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Abstract: Inference is a way to subvert access control mechanisms of database
systems. Most existing work on inference detection relies on analyzing func-
tional dependencies in the database schema. This paper is an extension to
our earlier e�ort in developing a data level inference detection system [Yip and
Levitt, 1998]. In this paper, we introduce the split query inference rule, make
an extension to the overlapping inference rule, and provide an in depth dis-
cussion on the applications of the inference rules on union queries. Data level
inference detection is inevitably expensive. We have developed a prototype of
the inference detection system to evaluate its performance. The result shows
that the system performs better with larger number of attributes and records in
the database, and smaller number of projected attributes and return tuples of
the queries. Therefore, the inference detection system could be practical when
users retrieve a small amount of data compare to the size of the database.

1 INTRODUCTION

An inference occurs when a user infers data that the user is not allowed to
access. In multilevel secure database systems, early work on inference detection
employs a graph to represent the functional dependencies among attributes in
the database schema. An inference occurs if there exists two paths between
two attributes (or composite attributes), and the two paths are labeled at
di�erent classi�cation levels [Hinke, 1988, Binns, 1992, Qian et al., 1993]. The



detected inference channel is eliminated by redesigning the database schema
[Lunt, 1989] or upgrading the paths that lead to the inference [Stickel, 1994].
There is also work on incorporating external knowledge in detecting inference
[Thuraisingham, 1991, Hinke et al., 1993, Delugach and Hinke, 1996]. Detecting
inference at the schema level is e�cient as the detection is performed at the
database design time. However, it has two drawbacks. First, the database
schema does not capture all dependencies that occur in an instance of the
database. Second, the existence of inference paths in the database schema does
not necessary imply the users are making use of them to perform inference.

More recently, researchers look at the instance of the database to generate
a richer set of functional dependencies for detecting inference. Hinke et al. use
cardinality associations to discover potential inference channels [Hinke et al.,
1996]. Hale et al. incorporate imprecise and fuzzy database relations into their
inference channel detection system [Hale and Shenoi, 1997]. Marks develops an
inference detection system that prevents all possible inference by monitoring
user queries with select clauses of the form \Ai = ai", where ai is a constant
[Marks, 1996]. Chang et al. use Bayesian estimation and network techniques
to estimate missing data in the database [Chang and Moskowitz, 1998].

In this paper, we describe our e�ort in developing a data level inference de-
tection system. We have identi�ed six inference rules that users can use to infer
data: split query, subsume, unique characteristic, overlapping, complementary,
and functional dependence inference rules. Essentially, the six inference rules
cover the set-subset, intersection, di�erence and union relationships among re-
turn tuples of queries. These rules are sound and they can be applied in any
number of times, and in any order. The existence of these inference rules illus-
trates the inadequacy of the schema level inference detection approach.

However, data level inference detection is inevitably expensive, as it needs
to keep track of all user queries and their return tuples. We have developed
a prototype of the data level inference detection system to evaluate its perfor-
mance. An earlier version of this paper is reported in [Yip and Levitt, 1998].
In this paper, we introduce the split query inference rule, make an extension to
the overlapping inference rule, provide a detail description on the applications
of the inference rules on union queries, and present a more complete experi-
mental results. Because of lack of space, we omit the description of the unique
characteristic and functional dependency inference rules. We also omit the use
of examples to illustrate the inference rules. Interested readers can �nd them
in [Yip and Levitt, 1998].

This paper is organized as follows. In Section 2, we introduce the notations
used in this paper. In Section 3, we present the inference rules. In Section 4,
we discuss the applications of the inference rules on union queries. In Section
5, we outline the inference detection algorithm. In Section 6, we present our
experimental results. In Section 7, we give a summary of the paper.



2 NOTATIONS

We consider a relational database that contains a single table. Multiple ta-
bles can be modeled as a universal relation as discussed in [Marks, 1996]. t[Ai]
denotes the attribute value of the tuple t over the attribute Ai. A query is repre-
sented by a 2-tuple: (projected-attributes; selection-criterion), where projected-
attributes is the set of attributes projected by the query, and selection-criterion
is the logical expression that selects the return tuples of the query. No aggre-
gation function (for example, maximum and average) is allowed to apply on
the projected-attributes. Given a query Qi, jQij denotes the number of return
tuples of Qi, and fQig denotes the set of return tuples of Qi. Unless otherwise
stated, a set of return tuples is indeed a multiset of return tuples, that is, du-
plicated return tuples are retained. For each query Qi = fASi;SCig, ASi is
expanded with Ai when `Ai = ai' appears in SCi as a conjunct. An inferred
query is a query that a user can infer its return tuples without directly issuing it
to the database. A partial query Qi is a query that a user knows about jQij but
not all the return tuples of Qi. `\', `[', and `n' stand for the set intersection,
union, and di�erence operations respectively.

A tuple t projected over a set of attributes S satis�es a logical expression
E if E is evaluated to true when each occurrence of Ai in E is replaced with
t[Ai], for all Ai in S. t contradicts E if E is evaluated to false. A return tuple
ti of a query Qi is indistinguishable from another return tuple tj of Qj if 1)
ti[A] = tj [A] for each attribute A 2 (ASi \ ASj), 2) ti does not contradict
SCj , and 3) tj does not contradict SCi. A tuple ti relates to another tuple
tj if the two tuples are projected from the same tuple in the database. If
ti relates to tj , then ti is indistinguishable from tj ; but the reverse does not
necessary hold. Given two queries, Q1 and Q2, we say that Q1 is subsumed by
Q2, denoted as Q1 < Q2, if and only if 1) SC1 logically implies SC2 (denoted
as SC1 ) SC2), or 2) for each return tuple t1 of Q1, t1 satis�es SC2. `<' is a
reexive, anti-symmetric, and transitive relation.

The goal of our inference detection system is to detect if a user can infer
data using a series of queries. In particular, the system determines if a user
can infer a return tuple of a query relates to a return tuple of another query.
If so, the user can learn more about the return tuples.

3 INFERENCE RULES

In this section, we present four inference rules. Unless otherwise stated, all
queries appear in the inference rules are not partial queries. We assume all
the queries are issued by a single user, and there is no change to the database
content. When two users are suspected of cooperating in performing inference,
we run the inference detection system against their combined set of queries.

3.1 Split Queries

A query Qi can be split into two smaller queries when a user can identify the
return tuples of Qi that relate to the return tuples of another query.



Inference Rule 1 (Split Queries) Given two queries Q1 and Q2. Express
SC2 in disjunctive normal form. If there exists a disjunct of SC2 such that the
set of attributes appear in the disjunct is a subset of AS1, then generate two
inferred queries: 1) Q11 = (AS1;SC1^SC2); and 2) Q12 = (AS1;SC1^:SC2).
Q2 may be a partial query. The return tuples of Q11 are the return tuples of
Q1 that also satisfy SC2. The return tuples of Q12 are the return tuples of Q1

that does not satisfy SC2.

When Q1 projects all attributes that appear in a disjunct of SC2, a user can
identify the return tuples of Q1 that satisfy SC2. Hence, the user can divide
the return tuples of Q1 into two sets: those that satisfy both SC1 and SC2,
and those that satisfy SC1 but not SC2.

3.2 Subsume Inference

In this section, we describe inference making use of the subsume relations among
queries.

Inference Rule 2 (Subsume) Given two queries Q1 and Q2, such that Q1 <

Q2.

SI1 If there is an attribute A in (AS2 n AS1), such that all return tuples of
Q2 take the same attribute value a over A, then for each return tuple t1
of Q1, t1[A] = a. Q1 may be a partial query.

SI2 If a return tuple t1 of Q1 is indistinguishable from exactly one return tuple
t2 of Q2, then t1 relates to t2. Q1 may be a partial query.

SI3 Let S be the set of return tuples of Q2 that are distinguishable from the
return tuples of Q1. If jSj = (jQ2j � jQ1j), generate two inferred queries
from Q2: 1) Q21 = (AS2; SC2 ^ : SC1) with S as the set of return
tuples; and 2) Q22 = (AS2; SC2 ^ SC1) with (fQ2g n S) as the set of
return tuples. If jSj < (jQ2j � jQ1j), generate an inferred partial query:
Q23 = (AS2; SC2 ^ : SC1) with S as the partial set of return tuples,
and jQ23j = (jQ2j � jQ1j).

Q1 < Q2 implies that for each return tuple t1 of Q1, there is a return tuple
t2 of Q2 such that t1 relates to t2. SI1 says that when all return tuples of Q2

share a common attribute value, say a, over an attribute A, a user can infer
that each return tuple of Q1 also takes the attribute value a over the attribute
A. This is because for each return tuple t1 of Q1, no matter which return tuple
t2 of Q2 that relates to t1, t2[A] = a. Hence, t1[A] must be equal to a.

SI2 says that if t1 of Q1 is indistinguishable from exactly one return tuple
t2 of Q2, then t1 relates to t2. This is because Q1 < Q2 implies that there is
at least one return tuple of Q2 that is indistinguishable from each return tuple
of Q1. Now, if t1 of Q1 is indistinguishable from one and only one return tuple
t2 of Q2, then we can conclude that t1 relates to t2.



SI3 says that if a user identi�es all the return tuples of Q2 that relate to the
return tuples of Q1, then the user can infer these two queries from Q2: (AS2;
SC1 ^ SC2) which includes return tuples of Q2 that relate to the return tuples
of Q1, and (AS2; SC2 ^ : SC1) which includes return tuples of Q2 that do
not relate to the return tuples of Q1.

3.3 Overlapping Inference

In this section, we describe the overlapping inference rule.

Inference Rule 3 (Overlapping)

OI1 Given Q1 < Q2, and Q1 < Q3. Let S2 be the set of return tuples of Q2

that are indistinguishable from the return tuples of Q3. If jS2j = jQ1j,
and a return tuple t2 of Q2 is indistinguishable from exactly one return
tuple t3 of Q3, then t2 relates to t3. Similarly, let S3 be the set of return
tuples of Q3 that are indistinguishable from the return tuples of Q2. If
jS3j = jQ1j, and a return tuple t3 of Q3 is indistinguishable from exactly
one return tuple t2 ofQ2, then t3 relates to t2. Suppose jQ1j = jS2j = jS3j.
If a return tuple t1 of Q1 is indistinguishable from exactly one return tuple
t2 in S2, then t1 relates to t2. Also, if t1 is indistinguishable from exactly
one return tuple t3 in S3, then t1 relates to t3. Q1 may be a partial query.

OI2 Given a query Q1, and a set of queries, QS = fQ2, : : :, Qng, where n � 3.
Suppose SC1 , (SC2 _ : : : _ SCn), and for each Qi in QS, Qi < Q1.
If the number of distinguishable tuples in QS = jQ1j, then any pair of
indistinguishable tuples relate to each other.

OI3 When OI1 is applied and all the related return tuples between Q2 and Q3

have been identi�ed, generate the following two inferred queries from Q2:
1) Q21 = (AS2;SC2 ^ :SC3 ^ :SC1) with fQ2gnS2 as the set of return
tuples; and 2) Q22 = (AS2;SC2^SC3) with S2 as the set of return tuples.
Similarly generate two inferred queries from Q3. When OI2 is applied,
generate possibly four inferred queries for each pair of queries that have
overlapping return tuples.

Given that Q1 < Q2 and Q1 < Q3, the number of return tuples of Q2

that relate to return tuples of Q3 must be at least jQ1j. OI1 identi�es the cases
where a user can infer the related return tuples among the three queries. When
Q1 implies three or more queries, OI1 is applied to two of them at a time.

We illustrate OI2 using three queries, Q1, Q2, and Q3, where Q1 < Q3,
Q2 < Q3, and SC3 , SC1 _ SC2. Let N be the number of indistinguishable
tuples in Q1 and Q2. As SC3 , SC1 _SC2, each return tuple of Q3 relates to
a return tuple in Q1 or Q2. Hence, N � jQ3j. Furthermore, as Q1 < Q3 and
Q2 < Q3, each distinguishable tuple in Q1 and Q2 relates to a return tuple of
Q3. Hence, N � jQ3j. Therefore, N = jQ3j. When a user �nd out that the
number of indistinguishable tuples in Q1 and Q2 equals jQ3j, the user can infer



that for each return tuple t1 of Q1 that is indistinguishable from a return tuple
t2 of Q2, t1 relates to t2.

3.4 Complementary Inference

The complementary inference rule performs inference by eliminating tuples that
are not related to one another.

Inference Rule 4 (Complementary Inference) Given four queries, Q1, Q2,
Q3, and Q4, where Q1 < Q2, and Q3 < Q4. Also, the return tuples of Q1 that
relate to the return tuples of Q3 are identi�ed (for example using the overlap-
ping inference rule), and the return tuples of Q2 that relate to the return tuples
of Q4 are identi�ed. If one of the following three conditions holds,

1. for each return tuple t1 of Q1 that does not relate to any return tuple of
Q3, t1 is distinguishable from all return tuples of Q4,

2. Q4 < Q3, or

3. jQ3j = jQ4j,

then Q0

1
< Q0

2
, where Q0

1
= (AS1; SC1 ^ : SC3), and Q0

2
= (AS2; SC2 ^ :

SC4). fQ0

1
g is the set of return tuples of Q1 that do not relate to any return

tuple of Q3, and fQ0

2
g is the set of return tuples of Q2 that do not relate to

any return tuple of Q4.

As Q1 < Q2 and fQ0

1g � fQ1g, each return tuple of Q0

1 relates to a return
tuple of Q2. Condition (1) says that each return tuple of Q0

1
does not relate to

any return tuple of Q4. Hence, each return tuple of Q0

1 relates to a return tuple
of Q0

2
. Condition (2) or (3) implies ((Q3 < Q4) ^ (Q4 < Q3)). By removing

from Q1 and Q2 the \same" set of return tuples, we have Q0

1
< Q0

2
.

It should be noted that in some cases, the inference as obtained from the com-
plementary inference rule can also be obtained from the overlapping inference
rule. For example, consider four queries Q1, Q2, Q3, and Q4, where Q1 < Q2,
and Q3 < Q4. Suppose the overlapping inference rule can be applied to identify
the related tuples between Q1 and Q3, and between Q2 and Q4. These result
in the generation of two inferred queries: 1) Q0

1 = (AS1;SC1 ^ :SC3); and 2)
Q0

2
= (AS2;SC2 ^ :SC4). If (SC1 ^ :SC3) ) (SC2 ^ :SC4), then we have

Q0

1
< Q0

2
which is the same result as obtained by applying the complementary

inference rule to the four queries. However, SC1 ) SC2 and SC3 ) SC4 does
not necessary implies (SC1 ^ :SC3) ) (SC2 ^ :SC4). When this implica-
tion does not hold, the complementary inference rule is needed to perform the
inference.

4 INFERENCE WITH UNION QUERIES

The inference rules can be applied to unions of queries. We call a union of
queries a `union query'. In contrast, a user query or an inferred query is called



a `simple query'. If Qu is a union query consists Qi, : : :, and Qj , then ASu =
(ASi\ : : :\ASj), and SCu = (SCi_ : : :_SCj). Note that ASu might be equal
to ;. The applications of the split query, unique characteristic and functional
dependency inference rules on union queries are similar to their applications
on simple queries. Hereafter, we only discuss the applications of the subsume,
overlapping, and complementary inference rules on union queries.

4.1 Subsume Inference Rule on Union Queries

Consider the applications of the subsume inference rule on union queries when
the union queries are subsumed by other queries. Let Qu = fQi; : : : ; Qjg be
a union query, and Qu < Q1. We show that inference obtained by applying
the subsume inference rule on (Qi [ : : : [ Qj) < Q1 can also be obtained by
applying the subsume inference rule on Qi < Q1, : : :, and Qj < Q1.

Consider the applications of SI1. If there is an attribute A in (AS1nASu),
such that all return tuples of Q1 take the same attribute value a over A, then
for each return tuple tu of Qu, tu[A] = a. This implies that for each return
tuple t of a simple query of Qu, t[A] = a. This is the same as if the SI1 is
applied to Qi and Q1, where Qi < Q1, for each simple query Qi of Qu.

Consider the applications of SI2. If there exists a tuple tu in Qu that is
indistinguishable from exactly one return tuple t1 of Q1, there exists at leaset
one simple query Qi of Qu such that tu relates to a return tuple ti of Qi. Now,
ti is indistinguishable from t1 of Q1. Hence, when SI2 is applicable to infer that
tu of Qu relates to t1 of Q1, it is also applicable to infer that ti of Qi relates to
t1 of Q1.

Consider the applications of SI3. When all the related tuples between Qu

and Q1 are identi�ed, two inferred queries are generated from Q1: 1) Qu1 =
(AS1;SC1 ^ :SCu); and 2) Qu2 = (AS1;SC1 ^ SCu). We show that these
two queries can also be generated from the simple queries of Qu and Q1. Note
that when all the related tuples between Qu and Q1 have been identi�ed, all
related tuples among the simple queries of Qu are also identi�ed. Without loss
of generality, suppose Qu = fQ2; Q3g. The application of SI3 on Q1 and Q2

generates two inferred queries: 1) Q21 = (AS1;SC1 ^ :SC2); and 2) Q22 =
(AS1;SC1 ^ SC2). Similarly, the application of SI3 on Q1 and Q3 generates
two inferred queries: 1) Q31 = (AS1;SC1 ^ :SC3); and 2) Q32 = (AS1;SC1 ^
SC3). Now, Q21 and Q31 are both generated from Q1, and we can generate the
following inferred query for their related tuples: (AS1;SC1 ^ :SC2 ^ :SC3)
which equals Qu1. Q22 and Q32 are both generated from Q1, and we can
identify the related tuple between them. The union of these two queries is
(AS1;SC1 ^ (SC2 _ SC3)) which equals Qu2. Therefore, we do not need to
consider the applications of the subsume inference rule when the union query
is subsumed by other queries.

Consider the case where union queries subsume other queries, say Q1 < Qu.
SI1 is applied as follows. If for each return tuple t of any simple query of Qu,
t[A] = a, then t1[A] = a for each return tuple t1 of Q1. SI2 is applied as
follows. If there is a return tuple t1 of Q1 that is indistinguishable from a set



of return tuples S from the simple queries of Qu, where all tuples in S relate to
one another, then t1 relates to each tuple in S. SI3 is applied similarly. Note
that the subsume inference rule can still be applied when the simple queries of
Qu have no common projected attribute.

4.2 Overlapping and Complementary Inference Rule on Union Queries

Consider the applications of OI1. Given three queries, Q1, Q2, and Qu, where
Qu is a union query. Suppose Qu < Q1 and Qu < Q2. If OI1 is to be applied
to identify the related return tuples among Q2 and Q3, jQuj must be known.
That is, the number of related tuples, if any, between the simple queries are
identi�ed. Now, suppose Q1 < Qu and Q1 < Q2. If OI1 is to be applied to
identify the related return tuples between Qu and Q2, then the user must has
already identi�ed those related tuples among the simple queries in Qu. Also,
the user has to identify the return tuples of Qu that are indistinguishable from
the return tuples of Q2, and the number of these return tuples equals jQ1j.

Consider the applications of OI2. Suppose there is a set of queries QS =
fQ2; : : : ; Qn; Qug such that for each queryQi 2 QS, Qi < Q1. OI2 is applicable
when the related tuples among the queries in QS are identi�ed. That is, the
related return tuples, if any, between Qu and other queries in QS have to be
identi�ed. OI3 is applied similar to the case with simple queries.

Note that the overlapping inference rule can still be applied when ASu =
;. For example, let Qu = fQu1; Qu2g. If SCu1 ^ SCu2 = false, the user
can conclude that there is no related return tuple between Qu1 and Qu2, and
jQuj = jQu1j+ jQu2j.

Consider the applications of the complementary inference rule on the union
queries. Suppose there are four queries Q1, Q2, Q3, and Qu, where Qu is a
union query, Q1 < Q2, and Q3 < Qu. To apply the complementary inference
rule on these four queries, the related return tuples among the simple queries in
Qu that also relate to return tuples of Q2 must have been identi�ed. Similarly
for the case when Q1, Q2, or Q3 is a union query.

5 INFERENCE DETECTION ALGORITHMS

In this section, we outline the inference detection algorithms. Figure 1 shows
the main function INFERENCE(U, Qi), which is called each time a user U
issues a query Qi to the database. The function maintains two sets: GEN and
EXP. GEN is initialized with the user issued query Qi, and is subsequently
being added with inferred queries generated by the inference rules. Each query
in GEN is compared with previously issued or inferred queries for user U (de-
noted as PREV QUERY(U)) to determine if the inference rules are applicable
to them. EXP is the set of tuples that are expanded during the applications of
the inference rules. The results of the applications of inference rules are genera-
tions of inferred queries and expansions of some return tuples of queries. Given
a tuple t1 projected over a set of attributes AS1, and another tuple t2 projected
over a set of attributes AS2. If t1 and t2 are found to be related to each other,



t1 is expanded as follows: for each attribute A 2 AS2nAS1, t1[A] = t2[A]. t2 is
expanded similarly.

After a tuple is expanded, the query that returns the expanded tuple might
be eligible in further applications of inference rules. Hence, the function checks
if the inference rules are applicable to the query. INFERENCE is a terminating
function, as the number of inferences is bound by the size of the database. In
each call to the INFERENCE function, all queries in GEN are processed before
the expanded tuples in EXP. This avoids repeatedly processing the same tuple
which is expanded more than once after queries in GEN are processed.

INFERENCE (U , Qi):
1. initialize GEN with Qi;
2. EXP  ;;
3. GEN Q  ;;
4. EXP Q  ;;
5. while (GEN 6= ; or EXP 6= ;) do
6. if GEN 6= ; then
7. Qj  a query in GEN ;
8. remove Qj from GEN

9. GEN Q  GEN Q [ fQjg;
10. else if EXP 6= ; then
11. Qj  a query that returns a tuple in EXP ;
12. EXP Q  EXP Q [ fQjg;
13. ts  return tuples of Qj in EXP ;
14. remove return tuples of Qj from EXP ;
15. for each Qk 2 PREV QUERY (U) do
16. EXP  UNIQUE(Qj , Qk, ts, EXP );
17. GEN  SPLIT QUERY(Qj , Qk, GEN);
18. if Qj < Qk then
19. (GEN , EXP )  SUBSUME(Qj , Qk, GEN , EXP );
20. (GEN , EXP )  OVERLAP(U , Qj , Qk, GEN , EXP );
21. GEN  COMPLEMENTARY(Qj , Qk, GEN);
22. else if Qk < Qj then
23. (GEN , EXP )  SUBSUME(Qk, Qj , GEN , EXP );
24. (GEN , EXP )  OVERLAP(U , Qk, Qj , GEN , EXP );
25. GEN  COMPLEMENTARY(Qk, Qj , GEN);
26. FIND UNION(U , GEN Q, EXP Q);

Figure 1 The inference function.

The function UNIQUE has three input parameters: Qj , Qk, and ts. The
function checks if unique characteristic can be determined between the two
queries Qj and Qk. For each expanded return tuple in ts, the function checks
if the expanded return tuple and another return tuple have common unique
characteristics. If so, the two return tuples are expanded with each other. The
functions SPLIT QUERY, SUBSUME, OVERLAP, and COMPLEMENTARY



operate as described in the corresponding inference rules, and we omit the
presentations of their algorithms. The FIND UNION function checks if there
are unions of query that satisfy the subsume relations with other queries. If so,
the inference rules are applied to them.

6 EXPERIMENTAL RESULTS

We have developed a prototype of the inference detection system in about 4,000
lines of Perl code. We have implemented the split query, subsume, unique
characteristic, overlapping (except OI2), and complementary inference rules.
The system also handles applications of the inference rules on union queries.
We run our experiments with randomly generated tables and user queries. Each
table has Nattr number of attributes, and Nrec num number of records. The
primary key of the table is a single attribute. All attributes are of integer
types. Attribute values in the table are uniformly distributed between 0 and
(Ndata dist �Nrec num), where 0 < Ndata dist � 1. We also randomly generate
Nquery num number of user queries. Each query projects Nproj number of
attributes from the table. The selection criterion of each query is a conjunction
of Ncond number of conjuncts. Each conjunct is of the form `Ai op ai', where
Ai is an attribute from the table, op is one of the comparison operators (>, �,
�, <, and =), and ai is an attribute value. Each query has Nret tuple number of
return tuples. We approximate the evaluation of a logical implication Ci ) Cj

by checking if the tuples selected by Ci is also selected by Cj , and that the set
of attributes appear in Cj is a subset of those appear in Ci. We collect the
following two data to measure the system performance: 1) average number of
seconds used to process one query. 2) number of times the inference rules are
applied.

We ran six experiments to determine how the characteristics of the database
and the queries a�ect the system performance. For the database, we consider
the following characteristics: 1) the number of tuples in the database; 2) the
number of attributes in the database; and 3) the amount of duplication of
the data values. For the queries, we consider the following characteristics: 1)
the number of attributes projected by the queries; 2) the number of conjuncts
in the selection criteria; 3) the number of queries being issued; and 4) the
number of tuples returned by the queries. The experimental results of running
the inference detection system on a Sun SPARC 20 workstation are shown in
Figure 2{Figure 7.

Experiment 1 investigates the e�ect of the number of attributes and the
amount of data duplication in the database on the system performance. In
this experiment, we choose the following parameter values: Nrec num = 1000,
Nret tuple = 50, Nproj = 4, Ncond = 3, and Nquery num = 500. Nattr is varied
with the following values: 40, 60, 80, 100, 120, and 140. Ndata dist is varied with
the following values 25%, 50%, 75%, and 100%. Figure 2 shows the results in a
graph plotted with the average query processing time (in seconds) against the
number of attributes in the database. Consider each individual line in Figure 2.
It shows that the system runs faster as Nattr increases from 40 to 140. With a



�xed type of queries, the larger the number of attributes in the table, the lesser
the amount of overlapping among the return tuples of queries. This results in
lesser subsume relations hold among queries, and hence the smaller the number
of inferences.

Consider the four lines in Figure 2. They correspond to the cases where
Ndata dist = 25%, 50%, 75%, and 100%. The lower the value of Ndata dist, the
more duplication of the data in the database. Intuitively, the higher the dupli-
cation of the data, the lesser the number of distinguishable return tuples, and
hence the smaller number of inferences. This is ture in some cases. However,
in general the results do not show a signi�cant e�ect of data duplication on the
system performance.

Experiment 2 investigates the e�ect of the number of return tuples of queries
on the system performance. Figure 3 shows the results for Nrec num = 1000,
Ndata dist = 50%, Nproj = 4, Ncond = 3, and Nquery num = 500. Nret tuple

takes the values of 50, 100, 150, 200, and 250, and Nattr takes the values of 80
and 120. The �gure shows that the system runs slower as Nret tuple increases.
The larger the number of return tuples, the longer it takes for the system to
process them. Also, the more the number of tuples returned by the queries, the
more the number of occurrences of inferences, and also the more the number
of inferred queries being generated.

Experiment 3 investigates the e�ect of the number of projected attributes
in queries on the system performance. Figure 4 shows the results for Nrec num

= 1000, Nquery num = 500, Ndata dist = 50%, Nattr = 80, and Nret tuple = 50.
Nproj takes the values of 4, 5, 6, 7, and 8. Ncond takes the values of 4, 5, 6, and
7. It shows that the system runs slower as Nproj increases. This is because the
more the number of attributes projected by the queries, the more overlapping
among the return tuples of queries, and hence the more number of inferences.

Experiment 4 investigates the e�ect of the number of conjunts in the selection
criteria on the system performance. Figure 5 shows the results for Nrec num

= 1000, Nquery num = 500, Ndata dist = 50%, Nattr = 80, and Nret tuple = 50.
Ncond takes the values of 3, 4, 5, 6, and 7. Nproj takes the values of 4, 5, 6,
and 7. It shows that the system runs faster as Ncond increases. This is because
the larger the number of conjuncts in the selection criteria of the queries, the
lesser the chance that the subsume relations hold among the queries, and hence
the smaller number of occurrences of inferences. However, the e�ect is not
signi�cant when Ncond > 3.

Experiment 5 investigates the e�ect of the number of tuples in the database
on the system performance. Figure 6 shows the result for Ndata dist = 50%,
Nattr = 80, Nret tuple = 50, Nquery num = 500, Nproj = 4, and Ncond = 3.
Nrec num is varied with the following values: 1000, 2500, 5000, 7500, and 10000.
It shows that the system runs faster as the number of tuples of the database
increases. As the size of the database increases, the possible amount of overlap-
ping among the queries decreases, and hence the lesser number of inferences.
For Nret tuple = 10000, the set of queries happen to generate more inferences



than the case for Nret tuple = 5000 or 7500, and hence it has a longer running
time.

Experiment 6 investigates the e�ect of the number of queries on the system
performance. Figure 7 shows the results for Nrec num = 1000, Ndata dist =
50%, Nattr = 80, Nret tuple = 30, Nproj = 4, and Ncond = 3. Nrec number takes
the values of 200, 400, 600, 800, 1000, and 1200. It shows that the system runs
slower as the number of queries to be processed increases. This is because the
more the number of queries, the more the number of inferences. Also, as each
user query needs to be compared with previously issued queries for the subsume
relations, the more the number of queries, the longer it takes to determine all
possible subsume relations.

7 SUMMARY

In this paper, we describe our e�ort in developing a data level inference de-
tection system. We have identi�ed six inference rules: split query, subsume,
unique characteristic, overlapping, complementary, and functional dependency
inference rules. We have also discussed the applications of the inference rules
on union queries. The existence of these inference rules shows that simply using
functional dependencies to detect inference is inadequate. We have developed
a prototype of the inference detection system using Perl on a Sun SPARC 20
workstation.

Although the data level inference detection approach is inevitably expensive,
there are cases where the uses of such approach is practical. As shown in our
experimental results, the system generally performs better with a larger size
of the database, and queries that return smaller number of tuples and project
smaller number of attributes. The system running time becomes high when
queries retrieve a large amount of data from the database, and there are large
amount of overlapping among query results. However, when a user issues such
type of queries, it is suspicious that the user is attempting to infer associations
among the data.
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