
An Efficient Message Authentication Scheme for Link State Routing�

Steven Cheung
Department of Computer Science

University of California
Davis, CA 95616

cheung@cs.ucdavis.edu

Abstract

We study methods for reducing the cost of secure link
state routing. In secure link state routing, routers may need
to verify the authenticity of many routing updates, and some
routers such as border routers may need to sign many routing
updates. Previous work such as public-key based schemes
either is very expensive computationally or has certain lim-
itations. This paper presents an efficient solution, based on
a detection-diagnosis-recovery approach, for the link state
routing update authentication problem. Our scheme is scal-
able to handle large networks, applicable to routing proto-
cols that use multiple-valued cost metrics, and applicable
even when link states change frequently.

1. Introduction

Routers exchange routing control packets to disseminate
their current states. Based on these control packets, routers
can construct their routing tables to cooperatively forward
packets from source to destination. If routing infrastructure
components, such as routers or inter-router links, are faulty,
misconfigured, or compromised, the network may suffer
from degradation of service or even unavailability.

Potential vulnerabilities of routing infrastructures can be
classified as follows:

� Packet generation—Masquerading as a particular
router to send bogus routing control packets to other
routers. Replaying stale control packets. Flooding the
network with excessive control or data packets.

� Packet alteration—Modifying control or data packets
in transit. For example, the cost, the ordering, or the
freshness information of those packets may be altered.

�DRAFT: To appear in Proc. 13th Annual Computer Security Appli-
cations Conference, San Diego, Calif., December 8-12, 1997.

� Packet removal—Removing control packets to prevent
information about network changes from propagating
to other routers. Removing data packets in transit to
effect denial of service.

� Misrouting—Misrouting control or data packets so that
they will take longer (or forever) to reach their desti-
nations.

� Breach of confidentiality—Eavesdropping data and
control packets. Performing traffic analysis.

To protect routing control traffic from some of those
threats, countermeasures that support data authenticity (used
to provide both proof of data origin and data integrity), or-
dering, and freshness of control packets have been proposed.
Examples are Perlman’s [16, 17] work on link state routing
protocols, Finn’s [3] report on dynamic routing protocols
in general and Cartesian routing in particular, Kumar’s and
Crowcroft’s [8] paper on inter-domain routing protocols,
Murphy’s and Badger’s [14] paper on OSPF, Smith’s and
Garcia-Luna-Aceves’s [21] paper on BGP, Hauser’s, Przy-
gienda’s, and Tsudik’s [4] paper on link state routing,Sirois’s
and Kent’s [20] paper on Nimrod, and Smith’s, Murthy’s,
and Garcia-Luna-Aceves’s [22] paper on distance vector
routing protocols.

This paper presents an efficient message authentication
scheme for protecting control packets in link state routing.
Previous work such as [16, 17, 14, 4] either is very expensive
computationallyor has certain limitations, which will be dis-
cussed in Section 2. We use a detection-diagnosis-recovery
approach, which is intrusion detection (e.g., [2, 10, 13, 5])
augmented with system diagnosis and reconfiguration, in-
spired by work in fault tolerance. This approach is also used
in Cheung’s and Levitt’s [1] paper on protecting routing in-
frastructures from routers that incorrectly drop packets and
misroute packets. Our main goal is to minimize the cost of
performing link state update authentication when the net-
work components function normally, which occurs most of
the time. In our scheme, a router r uses a key k and a



symmetric-key based data authentication scheme (e.g., a
keyed-hash scheme) to sign a link state update. The link
state update and the signature are disseminated to all other
routers. A receiving router optimistically accepts the rout-
ing update as if it were authenticated. Later, router r will
release the key k. When the key k arrives, the receiving
router verifies the authenticity of the key using a secure and
efficient method. Then the verified key will be used to verify
the authenticity of the link state update using the symmetric-
key based data authentication scheme. Note that signature
generation and verification can be done very efficiently us-
ing a symmetric-key based data authentication scheme. If
bogus routing updates are detected, a distributed diagnosis
protocol will be invoked to locate the mischievous routers.
Then network reconfiguration will be performed to logically
disconnect those routers to restore the operational status of
the network.

This paper is organized as follows: Section 2 reviews
related work on link state update authentication. Section 3
details and analyzes our scheme, called optimistic link state
verification. Section 4 compares our work with related work,
and discusses variations and limitations of our scheme.

2. Background: Link State Update Authenti-
cation

In link state routing1, every router constructs link state
updates2 (LSU) that describe the status of the links inci-
dent to the router, and distributes those updates to all other
routers. As networks are generally not fully-connected, a
technique known as flooding is used for LSU distribution.
When a router receives a LSU that it has not received previ-
ously, the router forwards the LSU (essentially) unchanged
to its neighbors, except the one from which the LSU was
received. To make flooding more robust, a router sends an
acknowledgement to the neighbor from which it receives a
LSU. If the sender does not receive an acknowledgement
after a certain time threshold, it will re-transmit the LSU.
Based on the LSU received, a router computes the shortest
paths to all destinations. Because those computations are
performed independently by all routers on the same set of
LSU, networks using link state routing converge to a stable
state quickly (as opposed to distance vector routing). To
protect routers from using erroneous LSU to compute their
routing tables, data authentication is needed to cope with
bogus LSU generation and LSU modification. Specifically,
an entity may masquerade as a particular router and gen-
erate a bogus LSU. Moreover, a LSU may be modified by
a compromised intermediate router or an active inter-router
link attack.

1Examples of link state routing protocols are OSPF [12], IS-IS [6], and
a proprietary routing protocol used in the ARPANET [11].

2Link state updates are also called link state advertisements.

Data authentication schemes can be broadly classified
as symmetric-key based and asymmetric-key based. In
a symmetric-key based data authentication scheme, also
called a message authentication code (MAC) scheme, a mes-
sage is signed and verified using the same key. To use a direct
MAC scheme for LSU authentication on a network that has
n routers, in the worst case3, each router needs to maintain
(n� 1) keys4 and the network as a whole needs to maintain
O(n2) keys. Moreover, every router would need to sign
and to send (n � 1) LSU—one for each router—instead of
one LSU as in existing link state routing protocols. Thus a
direct MAC scheme for LSU distribution may be expensive
in terms of processing and network bandwidth overheads.

Perlman’s seminal work [16, 17] uses an asymmetric-
key based scheme, also called a digital signature scheme,
for data authentication in LSU distribution and public key
distribution. In a digital signature scheme, a message is
signed and verified using different keys. Murphy and Bad-
ger [14] proposed a design, based on digital signatures, to
securely distribute LSU and public keys in OSPF. A digital
signature scheme seems to be a good candidate for solv-
ing the LSU distribution problem—onlyO(n) key-pairs are
needed for the entire network, and a signed LSU can be
verified by all routers. However, as pointed out by [14],
it may be very expensive5 to generate and to verify digital
signatures. The number of signatures needed to be veri-
fied by a router depends on several factors: the number of
routers in the network, the grouping of routers into areas,
the frequencies of link state changes and LSU refresh, the
number of internal and external distinguishing subnets6, and
the particular routing protocol used. In OSPF, because the
route to each external subnet is advertised in a separate LSU,
there may be tens of thousands of those LSU. To relieve the
performance impact, Murphy and Badger suggested a few
possibilities: using extra hardware in routers, changing the
OSPF protocol, and verifying signatures periodically or on
demand. This paper explores the last option.

Recently, Hauser, Przygienda, and Tsudik [4] presented
a technique to reduce the cost of LSU authentication. Their
technique is based on a tool called hash chains, which were
designed by Lamport [9]. A hash chain of length ` is a

3Partitioning a large network into sub-networks/areas could relieve the
problem.

4A direct MAC scheme that does not employ pairwise-keys is not suit-
able for the LSU authentication problem. Specifically, using a shared key
for all routers or having routers to share a key with each of their neigh-
bors and to use hop-by-hop LSU authentication cannot protect the network
from compromised intermediate routers. The former is used in OSPF ver-
sion 2[12] cryptographic authentication; routers on a network/subnet uses
a secret shared key and a MAC scheme to authenticate routing protocol
packets.

5Experimental results reported in [14] state that it takes at least 270
microseconds to verify an RSA [19] signature with the 512-bit key size
using a SPARC-20 and the GNU MP library.

6A subnet is internal if the subnet and the router reside in the same
autonomous system and external otherwise.



list [H(r); : : : ; H`�i(r); : : : ; H`�1(r); H`(r)], where r

is a secret quantity, H is a one-way hash function, and
H`�i+1(r) = H(H`�i(r)). If H`(r) can be sent to a veri-
fier securely, the authenticity of H`�i(r) can be verified by
applying the function H to H`�i(r) one or more times. Ex-
amples of proposed one-way hash functions are MD5 [18]
and SHA [15]. In Hauser et al.’s scheme, two hash chains
with different seeds rup and rdown are used to represent the
up and down state of a link. The originating router uses
its private key to sign a message that includes H`(rup),
H`(rdown), and the current time T and floods the message.
A receiving router can verify the authenticity of that mes-
sage using the public key of the originating router. Let ∆
be the duration of time intervals between consecutive LSU
releases. At time T + i∆, the originating router releases
either H`�i(rup) or H`�i(rdown), depending on the status
of the link. Their technique virtually eliminates the need to
perform expensive public-key encryption and decryption.
Signing and verifying digital signatures are replaced by ap-
plications of a hash function, which are orders of magnitude
cheaper. Despite the cost reduction advantage, there are a
few drawbacks to their scheme. First, their scheme can-
not efficiently handle multiple-valued link states because
the costs of generating, verifying, and storing many hash
chains may be higher than those of using digital signatures
[4]. The need for multiple-valued link states arises when
link costs depend on traffic load, and when a border router
advertises (summarized) link costs for destinations that re-
side in other autonomous systems or in other areas within
the same autonomous system. Second, Hauser et al. showed
that the maximum clock skew among routers must be less
than 3∆. Otherwise, an adversary may be able to forge an
incorrect LSU that is considered to be fresh and authentic by
some routers. Finally, their scheme is not suitable for han-
dling frequent link state changes because the hash chains are
pre-computed assuming certain fixed time intervals between
consecutive LSU. Choosing ∆ to be a very small quantity
has two problems—the originating router needs to generate
and to store long hash chains, and routers have to be very
tightly synchronized (c.f., the clock skew problem discussed
above).

3. Optimistic Link State Verification

Our approach is inspired by fault tolerance work—error
detection-diagnosis-recovery specifically. Our scheme is
called optimistic link state verification (OLSV). In OLSV, a
receiving router optimistically accepts a LSU before it can be
verified. When the router receives a key used to authenticate
the LSU, it will first verify the authenticity of the key. Then
the verified key is used to verify the authenticity of the
LSU. If the verification process detects a bogus LSU, routers
report from which neighbors that bogus LSU was received.

A distributed diagnosis protocol is invoked to identify the
mischievous router(s); we will discuss how link attacks are
handled later. Based on the diagnosis result, the mischievous
routers are logically removed from the network to restore its
operational status.

3.1. Assumptions

We consider a network of routers that use a link state
routing protocol. We use a graph G to represent the net-
work, with vertices representing routers and edges repre-
senting communication links. If two routers share a link,
we call them neighbors. A router that correctly executes
the routing protocol is called a good router; otherwise, it
is called a bad router. A bad router may be caused by
software/hardware faults, misconfiguration, or malicious at-
tacks. A failed/compromised link is called a bad link; oth-
erwise, it is called a good link. An LSU includes several
fields: originating router id, sequence number, age, and link
state data. The sequence number field is used to provide
an ordering among LSU. With a protected sequence num-
ber field, replay and reordering attacks can be countered.
The age field is used to support freshness; stale LSU can
be prevented from propagating in the network. A router
increments the age field of an LSU before forwarding it to
its neighbors. Because the age of a LSU needs to be mod-
ified by intermediate routers, the age field is excluded in
LSU authentication computation. We make the following
assumptions:

1. The network remains connected after the removal of
bad routers and bad links.

2. There exists a secure public-key distribution protocol.
Perlman [16, 17] and Murphy and Badger [14] pro-
posed security protocols for distributing the public keys
of routers. OLSV assumes that every router knows the
public keys of all routers.

3. Every router has a local clock and the maximum clock
skew between any two good routers is bounded by �.
That is, the difference between the clocks of any two
routers is less than or equal to � at any time. Moreover,
we assume that the ratio of clock rates between the
fastest clock and the slowest clock among good routers
is bounded by �.

4. The total delay—propagation, queueing, and process-
ing delays—for sending a packet using flooding is
bounded by �.

5. There are no adjacent bad routers. This assumption is
used to simplify the description of OLSV. We will dis-
cuss how this assumption can be removed in Section 4.



6. There exists a one-way hash function. Examples of
proposed one-way hash functions are MD5 and SHA.
We use H to denote a one-way hash function. Given a
random quantity y, it is computationally infeasible to
find x such that y = H(x). Moreover, for a random
quantity x, it is computationally infeasible to find an
x0 6= x such that H(x) = H(x0).

7. There exists a good random number generator.

8. A secure digital signature scheme is used. Digital sig-
natures can be generated using a cryptographic hash
function and a public-key cipher such as MD5 and
RSA. We denote the digital signature of a message m
signed using p’s private key by Sp(m). Without know-
ing p’s private key, it is computationally infeasible to
generate Sp(m0) for a new message m0.

9. A secure MAC scheme, which includes a MAC gener-
ator MACG, is used. Tsudik’s [23] keyed-hash scheme
and HMAC [7] are examples of MAC schemes. More-
over, they are significantly less expensive than dig-
ital signature schemes such as RSA/MD5. We use
MACGk(m) to denote the MAC generated by MACG
using a key k on a message m. Without knowing k, it
is computationally infeasible to generateMACGk(m

0)
for a new message m0.

3.2. Protocol Overview

Our OLSV protocol is sub-divided into three parts,
namely sender, receiver, and recovery. Every router runs
a sender process, a receiver process, and a recovery process.
The sender process generates keys and uses them to gen-
erate MAC for LSU. Those LSU and the associated MAC
are then flooded to other routers as in existing link state
routing protocols. The keys are released to other routers
at designated times. Section 3.3 details the sender pro-
cess. The receiver process optimistically accepts LSU (as
if they were authenticated) and uses them to compute the
local routing table. When the corresponding keys arrive,
the receiver process verifies the authenticity of the LSU
received. Section 3.4 details the receiver process. When
the receiver process detects mischievous LSU, the recov-
ery process is invoked. A recovery process is responsible
for diagnosis and reconfiguration. Diagnosis is used to lo-
cate misbehaving routers. Based on the diagnosis results,
reconfiguration is used to logically disconnect those misbe-
having routers from the network to restore its operational
status. Section 3.5 details the recovery process. The re-
covery process is designed to counter router attacks. To
counter active link attacks, neighboring routers use a MAC
scheme to authenticate LSU forwarded between them7. Be-

7As we will see, our scheme will still work even if we do not perform
additional LSU authentication between neighboring routers. Specifically, a

cause a router usually has few neighbors, a secret key can
be configured or established using a key-exchange protocol
for each neighboring router pair and many existing efficient
MAC schemes are applicable to authenticate LSU sent be-
tween neighboring routers. For the sake of clarity, we omit
this LSU authentication between neighboring routers in the
subsequent description of our protocol.

3.3. Sender Process

The sender process generates a random quantity r and
constructs a hash chain of length ` using r and a one-way
hash function H .

Subsequently, the sender process composes a key-chain
anchor (KCA) message that contains the router id, the
current time T , and H`(r) and signs it with the pri-
vate key of the router. Then the signed KCA mes-
sage (id; T;H`(r); Sid(id; T;H

`(r))) is distributed to other
routers via flooding.

The quantities H`�i(r), where 1 � i < `, are used as
keys to generate MAC for LSU. A hash-chained key (HCK)
message (id; i;H`�i(r)) is released to other routers at time
T+i∆, where ∆ is the duration of the time intervals between
consecutive key releases. In fact, the sender process only
needs to release a HCK if the correspondingH`�i(r) is used
to generate a MAC.

To make OLSV secure,H`�i(r) is used to generate MAC
for LSU only before time T + i∆�� , where � is a value that
we will derive later. When the sender process wants to send
an LSU at time t, where T +(i�1)∆�� � t < T + i∆�� ,
it uses H`�i(r) as the key to generate the MAC. The
signed LSU message (LSU; i;MACGH`�i(r)(LSU; i)) is
then flooded to other routers. Figure 1 depicts the chrono-
logical order of the actions performed by the sender process.

3.4. Receiver Process

When the receiver process receives a KCA with a digital
signature Sid(id; T;H

`(r)), it verifies the authenticity of
the KCA using the public key of router id. A verified KCA
with T reasonably close to the current clock value of the
router is accepted and stored.

The receiver process optimistically accepts a signed LSU
(LSU; i; MACGH`�i(r)(LSU; i)) if the receiving time is
less than T + i∆ � �. (Note that the router id in LSU can
be used to determine the corresponding T .)

When a HCK message (id; i; k) is received, the authen-
ticity of the HCK is verified by applying the hash function

link failure may be viewed as a router failure in OLSV. The routers incident
on a failed link will detect the failure and cease the neighbor relationship.
Consequently, the failed link will not be used. However, using a MAC
scheme to authenticate LSU sent between neighboring routers can prevent
link attacks, and in some cases does not hurt the connectivity of the network.
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Figure 1. The Sender Process.

H to k one or more times. Like Hauser et al.’s scheme,
the verification process is more efficient if the last verified
HCK is stored and used. For example, if the last verified
HCK message (id; i� 1; H`�i+1(r)) is stored, then verify-
ing the HCK message (id; i; k) only consists of computing
H(k) and comparing H(k) with H`�i+1(r). Otherwise, it
takes i applications of H to verify the HCK if the KCA (or
H`(r)) is used. A verified HCK message (id; i;H`�i(r))
is then used to verify the authenticity of LSU. For a signed
LSU message (LSU; i;mac), H`�i(r) is used to generate
the MAC of (LSU, i) and the resulting value is compared
to mac. If bogus LSU are detected, the recovery process is
invoked.

Theorem 1 If we set � � 2�+��, then an adversary cannot
generate a bogus LSU whose originating router id corre-
sponds to a good router and have the bogus LSU accepted
by good routers without being detected. Moreover, a good
router always accepts a signed LSU generated by another
good router.

Proof: Recall that the originating router id releases the
HCK message (id; i;H`�i(r)) at time T + i∆. At that time,
the clock values of good routers are at leastT+i∆��. By re-
quiring good routers not to accept LSU signed withH`�i(r)
after T + i∆ � �, the key H`�i(r) will not be useful to an
adversary to generate bogus LSU by the time the adversary
receives the HCK message. Note that r is a random quantity
and H`�j(r), where i < j < `, are released after the time

H`�i(r) is released. Moreover, knowing H`�k(r), where
1 � k < i, is not useful to determine H`�i(r). Thus the
adversary cannot determine H`�i(r) in time to generate a
bogus LSU and have it accepted by a good router without
being detected. When router id’s local time is T + i∆� 2�,
the clock values of good routers are at most T + i∆ � �.
Thus having router id to send the LSU signed with H`�i(r)
before T + i∆� (2�+ ��), all good routers will accept the
LSU. 2

3.5. Recovery Process

When bogus LSU are detected by the receiver pro-
cess, a bad routing update advertisement (BRUA) mes-
sage (BLSU; i; pred) is constructed, where BLSU is a
“selected” bogus LSU detected using the key H`�i(r),
and pred is the id of the neighboring router from which
BLSU is received. If multiple bogus LSU are detected us-
ing H`�i(r), the one with the smallest sequence number is
selected. Moreover, if more than one bogus LSU are asso-
ciated with the smallest sequence number, the one with the
largest checksum is selected. The BRUA is signed with the
router’s private key and the signed BRUA is then flooded to
other routers.

Then the recovery process waits for 2�� time units to
ensure BRUA from other routers can reach itself. The 2��
time delay covers the time for the corresponding HCK and
the time for the BRUA to reach every router. We assume
that it takes the same amount of time for every router to use
the HCK to verify LSU and to construct and sign a BRUA.
Otherwise, the waiting time should be increased accordingly
to include the LSU verification time and the BRUA signing
time.

Based on the BRUA received, the recovery process con-
structs a bad routing update propagation (BRUP) graph.
Each BRUP corresponds to one bogus LSU. In the case
where BRUA corresponding to multiple bogus LSU are re-
ceived, we use the same arbitration rules—choosing the
bogus LSU with the smallest sequence number and using
the checksums to break ties—to select one. A BRUA
(BLSU; i; p) sent by q is represented by a labeled edge
q

a
! p in the BRUP graph, where a is the age of BLSU

when q receives it from p.
Then the recovery process performs a depth-first search

on the BRUP graph. The search starts with the node that
has the largest id and has an outgoing edge. Moreover, if
the node has incoming edges, the age value associated with
the outgoing edge is larger than those of its incoming edges.
Because each node has at most one outgoing edge and the age
values are used to cope with loops, the procedure for finding
the starting node is well-defined. The search continues until
one of the following is encountered: (1) An edge q

a
! p

and p does not have an outgoing edge; (2) A path segment



q
a2
! p

a1
! o, where a2 � a1; (3) A node visited previously

is reached. For the first two cases, (p; q) is recorded. The
search procedure is repeated starting with an unvisited node
in the BRUP graph.

In case (1), q claims that p sent q the bogus LSU. More-
over, p does not claim that it received the bogus LSU from a
neighbor. Because link attacks are prevented using a MAC
scheme, we can infer that p or q is a bad router. In case (2),
q claims that p sent q the bogus LSU with age a2. Moreover,
p claims that o sent p the bogus LSU with age a1. Because
p should increment the age field before forwarding the LSU
to q, a2 should be strictly larger than a1. Thus either p lies or
q wrongly accuses p being a bad router. By a case analysis,
one can show that those two cases are sufficient to cover all
scenarios in which a bad router sends out the bogus LSU.

Once bad routers are located, the routers respond by re-
configuring the network to logically remove the bad routers.
Specifically, when the diagnosis described above reveals
that p or q is a bad router, the neighbor relationship between
p and q will be ceased by the good router. (Because we
assume that no bad routers are adjacent, p or q is a good
router.) As a result, if a bad router keeps sending out bo-
gus LSU to its neighbors, the bad router will eventually be
disconnected from the network.

3.6. An Example

Figure 2 depicts a network that has six routers Ri, where
1 � i � 6. Consider that R1 floods a signed LSU L to
other routers. We assume that R2 is a bad router. Instead
of forwarding L, R2 forwards a modified LSU L0 to its
neighborsR3 and R5. Without knowing L0 is a bogus LSU,
R3 in turn forwardsL0 toR6. When the key used to verifyL
is disseminated by R1, the bogus LSU L0 will be detected.
R6 will send out a BRUA indicating L0 was received from
R3. R3 and R5 will send out a BRUA indicating L0 was
received fromR2. Then a BRUP graph as shown in Figure 2
will be constructed. Performing a DFS on the BRUP graph
outputs the following results: R2 or R3 is a bad router, and
R2 or R5 is a bad router. Subsequently, R3 and R5 will
cease their neighbor relationship with R2. Note that based
on the BRUP graph, R1 cannot determine whether R2 is a
bad router or its neighbors are bad routers. Thus R1 does
not disconnect itself from R2. However, if R2 continues to
misbehave, R2 may eventually be completely disconnected
from the network.

3.7. Cost Analysis

The major costs of our OLSV scheme are in the time to
generate and to verify digital signatures for KCA and BRUA,
the time to generate and to verify MAC for LSU, the time
to perform DFS on BRUP graphs, the storage required to

R 1 R 3

R 6R 5R 4

R 1 R 3

R 6R 5R 4

R 2

R 2
age=2

age=2 age=3

Figure 2. A Network and an Associated BRUP
Graph.



store hash-chained keys, the storage required to store LSU
that are yet to be verified, and the network bandwidth for
sending HCK, signed LSU, and BRUA.

Time: Because a KCA is generated and verified once for
every ` LSU, the amortized cost is very small. Our
experiments performed on a SPARC-5 running SunOS
4.1.3 and using the RSAREF2 library show the follow-
ing results: (1) Generating and verifying a signature for
a 16-byte block (i.e., the same size as an MD5 digest)
using RSA with the 512-bit key size takes 0.38 second
and 0.033 second respectively. (2) Generating an MD5
digest for a 512-byte block and a 16-byte block takes
240 microseconds and 52 microseconds respectively.
The time to generate an MD5 digest roughly corre-
sponds to the times to generate and to verify a keyed-
MD5 MAC. Thus using our scheme may be orders of
magnitude less expensive than using a digital signature
scheme for LSU authentication. Our main goal is to
minimize the performance impact of LSU authentica-
tion when the network operates normally, which occurs
most of the time. We argue that the costs of recovery
(i.e., signing and verifying BRUA and performing DFS
on BRUP graphs), performed only when the network
is under attack, are tolerable.

Storage: Every router needs to store a hash chain8 of
length `. Note that MD5 produces a 128-bit digest
and SHA produces a 160-bit digest. Thus one can
choose a large ` in practice. On the receiver process
side, only the last verified HCK from each router needs
to be stored. Thus the storage cost for the hash-chained
keys may be tolerable. Because a router needs to store
the LSU that are yet to be verified, a potential denial
of service vulnerability exists. To prevent a bad router
from sending out a lot of bogus LSU to consume all
memory of a router, one may impose a limit on how
frequently a router may forward LSU originated by a
particular router. In fact, modern link state routing pro-
tocols such as OSPF impose a minimum time between
distinct originations of any particular link state adver-
tisement. Another technique is to store conflicting LSU
only—two or more LSU conflict with each other if they
have different link state data but the same originating
router id and the same sequence number. When a router
receives (bogus) LSU whose originating router is the
router itself and the sequence number is larger9 than the
router’s current sequence number, the router floods an
LSU with the same sequence number and the current

8Note that Hauser et al.’s scheme requires a router to maintain two hash
chains for each link incident on the router. Our scheme only requires one
hash chain per router.

9Sending bogus LSU with old sequence numbers is not an effective
attack because those LSU will not be used.

link state data so other routers can detect a conflict.
Note that only conflicting LSU that have the smallest
sequence number are needed to be stored. Moreover,
among those LSU that have the smallest sequence num-
ber, only the two LSU that have the largest checksums
are needed. (We need to store two to ensure that the
bogus LSU with the largest checksum is stored; the
authentic LSU may have the largest checksum.) As a
result, a router only needs to keep an LSU for 2�� time
units (to ensure the LSU from the originating router
can reach itself) instead of � + ∆ + �� time units to
detect bogus LSU.

Network Bandwidth: The recurring extra network traffic
are from HCK messages and two fields in signed LSU
(i.e., an index and a MAC). An HCK and those two
fields in a signed LSU are about the size of a message
digest. A BRUA is about the size of a signed LSU.
Again, a BRUA is sent only when the network is under
attack. Thus the extra network bandwidth needed in
our scheme should be insignificant.

4. Discussion

Although both Hauser et al.’s scheme and our OLSV
scheme use hash chains as a tool, they differ in how hash
chains are used. In Hauser et al.’s scheme, hash chain entries
are used as signatures. In our OLSV scheme, hash chain en-
tries are used as keys for generating and verifying MAC.
Our OLSV scheme has several advantages over Hauser et
al.’s scheme. First, OLSV can efficiently handle multiple-
valued link states. The need for multiple-valued link states
arises when link costs depend on traffic load, and when a
border router advertises (summarized) link costs for desti-
nations that reside in other autonomous systems or in other
areas within the same autonomous system. Second, OLSV
can be used to handle very frequent link state changes. In
OLSV, a hash-chained key can be used to generate and to
verify MAC for multiple LSU. In Hauser et al.’s scheme,
consecutive link state changes are at least ∆ time units apart.
Moreover, Hauser et al.’s scheme may not be able to use a
small ∆ (c.f. Section 2). Third, OLSV does not require �
to be smaller than a certain value. (Hauser et al.’s scheme
requires � < 3∆.) However, we note that there is a tradeoff
between the tightness of clock synchronization and the time
to recover. It is because a signed LSU may be released �+∆
time units before the time the corresponding hash-chained
key is released. A future work item is to reduce the recovery
time of OLSV, especially when the routers are very loosely
synchronized.

In Section 3, we assume that there are no adjacent bad
routers in the network. We note that the recovery protocol
can be extended to cope with adjacent bad routers. After lo-



cating a suspicious router pair by performing DFS in a BRUP
graph, we know that at least one of them are mischievous.
If none of them ceases the neighbor relationship, one can
conclude that both of them are bad routers. The neighbors of
those two routers should disconnect themselves from those
two routers in the next round. By repeating this procedure,
a good router that is adjacent to those bad routers will be
able to determine which neighbors are bad routers and cease
its neighbor relationship with them.

Some techniques presented in OLSV are useful in other
contexts. The basic idea of optimistic verification is appli-
cable in general to applications in which a subject needs
to authenticate data to many other subjects efficiently. For
example, it can be used to reduce the costs of Smith’s and
Garcia-Luna-Aceves’s [21] scheme on securing BGP and
Smith’s, Murthy’s and Garcia-Luna-Aceves’s [22] scheme
on securing distance vector routing protocols. If we remove
“optimistic verification” from OLSV, we have an efficient
LSU authentication scheme that is applicable to a network
with tightly synchronized routers10. Specifically, after a
router receives a signed LSU, it will wait until the corre-
sponding HCK arrives. The authenticity of the HCK is then
verified. Verified HCK are used to verify the authenticity of
LSU. Only verified LSU are used to update the routing ta-
ble. In this case, we would not need to perform the recovery
portion of the protocol.

Independently, Wu et al. [24] proposed an intrusion de-
tection approach to secure link state routing protocols. Their
main idea is that a router generates a session key and uses it
to sign k LSU. After the session key is usedk times, the orig-
inating router will sign the session key using its private key
and send the signed session key to other routers. If bogus
LSU are detected, bad routers are identified using a statisti-
cal analysis technique. Even though our OLSV scheme and
Wu et al.’s scheme use a similar approach, our techniques
and protocols are quite different from theirs. Among other
things, our OLSV may be able to detect attacks sooner than
Wu et al.’s scheme. Because generating and verifying dig-
ital signatures are expensive, k must be reasonably large.
Thus the time between a LSU is sent and the corresponding
session key is released may be quite long, especially when
link state changes are infrequent. Our OLSV, on the other
hand, does not rely on batch verification for cost reduction.
A hash-chained key can be released every ∆ time units and
∆ may be chosen to be quite small. Thus OLSV may be
able to detect bogus LSU and initiate the recovery process
sooner.

10Tight synchronization among routers may be achieved using a secure
network time protocol.
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