only violated by
users with ill intent. Unfortunately, specifying the behavior of an operational system, be
it a small, familiar, system binary or a confederation of networks of interconnected hosts,
requires time and expertise. Specification of all possible relationships between data in the
system may not be reasonable (or cost effective) for anything more complicated than an
academic exercise. Checking all possible relationships of data in a body of evidence would
also be computationally expensive. Thus it is important for the expert system to be an aid
to an expert rather than a substitute for one. So, in the case of an inadequate model, the

expert would identify that the evidence anomaly was in fact a normally occurring event,

CHAPTER 4. APPROACH 35

and add new information to the expert system’s decision tree to take account of this new
situation.

Since experts are fallible, and do not always agree for that matter, the knowledge
base may not be completely correct. Since an expert system can present each fact and each
reason that led to a deduction, it will be possible for an expert with a better understanding
to identify an error of commission or substitution by a faulty knowledge base. Checking
that the invariants are correct may be done by profiling system behavior or by more formal
methods. FErrors of omission may be more difficult to recognize if not impossible. The
absence of a relevant data relationship may lead to a false deduction as well. If a piece of
evidence is found to be either normal or anomalous, and the expert system is found to have
made an incorrect deduction, the knowledge base would need to be updated and augmented
to address the mistake.

If the knowledge base is complete and data is identified as suspicious, it may be
due to the fact that it is unauthentic, incomplete or has been tampered with. Or as in
a structured database, there has been an unauthorized add, delete or update transaction
respectively. Since the specific anomalous data has been identified, as has the reason why
it is anomalous, a response can be designed for the investigative purposes that consider
that set of circumstances. For example, if an important file has been modified, yet no users
appear to have been active at the time, searching the system for other activity at the time
or examining the activity of that file’s owner more closely may give more clues. For an
online scenario in which the investigative agency wants to learn more about the attacker’s
activities, an unobtrusive response would be to activate more detailed logging of the com-
ponents of the system that have been determined to be anomalous. It may be reasonable
to automate this response if the expert system is running without human participation,
and particularly useful if the knowledge base can use this new information to make new
deductions or corroborate existing ones. Gathering more facts in an ongoing attack can
allow administrators to customize their response. For example, rather than remove the
penetrated host from the network, disabling the penetrated user account or deactivating
the faulty service may impose a less significant impact on the user community. Finally, by

comparing the current set of facts to a database of similar facts, such as previous hacking

CHAPTER 4. APPROACH 36

attempts and penetrations, it may be possible to characterize the attacker’s expertise, in-
tentions, or origin as well as to identify lessons learned from previous experience in dealing
with this class of, or individual, attacker.

Yet another possibility exists to explain anomalous data despite the above. Per-
haps the expert system has been operating correctly and the knowledge base is complete.
In addition, by verifying the identity property of the data with a designated secure logging
host for instance, the data has been determined to be complete and authentic. The possi-
bility still exists that the mechanism that generates the data or that which the mechanism
monitors has been tampered with. This is evidence of tampering and implies a specific level
of access [5].

So by using invariant data relationships, aggregating data into objects and concepts
that match those in an expert system’s knowledge base, automated analysis can occur.
This augments an expert’s capabilities allowing a more targeted, assured, and (or) timely

respouse.

Chapter 5

Prototype

Since a file on a host can typically be modified only when its owner is logged in, one
can check that its modification time (from its inode) is during a login session of its owner
(from lastlog). If not, the file, its owner and the modification time may be considered
suspicious and worthy of attention. On a system with many users, gigabytes of files and
years of operation, identifying relevant evidence quickly is crucial. As data becomes more
volatile, time becomes more important. This assertion of course is a simplification. When
the owner is not logged in, if world or group writable, others are able modify it. In addition,
a cron job, the root user or its daemon processes may modify it, and setuid programs may
further complicate matters. Common valid exceptions may be added to the knowledge base.
As more expertise is encoded and automated, an expert’s time can be spent on more novel
situations. Although useful evidence may have been deleted legitimately (e.g., log rotation
implemented by a circular buffer) or the real user may have subsequently overwritten the
modification time, only a perfect attacker will leave no evidence whatsoever. The key is
to automate the search for impossibilities based upon the semantics of normally recorded

data.

5.1 Architecture

I have implemented a prototype of this approach using a collection of C programs

and Perl scripts called “The Coroner’s Toolkit” [14] (TCT) to automate data collection

37

CHAPTER 5. PROTOTYPE 38

struct stat {

dev_t st_dev; /* device */

ino_t st_ino; /* inode */

mode_t st.mode; /* protection */

nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device type (if inodedevice) */
off t st_size; /* total size, in bytes */

unsigned long st_blksize; /* blocksize for filesystem I/0O */
unsigned long st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

};

Table 5.1: stat data structure for EXT?2 file system

$md5, MD5 hash $file, File name

$st_dev, Device $st_ino, Inode number

$st_mode, Protection $st_ls, Permissions as viewed by 1s
$st_nlink, Number of hard links $st_uid, User ID of owner

$st_gid, Group ID of owner $st_rdev, Device type

$st_size, Total size in bytes $st_atime, Time of last access
$st_mtime, Time of last modification $st_ctime, Time of last change
$st_blksize, blocksize for fileysstem $st_blocks Number of blocks allocated

Table 5.2: Fields for each file in TCT’s “body”

and an expert system called The Rule System for the Java Platform (a.k.a. JESS) [16] to
automate its analysis. TCT can gather evidence including the record of user login sessions
in the file lastlog and thirteen fields of metadata (Table 5.1) from every file on the host
in a file called body (Table 5.2). My Perl script parses the lastlog and body files, then
produces an XML structured document. Figure 5.1 is a diagram of the flow of forensic
evidence to a standard format.

My prototype then parses this XML document and asserts two kinds of facts in
JESS’s fact base (See Table 5.3). After input validation checks (e.g., Verify A < B), the
knowledge base directs the JESS engine to check that the last modification time for every
file was during a login session of its owner (e.g. Verify A < C and B > C). It ignores

files last modified before the first entry in lastlog by adding a login session from time

CHAPTER 5. PROTOTYPE 39

| TCT E l Perl %
File System TCT XML
metadata "body" Representation

Figure 5.1: Data flow through the prototype implementation

“User X was logged in from time A to time B”

“File Y, owned by X, was modified at time C”

Table 5.3: Types of JESS facts in the prototype

“0” to the first session’s login time to JESS’s working knowledge (asserted facts). The
same is done for file access times and the time of last change to the inode. The prototype
uses a reasoning process similar to that illustrated in Figure 4.1. Differences include the
“trigger” and file permissions; the prototype analyzes all files (not just those that were
modified) and does not consider a file’s permission mode settings in it’s checks. When any
of these invariant relationships (Table 5.4) are violated, a message is printed highlighting

the exception. Figure 5.2 is a graphical representation of this process.

user owns(file)

loginTime(user) < accessTime(file) < logoutTime(user)
loginTime(user) < modifyTime(file) < logoutTime(user)
loginTime(user) < changeTime(file) < logoutTime(user)

Table 5.4: Relationships between data from evidence

CHAPTER 5. PROTOTYPE 40

Java XML) (JESS)
library

Alert #1
Contradiction...

Alert #2
Contradiction...

XML Decision Forensic
Representation tree deductions

Figure 5.2: Process to produce deductions

5.2 Experiment

5.2.1 Research goal

An idea that is not usable has no practical impact. As a proof-of-concept, if this
prototype can determine which files an unauthorized user modified, accessed or changed,

while mostly ignoring those the user did not, the feasibility of this idea will be demonstrated.

5.2.2 Scenario

The scenario that guides the test of the prototype is that of a UNIX host, in a
default configuration with network access, that does not send its logging data to a remote
host. An attacker has successfully penetrated its security by simply sniffing the root user’s
password from the network and logged in. A common technique to avoid detection is to
use root privileges to delete syslog entries recorded by the vulnerable root application
during the buffer overflow and edit lastlog to remove the record of the victim’s session. In
this case the logs do not need to be edited since the misuse is difficult to detect. Although
a clear text, remote, root login session itself may be considered suspicious today, on the
network and at the host, it appears a normal, legitimate login has occurred. The attacker
downloads, compiles and installs a malicious loadable kernel module (adore [38]) to hide
his files on the hard drive and his processes from the administrator and is careful not
to modify any files that a file integrity checker may check. Further suppose the network

administrator later detects a violation in policy such as port scanning activity originating

CHAPTER 5. PROTOTYPE 41

from the compromised host. Even though the obvious logs show no suspicious activity (and
may have been doctored anyway), other evidence the attacker could not hide remains, from

which useful questions may be answered.

5.2.3 Apparatus

The “victim” host has an Intel-based CPU with RedHat' Linux version 7.3 in-
stalled and fully patched as of 12 December 2002. The Coronor’s Toolkit [14] version 1.09
is installed and is configured with an unroutable network address (192.168.50.51). The
attacker’s tools include netcat [19] version 1.10 for network access and the adore [38] load-
able kernel module to subvert system calls by utilities designed to detect the attacker’s
presence.

The digital forensic analysis host is also an Intel-based CPU with RedHat' Linux
version 7.1 installed (IP address 192.168.50.50). The Coronor’s Toolkit [14] version 1.09,
in conjunction with Java XML libraries and The Rule System for the Java Platform (JESS)

[16] version 5.1, are installed which are used by my prototype implementation, lead.

5.2.4 Procedure
The following steps implemented the above scenario:
1. Install operating system and TCT on the “victim” host.
2. Simulate normal operation (update packages, login/logout multiple times).

3. Assume attacker gained access by using a network sniffer to steal the root password

and logs in as root.
4. Attacker downloads netcat[19], sets up an unauthorized backdoor and logs out.
5. Attacker uses the netcat backdoor to gain unauthorized access and uploads adore.
6. Attacker compiles and runs adore, then hides suspicious directories and processes.

7. Simulate hacker activity while concealed.

CHAPTER 5. PROTOTYPE 42

8. Administrator notices suspicious activity and discovers subverted host.
9. Administrator logs in as the real root user and collects TCT body of evidence.

10. Administrator uses netcat to move TCT body of evidence to a remote host for anal-

ysis.

11. Forensic analyst runs my prototype (lead) on the body of evidence.

5.2.5 Results

Of the three inode times in each of 64 programs in TCT’s body.S file, the subset
of all setuid programs on the file system, only the access times on the programs used by
the simulated attacker were highlighted. Yet there was one unexpected result: during the
period only the attacker was logged in, yet hidden, a file was accessed that he didn’t touch.
With regards to performance of JESS (written in Java), on a 747 Mhz Intel Pentium III
CPU, the Linux time utility, averaged over ten runs, averaged 6.165 seconds elapsed real
time between invocation and termination. It averaged 4.632 seconds elapsed user CPU time
and averaged 0.121 seconds system CPU time. The XML formatted input file containing

data on 64 files and 25 login sessions was 31146 bytes in size.

Example output

The following is output from the program indicating user “0” (a.k.a root) was the
only “suspect” logged in when both were changed and modified, but no users were logged

in when they were accessed (a semantic contradiction):

File /usr/bin/rsh owner O changed 1023294327
Suspects: 0

File /usr/bin/rsh owner O accessed 1040018508
No users logged in at time 1040018508

File /usr/bin/rsh owner O modified 995975720
Suspects: 0O

File /usr/bin/rlogin owner O changed 1023294327
Suspects: 0

File /usr/bin/rlogin owner 0 accessed 1040018508
No users logged in at time 1040018508

CHAPTER 5. PROTOTYPE 43

File /usr/bin/rlogin owner 0 modified 995975720
Suspects: 0O

There was one message from the program that initially appeared to be a false pos-
itive, but was later found to be correct (true positive). Yet it demonstrates the complexity

of the system and the difficulty for an intruder to leave no traces:

File /usr/lib/sendmail owner O accessed 1040020537
No users logged in at time 1040020537

With the fact that the simulated attacker did not open that file or use a program
related to the mail subsystem, this message was perplexing. Upon further investigation by a
person, it was found that /usr/1ib/sendmail is a link that was accessed while no users were
logged in. Its target though, (through a chain of 3 links) /usr/sbin/sendmail.sendmail,
was last accessed at 1040019174 when root was logged in. If the sendmail daemon, running
between root login sessions, accessed the link, it would have accessed the target as well. If
a cron job had run updatedb to update the database used by locate, all the files would
have been accessed at the same time. An interesting possibility lies in the fact that when
a user (or intruder) exercises the file name completion feature in a user shell such as the
Bourne-Again Shell (/bin/bash) or Turbo C shell (/bin/tcsh), the shell program updates
a file’s inode access time if it is a link, but not otherwise. This is not a complete reason since
/usr/1ib is not a common directory in the $PATH environment variable. The explanation
is that the attacker executed 1s -R, a recursive listing of /usr/1ib and updated the access
time field of the link’s inode. Given this evidence and reasoning process, it would be another
reason for the investigator to be suspicious about activity on that host at that particular
time. Similarly, directory access times are updated via the use of cd. With this experience,
new objects could be instantiated in the knowledge base to consider this new situation,

thereby automating it in the future.

Example working knowledge

The following are two exemplars of JESS facts about file access times (seconds

since the epoch, 1 Janurary 1970):

CHAPTER 5. PROTOTYPE 44

(mactime (file /usr/bin/rsh)
(uid 0) (modify 995975720) (access 1040018508) (change 1023294327))

(mactime (file /usr/bin/rlogin)
(uid 0) (modify 995975720) (access 1040018508) (change 1023294327))

The following are four exemplars of login session JESS facts including the session
fabricated to ignore files before the first login session entry:

(session (login 0) (logout 1039567500) (uid 0))

(session (login 1040020260) (logout 1040020402) (uid 0))
(session (login 1040018760) (logout 1040020260) (uid 0))
(session (login 1040018280) (logout 1040018280) (uid 0))

Summary

So although the knowledge base is an initial, yet useful attempt, an experienced
hacker can still be detected. If the attacker installs a malicious kernel module that hides
his presence from all system utilities (last, ps, netstat, 1sof, etc.), opens and modifies
no files, the access time to a directory’s inode is still updated when browsing its contents.
Selecting just these anomalous directories and sorting them by time can provide a time
line of events relevant to an investigation. Although avoiding detection is still possible,
attackers will need to write, upload and always use their own tools they know do not
change file system inodes. Journaling file systems will further complicate their attempt to

hide.

Chapter 6

Implications

Technology-savvy criminals exploit mistakes in the security of systems to their
own advantage. Their activity is camouflaged in the “glitches” that people expect from
unreliable technology and is hidden from experts by the closed nature of many software
systems (often due to proprietary intellectual property) that prevent understanding of their
internal operations and correct behavior. Experts can only attempt to recreate the error or
fault in order to identify its preconditions, and in doing so, obfuscate or eliminate evidence
relating to malicious activity. To begin the process of learning from experience, and for
users, operators, owners, and law enforcement to recover from a violation of law or policy,
experts must demystify these faults, errors and failures [12]. Formalizing this process for
consistent repeatability purposes and automating it for practical ones is critical. While work
has been done to frame the problem of digital forensics, most of the advances have been at
the evidence collection and preservation stages of an investigation. Yet it makes sense that
when technology is used to manage data and its security is subverted, that technology be
used to manage the data relating to the crime itself. Concepts and approaches have been
invented to manage complexity and arbitrary levels of abstraction in software development.

An expert system can do this for cyber crime investigations.

45

CHAPTER 6. IMPLICATIONS 46

6.1 Approach

A major contribution of this thesis is that even without proper preparation for
a computer attack, evidence of a security violation can be automatically identified. If
attackers make their presence clear, detection is not difficult. If they make the effort to
conceal their activity, they still have changed the state of the system, leaving footprints
through the unknown side effects of their activity.

By specifying relationships (before or after an attack) specific to their system
(i.e. Section 4.2), defenders can automate their “home-field advantage.” These site-specific
characteristics, not easily learned by attackers, can help incident handlers find an attacker’s
unintended side effects. Incident handling personel will be able to automate decision making
for commonly encountered scenarios thereby accelerating the search for evidence and solving
more incidents or understanding them better.

With this automated technique, system administrators who identify an anomaly
may be able to make a preliminary diagnosis of their system. If they were able to quickly
search for and analyze suspicious data, even data unrelated to the anomaly involved, and
see an anomaly with security significance, instead of debugging a potential configuration
error for example, they could recognize the anomaly as evidence relating to a computer
intrusion.

Beyond the savings of a forensic expert’s time, for law enforcement, the repeata-
bility of the investigative process (i.e. Section 4.3.2) at the technical level is important.
Instead of an opinion based upon a person’s best effort and limited resources, the reasoning
process and the evidence upon which the deductions were made are documented, transpar-
ent and deterministic. Even if well known invariant relationships between digital objects are
common knowledge, they can still prove effective. As opposed to static signatures such as
which ports are open and closed in a firewall policy, where attackers can learn and trivially
change their activity to avoid detection, an attacker must change the system so that a set
of digital objects fails to behave in an expected manner, which this approach may detect.

Given data on enough incidents over time, throughout the company, system owners

may be able to gather meaningful statistics on the assets, threats and vulnerabilities with the

CHAPTER 6. IMPLICATIONS 47

most risk for the organization. With this data, they may allocate resources more efficiently
and learn from mistakes. Surveys of people in similar industries reporting hacker activity
and impact is no substitute for data from an operational environment. Similarly, software
developers can learn from mistakes. Data from an operational environment on how their
software is used and abused would provide invaluable feedback to the development process

to make software better.

6.2 Future work

6.2.1 Invariant discovery

Identifying new semantic redundancies, such as between logs of popular appli-
cations and operating system logs, would create a more realistic model of an operational
system. The development of techniques to determine the behavior of digital artifacts left
by programs is important to this process. As stated before, the best invariant relationships
specified in the knowledge base will be general and simple in nature and are only violated by
users with ill intent. Many invariant relationships, though, will be the obvious ones that a
person would not bother to check throughout the system, but once automated, are effective.
To find non-obvious relationships, the knowledge base designer would need to identify an
object, monitor its behavior and the behavior of related objects. The best digital objects
will be nonvolatile, verifiably authentic, complete and unaltered, but useful information
may still be derived from less than ideal sources. An approach to finding these relationships
would be to find a mechanism that affects two or more objects that would reasonably be
expected to be found after a successful computer intrusion. Functional dependencies may
lead to data redundancies [34]. A different way would be to find two or more objects related
to the same condition and potentially an attacker would change one and not the other. This
is similar to the detection of covert channels. The knowledge base engineer is attempting to
detect information flow between objects in a system and use this knowledge of redundancy
to detect an attacker’s presence and activity.

“Wisdom and Sense” [44] is an anomaly based intrusion detection approach that

CHAPTER 6. IMPLICATIONS 48

could have applications in this context. By training such a system to look for anomalies
in a data set, such as digital objects in a system that may affect each other, it builds a
list of rules and their preconditions for “normal data.” Instead of using these rules looking
for anomalies directly, these rules for “normal data” could be used to identify invariant
relationships between data. This automated approach to generate relationships between
objects will most likely produce many relationships that are not very useful, since the

semantics of the data fields are not recognized.

6.2.2 Hypothesis Testing

While not an easy task (as shown in [13]), formalizing the reasoning process for
the investigation is important as well (See section 4.3.3). For law enforcement purposes,
meticulously eliminating incorrect possible explanations for an event, leaving only the most
reasonable explanation is a critical process. To be able to answer these questions, data
must exist and identification of that data for a particular question should be formalized.
Yet data is collected and preserved with different purposes in mind [1].

Companies that use technology do not focus on how that technology might be
misused. They focus on optimally using their technology investment to make a profit by
monitoring its operations and maintenance. Companies are focused on their technology
assets: what may have been misused, what needs to be fixed and likely when it was misused
to determine the extent of the damage. When something malicious occurs, their highest
priority is to become operational again. Yet in the same situation, law enforcement typically
prefers not to be involved unless there is a reasonable assurance the case will be solved
successfully, including asset recovery. From their perspective, whether the company makes
a profit or not is less important than solving the crime. Law enforcement is focused on the
threats to the technology: who attacked or misused the system and why, arguably a more
difficult problem. A third perspective exists as well. The software developer or system
designer is interested in making the next version better or improving the existing system.
They are interested in how the security was exploited. Once they understand how, a patch

can be implemented and installed. Developers are focused on the vulnerabilities in the

CHAPTER 6. IMPLICATIONS 49

system. To answer these questions, the debugging process requires very different types of
data.

So while each of these classes of investigators will ask similar questions in an
investigation, each has different goals. Because of these different goals, the priority of each
question, which is the process of confirming or refuting an hypothesis, will differ. If each
of these classes were enumerated and formalized, they could be encoded into an expert

system’s knowledge base to be automated:

e Evidence that answers questions

e Questions to confirm or refute an hypothesis

e Hypotheses that explain a crime for the investigation’s purpose
e Purposes and goals of investigations

Some questions will be easier to answer than others due to the data available. The
data collection policy, be it regular auditing and backups or freezing the state of a computer
after an intrusion, can change according to the circumstances. The investigation’s purpose
may affect the process of deduction as well. If the quality of the evidence is in question
and strength of deductions is not irrefutable, corroboration of two or more sources may be
required. Again, the amount and type of audit and log collection in operation will affect

what questions can be answered. Examples of data collection profiles:
e Operating and maintaining the state of system
e Debugging a problem
e Documenting attack in progress
e Documenting effects of an attack

Investigators should be able to produce evidence supporting the working hypothe-
sis. For example, “Evidence found on the suspect’s computer contained a program, known
to be used by hackers, that leaves a specific file on the victim’s computer, such as this file

found in the evidence on the penetrated host.” To show that other explanations are less

CHAPTER 6. IMPLICATIONS 50

convincing or impossible, alternative hypotheses, and the evidence that refutes them, would
be produced as well. “The network intrusion detection system and firewall logs recorded a
network connection from the suspect’s computer’s address during the time in question and
because of the network configuration, no one else could have done that.”

If the purpose of the investigation is to identify the perpetrator for example, an
hypothesis, explaining the perpetrator’s method and activities, would be identified, and
alternative explanations ruled out. The attacker’s method and activities may be modeled
on experience with other attackers. Such a model may be based upon attack modeling

languages such as JIGSAW [40] and techniques of automated diagnosis [13].

6.2.3 Model of attacker

Various attackers will leave different traces of their activity, but classes of attacks
will have common characteristics. By having a model of the attacker, the evidence may lead
to the attacker’s intentions and to where other evidence may be found. A denial of service
“zombie,” waiting for instructions for example, would have a much different set of evidence
than an intermediate (pass through) hacking host or host that is the origin of the attack
with all the attacker’s tools, output from those tools and conversations with friends. An
unplanned (“hit and run”) attack is very different from a meticulous and tenacious attacker
that targets his victim, or a legitimate user with malicious intent. These models can help

characterize the threat.

6.2.4 Fault tolerance

Instead of a law enforcement perspective, suppose the availability of data and
functionality is of primary importance. The owner of a given system wants to maintain
operations. Corroboration of deductions is less important than minimizing the time of
diagnosis and implementation of an effective reaction. This approach of detecting seman-
tic incongruities based on invariant relationships between digital objects in a system can
be applied to automate failure diagnosis. Based upon the known symptoms of the fault,

automated testing of hypotheses of the cause may also augment the skills of an analyst.

CHAPTER 6. IMPLICATIONS 51

In fault tolerant systems, redundancy of components is a common approach. When
a fault occurs, identification and replacement of the faulty component is automated. This
redundancy can lead to specifications of invariant relationships of redundant data in the
system that can be checked for validity, and in turn identifying the component in an invalid

state.

...a system is: an entity having interacted or interfered, interacting or interfering,
or likely to interact or interfere with other entities. ...a component is another
system, etc. The recursion stops when a system is considered being atomic: any
further internal structure cannot be discerned, or is not of interest and can be
ignored. Laprie [12]

Independent components that have redundant data could be considered to be in
separate administrative domains at that level of abstraction in the system. In the HACQIT
[32] architecture for example, redundant hosts are independent. This independence aids the
detection of semantic incongruities (and specification violations) since an attacker would
need access to both hosts in order to eliminate evidence from both administrative domains.

Yet identifying a faulty component is different than identifying the cause of the component’s

failure.

It could be argued that introducing the phenomenological causes in the classi-
fication criteria of faults may lead recursively “a long way back”, e.g., why do
programmers make mistakes? why do integrated circuits fail? The very notion
of fault is arbitrary, and is in fact a facility provided for stopping the recur-
sion....In our view, recursion stops at the cause which is intended to be prevented
or tolerated. Laprie [12]

Identifying the cause of the component’s failure would require data from a lower
level of abstraction; data that documented the states of the component and its sub-components
leading up to the failure. Since a component is a system itself, the process would lead re-
cursively until “the cause which is intended to be prevented or tolerated” is identified, which

is based upon the goals of the investigating agency. Example goals of an investigation:

1. Detect a system intrusion
2. Identify mechanism associated with the violation

3. Identify last known good state (time)

CHAPTER 6. IMPLICATIONS 52

4. Identify data sets used during that time

For any system an attacker is able to penetrate, that system lies in a larger context
(“super-system”) and is subject to verification of invariant relationships between digital
objects in its environment. Said differently, seen from the perspective of a digital forensic
investigator, an attacker that compromises the security of a component (e.g., a host) in a
system (e.g., a network), may be detected by analyzing the component’s behavior in the
context of the rest of the system. So while a system can mask the faults of its components,
it cannot mask its own faults. This is good news for defenders because attackers would
need control (and total knowledge) of the whole “system” in order to create a convincing
evidence trail that would mislead investigators.

By understanding a fault, one is more likely to be able to prevent it in the future.
By reducing system functionality, reliability, security or efficiency in an automatic fashion,
the impact of a system violation may be reduced if not eliminated. Calculating a timely,
accurate diagnosis is the best chance for implementing an optimal response and system

reconstitution.

Chapter 7

Conclusion

Interestingly, however, destroying or modifying data to hide evidence can leave
significant marks as well — sometimes more telling than if they had left the system
alone. Consider the physical world — anyone walking on a snowy walkway will
obviously leave footprints. If you see the walkway clear of any tracks, it might
make you suspicious: “Did someone brush away all traces of activity?” As we all
know from programming experience, it is significantly easier to find a problem
or bug if we know something is wrong than if you're simply presented with a
program. Dan Farmer and Wietse Venema [15]

7.1 Results

The main result of this thesis is that despite the challenges faced by an individual
attempting to determine what sequence of events led to an security violation, it is possible
to automate the analysis of digital evidence to identify relevant data left by an attacker
who attempts to leave no trace. Rarely are approaches presented for incident recovery in
which no preparation is required before an attack.

Although it is by far more effective to instrument preventative measures before a
system is brought into an operational state and vulnerable to attack, for reasons of budget,
schedule or ignorance, this is not often done. The minimum amount of information may
not even exist to completely solve the crime. So the computer crime investigator’s job will
always be difficult and crime is unsolvable in the general case.

By using data from common mechanisms that may not have been intended for

security, I have shown it is possible to deduce security-related conclusions and answer useful

53

CHAPTER 7. CONCLUSION 54

questions related to a computer intrusion, particularly when intruders attempt to erase their
activity. Automating the analysis of such data is crucial. This post facto analysis, I believe,
is an extendible approach that can be evolved to include more data relationships at the host,
network and application specific levels. In addition, these relationships may be able to be

detected and verified in an automated fashion in systems that have functional redundancy.

7.2 Extensions

There is not only the effect of the criminal on the scene to be considered, but
also the manner in which the scene may have imparted traces to the criminal.
Nickell & Fischer, Crime Scene Investigations [31]

It may be possible to apply lessons learned from the collection of physical evidence
in the field of criminal forensics to the digital realm. With the assumption that there is a
suspect identified, techniques may be developed to confirm or refute his involvement in the
crime. Yet although users may not leave physical evidence in cyberspace, they may leave
the digital equivalent in the side effects of their actions to the hosts and networks they
use. The key is to find those side effects left by malicious users that they do not or cannot

remove or obfuscate beyond recognition.

Forensic scientists have almost universally accepted the Locard Exchange Princi-
ple. This doctrine was enunciated early in the 20" Century by Edmund Locard,
the director of the first crime laboratory, in Lyon, France. Locard’s Exchange
Principle states that with contact between two items, there will be an exchange.
John Thornton [41]

Questions relating to the limits of solving computer crime have practical impor-
tance, but do not yet have answers. Identifying useful questions that provably can or cannot
be answered would be an accomplishment. Two related questions would be, “Given certain
facts, what questions can you answer and to what level of assurance?” and “Given a set of
questions, what is the minimum set of facts required?” The general problem of determin-
ing what sequence of events occurred based on the artifacts left behind in the system is a

theoretical area that may be worthy of further investigation.

Bibliography

[1]

[14]

[15]

Matt Bishop, Christopher Wee, and Jeremy Frank. Goal oriented auditing and logging.
Cited 17 November 2002 http://seclab.cs.ucdavis.edu/papers/tocs-96.pdf, Submitted
to IEEE Transactions on Computing Systems, 1996.

D. Brezinski and T. Killalea. RFC 3227 Guidelines for Evidence Collection and Archiv-
ing. Cited 25 July 2002 ftp://ftp.rfc-editor.org/in-notes/rfc3227.txt, 2002.

Brian Carrier. Defining digital forensic examination and analysis tools. In Digital
Forensic Research Workshop, 2002.

D. D. Clark and D. R. Wilson. A comparison of commercial and military computer
security policies. In IEEE Symposium on Security and Privacy, pages 184-194, 1987.

Frederick B. Cohen. A note on detecting tampering with audit trails. Technical report,
Fred Cohen & Associates, 572 Leona Drive, Livermore, CA 94550, USA, 1995. Cited
31 October 2002 http://www.all.net/books/audit/audmod.html.

Brian Deering. Hashkeeper database. Technical report, U.S. National Drug Intelligence
Center, 2002. Cited 30 December 2002 http://www.hashkeeper.org.

Sir Arthur Conan Doyle. The Hound of the Baskervilles. Berkley Pub Group, 1993.

John Durkin. Ezpert Systems: Design and Development, page 100. Prentice Hall, 1994.
John Durkin. Fzpert Systems: Design and Development, page 106. Prentice Hall, 1994.
John Durkin. Ezpert Systems: Design and Development, page 37. Prentice Hall, 1994.

Gary Palmer editor. DFRWS A roadmap for digital forensics research, 2001. Digital
Forensic Research Workshop, Utica, New York.

Jean-Claude Laprie editor. Dependability: Basic Concepts and terminology. IFIP WG
10.4, August 1994 draft.

Christopher Elsaesser and Michael Tanner. Automated diagnosis for computer foren-
sics. Technical report, The Mitre Corporation, 24 September 2001. Cited 25 July 2002
http://www.mitre.org/support/papers/tech_papers_01/elsaesser_forensics/index.shtml,
Submitted to IEEE Transactions on Systems, Man, & Cybernetics (Part A).

Dan Farmer and Wiese Venema. The Coroner’s Toolkit. Online, 1999. Cited 25 July
2002 http://www.porcupine.org/forensics/tct.html.

Dan Farmer and Wietse Venema. Forensic computer analysis: An introduction,
September 2000.

95

BIBLIOGRAPHY 56

[16]

[17]

18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Ernest J. Friedman-Hill. Jess, The Rule System for the Java Platform. Techni-
cal report, Sandia National Laboratories, Livermore, CA, 2002. Cited 25 July 2002
http://herzberg.ca.sandia.gov/jess.

Steve Gibson. Distributed reflection denial of service. Technical report, Gibson Re-
search Corporation, 27071 Cabot Road Suite 105, Laguna Hills CA, 92653 USA, Febru-
ary 22nd, 2002. Cited 12 November 2002 http://grc.com/dos/drdos.pdf.

Guidance Software & FBI. Private communication, 2002.

Hobbit (hobbit@atstake.com). Netcat 1.10 for Unix, 20 March 1996. Cited 15 December
2002 http://www.atstake.com/research/tools/nc110.tgz.

Bill Hutchison. Adding chkrootkit to your unix auditing arsenal. Online. Cited 31
October 2002 http://rr.sans.org/malicious/chkrootkit.php.

Sun Microsystems Inc. SunSHIELD Basic Security Module Guide, Solars 7. Part No.
805-2635-10.

Tripwire Incorporated. Tripwire. Online. http://www.tripwire.com or
http://sourceforge.net /projects/tripwire.

H. A. Kautz. A formal theory of plan recognition and its implementation. In J. F.
Allen, H. A. Kautz, R. Pelavin, and J. Tenenberg, editors, Reasoning About Plans,
pages 69-125. Morgan Kaufmann Publishers, San Mateo (CA), USA, 1991.

Richard Keightley and Kimberly Stone. Can computer investigations sur-
vive Windows XP? An examination of Windows XP and its effect on com-
puter forensics. Technical report, Guidance Software, 572 FEast Green Street
#300 Pasadena, CA 91101, USA, December 2001. Cited 31 October 2002
http://www.guidancesoftware.com/whitepapers/XPWhitepaper.shtm.

Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison-Wesley,
1999.

Ulf Lindqvist and Phillip A. Porras. eXpert-BSM: A host-based intrusion detection
solution for Sun Solaris. Proceedings of the 17th Annual Computer Security Applications
Conference (ACSAC 2001), pages 240-251, December 10-14 2001.

Marvin Minsky. A framework for representing knowledge. In The Psychology of Com-
puter Vision, pages 211-277. McGraw Hill, New York, 1975.

Nelson Murilo and Klaus Steding-Jessen. chkrootkit v. 0.37. Technical report, Pangeia
Informatica LTDA, SRTVS 701 Ed Palacio do Radio II s. 304, Brasilia, DF, 70340-000,
BR, 2002. Cited 31 October 2002 http://www.chkrootkit.org.

K. L. Myers. User guide for the procedural reasoning system. Technical report, Artificial
Intelligence Center, SRI International, 333 Ravenswood Avenue, Menlo Park, CA,
94025, 1997.

United States Department of Justice Computer Crime and Intellectual Prop-
erty Section. Searching and seizing computers and obtaining electronic
evidence in criminal investigations. Online. Cited 31 October 2002
http://www.usdoj.gov/criminal /cybercrime/searching.html.

BIBLIOGRAPHY 57

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

Charles O’Hara. Fundamentals of Criminal Investigation, page 23. Charles C Thomas
Pub Ltd, 6th edition, October 1996.

J. Reynolds, J. Just, E. Lawson, L. Clough, R. Maglich, and K. Levitt. The design
and implementation of an intrusion tolerant system. International Conference on De-
pendable Systems and Networks, 2002.

Tsutomu Shimomura and John Markoff. Takedown. Warner Books, December 1996.

Dan A. Simovici, Dana Cristofor, and Laurentiu Cristofor. Impurity measures in
databases. Acta Informatica, 28(5):307-324, 2002.

Guidance Software. EnCase. Online. Cited 25 July 2002
http://www.guidancesoftware.com.

Guidance Software. EnCase FAQ. Technical report, Guidance Software, 572 East

Green Street #300 Pasadena, CA 91101, USA, December 2001. Cited 31 October 2002
http://www.guidancesoftware.com/whitepapers/XPWhitepaper.shtm.

Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to Own the Internet in
your spare time, 2002. To Appear in the Proceedings of the 11th USENIX Security
Symposium (Security ’02).

Stealth (stealth@team-teso.net). Adore Linux Kernel Module, 2001. Cited 15 December
2002 http://www.team-teso.net /releases/adore-0.42.tgz.

Clifford Stoll. Cuckoo’s Eqg: Tracking a Spy Through the Maze of Computer Espionage.
Pocket Books, 1989.

Steven J. Templeton and Karl Levitt. A requires/provides model for computer attacks.
In Proceedings of the New Security Paradigms Workshop, Cork Ireland, Sept. 19-21,
2000.

John I. Thornton. The general assumptions and rationale of forensic identification.
Modern Scientific Evidence: The Law And Science Of Expert Testimony, 2, 1997.

Dr. W. Mabry Tyson. DERBI: Diagnosis, Explanation and Recovery from computer
Break-Ins. Cited 31 October 2002 http://www.ai.sri.com/derbi/.

Mike Uschold and Michael Griininger. Ontologies: principles, methods, and applica-
tions. Knowledge Engineering Review, 11(2):93-155, 1996.

H. S. Vaccaro and G. E. Liepins. Detection of anomalous computer session activity. In
IEEFE Symposium on Security and Privacy, pages 280 —289, 1989.

Michael Vatis. Law enforcement tools and technologies for investigating cyber attacks:
A national needs assessment. Technical report, Institute for Security Technology Stud-
ies, Dartmouth, 45 Lyme Road, Hanover, NH 03755 USA, June 2002. Cited 31 October
2002 http://www.ists.dartmouth.edu/lep/lena.htm.

Jake Kasdan (WGA). Zero Effect. Columbia Pictures Corporation, 1998. Filmstrip.

Dan Zerkle and Karl Levitt. NetKuang - a multi-host configuration vulnerability
checker. In Proceedings of the Sixth USENIX UNIX Security Symposium, July 1996.

Appendix A

An example rule base

(deftemplate mactime
(slot file)
(slot uid)
(slot modify)
(slot access)
(slot change)

(deftemplate session
(slot login)
(slot logout)
(slot uid)

(defquery users-logged-in
"Finds all users logged in at the specified time"
(declare (variables 7t))
(session (uid ?7u) (login 7i&:(>= 7t 7i)) (logout 7o&:(>= 7o 7t)))

(defrule m-chain-start
(mactime (file 7f) (uid 7u) (modify ?m))
=>
(printout t "File " 7f " owner " 7u " modified " 7m crlf)
(bind ?7e (run-query users-logged-in 7m))
(bind $7U (create$))
(while (7e hasMoreElements)
(bind ?7uid (call (call (call ?7e nextElement) fact 1) getSlotValue uid))
(if (not (member$ 7uid 7U)) then
(bind $7U (create$ $7U 7uid))

o8

APPENDIX A. AN EXAMPLE RULE BASE 59

(if (> (length$ $7U) 0) then

(bind $7S (create$))

(assert (test-ownership 7f 7u (implode$ $7U) $7S))
else

(printout t " No users logged in at time " ?m crlf)

(defrule a-chain-start
(mactime (file ?f) (uid ?u) (access 7m))
=>
(printout t "File " 7?f " owner " 7u " accessed " 7m crlf)
(bind ?e (run-query users-logged-in 7m))
(bind $7U (create$))
(while (7e hasMoreElements)
(bind ?7uid (call (call (call 7e nextElement) fact 1) getSlotValue uid))
(if (not (member$ 7uid ?U)) then
(bind $7U (create$ $?U ?uid))

)
(if (> (length$ $7U) 0) then

(bind $7S (create$))

(assert (test-ownership ?f 7u (implode$ $7U) $7S))
else

(printout t " No users logged in at time " ?m crlf)

(defrule c-chain-start
(mactime (file ?7f) (uid ?7u) (change ?m))
=>
(printout t "File " ?f " owner " 7u " changed " ?m crlf)
(bind 7e (run-query users-logged-in 7m))
(bind $7U (create$))
(while (7e hasMoreElements)
(bind 7uid (call (call (call 7e nextElement) fact 1) getSlotValue uid))
(if (not (member$?uid ?7U)) then
(bind $7U (create$ $7U 7uid))

)
(if (> (length$ $7U) 0) then

(bind $7S (create$))

(assert (test-ownership ?f 7u (implode$ $7U) $7S))
else

(printout t " No users logged in at time " ?m crlf)

APPENDIX A. AN EXAMPLE RULE BASE 60

(defrule chain-test-owner
?ret <- (test-ownership ?f 7u 7U $7S)
=>
(retract 7ret)
(bind $7Um (explode$ 7U))
(if (member$?u $7Um) then
(bind $7S (create$ $7S 7u))
)
(assert (test-root ?f ?U $7S))

(defrule chain-test-root

?ret <- (test-root 7f ?7U $78)

=>

(retract ?ret)

(bind $7Um (explode$ 7U))

(if (and (member$ O $?Um) (not (member$ O $7S))) then
(bind $7S (create$ $7S 0))

)

(if (and (member$ root $?Um) (not (member$ root $?7S))) then
(bind $7S (create$ $7S root))

)

(if (and (member$ Administrator $?Um) (not (member$ Administrator $7S)))
then (bind $7S (create$ $7?S Administrator))
)

(assert (suspects 7f $7S5))

(defrule chain-print-suspects
?ret <- (suspects 7f $7S)
=>
(retract 7ret)
(if (> (length$ $7S) 0) then

(printout t " Suspects: " (implode$ $7S) crlf)
else

(printout t " No one was logged in!" crlf)

