DADO: Enhancing middleware to support cross-cutting features in distributed,
heterogeneous systems
DRAFT-PLEASE KEEP CHECKING BACK FOR NEW VERSION

Eric Wohlstadter, Stoney Jackson and Premkumar Devanbu
Center for Software Systems Research,
Department of Computer Science,
University of California, Davis, CA 95616

wohlstad,devanbu@cs.ucdavis.edu

Abstract issue has been discussed widely in the literature (See for exam-
ple, [31, 14, 19, 7] among others; we present a sample security
Some “non-’ or “extra-functional” features, such as relia- policy in the next section which provides an illustration). The
bility, security, and tracing, defy modularization mechanismscattered implementation of such features makes them difficult
in programming languages. This makes such features hatd develop, understand and maintain. To worsen matters, the re-
to design, implement, and maintain. Implementing such feauirements of such features are oftete bound locality depen-
tures within a single platform, using a single language, is hardlent, discovered late, and change often—security policies again
enough. With distributed, heterogeneo@H) systems, these being a prime example. Programmers are thus confronted with
features induce complex implementations which cross-cut diffeihe difficult challenge of making a scattered set of changes to a
ent languages, OSs, and hardware platforms, while still needingroad set of modules, often late in the game.
to share data and events. Worse still, the precise requirements Distributed Heterogeneousystems (abbreviate®?) are
for such features are often locality-dependent and discoverésbcoming part of the IT infra-structure in many organiza-
late (e.g., security policies). The DAB@pproach helps pro- tions: many needed software functions are provided by sys-
gram cross-cutting features by improviig}{ middleware. A tems assembled from pieces running on different platforms and
DADO servicecomprises pairs oddapletswvhich are explicitly programmed in different languages. Distribution arises from
modeled in IDL. Adaplets may be implemented in any languaggessures such as globalization and mobility. Heterogeneity
compatible with the target application, and attached to stubgrises from considerations such as performance, legacy sys-
and skeletons of application objects in a variety of ways. DAD@ms, weight, size, vendor specialization, and energy consump-
supports flexible and type-checked interactions (using generat@eén. Cross-cutting features i+ systems present special chal-
stubs and skeletons) between adaplets and between adaplets giithes. Feature implementations are scattered across different
objects. Adaplets can be attached at run-time to an applicatioranguages, operating systems and hardware platforms. Feature
object. We describe the approach and illustrate its use for seymplementation elements in one platform need to correctly ex-
eral cross-cutting features, including performance monitoringchange information with existing application code, and with
caching, and security. We also discuss software engineering preuch elements on other platforms. Any cross-platform (remote)
cess, as well as run-time performance implications. interactions between feature implementation elements may neg-
atively impact application performance. In a WAN context, the
) presence of different, incompatible featuresg(different se-
1 Introduction curity policies) may even cause the application to fail. In addi-
This paper is concerned with an approach to supporting thtieon’ the ope.rator of a service may wish to change security 90”'
development of late-bound, cross-cutting features in distributed > at run-time. Some_platforms may be too resource-limited
heterogeneous systems. or performance-constrained to support some types of software

. . . evolution techniquese(g., reflection). In some cases, source
Cross-cutting featureare those whose implementations stub-] e . .

. . _ code may not be available for modification, so binary editing
bornly resist confinement within the bounds of modules. Fe

: . : 6fechmques (or middleware-based wrapping) might have to be
tures such as logging, transactions, security and fault-tolerance . : !

. . . .used. However, since feature implementations may cross-cut
typically have implementations that straddle module boundarie

- : I Hﬁatforms, all these different techniques of software evolution
even within the most sensible decompositions of systems. T 13 . : . :
should be allowed to co-exist, and inter-operate. Finally, since

1DADO: Distributed Adaplets for Distributed Objects. We also note that &Cr0SS-cutting f?ature implementqtions might be Widefly applica-
“dado” is a carpenter’s tool for making cuts across the grain. ble, we would like to reuse them (in either source or binary form,

@ multiple fraudulent insurance claims.
Consider injecting aecuritypolicy into this system, consist-
ing of two critical elements. First, each client must be authenti-
e @ cated by an authentication serverd., by a password scheme).
Next each client must dealith only oneserver from each cate-
@ gory. Thus, each client must use just one doatacéptfor sec-

7 A 3 ond opinionsl!!), one pharmacy, and one insurer within a given

‘g . :i \(\‘ time interval. Fig 1 (right side) schematically indicates the new
=1 === o high-level architecture. A authentication server has been added
Authentication Register to validate users, and a registration server to register client-

Figure 1. A distributed health-care system, with many serviceService provider relationships.
providers, without left) and with ¢ight) security. The right one en- This policy requires changes évery componerand toevery
forces this security policy: the client must first get get an authenticatiomteractionbetween components. The client now has to authen-
token (1) from an authentication server, and then present this token afidate itself to the authentication server, which provides an iden-
his request (2) to a service-provider, who then checks with the registrgty token. This token must now be added to all client-service
tion server (3) (to prevent mgltiple fra.\udullent requests) before SerViCi%quests. All members of each group of services must now coor-
the request (4). Such a policy requires implementations that cross-Gii,ate among themselves to make sure that a client with a partic-
system and language boundaries. ular identity does not interact with more than one specific mem-
ber of a group. Since malicious clients may try to induce race
conditions among members of a group, they must synchronize
as applicable) by changing the way they are “bound” to applicde “commit” to serving a client.
tion implementations. The changes are clearly “cross-cutting”. Programs running
In this paper, we describe DADO, an approach to develomn different platforms, and in different languages might need
ing features in distributed systems that require code changes,dhanging. Since some platforms may have performance or bat-
a heterogeneous setting, to both client- and server-side of a tery limitations, (e.g., PDAs or laptops), or be remotely located,
mote interaction. The paper begins with a motivating exampldifferent evolution strategies should be allowed, and allowed to
in Section 2. We then survey the surrounding area in Section Biter-operate. Changes to different elements must be made con-
Section 4 presents our research goals in more detail. Sectisistently, to ensure correct interaction. Changes must be prop-
5 describes the current status of our experimental implemestly deployed in the different elements, otherwise versioning er-
tation of DADO (including the run-time, code-generation andors may result. Since the function on the server side for doctors,
deployment tools), which is based on the OMG CORBA stanpharmacists and insurers are similar, it would be desirable to re-
dard. Section 6 presents some sample applications of DAD@se the same policy implementati@ven if their IDL interfaces
Section 7 presents some micro-benchmarks evaluating the pare different should the platforms be compatible.
formance impact of DADO. In section 8 we describe closely Next, we survey current approaches¥@{ evolution, con-
related projects. Finally we conclude with a overall view of thesidering how they address programming challenges such as this
work, the current limitations, and our future plans. one.
NoteAn earlier short position paper (4 pages) published in IW-
PSE [39] outlined the goals of our research and some initial d& Current Approaches
signs. This paper presents similar motivations, but the designs

i 'There are a variety of approaches to dealing with cross-
examples, and results presented here are new and different.

cutting features. Our survey here is limited by space to be rep-
resentative rather than exhaustive; no judgment of omitted or
included work is implied. A more complete survey can be found
For expository reasons, we review the example used in an [38].

earlier position paper [39]. Consider?2H medical applica- Several language-based techniqudstave been proposed.
tion (Fig. 1), with a set of clients making use of three group£lassical syntactic program transforms [2] were perhaps among
of servers (shown as groups of circles with indicative labels}he earliest to provide the capability of broad changes to pro-
clinics, pharmacies, and insurers. The servers in a group coudams. Reflection [23] provided means of introducing cross-
be running on different platforms (each doctor’s office mightutting changes at run-time in languages such as Smalltalk.
use a different type of computer), but each provides the san@mpile-time [5, 32] reflection in C++ and Java has been de-
service (e.g., through the same CORBA IDL interface). Theeloped and extended to load-time in Java using byte code edit-
components in this architecture communicate udilig mid- ing [6]. Mixin-layers [28] also provide a way of adding fea-
dleware. In Fig. 1 (left), the original services are shown. Theures to methods in several different classes simultaneously. Im-
multiple arrows suggest drug fraud, with an unauthorized implicit Context [36] is a method for separating extraneous embed-
postor client contacting multiple doctors and getting many preded knowledge (EEK) (or cross-cutting knowledge) from the de-
scriptions for the same drug, possibly getting each prescriptiagign of a program, and re-weaving it back in later. Monads and
dispensed many times, by different pharmacies, and then issuimgpnad transformers [16] have been used in lazy, pure functional

2 An Example

languages to capture cross-cutting features such as states whted within the container. Consider that a client may not be
side-effects. They work by encapsulating the basic notion of &illing to reveal his password to just any old application con-
computation and then allowing fundamental evaluation mech+ainer, and so the initial step of authentication (password based
anisms such as value propagation to be overridden. Recenty,public-key signature based) might need to occur at a separate
approaches such as HyperJ [31] and Aspectj [14] provide diffefecation that the client trusts. So the authentication exchange
ing approaches to implementing cross-cutting features in Javaust be custom-programmed using an approach similar to inter-
A detailed comparison (but see [13] for a comparison of compaeptors. Programming here can be thus sometimes as hard as
sitional vs. aspectual views of program evolution mechanismsprogramming interceptor-based services.

of these differing approaches is beyond the scope of this paper; Recently, Duclos, Estublier, and Marat [11] have proposed
suffice to say we are interested irD&{ setting, thus transcend- the model of &omponent Virtual Machinevhich captures im-

ing language boundaries. While details vary, most of these laportant events in a component’s lifecycle. These events can
guages provide two features:haokor pattern, for describing be viewed agoinpoints An enhanced container implementa-
where to insert cross-cutting changes, and then a way to prograion allows extra Advice to bound to specific pointcut patterns
the changes themselves. Since our approach uses the “hoak/er these joinpoints. This approach allows much easier im-
mechanism from AspectJ, we discuss it in more detail here. plementation of custom services on the container side. We dis-

AspectJ provides a pattern mechanism, capiethtcutsfor ~ cuss this work in more detail later 18; we merely note here
capturing groups of events, callgdnpointsthat may occur dur- that our work focuses more on heterogeneous systems rather
ing a program’s operation (such as method calls/receptions, cdRan container-based systems. Section 8 also surveys several
structor calls, field accesses, and exception events). The patte@fer closely related works, that are easier to relate to ours after
matching mechanism includes regular expression matchingADO details have been presented.
with wild-carding over fragments of method names, argumen .
names, types e?c. Extra gode, calldlivicecan be assoc?ated A DADO Overview
with point-cuts, and is inserted by the AspectJ compiler into the Ag jllustrated in Section 2, late-bound, cross-cutting func-
join-points. Advice can inspect and modify data that are avaikions such as security require extra functional elements (which in
able at join-point eventse(g. method-call arguments and return paopo we call adaplet3 to be located together with (potentially
values), and can create new data dynamically that is only sharggtributed) application software components. A client-server
with other advice. Our work uses these ideagiiodelingcross- pajr of adaplets would constitute a distributed DADO service.
cutting changes to distributed systems at the IDL level. Howge begin with a discussion of the main goals of our project.

ever, the distribution, heterogeneity, and versioning problemphen we describe the features of DADO that address these chal-
that arise in our context, require new and differenplemen- |enges.

tations

Middleware-base@pproaches are certainly relevant. Some4'1 Desiderata

works exploit language-based reflection in the middleware [3Hleterogeneity and CommunicationAdaplets may need to ex-
and other approaches use specially constructed reflectighange information and co-ordinate with each other, and/or with
ORBs [15]. SOM [8] was an early approach to support reflectiothe application components. While this is strongly analogous
directly in the middleware. Interceptors [37, 20] and filters [2710 AspectJ, adaplets must communicate and co-ordinate in a
provide a way of inserting extra functionality inewerymethod distributed heterogeneousntext. The adaptation mechanisms
that originates or arrives at a request broker; middleware-specifigource/binary transformation, runtime wrapping) may depend
APIs provide means for interceptor code to reflect upon the den the platform; even so, heterogeneous adaplets should co-exist
tails of the intercepted invocations. While these reflective mettand inter-operate correctly.

ods are suitable for implementing cross-cutting services [4Binding and Deploymentit would be desirable to suppdete

(and for some very idiosyncratic, and highly dynamic servicebinding and flexible deploymentdf DADO services. Consider
may be the only way to do it) the use of the low-level reflecthat container standards such as J2EE allow independent con-
tion APls, along with the need for frequent use of type-castintpiner developers to develop services that are customized for spe-
makes programming difficult and error-prone; thus it would beific applications at deployment time. Likewise, we would like
preferable to use more statically checkable methods when posti-allow vendors to build services consisting of DADO services,
ble. Proxies and wrappers [12, 29] are another approach. Hoimdependently of application builders, and then allow deploy-
ever, they are typically tailored for a specific application objectent experts to combine services and applications to sulit their
interface; so thus, it would not be possible to reuse a wrappaeeds.

to implement the same security policy on such entirely differelDynamic Service RecognitiorSeveral adaplets, supporting dif-
components as doctors and insurésentainer model§24, 33] ferent features, may be associated with an application compo-
address this problem through code generation. They provigeent; clients and servers must deploy matching sets of adaplets.
a fixed set of services (depending on the container vendadr) a dynamic, widely distributed context, clients may become
to application components. Via configuration files and codeaware only at run-time of the adaplets associated with a server
generation, services selected from a given set can be addedotyect. Thus adaplets may be need to be acquired and deployed
any component. However, some services cannot be completeliyruntime.

Flexible Communication and Co-ordination The interaction DADO brings three new roles into this process (see appendix
between a matched pair of client and server adaplets may not#f aservice architegtservice programmerand aservice de-
simple and monolithic. Under different circumstances, the clierloyment specialistThis service architect can desigba{ ser-
adaplet may require and request different functions (with differvice that implements a cross-cutting feature, such as the ones
ent parameters) that are supported by a server adaplet (just austrated in Section 6. This process begins with a description
distributed object can support several distinct methods). Likesf a cross-cutting DADGerviceas in an enhanced IDL (known
wise, the server adaplet may request different post-processiag DAIDL, for DADO IDL). A service is a collection of DADO
functions on the client side. A client adaplet can refer to it'sadaplet interfacedescriptions, which consist of several meth-
server “mate” via the reserved namhdt ” (and vice versa). ods, just like a CORBA IDL interface. These interfaces are then
However, for efficiency, it would be better to have only a singleeompiled using DAIDL compilers for different target implemen-
invocation event through the middleware (e.g., a single CORB#ation languages (currently we support C++ and Java), produc-
synchronous call). ing marshaling routines and typing environments. The imple-
4.2 DADO Features mentatiqn then. proceeds by service programmers just as with
.]) conventional middleware.
Modeling, Type-Checking, and MarshallingDADO employs The deployment specialist binds an implemented service to
an enhanced IDL and code-generation to support the following; given application by specifying bindings using an AspectJ
like pointcut language. The deployment specialist will need
to understand both the application and the service, and select
the bindings based on the specific installation. Currently, these
o Ability to implement adaplets in different languages, whilebindings must be specified ahead of time and pre-compiled; one
supporting: can then choose from different pre-compiled bindings (each of
))])) which bind a service to a set of application objects in a par-
» safer interaction (via static type-checking) between adagjcyar way) dynamically. Duclos, Estublier and Marat's DS-
lets, with automated generation of marshaling code. CVM [11] also includes similar roles, but their implementation

Point-cut based BindingDADO separates services (which de-Strategy is different, utilizing a sophisticated container architec-
scribe the interfaces supported by adaplets) from a deploymdHf€ (We come back to this later, §rB).

description, which specifies the precise deployment context of a .)

service (using a pointcut language similar to Aspectd). This a® PADO implementation

lows a deployment expert to tune the connection between DADO

servicgs and different application components. The binding Iar-’H the above section. The current DADO experimental imple-
guage is agnostic with respect to the implementation; DADO a nentation is based on the OMG CORBA standard. It includes

aplets could be incorporated into the existing application usianL language extensions for services, DADO IDL (DAIDL)
static transformations (binary or source) or dynamic Wrappin%ompilers for C++ and Java, run-time software extensions for

Ic\i/le;??nldmg or: a\;an?t?le toolﬁ, pergg‘rgzglci |ssuesd etlc.t two different ORBs (JacORB and the TAO ORB), and tool sup-
ultiple Lontextual nvocations allows adaplets on . for the deployment of serviceisg, for dynamically insert-

the client and server S'd.e to communicate via messages. Ho g DADO services into existing CORBA applications).
ever, rather than inducing additional middleware invocations,
multiple messages are piggy-backed within the single prés.1 IDLs, Type-checking, and Marshalling

existing application invocation. .
Transparent Late binding DADO clients transparently (with- _ DADO adopts the philosophy (as does DS-CVM [11]) that
gL-level models provide an excellent software engineering

out additional programming) discover the services associaté e) w h
with a server, and depl@additional adaplets as needed. methodology for distributed systems; in addition to promoting
better conceptualization of the design, one can construct tools

4.3 Process implications of DADO to generate useful “plumbing” code and typing environments
Currently, the process of building7 systems using middle- for static type-checking. DADO IDL introduces the notion of

ware such as CORBA includes modeling the high-level desig# Servicethat refers to a cross-cutting feature. A service com-
using IDL. IDL specs are then implemented by developers, brises client and/or servedaplets Eachadapletsupports sev-
they COTS vendors, or application builders, on different plateral methods, which may be of 2 different kindsdvicemeth-
forms and perhaps in different languages. When implementati®§is, identified in DAIDL by theadvice keyword, may be bound,

is complete, the users of the distributed system can run ORBs ¥i# pointcut patterns (like AspectJ advice, as explained later, in
a network as suited to the application and organizational needggction 5.3) to application objects. Advice methods basically
and deploy the constituent application objects, along with angrovide additional functionality that is ruevery timecertain

COTS software and ORB-provided services (naming, lifecyclénethods defined in an IDL interface are invoked. Advice can
events etc.). be on the client or the server-side.

e Explicit IDL-level modeling of adaplets and their interac-
tion with application components.

We now present more details on the DADO features outlined

2In Java, with a suitablelassloader , adaplets could be even dynami- 3This suggests another role, perhapoparator, who selects services based
cally downloaded over the internet. on operating conditions.

In addition to advice methods, DAIDL services can also in- The service architect can include operations tagged with the
cluderequestmethods (identified in DAIDL by theequestkey- request modifier keyword to provide an extra communication
word). These are a form of queued asynchronous methods (gesth between client and server adaplets that is associated with
section 5.4 on RMCI) that may be invoked by any adaplet mettthe current CORBA invocation. The body of client and server
ods. Advice and request are explained in more detail in Seegdvice can be programmed to add request messages by using
tion 5.2. the "that " reference which exposes the interface of request op-

DAIDL compilers can currently generate heterogeneous tygerations available to a client adaplet by the server adaplet and
ing environmentsife., C++ header files, or Java imports), asvice versa. In object-oriented languages the service programmer
well as stub and skeleton routines; adaplets can currently béll derive adaplet implementations from a generated abstract
implemented in either C++ or Java (but must be written in th&ase class which includes an appropriately typed member vari-
same language as the application ofjedive also note that ad- able namedthat . "that ” is automatically bound to a gen-
vice adaplet methods have direct typed access to any argumendted stub that implements RMCI semantics for each request
in the application invocation; the actual bindings are specifiedperation.
in the pointcut. Programming within the context of typed stubs Advice and Request play different roles in adapting the dy-
and skeletons, and leveraging generated marshaling and oth@mic execution of a distributed application. Advice operations
“plumbing” code offers a distinct software engineering advanare used to add behavior at points in the program determined by
tage over the current practice of “type-less” programming opointcut based deployment. Although the addition and removal
late-bound services that use untyped string data in an invocatiohadvice can occur dynamically at runtime it is still based on re-
context object for data exchange. ferring to static elements in the IDL interface. Pointcuts create a
5.2 Advice and Request connection between client programs and client adaplets or server

: . . . bjects and server adaplets only. The connection between client
The separation of advice and request operations in the adap %idplets and server adaplets is made through request messages

interfaces represents two levels of adaptation required to implghd is completely dynamic. The request messages serve both

ment cross-cutting d'Smb'T'ted heterogeneous services. In tr1§convey additional information and invoke behavior to process
section we detail the relationship of advice and requests to the, intormation

development and runtime execution of standard CORBA com- The exact mechanism by which the original client and server
ponents and to each other.

. . rograms are modified can be platform-dependent; heterogene-
We recall (from Section 4.3) that DADO introduces severar g P P 9

new service-related roles into the software procesgraice ar- y is aIIowgd. Several' options are possible, including source-

hit . q ice del Wh _co_de weaving, generating customl_zec_J stub components, or mod-
chl e_ct SEIVICE programmerand aservice deployer When a - ; ing the middleware. The transmission format of request mes-
service architect decides that some additional behavior on tlg ges, however, is standardized because it must be understood
client or server of a distributed application is desirable, she c ' '

dd an advi ration to the interf f an adaplet. Advi the DADO runtime on heterogeneous hosts. Our experi-
add an acvice operation 1o e Interlace of an adaplet. ental implementation relies on packing request messages into

operations can be specified to be client-side or server-side A ServiceContext of a CORBA invocation. Theervice -
vice. The service deployer can then add the behavior SpECiﬁ%%entext is part of the CORBA protocol format for commu-
by the advice interface to a specific application object by writ-

nicating invocation specific information between ORBs. Nat-

mg_an_apprqpnate pointcut. Th? service programmer has thuerally, the generated request and advice skeletons, and typing
obligation to implement each advice.

: . . . nvironments are standardized, using the usual OMG IDL lan-
Some services can be implemented simply by executing a§

vice on the client- or server-side, along with application metho tage mappings.

invocations. However, in some cases, additional informatiog.3 Binding and Deployment

may be need to be sent along from the client to the server side)) _ _ o
adaplet (or vice versa). For example, in section 6.1 we present ONce built, a service can be integrated with applications
a service where a client side adaplet can request that a mat@¥- SPecifying abinding which is done using a pointcut lan-
ing server adaplet calculate server processing time for specifi@de. This process involves one platfandependentool,
invocations, and then communicate this information back to th&hich matches the pointcuts against a known set of component
client adaplet. This additional information conveyed betweelfitérfaces, and produces a digested match-table in XML format;
client and server adaplets is contextual. It must be associatBfd @ separate platfordependentneans for actually ensuring
with some original CORBA invocation. Likewise, the timing be_that the adaplets get triggered when the pointcuts get activated.
havior by the server adaplet must occur before and after the pro- The pointcut language extends the AspectJ pointcut language
cessing of the invocation for which the client adaplet requestd@ SPecify client or server side pointcuts, extending the AspectJ

statistics. This type of adaptation is handled by the RMCI mecHegular expression syntax for the declaration of generic or cross-
anism described below, in Section 5.4. cutting behavior. Matching of pointcuts with invocations could

be done off-line or on-line. The current DADO tool (the point-

o . . . - -)
Th|§ is primarily for performance reasons; _|f adaplets are in a different Ia_ncuts pre-processor) matches pointcuts (against the IDLs of the
guage, it would be necessary to go through middleware to get from an applica-

tion object to an adaplet. With a “polyglot’ middleware like .NET's common aPplication objects) a_t _Compile'tim?- This t90| identifies all the
language runtime, this problem can be finessed to some extent. IDL level events requiring adaplet intervention, and also the in-

formation in the events that should be made available to each

adaplet. The output of the preprocessor is a representation of _

all the event/action matches as an AST (represented as XML). | <" >‘1 r\—>< server

We call this Intermediate Joinpoint Representation (IJRpté 5 13

Although this matching happens at compile-time, services with T L/ 12 {——T
]

pointcuts that are already compiled into IJR can be added or s \ 17
removed at runtime). Of course, future tool (and associated run- S Foquent
time) support could allow new point cuts to be created and in- h\ % > | ueue m
serted at run-time. 4 10

In order to trigger adaplet behavior at runtime, application tmobation imvacktion
code must somehow be modified, or execution intercepted to Coptext Context
capture the right events. A wide range of binary and source- 6
code, static and dynamic instrumentation mechanisms have i 8
been reported [5, 32, 14, 25]. Middleware, also, can support ‘
highly dynamic reflective mechanisms [3]; Duclos, Estublier ’ORB ‘%7 ,’ ORB ‘
and Morat [11] have build a “component virtual machine” that
allows great flexibility in instrumentation.

In keeping with theD’H philosophy,we allow heterogeneity

S

Queue

>
Request m | 9

Figure 2. Remote Multiple Contextual Invocatid®lient-server ap-

in the imolementation of the triaaerina mechaniskinus while plication object interactions are mediated by “T” (transaction) and “S”
: Imp ! 'ggering IShiUS wh security adaplets. Gray semi-circles denote generated marshaling code.

the pointcut specifies the “high-level design” of the binding, difyti4) client invocation (1) is diverted by the interceptor in turn to each
ferent implementation strategies are possible. Currently, se¥gapiet (2,4) until finally arriving (6) at the ORB. Adaplets use mar-
eral instrumentation mechanisms are supported for translatiggaling code for their invocations (3,5). Each adaplet may enqueue sev-
DADO pointcuts (in 1JR form) into actual trigger mechanismseral one-way messages (for the server-side adaplets) which are piggy-
For Java, we use AspectJ [14] to insert the necessary trigger cdsieked as a request queue through the normal middleware invocation
into generated stubs and skeletons (thus avoiding the need @) over the WAN to the server side. The process occurs in reverse on
application implementation source code. For C++, we make udlee server side, with the requests in the queue being delivered to the
of a range of mechanisms, including TAO’s smart proxies [37]§0rresponding ada_plets._ Likewise, serv_er-side gdaplets may enqueue
and the Portable Interceptor standard in CORBA; this approadfessages to the client side adaplets which are piggy-backed on the in-
is also compatible with binary-only application components, angPcation response.

canwork in any language, even one that does not support source-

code or binary instrumentation mechanisms. However, both ap-

proaches require that adaplets be written in the same languaggrd. We could include both options as possible parameters,
as the application objects. Removing this restriction is certainlyy 5 single method signature, along with an extra flag to indi-
possible, but would require adaplets to engage a large segmegte the active choice; this leads to poorly modularized methods
of the middleware stack for cross-language interoperability witlith many arguments. Rather, we take the “distributed object”
application components. Naturally, client- and server-side adaghjlosophy of supporting different requests at a single server ob-
lets, even if using different languages, different instrumentatioqbct; we allow adaplets on either side to support several differ-
mechanismsarefully inter-operable, and portableThe adaplet ent requests. As another illustration of the use of requests, con-
programmer remains agnostic with respect to the actual instryjger a generic caching service, (implemented using DADO ad-
mentation mechanism that is used to trigger the adaplet. Agpjets) which can for example be attached to a stock quotation
adaplet can communicate with other adaplets (the matched oR@ver(this example is discussed in more detail in Section 6).
or any others that it has a handle to) using the DAIDL intercjient-side advice can cache values and return them instead of
face description. In our implementation, this is accomplishegoing to the server for each request. However, the server may
through appropriate code generation; the generated code punsnt to communicate a “time-out” interval back to the client, so
data around by packaging it into the untysavice contextb- that it can adjust the time-out period for cached quotes based on
ject (See [21], Chapter 21) APl in CORBA. market volatility. So it would be useful to have a special client-
side request method that the server can invoke when it needs to
adjust the time-out value.

Remote multiple contextual invocation (RMCI) in DADO DADO adaplets support a special type of one-way, asyn-
gives service developers more ways of programming interachronous “piggy-backed” message that are sent along with anin-
tions between client-side and server-side adaplets. Consider tiatation (from client to server) or a response (vice versa). Since
a client adaplet may require different types of actions to be takenultiple services can be present simultaneously, the requests are
at the server side. As a very simple example, a per-use paymepteued on each client and packaged with the original invocation
service adaplet attached to a server object might accept e-cdshdispatch at a server side adaplet. This also works in reverse
payments, or a credit card. Another example is authenticatiofor requests going from the server-side adaplet to the client-side
It could be based on kerberos-style tokens, or on a simple passtaplet. The keywordr&quest " in the DAIDL adaplet inter-

5.4 Remote Multiple Contextual Invocation

face can be used to designate operations as having RMCI se- 4 - "
mantics. Client Server

In figure 2 we show application objects using both a security 5>‘ T T
and a transaction service. Note the presence of corresponding | S S
adaplets for each service on both the client and server side. Ad- Adaplet <
aplets might include both advice and request methods; the fig- o |
ure illustrates how the client side advice gets executed in turn.
Each client adaplet may enqueue multiple requests to be exe-

cuted by the server side adaplets. The requests are collected into f /
a queue that gets piggy-backed onto the regular middleware in- 2 '*J

Interceptor 1

vocation and passed through to the server side. The RMCI des- o
ignation thus arises frorM ultiple Remote requests contained SERVICE
within the single InvocationContext The implementations of

these requests (regardless of adaplet’s location) have full reflec-

tive access to the current active invocation, via provided API£!9ure 3. Late-binding service adaptatior(s) Server object, with

Of course, if the information needed by the adaplet is knowRccUIY @nd Transaction adaplets, nameti™of type "Bill " is reg-
. . : istered with a Naming service. The identifiers "Transaction” and "Se-
statically, there is no need to use reflection.

) . . curity” are tagged to the external object reference. When client looks
On the server side, the designated advice adaplet methods {Qf gbject namedii1”, the returned object reference (2) is intercepted

each adaplet get executed, as are the enqueued requests. gyhBado component. Dado attempts (3) to find client-side adaplets for
server side adaplets may also enqueue requests to be executeghsaction” and "Authentication” from client-side factory. Factory
by the client side. This feature can be used to pass informati@neates and binds transactions (T) and security (S) adaplets to client
back to client-side adaplets; we illustrate with a performanceapplication object.

monitoring example where server-side time-stamps are passed

back to the client via a request adaplet method.

In essence, RMCI provides a form of dynamic per-invocation i the service deployment at a server object changes dynam-
adaptation as in Lasange[34] while supporting type-checked ifya|ly, it re-registers with the naming service to alert future
teractions and modular design through IDL declaration. clients. If service deployment changes at a server while current
clients are still active, the server can throw a DADO-specific ex-
ception upon their next invocation; the client-side DADO run-

Ina WAN environment such as the internet, where servers afgne transparently responds, reconstructing the set of client-side
discovered at run-time, clients cannot predict the set of serviceglaplets so that interactions may continue.

rovided by (or required by) a particular server until it is located . .
gtatic appr)(/)c(";lchesqthat inS)Qi” r?ew services based ononly on t 96 Adaplet Instance Considerations
information cannot easily provide this kind of late binding. A service developer may need to control the granularity of

When server objects are associated with a DADO servideow server objects and clients are affected by adaplets. This may
(this can happen dynamically, from the command-line or at dd€ nhecessary to conserve resources, by not creating too many
ployment time via configuration files) they are assigned an ex@dapletinstances, or for associating state in adaplets with partic-
ternal object reference that is used by the client side run-time tdar application object instances. Currently, we provide a mech-
detect the applicable serviesEssentially, the references en-anism for associating adaplets on a one-per-ORB basis &
code information about the adaplets associated with this Gbjecgingleton) or on a one-per-POAasis. We plan to add sup-
This information is used by the Dado interception logic on théort for per-object adaplets in the future; currently, per-object
client-side to transparently engage the corresponding client-si@éaplet instantiation is only possible by placing objects in sepa-
adaplets. Our implementations use different triggering mech&ate POA's.
nisms, depending on the platform, to achieve this.This process is
illustrated in figure 3. When an application object implementa* Examples
tion registers itself with a naming service, the reference encodes We now present some sample applications of DADO. All
all active services (Arrow 1). Subsequently, a retrieved refef these examples have been implemented with a Java client
ence (2) is intercepted by the DADO runtime, which decodesn JacORB and a server on TAO. For space reasons only the
the applicable service identifiers from the reference. It then irDAIDL interface descriptions are presented.
structs the local factory to create instances of the correspondi§g1 Round-Trio Performance
client-side adaplets, and injects them into the execution path of P
invocations originating from the client. Consider a simple performance monitor in a particular client
software. One can easily write coded.,using interceptors, see

SWe assume that these external object references uniquely identify a senf@0], or [21], Chap. 21) to attach to the client that will record
object.
6Using CORBA this is possible with Tagged IOR Components. Other mid- “The Portable Object Adapter is a container abstraction available in CORBA
dleware such as SOAP could add information to a URL. for associating policies (such as thread policies) with a number of server objects.

5.5 Transparent Late Service Binding

the time each invocation leaves and response arrives. But tlewel. Thus the service programmer decides wiagiest mes-
client may also want the invocation arrival-time at the server ansiages are triggered; however, the IDL model does alquest

the reply sending-time in order to compute the actual processimgessages to be marshalled and triggered in a heterogeneous, yet
time. This scenario demands more cohesion between interattpe-checked manner.

ing client and server interceptors. This service requires three To deploy Timing adaplets for a given application object,
critical elements: clients must be able to ask the server for tinthe server-side would make the service available by register-
ing statistics forsome not all, invocations. Servers must returning a servemiming adaplet component with the servers’ object
data through a type-checked interface. Clients need some waglapter. When clients become aware of those server objects, the
to modify existing software to add logic for requesting timingDADO run-time will automatically deploy client adaplets based
statistics; different means should be allowable. Finally, clienten the clients deployment preferences (seectbwcut decla-

and server- adaptations should be coordinated; clients will noation above). In this deployment the client would like all invo-
request timing statistics from servers unable to provide them. cations to be intercepted kiyiedOperation as indicated by the

adaplet Timing { wildcard. The server side doesn’t need to specify any additional

client { pointcut instructions, as the operatiomneRequest is invoked
advice void timedOperation(); by the client-side adaplet.
request timeResult(in long long received, . .
in long long sent); 6.2 Client-Side Cache
b Systems are often built without performance optimizations
server { such as caching in mind. However, it would be nice to lever-
request timeRequest(); age some off-the-shelf caching behavior, without requiring ex-
I tensive modifications to client and server code. We consider a

feature whereby clients can cache data associated with a partic-
ular server. Consider a stock-quote server, which provides ac-

crosscut Timing cessor and mutator methods. The accessor methods are called
client { by clients, and mutators would be called by a data provider to
before call(*) : . “pump” data into the quote server. We would like to cache the
¥ void timedOperation(); returned quote value at the client side. When the server returns
5 data it associates a time-to-live (TTL) value with the data, for

DADO ice devel f ite the DAIDL interf use by the client. An invocation will be serviced using cached
service developers first write the INterfaces yata from the client (without contacting the server) as long as
(above the line) of the client and server adaplets, and mplememte TTL has not expired. The server will adjust its TTL value

lt_rlljem_for tafltget I?nguagesl(utrl]llzmg DAIDIH t(;OISSnd run't'meheuristically depending on the frequency of calls (from its data
ibraries). The client adaplet has two methods. Qinegdop- provider) to its mutator method.

eration IS anadvice method that can be bound to an applica-
tion method. The othetimeResult iS arequest method thatis adaplet Cache {
used by the server-side adaplet to report back the timing results. server {
This timeResultequest message can be included with the orig- request requestTTL(; _
. . . : advice void trackWrite(in string key);
inal response by the server and will be dispatched to the client .
side adaplet before the client application receives the response.client {
The implementation afmedoperation can dynamically decide advice any -type readcache(in string key);

. . . . request putTTL(in long ttl);
whether to invokehat.timeRequest or not; we note again that e
the special variablenat , denoting the (other) matched adaplet
is implicitly made available to both client/server adaplets. When
that.timeRequest is invoked by the client side advice arequest The DAIDL interface for the Cache adaplet specifies two
message is added to the original invocation and dispatched to thperationsirackwrite ~ andrequestTTL . The client-side cache
server side adaplet before the server object receives the origimalaplet issuegequestTTL along with accessor operations for
invocation. The server adaplet can respond tmeRequest which it has no cached data. The server adaplet sends back the
by taking two timing measurements to determine the actual eX-TL value associated with the invocation, back along with the
ecution time for that application method invocation; it can themlata response; it does this by issuinguarTL request to the
report the result back to the client, using th&.timeResult client. The server adaplet estimates the TTL values heuristi-
client-side request. We note thaie implementation of the ad- cally by timing the mutator operations that it receives from its
vice is responsible for invoking the requegihere is thus no stock quote providers. Theackwrite IS the advice that is
explicit modeling of this detail at the IDL level. For instance,triggered to calculate TTL based on mutate operation frequency.
consider a client that would like to time one out of every terThe client-side advicesadcache performs the caching opera-
invocations. This logic could be programmed into thedop- tion. The keyworchny type giveSreadcache access to the re-
eration advice by an adaplet programmer. It would be inapproturn value, as a generic CORB#Ay, of the operations on which
priate to introduce this type of implementation detail at the IDLit is deployed. This design requires that the operation to be

cached, the accessor operation, uses a string “unique key” aith a deployment description(see below). An implementation
gument to determine the returned data. This fits our scenerid this advice can implement the policy.

where clients access stock quote prices based on stock market

symbols but may require a different interface for other applica2d2Piet wall - {

. . . . h server

tions. Consider a simplBtockQuotes server with operaupns request{ authenticinfo(in Authentic::Token tok);
setQ andgetQ . We could apply the adapletivice hooks to in- request register(in Authentic:: Token tok,
troduce caching using the following deployment file in long duration);

advice void check()

raises(NotRegistered,NoAccess);
crosscut Cachg

. client {
client { advice contactAuthentic();
around call(float StockQuotes::getQ(key)) : ¥
any.type readcache(in string key); 5 '
h ’
server{

before call(void StockQuotes::setQ(key,in float)) :
void trackWrites(in string key): Thecheck implementation (in some host programming lan-

Y guage) will contact a registration server (IDL not shown) to en-
sure that a client can be served. If not, (if authentication token,

b or registration is invalid) the operation should raise t@c-
cess exceptiof. However, if this client is not registered with
any of the servers in the group, or if the required registration
interval with the current server has passeack can throw a
Not Registered exception. This gives the implementation of
6.3 Security Policy contactAuthentic @ chance to catch this exception and retry
Now consider our security policy example (Section 2). Herethe operation by sending along a request for a new registration

X) interval (which will succeed as long as the client hasn't fraud-
servers must restrict access to some operations, based both on

clients’ identity, and their previous history of use. Clients muskj?emly. regu;tered eIsewh'ere). Catchlng'except!ons anq rgtrymg
gperations is made possible by structuring adeicindorigi-

be registered with a particular server for some duration. After’ 2
nal invocations in a fashion similiar to the Decorator pattern.

this time has expired, clients can register with another server. The server side adviceneck , and the client-side advice .

This prevents clients from contacting and obtaining the samc%mactAuthemic can be bound to anv operation that must be
services fraudulently from multiple servers. Clients authenticatg . . ' . Y 0P

. : . . Rohcy-medmted. Implementations can choose to cache secu-
themselves using a cryptographic token. It is the clients respoh:

sibility to obtain anauthentic::Token which is a cryptographic fity information as appropriate. However, we note that once the

object representing the verification of the clients identity. Thgterver has implemented and d_eploy_e::lhek_ advice gorrectl_y
. . _ L ; it does not have to trust the client-side advice at all; also, if the
implementation of theontactAuthentic advice in the client

i . N . uthentication service uses public-key authentication, the client-
adaplet is responsible for this; this advice can be bound to appli- : o
.“""side advice does not have to leak any authentication secrets (e.g.,
cation methods that must be mediated by this security policy.

i) rivate key) outside the client’s machine.
Since the authentication token is specific to this service, V\}% All examples above have been implemented with the client in

must include server-side request operations in the adapletj va. and the server in C++. Further details of our current im-
transmit this information to be server side. The server adapl gr):am’entation are described i;ﬂ the following section. Full source
has two request operations available for receiving the authen%— : . e : '
L i S ; ode is available ohttp://rickshaw.cs.ucdavis.edu
cation information. The first time a client contacts a server, she
must register (commit) to that server for a specified time inter7 performance Study
val. Therequest operationregister is for use by first time T)
clients and includes a parameter for the duration of registration. The data presented is in the style of micro-benchmarks: we
The implementation of this registration will validate the authenmeasure the incremental effect of the actual additional marshal-
tication token and check with a centralized reservation servé?g Work induced by the new “plumbing” code (generated by
(not shown here) to make sure that the client isn't fraudulentiPADO compilers), as well as other DADO runtime machinery
registered with a different service provider. or dispatching adapleiivice andrequest . For this reason, we
For subsequent application object invocations within the reg!S€ dummydvice andrequest methods that don’t do any com-
istered duration, the client uses the secesdest operation putation, so that we can fogus primarily on the actual overhead
authenticinfo , to transmit the authentication token. Now, ev-Of the DADO runtime machinery. _ _ _
ery server operation that needs to be mediated by this securj’%The_ measurements were taken for a single client server pair.
policy must trigger the policy enforcement mechanism, to checkn® client machine was a 1.80 GHz Intel Pentium with 1GB
that the client is authentic, registered and still within the regis'@n memory running Linux 7.1. The client middleware was
tration interval. The server operations that need to pe restricted sthese are implemented as a run-ti®@RBA::SystemException s be-
should be mapped to th&all server adaplet operatiaimeck cause they occur inside of the original target operation.

Thekeyarguments serve to match parameters in the applic
tion operations with parameters for use by the advice.

JacORB 1.4 on JDK 1.4. The server machine was an 800 Mhz The first row is the plain unloaded CORBA call, as a base-
Intel Pentium Laptop with 512MB main memory running Mi- line for comparison. The second row is a CORBA call with one
crosoft Windows 2000. Server software used TAO 1.2 comadaplet advice, and one additional request. In the third row, we
piled in C++ Visual Studio. Client-side advice is invoked us-show the effect of “artificially” forcing a dummy advice (that
ing modified stubs; a portable interceptor dispatches requests doesn’t transmit any requests) to execute 10 times. The fourth
the server side. The DAIDL interface to the adaplet used farow shows the effect of executing the advice shown on the sec-
performance measurement is shown below. The actual IDL ind row 10 times, thus forcing 10 request messages. The critical
terface that is bound to is not important, since we are actuall§fth row shows an interesting comparison: it measures the plain
just measuring the additional overhead of the adaplet run-timM@ORBA call, with additional data loaded into the service context
infrastructure; in this case, we use a simple interface with a sibject, exactly equivalent to 10 request messagehout any

gle, synchronous method that takes a string and doesn’t retuaidaplet code whatsoever. This row corresponds to the precise

anything (not shown here). straw-man comparison for sending datnsDADO, and cor-
adaplet Test { responds to the way interceptor-based services (such as Trans-
client { actions and Real-Time, as per [21], page 30 of Chap. 13) are
advice void grabArg(in string arg); currently programmed.
b As can be seen, the advice itself, which does not send any
server { data, does not induce very large overheads (comparing rows 1
request putArg(in string arg); and 3, it's about 5% in both cases for 10 advice invocations) The
b overhead for sending requests is largely due to the base cost of

transmitting data over the service context object. By comparing
the 100-Base-T and Wireless measurements one can see the di-

crosscut Tesf minishing cost of marshaling as the benefits of reduced latency
client { B _ from piggybacked requests increases. The motivation of RMCI
before call(* *::*(arg)) : . B
void grabArg(in string arg): is to.prowde type-checkable interactions and modularization pf.
% service features, we feel these measurements show the feasibil-
5 ity of this approach.

As can be seen above, there is one client-side advice and one
server side request. The client-side advice is bound to evefly Closely Related Work
method call (with a single argument of typeing) on every , yhis section, we discuss closely related work and compare
obje_ct b)_/ the pointcut. In our implementation, the c_hent-su_them in greater detail with DADO.
advice simply captures the string argument from the invocation
and calls the server side request, passing along the string argu-
ment. The server side advice receives the string argument, aR@ssault Sysemes CVM The Dassault Systes Component
simply just passes control to the server application object. So thértual Machine (DS CVM) [11] is targeted at container-based
overhead we are measuring (beyond the normal CORBA inv§ystems, and allows the implementation of custom container
cation overhead) includes the additional cost of 1) interceptingervices. The DSCVM comprises an efficient, flexible CVM
the invocation on the client-side, 2) dispatching the client-sidEhat essentially supports a meta-object protocol which can be
advice, 3) executing the client-side request stub, 4) marshalih@ed for instrumentation of middleware-mediated events. This
the additional data transmitted by the request intcsitreice - allows this CVM to support the triggering of advice when the
Context object , 5) transmitting the additional data over theCVM executes specific events such component method invoca-
wire 6) unmarshaling the data on the server side 7) dispatchifi@ns. Pointcut “trigger” specifications are implemented using
and executing the request implementation on the server side. Afle DSCVM events. Advice can be bound to patterns of these

measurements given above are for round-trip delays for a simpk¥ents, and thus be used to implement services.
invocation that sends a “hello world” string. The data is aver- DADO is complementary to DS CVM in that DADO allows

aged over 1000 invocations, and is given in milliseconds. elements of cross-cutting services to be placed on the client site
| Experiment || 100 Base-T | Wireless || in a coordinated manner, for reasons argued earlier. DADO

1. Vanilla CORBA 065 3.49 also operates outside of a component/container model in “bare-
2. with 1 advice, bones” CORBA; thus it must (and does) allow heterogeneity in
1 request 1 417 the implementation of triggering mechanisms such as source
3. with 10 advice, transformations, binary editing etc. (See Section 5.3). The
No request 0.68 3.65 heterogeneity assumption also influences our design of type-
4. with 10 advice, checked information exchange between client and server adap-
10 request 1.52 7.45 lets, using generated stubs and skeletons (Section 5.1).
5. Vanilla CORBA with
equivalent raw
data Payload for 1.38 7.27 QuO The Quality of Objects (QuO) [17, 35] project aims to
10 requests provide consistent availability and performance guarantees for

distributed objects in the face of limited or unreliable compumany dimensions such as synchronization mechanisms, scope
tation and network resources. QuO introduces the notion of@f data, and the handling of exceptions. The current implemen-
“system condition”, which is a user-definable measure of thtation of DAIDL has made some reasonable choices, but other
system, such as load, network delay etc. System conditions celmoices will need to be explored as other application demands
transition between “operating region”s which are monitored byre confronted. Some examples: “service-scoped” state, i.e.,
the run-time environments. The novelty in QuO is that adapstate that is implicitly shared between adaplets; services whose
tations can be conditionally run to respond not only to normadcope transcends a matched stub-skeleton adaplets; etber (
middleware events, but also to region transitions. This is usefglynchronous) interactions between adaplets. We would like to
for services that deal with performance. implement an adaplet-per-object instance policy as well. Cur-
QuO'’s version of adaplets are confined to a single systemently , only run-time exceptions are supported for adaplets—in
Unlike DADO, Quo provides no special support for commu-the Java mapping, better static checking would be desirable.
nicating information from a client-side adaplet to a server-sidemplementation LimitationsCurrently our implementation has
adaplet. some limits. As outlined earlier, the marshaling needs further
LasagneLasagne[34] is a framework for dynamic and seleceptimization. The Portable Interceptor approach to trigger ad-
tive combination of extensions in component based applicationgice prevents the modification of invocation arguments or return
Each component can be wrapped with a set of decorators to K&lues; thus non-orthogonal [14] services that do affect these
fine the interaction behavior with other components. Every de&alues must be programmed with source or binary transforms.
orator layer is tagged with an extension identifier. Clients caWe need to broaden our base to more languages. .NET is cur-
dynamically request servers to use different sets of decoratorsrahtly not supported, but it could be interesting. CLR [33] would
run-time. An innovative aspect of Lasagne is the usage of extealow us to write adaplets for CLR applications in any CLR com-
sion identifiers to consistently turn on and off adaptive behaviopliant language.
However, the use of the decorator-style constrains all extensioB#rvice interactions Feature interactions are a difficult open
to have the same interface. Any additional extension-specific iresearch issue that DADO services must deal with eventually.
formation must be communicated using a “context” object, withwe note here that it is currently possible to program interactions
out the benefits of typechecking or automated marshaling. between two DADO services: one can write a third service that
Software Architecture In software architecture, connec- pointcuts adaplets in each, and responds to the triggering of both
tors [18, 22, 1] have proven to be a powerful and useful modsy preventing one from running, changing argument values, re-
eling device. Connectors reify the concern of interaction bewurn values etc. However, we do still not have enough experience
tween components, and are a natural foci for some cross-cuttiagth this approach, and it remains future work.
concerns. Implementations of architectural connectors have also|n conclusion, DADO is an approach to programming cross-
been proposed [10, 26, 9, 30]. Some of these provide speutting concerns in distributed heterogeneous systems based on
cific services [26, 9, 30] oveP’H middleware, such as security. placing “adaplets” at the points where the application interacts
Our work can be viewed as providing a convenientimplementawith the middleware. It supports heterogeneous implementation
tion vehicle for different connector-like services in a heterogeand triggering of adaplets, allows client- and server- adaplets to
neous environment. The DAIDL language and compiler allowecommunicate in a type-checked environment using automated
service builders to write client and server adaplets that provid@arshaling, provides flexibility in communication between ad-
many kinds of “connector-style” functionality, while the DAIDL aplets, allows flexible binding, and late deployment of adaplets
“plumbing” handles the communication details. Furthermoregn to application objects. While much work remains to be done,
the pointcut language allows a flexible way of binding this funcwe believe that the current version of DADO provides many fea-
tionality to components, using pattern matching to bind eventgires of interest to the software engineering research community.
to adaplets. The question as to whether connector specificatioB§urce code for Java using JacORB and C++ using TAO with
(e.g., in an ADL) can be translated to DAIDL specifications MSVC++ is available on-line at http:/rickshaw.cs.ucdavis.edu.
and pointcuts is interesting, and we hope to address it in future aAcknowledgments: We would like to thanks the anonymous
research. reviewers for their detailed comments as well as support from

) NSF 0204348.
9. Conclusion

We conclude here with several observations about DADO, irRReferences

‘I‘I(r;!tatlogs, an(? olgr plans for futu;e WOLk' dv di [1] R. Allen and D. Garlan. A formal basis for architectural connec-
lent-Server” First, we note that when we repeatedly dis- tion. ACM Transactions on Software Engineering and Methodol-

cuss'client-” and“server-" adaplets, we are speakingaient- ogy, 6(3):213-249, 1997.

server roles in a synchronous RPC-style connectofhus (o] g Balzer. Transformational implementation: An exampEEE
DADO IS not SpeCIfIC to a C|Ient-SeI’V€I’ arCh'teCturaI Style In Transactions on Software Eng|nee”rﬂ‘11)3_14, January 1981.
fact DADO adaplets may be bound to CORBAeway calls, [3] G. Blair and R. Campbell, editor&Reflective Middleware2000.
Wh'Qh are e?’sent'a”y aS_ynChronOUS messages. [4] L. Capra, W. Emmerich, and C. Mascolo. Reflective middleware
Design ChoicesThe design space of a convenient frameworkto solutions for context-aware applicatiorisecture Notes in Com-
implementDH cross-cutting services is quite large, comprising puter Science2192:126-??, 2001.

(5]
(6]

S. Chiba. A metaobject protocol for C++. Rroceedings, ACM
OOPSLA pages 285-299, 1995.

S. Chiba. Load-time structural reflection in Jalaecture Notes
in Computer Sciengd.850:313-??, 2000.

[23] F. Rivard. Smalltalk: a reflective language. Pmoceedings, Re-

flection 96.

[24] E. Roman, S. Ambler, and T. JeweMastering Enterprise Jav-

aBeans Wiley, 2001.

[7] Y. Coady, A. Brodsky, D. Brodsky, J. Pomkoski, S. Gudmund-[25] T. Romer, G. V. D. Lee, A. Wolman, W. Wong, H. Levy, B. N.
son, J. S. Ong, and G. Kiczales. Can AOP support extensibility Bershad, and J. B. Chen. Instrumentation and optimization of
in client-server architectures? Rroceedings, ECOOP Aspect- Win32/Intel executables using etch.Uisenix Windows NT Work-
Oriented Programming Workshpp001. shop pages 1-8, 1997.

[8] N. Coskun and R. Sessions. Class objects in si@i Personal M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and
Systems DevelopeBummer 1992. G. Zelesnik. Abstractions for software architecture and tools to

[9] E. M. Dashofy, N. Medvidovic, and R. N. Taylor. Using off-the- support themSoftware Engineering21(4):314-335, 1995.

shelf middleware to implement connectors in distributed archi{27] J. Siegel. CORBA 3 Fundamentals and ProgrammingViley

tectures. IrProceedings, ICSE-24.999. Press, 2000.

S. Ducasse and T. Richner. Executable connectors: towardg8] Y. Smaragdakis and D. Batory. Implementing layered de-

reusable design elements. Pioceedings of the 6th European signs with mixin layers. Lecture Notes in Computer Science

conference held jointly with the 5th ACM SIGSOFT symposium 1445:550-?7?, 1998.

on Software engineeringages 483-499. Springer-Verlag New [29] T. S. Souder and S. Mancoridis. A tool for securely integrating

York, Inc., 1997. legacy systems into a distributed environmentWarking Con-

F. Duclos, J. Estublier, and P. Morat. Describing and using non ference on Reverse Engineerjpgiges 47-55, 1999.

functional aspects in component based applications.Inter- ~ [30] B. Spitznagel and D. Garlan. A compositional approach to con-

national Conference on Aspect-Oriented Software Development structing connectors. IRroceedings, IFIP/IEEE WICSZ001.

2002. [31] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr. N degrees

T. Fraser, L. Badger, and M. Feldman. Hardening COTS software Of separation: Multi-dimensional separation of concernsinin

with generic software wrappers. IEEE Symposium on Security ternational Conference on Software Engineeripgges 107-119,

and Privacy pages 2—-16, 1999. 1999.

W. Harrison, H. Ossher, and P. Tarr. Symmetrically and assymi32] M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian. Openjava:

metrically organized paradigms of program transformation, 2202. A class-based macro system for java. OORaSE pages 117-

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and 133, 1999.

W. G. Griswold. An overview of Aspectlecture Notes in Com- [33] A. Troelsen.C# and the .NET PlatformApress, 2001.

puter Science2072:327-355, 2001. [34] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. N. Jor-

F. Kon, M. Ronan, P. Liu, J. Mao, T. Yamane, L. C. Maga#s, gensen. Dynamic and selective combination of extensions in

and R. H. Campbell. Monitoring, Security, and Dynamic Config- component-based applications. Ihternational Conference on

uration with the dynamicTAO Reflective ORB. Rroceedings of Software Engineeringpages 233-242, 2001.

the IFIP/ACM International Conference on Distributed Systemsl35] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz, and

Platforms and Open Distributed Processing (Middleware’2000) D. Bakken. Quo's runtime support for quality of service in dis-

number 1795 in LNCS, pages 121-143, New York, April 2000. tributed objects. Innternational Conference on Distributed Sys-

Springer-Verlag. tems Platforms and Open Distributed Processit@98.

S. Liang, P. Hudak, and M. Jones. Monad transformers and mod36] R.J. Walker and G. C. Murphy. Implicit context: easing software

ular interpreters. In ACM, editoiConference record of POPL evolution and reuse. IRoundations of Software Engineering

'95, 22nd ACM SIGPLAN-SIGACT Symposium on Principles of _ Pages 69-78, 2000. _ _

Programming Languages: San Francisco, California, January[37] N. Wang, K. Parameswaran, and D. Schmidt. The design and per-

22-25, 1995pages 333-343, New York, NY, USA, 1995. ACM formance of meta-programming mechanisms for object request
Press. broker middleware, 2000.

J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R. Vanegas,[38] E. Wohlstadter. Managing evolution in distributed heterogenous
and K. Anderson. QuO Aspect languages and their runtime inte-___ SyStems.
gration. InProceedings of the Fourth Workshop on Languages,[39] E Wohlstgdte_r, B._To_one, and P. Devanbu. A framework for flex-
Compilers and Runtime Systems for Scalable Compar38s. |ple evolution in dlstrlbgteq heterogeneous systemslnlerna—
N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxon- tional Workshop on Principles of Software Evolution (4 pages)
omy of software connectors. Proceedings of the 22nd interna- 2002.
tional conference on Software engineeripgges 178-187. ACM
Press, 2000.
G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard. Sep-
arating features in source code: An exploratory studyintar-
national Conference on Software Engineeripgges 275-284,
2001.
P. Narasimhan, L. Moser, and P. Mellior-Smith. Using intercep-
tors to enhance CORBAEEE ComputerJuly 1999.
[21] Object Management GroupCORBA 3.0 Specificatior.0 edi-
tion.
[22] D. E. Perry and A. L. Wolf. Foundations for the study of soft-
ware architectureACM SIGSOFT Software Engineering Notes
17(4):40-52, 1992.

(26]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

DAIDL }\

! oy 4

! < Specs < " '/@(\(/
' S/l
1

=

|
1
1
1
1
1
]
]
|
1
! h Interface i Srervice
, - i ;
. Appllc_atlon I3 Repository 2 Architect
, Architect N Adaplet i
1 < Header
] . H
' Header \ Files]
1 Files Application \
! Object \ Adaplet v (
, Skeletons & 1‘ Skeletons & | IAdapLett' 3 /J\
mplementations H
X (Client & Server SIKUDS | Stu S P \\ SrerVIce
| NS Implementation ! ~ H
1 _.”-flw 3 P ; g || ¢ ¢ Programmer
! - I /. \
' Application \
| Programmer \ Linker >
h L|nker 1
| \ Deployment Specs
: ‘\ (Static & Dynamic ¢ I 5” (
| \\ Pointcuts) 5 J\.
: | Objects Objects | Objects |
]
X — T ! Srervice
| . \ — : Adaplets Adaplets Adaplets Deployment
) R J B -
' T J_J," : Specialist
1
1
1 0
! A N
| * O
[K - Deployment
________________ Tools
................................ 6

Figure 4. DADO Development Procesghe left hand side (within the dotted lines) indicates the conventional CORBA process. On the right, the
DADO service development begins (1) with modeling the interfaces to DADO adaplets using DAIDL; from this the DAIDL compiler generates (2)
plumbing code, and typing contexts for adaplet implementations. The programmer writes (3) the adaplet implementations and links to get (4) the
adaplets. Now, the development specialist produces (5) deployment specs, and these are used by deployment tools to install (6) the adaplets at

proper application object locations. Deployment can occur at compile time, link time, or run-time, depending on the instrumentation technology
used (only run-time insertion is illustated in the figure).

