
Static Type-Inference for Trust in Distributed
Information Systems

Premkumar T. Devanbu, Michael Gertz, and Brian Toone

Department of Computer Science
University of California at Davis

Davis, CA 95616, U.S.A.
{devanbu,gertz,toone}@cs.ucdavis.edu

Abstract. Decision-makers in critical fields such as medicine and fi-
nance make use of a wide range of information available over the Internet.
Mediation, a data integration technique for distributed, heterogeneous
data sources, manages the complexity and diversity of the information
schemas on behalf of clients. We raise here the issue of trust: is the infor-
mation so obtained trustworthy? Each client can have different perspec-
tives on the desired trustworthiness the information he or she needs. We
consider here the scaling problem that arises from a very large number
of users accessing information from many different sources. A mediator
cannot be expected to manage the potentially quadratic scaling of trust
relationships clients can have with information sources. Furthermore, the
possibility of using untrustworthy data increases the risk that the result-
ing data will be unacceptable: a mediator might evaluate a complex query
for a client, only to have the answer rejected because the client does not
trust the sources of the information.
To help address these issues, we introduce a general static trust-typing
model, which can infer the trust ratings of query plans, based on trust
meta-data about the input data to the query, even before executing the
query. We also define essential properties of such a trust-typing model,
namely correctness, precision and completeness. We present an example
of a trust-typing model and describe some algorithmic frameworks for
the use of such trust-typing models in mediator-based query evaluation.

1 Introduction

In critical fields such as medicine, finance, environmental protection, and na-
tional defense, poorly-informed decisions can have unacceptable negative conse-
quences. Thus, prompt access to the widest possible set of information sources is
critical. A vast amount of information (e.g., drug interaction data, genomic data,
ethnographic information, company financial histories, geophysical data) is be-
coming available over the Internet, and decision makers can benefit from unified
access to this data. A unified schema, which supports querying over a diverse
set of information sources can provide decision-makers with valuable access to
a wide set of sources. A variety of mediator architectures (e.g., [4,8,10,20]) have
evolved in response to this problem. Mediators shield data consumers from the

R. Meersman et al. (Eds.): CoopIS/DOA/ODBASE 2003, LNCS 2888, pp. 370–388, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Static Type-Inference for Trust in Distributed Information Systems 371

concerns of schema awareness and query planning. Clients issue queries on an
integrated schema provided by the mediator. The mediator knows a wide set of
information providers and their schema; it maps a client’s query to distributed
queries over the sources that provide data relevant to the client’s query, and then
integrates the returned data to construct the final answer to the client.

However, data consumers, specially in an inter-networked WAN context, need
to worry about the trustworthiness of information sources. As described in, e.g.,
[11,12,13,14], data sources may have varying levels of quality. In this context,
consumers would be well-advised to carefully consider the sources of the data
when using data provided in response to a query. In addition, client applications
may have different levels of trust. For example, when requesting a legal case-
record for malpractice lawsuits against orthodontists living in Waco, Texas, a
client may want a complete list; but when asking the locations of nearby Sri
Lankan restaurants that are Glatt Kosher certified, clients might be satisfied
with a partial list. Some sources may have complete data, and some sources
might have incomplete or incorrect data. Current mediator architectures can
process complex queries, and integrate data from multiple sources. However,
they are not set up to handle the potentially quadratic scaling of possible trust
relationships between clients and information sources.

In a WAN setting, mediators must also consider the possibility that the final
result may have been computed using sources which may not satisfy the client’s
trust requirements. If the information providers and mediators charge for their
services, the client might have to pay for data that she cannot use! It would
therefore be desirable to determine statically during query plan generation and
before query execution, if for a given query and a specific set of sources, the
final answer would be acceptable to the client. Such a static typing scheme can
be used by a mediator to prune query plans that, if executed, would result in
answers to the query that do not satisfy the client’s trust requirements.

In this paper, we first describe a mediator architecture that deals with the
quadratic-scaling of trust relationships between clients and information sources
(Sec. 2). In particular, we detail a generic model for trust-type inference in the
style of programming languages type inference, which allows the static (or par-
tially static) computation of the trust level of query results (Sec 3). Based on
this general model, we provide an example of a static trust-typing algorithms
in the context of a mediator architecture for relational databases as information
sources (Sec. 4). After a discussion of related work (Sec. 5), we conclude the
paper and outline our ongoing and future work (Sec. 6).

2 Trust Mediation

In our previous work [19], we described an architecture for trust mediation, which
we briefly recapitulate here for completeness.

372 P.T. Devanbu, M. Gertz, and B. Toone

2.1 Mediated Query Systems

We build our trust mediation framework by extending the infrastructure typical
of a mediated query system (MQS) (see, e.g., [4,10] for an overview). Multiple
heterogeneous, distributed sources supply information to multiple clients. A me-
diator or collection of mediators connects clients to sources by integrating infor-
mation from sources to satisfy client queries. Figure 1 shows the query/response
interaction among components in a typical MQS. Dotted arrows indicate queries.
Solid arrows indicate responses.

Fig. 1. Typical mediated query system. Note that the information sources used by the
mediator must be trusted and acceptable to client.

With many clients and numerous information sources, mediators are in the
untenable position of tracking a quadratically growing number of trust relation-
ships in addition to their normal data integration tasks. Thus, in Fig. 1, clients
must trust sources that are used to process queries. Clients must trust mediators
to do correct data integration and query processing. Sources must trust clients
and mediators to use the information provided in a proper way. It may be un-
necessary to specify and account for every trust relationship in order to achieve
the desired characteristics of a trustworthy distributed information system. For
example, the trustworthiness of mediators can be assumed when the mediator
exists within the same administrative and security domain as clients accessing
the system. For simplicity, we will assume that the trustworthiness of media-
tors and access control over the information in the sources is either irrelevant
or handled outside our trust mediation framework, e.g., using existing secure
mediation techniques such as those proposed in [1,2,3,5].

2.2 Conceptual Architecture

Figure 2 shows a high level view of our approach. Trust authorities evaluate
information sources and assign trust ratings based on precise, agreed-upon trust
definitions. A trust authority may be an actual external entity such as the Better
Business Bureau or a conceptual component consisting of a network of clients

Static Type-Inference for Trust in Distributed Information Systems 373

willing to share their expertise and experience interacting with a source in or-
der to establish a trust rating for a source (see, e.g., [7,17,18]). Whatever the
implementation, ratings assigned by trust authorities are used by the mediator
while processing client queries. In [19], we use a trust broker to warehouse trust
meta-data provided by trust authorities; for simplicity, we omit that here.

Fig. 2. Conceptual architecture for trust mediation. Gray arrows to Trust Authority
represent assigning of trust meta-data. Dashed lines are query, and solid lines matching
answers. Some labels are omitted for clarity.

The operation of our architecture begins when clients submit queries to a
mediator. In particular, clients may attach trust requirements to the submitted
queries. The mediator determines multiple query plans for the client query based
on the global (mediated) schema. It is important to note here that multiple
query plans exist because data may be duplicated in several sources. Recall
that the trustworthiness of these sources may be different and thus the result
of query plan execution may not be identical as is typical in a mediated query
system. This is accounted for by the client through the specification of trust
requirements. To select a query plan for execution, the mediator processes the
trust ratings stored in the trust broker for the sources specified in each query
plan. This processing step yields trust ratings for the integrated data that would
be returned to the client for each executed query. The algorithmic framework for
trust processing we present for performing this static analysis of query plans to
determine trustworthiness of the integrated result is detailed in Sections 3 and
4. Operation of the framework continues as the mediator executes a query plan
whose trust rating satisfies the client trust requirements. The retrieved data is

374 P.T. Devanbu, M. Gertz, and B. Toone

then sent to the client. The mediator notifies the client if no query plan satisfies
the client trust requirements.

The fundamental contribution of this paper is a static trust-typing model that
can be used by the mediator for more efficient and effective query planning. In
the next section, we formalize the model upon which the architecture described
in this section is built.

3 General Static Trust-Typing Model

In this section, we begin first with a general, abstract data model (Sec. 3.1). We
then present a general model (Sec. 3.2) of static trust-typing within this general
data model. We then discuss a general notion of a trust-type inference algorithm
(Sec. 3.3). Finally, we present desirable properties of such a trust-type inference
algorithm (Sec. 3.4).

3.1 Preliminaries

We start with a very general data model, to avoid commitment to a specific
data model such as the relational or an object-oriented model. Consider an
information domain, consisting of a finite set of primitive types

Tp = {t1, t2, . . . , t|Tp|}.

These would evidently include strings, integers, floats and so on. We also assume
a finite set of type constructors

C = {c1, c2, . . . , c|C|}.

Type constructors (e.g., products, sums, records, etc) have different arities and
are applied to primitive types to create a potentially infinite set of possible
derived types (which include primitive types)

Td = {t1, t2, . . .}.

Within this framework, we also allow data sets ∆i, which populate these types,
shown thus

∆i : τ, where τ ∈ Td.

Data sets are manipulated by a finite set of operators

O = {o1, o2, . . . , o|O|}

where each operator takes one or more inputs of specified types and then delivers
an output of a specified type, thus:

oi :: ti1 × ti2 × . . . × tim
→ toutput

We assume that operators have a well-defined computational semantics. That is,
given input data items that instantiate the input types of an operator, there is

Static Type-Inference for Trust in Distributed Information Systems 375

a well-defined function to calculate the output, which will then instantiate the
output type. Operators can be used to build complex (nested), well-formed query
expressions, as allowed by the type signatures specified for the operators. Also,
operators can have rewrite rules associated with them that specify typical prop-
erties such commutativity, associativity etc., which may allow for optimization
of queries by a query processor.

A schema S is a collection of types

S = {τ1, τ2, . . . , τ|S|}, where τi ∈ Td

An instance of a schema S is just a collection of sets {D1, D2, . . . , D|S|} of data
items that populate each type in the schema. Operationally, we assume that an
information system (or database system) that manages the data items and to
which clients submit well-formed queries. The information system then evaluates
these queries and returns answers. The extension of this notion to a client who
uses multiple information systems to process a single query (where the input
datasets to the queries may originate from different sources) is self-evident.

So we capture here a broad set of data models, including relational, and
object-oriented and even semi-structured models. In the following section, we
develop a static typing model for trust.

3.2 Trust

Consider a collection of information sources, each instantiating a schema. The
schemas may overlap, i.e., different source schemas may share types. For example,
there may be two different databases which offer data about the set of antibiotics
suitable for treating Anthrax. The client may have different levels of trust in each
database, and may issue different queries, some of which are critical (and require
high trust) and some that are not.

Fig. 3. Example of query answered using multiple sources, which are accorded differing
levels of trust

Trust is a complex concept with many possible different meanings (see, e.g.,
[6,15]). Trust may refer to aggregate properties of an entire dataset, e.g, a user

376 P.T. Devanbu, M. Gertz, and B. Toone

might believe that the set of anti-anthrax drugs identified by a database may
be incomplete. Trust may be content-based, referring to detailed beliefs about
specific members of a data set. For example, a client may believe that a dataset
has incorrect information about anti-Anthrax drugs whose manufacturer is in
Europe. Trust may also be at the level of individual data instances. How does
the client assign these beliefs? The rational way to do so would be based on
experience. In practice, for example, we assign trust to information sources based
on how useful, accurate and/or valuable the information they provide is in the
real world.

Evidently trust varies with the trustee (in this case, the information source).
In a distributed/mediated environment we might have a situation as shown in-
formally in Fig. 3, with a query of the form op2(op1(R, Q), S), where different
sources are needed to process the query. In this context, the sources for R and
Q are only partially trusted, but the source for S is fully trusted. Evidently,
the client cannot fully trust the final result; but what should the trust be? One
can certainly use the result data and see how it works out; but clearly it is
preferable to have good a-priori knowledge of the trustworthiness of data sets or
information sources rather than having actually determine this post-facto, after
using the data to make business-critical decisions (consider the implications of
prescribing drugs using information of unknown trustworthiness). We can take
this one step further: rather than evaluating the final answer set after the query
has been processed, we would like to statically determine the trust level of the
final answer before executing the query against the sources (and thus perhaps
avoid paying for the processing of sub-queries that might result in untrustworthy
answers).

Thus, there is strong motivation for a semantically well-founded a-priori
calculation of the trust level that can be associated with answer datasets returned
by incompletely trusted information sources. This can be considered a meta-
data calculation based on trust meta-data that is available a-priori about those
sources. In fact, we wish to calculate the trust meta-data statically, i.e., based
on the structure of the query plan and available trust-meta on the data sources.

Consider the following setting of information sources DB1, . . . , DBn, with
schemas S1, . . . , Sn. Without loss of generality, assume that each database
schema is a singleton type. We now assume a simple trust meta-data model,
where we assume an aggregate trust-type associated with each source. Each
aggregate type is drawn from a (potentially infinite) trust-type poset B, with
ordering relation RB :

B = {b1, . . . , b|B|}, RB = {(x, y) | x, y,∈ B}

We show the assignment of a trust-type b to a data set Di of a particular type
T thus:

TT (Di : T) = b

In the ensuing discussion, the actual datatype is usually not of concern, so we
just denote the trust-type, thus:

Di :: b

Static Type-Inference for Trust in Distributed Information Systems 377

The ordering relationship RB is used to model the fact that some sources can be
more trusted than others. In general, this relationship is not a total order: not all
trust relationships are comparable, and different trust ratings may be preferred
under different circumstances1. This trust-type assignment may be performed by
the clients themselves, or (for better scalability) by a credible trust authority on
behalf of the clients, e.g., the Better Business Bureau, or a government agency.
We note that there may be multiple information source with the same schema,
which have different trust types assigned to them. So, there may be several
different ways of evaluating a given query, by sourcing information from one of
several alternative sources.

Now consider that the clients need to evaluate results returned for queries
against a mediator; how can they develop trust-type assignments for the results
of the queries? Clearly, clients need this information. It would be impractical
for third parties to develop trust ratings for all possible queries and all possible
ways of evaluating respective query results. It is also possible that a client needs
information at a trust level that is so high that it is impossible to get this
information, given the trust assignment of input sources. It is also possible that
some evaluations of a given query (using some specific information sources or
combination of sources) will provide answers at the required trust levels, and
some would not.

3.3 Trust-Type Inference

We propose an approach to processing aggregate trust meta-data or trust-types
in the setting described above, which has a strong analogy to type systems in
programming languages (see, e.g., [9]). Consider a query algebra A with opera-
tors

O = {o1, . . . , o|O|}

as defined above. Consider a specific operator

oi :: ti1 × ti2 × . . . × tim → toutput

A trust typing system associates with each such operator a trust-type inference
rule

TT (Di1 :: ti1) = bi1 & TT (Di2 :: ti2) = bi2 & . . . & TT (Dim
:: tim

) = bim

TT (oi(Di1 , . . . , Dim
) :: toutput) = foi

(bi1 , . . . , bim
)

where bi1 . . . bim
, boutput are trust-type assignments. Given (1) an a-priori trust-

type assignment for the input data sets to an operation oi and (2) the inference
rule, the associated trust computing function foi allows the static (before query
execution) derivation of a trust-type assignment for the result of evaluating the
operation over those data sets. In general, the function foi could return a set of
1 We refer the reader to the earlier example of lawsuits and restaurants in Sec. 1,

where different ratings are preferred.

378 P.T. Devanbu, M. Gertz, and B. Toone

trust-types rather than a single trust-type: in some situations (examples follow)
more than one trust-type might be inferred.

Since query plans are nothing more than a nesting of query operators, this
approach clearly can used for defining trust-type judgments for query plans as
they are generated by a typical query processor in a mediator.

Definition 1. A query plan Qp in a query algebra is a well-formed expression
using the operators defined in that algebra. The input data set to Qp is the set of
data sets {D1, . . . , Dn} that form the inputs to the query plan. The input trust-
type assignments for Qp, IT (Qp) is the set of trust type assignments {D1 ::
T1, . . . , Dn :: Tn} provided by some trust authority.

Given a query plan generated by a mediator and a set of input trust-type
assignments, one can use a trust typing system to produce, statically, a final
trust-type rating for the result of the query. This provides several advantages:

1. Once the trust assignments of input data sets to a query are known, a medi-
ator can compute the trust assignment of the result without any additional
information.

2. Once trust ratings are known, the mediator does not have to actually ex-
ecute a query to determine whether the query result will satisfy the trust
requirements specified by the client.

3. Given a specific query and the required input data from several different al-
ternate information sources, a mediator may be able to reformulate a query
(plan) into a form that can be evaluated in order to satisfy the trust require-
ments.

However, in order to use a trust-typing system in this fashion, it must satisfy
some important properties. We discuss these in the following section.

3.4 Soundness and Completeness

We define here two important properties of any static trust-type inferencing
mechanism: soundness and completeness2.

A Naive View of Soundness. By soundness, we mean that the judgments
made by the trust typing system are accurate. This accuracy is established by
comparison with a reliable “oracle” that can provide trust ratings; in our case,
these ratings are provided by the trust authority. The trust authority provides
ratings for the data available from the information sources. With the ratings
on the data that constitute the inputs to a query plan, the trust typing system
can now derive a static trust typing judgment for the final result of the query,
if executed. The accuracy of this judgment can be evaluated empirically. First,
2 In programming language type systems, completeness in any useful sense is typically

an impossible goal, given a Turing-complete programming language. Since query
languages are usually not as expressive, completeness is relevant here.

Static Type-Inference for Trust in Distributed Information Systems 379

based on the determined query plan, the query is executed by the mediator,
producing some final query result. The final result can then be subsequently
considered by the trust authority, and given a rating. In this context, the trust
typing system is considered sound, if the trusting rating judgment produced by
the typing system for a given query plan and input data with a given rating would
be exactly the same rating as what the trust authority would produce, were it
given the query result. In general, we prove soundness of a typing system by
considering each input rule in turn, and argue that its conclusions, given ratings
on the input data, would be precisely the same as that of the trust authority.

However, in practice, this is not feasible. Imagine two information sources,
each of which has partial data: one about the drugs to treat seasonal allergies,
and the other drugs that are acceptable for patients with hypertension. The
intersection of these two data sets would be drugs for seasonal allergies that can
be used by hypertensive patients. Note here that even if two input data sets
are rated partial, they may each have just those data items that would yield an
exactly correct final result for their intersection; so, given the actual final result,
a trust authority might in fact be able to rate it as exactly correct. However, a
static typing system, without a priori access to this data, cannot make such a
judgment. Given a rating, it has to take a pessimistic view on what the actual
result data might be; so it must conclude that the result could be either exactly
correct, or it could be missing some data. Thus, the notion of soundness has to
be modified, to allow the static judgement to be pessimistically approximate.

A different view: Correct and Precise. Therefore, our notion of soundness
has two aspects. First, we want our trust typing algorithm to be correct: given
a final static typing judgement on a query (or query plan, to be more precise),
there must be a particular configuration of data items on the input sources,
consistent with the input type assignments given by the trust authority, that
would lead to a final result that would be rated exactly the same way by both
the typing judgement and the trust authority. Correctness guarantees that a
derived typing judgment is never wrong. But this is not sufficient. We also need
to be sure that the typing judgment does not miss any possibilities.

In general, several different configurations of input/output data may be pos-
sible for each operation, we do not want the type system to miss anything: we
also want it to precise. That is, if it is possible that a particular configuration of
inputs could lead to a result type rating by the trust authority, the static typing
judgment should include that type. It is important here to note that we assume
that the trust authority behaves in some semantically consistent manner: viz.,
the authority does not capriciously confer trust ratings onto data sets, but does
so in some well-defined manner. Only then can we hope to approximate the trust
authority’s behavior using a static typing model. We now present definitions for
correctness, precision, and completeness.

Definition 2. Consider a query plan Qp, and input trust-type assignment
IT (Qp), drawn from a trust-type poset (B, RB), provided by a trust authority.
Assume, without loss of generality, that Qp is evaluated on some given set of

380 P.T. Devanbu, M. Gertz, and B. Toone

inputs conforming to the input trust-type assignment, IT (Qp), and the result
is evaluated by the trust authority and given the (empirical) trust-type TE(Qp).
Also assume that the trust-type algorithm derives the static trust type TS(Qp).

In this setting, a trust typing algorithm is correct, if for each type T ∈
IT (Qp), it is possible to construct an artificial input data set DA for the query
plan Qp so that

1. The trust authority’s ratings for the input data set DA would be precisely
IT (Qp), and

2. TE(Qp) = T .

Definition 3. In the same setting, a trust typing algorithm is precise, if it is
impossible to construct an artificial input data set DA for the query plan Qp so
that

1. The trust authority’s ratings for the input data set DA would be precisely
IT (Qp), and

2. the query result is given the trust rating T by the trust authority, where
T �∈ TE(Qp).

Completeness. By this, we mean that the typing system is able to provide
for judgments for every possible query expression. This is a measure of the
expressiveness of the type system; can it provide ratings for any kind of query
plan? Essentially the desired property is the following: given any given query
plan, and ratings on the input data, a trust rating can be given to the final
result. We show this by induction: for each operation, and each possible input
trust-type rating, we show that a rating on the result can be produced by the
trust typing system. Completeness then follows by structural induction.

Definition 4. A trust-typing system for a query algebra A is complete, if for
every operator oi in the algebra, and for every possible input type assignment to
the inputs to the operation, the trust-typing system includes an inference rule
that infers a trust-type judgment for the result of the operation.

4 An Example Trust-Type System

Consider a trust-type system such that every source rated using this system
will match exactly one of five trust-types, C, I, E, O, W . The intuition behind
this type system is based on a notion of data coverage. An information source
is rated C if is complete, i.e., if it has exactly the “correct” data set3. I refers
to “incomplete”, some data items are missing from what the source provides;
E refers to “excessive”, if all correct data items are present at the source, but
some erroneous items are also present; O refers to “overlapping”, meaning some
3 We provide precise semantics for correctness later; first, we just provide an intuitive

notion of this.

Static Type-Inference for Trust in Distributed Information Systems 381

correct tuples are missing, and some erroneous ones are present; and finally
W refers to the case where the source provides only wrong data items. As for
ordering, we take C to be the most trusted, and W to be the least trusted; the
other three trust-type are in between, and are mutually incommensurate, since
they are each preferable under different circumstances.

Definition 5. The basic coverage trust-typing system (CTS) is defined by Bb =
{C, I, E, O, W}, and the poset on Bb is defined as Rb

B = { (W,E), (W,O), (W,I),
(E,C), (I,C), (O,C) }; (X, Y) means that X is a lower trust level than Y .

As we will see below, when using our inference algorithms, it is possible that
the result of a query plan may be given multiple ratings. For example, the result
of the intersection of two data sets rated I might be rated I, C: both results are
possible.

We can now provide a semantics for the trust-typing system, that is, we can
precisely define the conditions under which we expect a trust authority TA to
provide each of the above ratings to a source S. To do this, we assume that a trust
authority has its own (presumably infallible) view of the set of data items that
a source should have; this view of TA on S is denoted STA. The trust authority
then compares its view of the source with the dataset actually provided by the
source S and assigns ratings as defined below.

Definition 6. A semantically consistent trust authority TA assigns trust-types
in the basic coverage trust-typing system (CTS) for a source S as follows

C (complete) , if S = STA

I (incomplete) , if S ⊂ STA ∧ STA �= ∅
TT (S) = E (excessive) , if S ⊃ STA ∧ S �= ∅

O (overlapping) , if (S ∩ STA �= ∅) ∧ (S �⊂ STA) ∧ (STA �⊂ S)
W (wrong) , if (S ∩ STA = ∅) ∧ (S �= ∅) ∧ (STA �= ∅)

For example, the trust authority TA rates S complete if S contains exactly all
data items TA expects, i.e., S = STA. TA rates S wrong if there is no data item
in S that is also in the trust authority’s view STA and both sets of data items
STA and S are non-empty. The definitions are a little tricky for the case where
either STA or SA might be empty: e.g., if STA = φ, a non-empty source should
be rated excessive, not wrong; and an empty source should be rated complete, not
wrong. The above definition does work correctly, and in fact admits a correct,
precise, and complete inference algorithm, as we shall see next.

4.1 Algorithm for CTS Trust-Type Inference

There are five possible trust-types in the basic coverage type system. Since the
focus in this section is on relational databases as information sources a mediator
operates on, we use the relational algebra to specify queries and assign trust-
types to respective (intermediate) query results. We use the following six opera-
tors of the relational algebra, four binary operators and two unary operators: set
union (∪), set intersection (∩), set difference (−), cross product (×), selection

382 P.T. Devanbu, M. Gertz, and B. Toone

(σ), and projection (π). There is a total of 80 input trust-type combinations: for
each commutative binary operator (∩, ∪, ×), there are 15 possible combinations
of input trust-types ((I, I), (I, C), (I, O), (I, E), (I, O), (C, O), . . .). For the non-
commutative set difference, there are 25 possible input trust-type combinations,
and for the two unary operators there is a total of 10 possible input trust-types.
These 80 input trust-type configurations naturally lead to 80 trust inference
rules. The basic 80-rule inference algorithm handles the basic type system, as
presented in Def. 5, in practice, however, multiple type ratings, as envisioned
in Def. 6, can occur when inferring types of query plans. Each of these types
represent a possible trust rating of an intermediate result. If such a result is
used in another operation, each possible trust-type rating must be considered in
turn, with an appropriate inference rule, and the result trust-type rating will be
union of all the resulting trust types. In case of a binary operation, each pair of
trust-type ratings from the two inputs should be considered.

Our goal is to prove the following theorem for the basic coverage trust-typing
algorithm:

Theorem 1. The coverage trust-type system is correct, precise, and complete
for the above six operators of the relational algebra and for trust authorities that
assign semantically well-founded trust ratings.

Proof. Completeness is demonstrated by listing all the 80 possible rules, which
provide inference rules for all possible combinations of input types for all possible
rules. We omit it here for brevity.

Correctness and precision can be demonstrated by considering each of the
entire set of inference rules, and arguing correctness and precision. For brevity,
we just provide proofs of correctness and precision for a few rules, for some of
the combinations that illustrate the techniques.

Figure 4 shows some of the inference rules for projection operator (π), along
with Venn diagrams that establish for each case a configuration that shows that
the rule is correct, i.e, that there is a specific configuration of the input data
set conforming to the input trust-type that leads to the output trust-type. For
example, in row 3 on the rightmost column, the Venn diagram provides the
correctness witness (existence proof) for the rule

S :: O

π(S) :: E

The actual dataset is shown with the dashed rectangle, and the dataset from
the source is the solid ellipse. The actual, expected projection result is shown
in the solid semi-ellipse, whereas projection applied to the data provided by the
source yields the solid ellipse. Thus in this case, the output can be rated E, for
excessive. This establishes that with an input conforming to an O (overlapping)
rating from a trust authority, it is possible to have an output that would be rated
E by the same authority. In this way, we can provide justification for each of the
cases in the right column. This establishes correctness for the projection rule in
the case where the input is rated O. Similarly, arguing by case, and providing

Static Type-Inference for Trust in Distributed Information Systems 383

Fig. 4. Inference rules for projection operator; closed ellipses or rectangles represent
sets. Sets with solid boundaries represent the actual dataset provided by the source
S, and the dashed-line sets indicate the actual (or correct dataset, as assumed by the
trust authority).

Venn diagrams, we can argue correctness for the entire rule-set for projection.
Later we show some similar correctness arguments for the non-commutative
binary operator, set-difference.

We also need to show that the static trust-typing inference rules for projec-
tion are precise, viz., that a semantically consistent trust authority could never
produce a rating other than what is provided by static inference. In the case of
projection, we can see that an input rated overlapping leads to every possible
rating for the output; so in this case, the inference rule is self-evidently precise.
We now consider the other case

S :: I

π(S) :: C, I

The rule states that with an incomplete (I) input, projection yields an output
that is either complete or incomplete. We now argue that no other output rating
from a semantically consistent trust authority is possible, for any input that is
rated I. If a trust authority provides such a rating, it does not conform to the
semantics. In contradiction, suppose the result is rated W . This means that there
is some result tuple t in it that should not be, as per the trust authority’s view
of the output. By the semantics of projection, this is only possible if there was at
least one tuple τ in the input that gave rise to t, that the trust authority would
not expect to see in the input; however, the input is rated I, so such a tuple

384 P.T. Devanbu, M. Gertz, and B. Toone

cannot exist if the authority is semantically consistent. By a similar argument,
we can show that the output cannot be rated E or O.

We now present a similar discussion for the asymmetric, binary set-difference
operator. Figure 5 shows 4 of the 25 different rules for set difference for the case
where one of the inputs is rated C and the other I. Note the asymmetry in the
inferred output ratings (non-commutativity of set difference).

Fig. 5. Four out of twenty-five inference rules for the set-difference operator.

We can also argue precision. With the ratings { S1::C, S2::I }, no other
ratings are possible for S1−S2 besides C or E. In contradiction, suppose S1−S2
were rated I by a trust authority. This implies that some tuple t is missing in the
output result of S1 − S2 that the trust authority does not expect to be there.
This implies that either this tuple is missing in S1 (not possible, since S1 is

Static Type-Inference for Trust in Distributed Information Systems 385

rated complete) or this is an incorrect extra tuple in S2 (also not possible, since
S2 is rated incomplete). Thus, it is impossible find inputs S1::C and S2::I so
that a semantically consistent trust authority would rate S1 − S2 as excessive.
Similarly, we can argue that the ratings W and O are impossible. The precision
of the entire rule-set for the set-difference operator is argued in the same way.

4.2 Query Processing and Trust-Type Inference

We conclude this section with an outline of how the above algorithmic framework
for trust-type inference can be integrated into a mediated query system. For this,
we assume a standard query processor as it can be found in proposed mediator
architectures (e.g., [8,20]).

Initially, a client specifies a query Q against a mediated schema and also
specifies a trust requirement for the query result, denoted TR(Q). A trust re-
quirement can be a singleton or a set of trust types, drawn from a basic coverage
trust typing system (see Def. 5). The mediator processes the query in the stan-
dard way. That is, it generates a set of query plans qp1(Q), qp2(Q), . . . , qpk(Q)
for the query Q and chooses the most cost-effective plan for execution against
the set of information sources referred to in the query plan.

Our trust-type inference algorithm can be plugged into the query plan gen-
eration component of the mediator’s query processor as follows.

1. A query plan qp(Q) for a query Q is generated bottom-up; leaf nodes of
the plan (if considered as a hierarchical, bottom-up structure), are assigned
input trust ratings. Leaf nodes refer to information sources and ratings are
assigned to these sources by a trust authority.

2. After trust ratings have been assigned to leaf-nodes, the query processor
builds the query plan as a nested expression tree, using the operators avail-
able in the data model used for the mediated schema. The root node des-
ignates the query result. For each operator o applied to one or two input
data sets (which can be either the information sources or intermediate query
results), the trust ratings for the input data sets are known. Assume two
input data sets S1, S2 with trust ratings {t1, t2} and {t1}, respectively (note
that intermediate results can have more than one trust rating, see Def. 6).
The query processor now does a lookup of the inference rule for both pos-
sibilities of input ratings, S1 :: {t1}, S2 :: {t1} and S1 :: {t2}, S2 :: {t1} and
thus obtains the output result type(s), which are assigned to the (interme-
diate) result node obtained by applying o to S1, S2. Eventually, by building
the complete operator tree for Q, a trust rating is assigned to the final query
result. If the final trust rating does not satisfy the trust requirements spec-
ified by the client, the query plan is pruned from the set of potential query
plans. Finally, the most cost effective query plan that satisfies the client’s
trust requirements executed after the above static trust-type inferencing.

There are some important aspects to note regarding the usage of trust infer-
ence rules during query plan construction. First, the lookup of result trust-types

386 P.T. Devanbu, M. Gertz, and B. Toone

in the presence of rated input data sets and an operator can be done very effi-
ciently, and intermediate result nodes are simply “annotated” by trust ratings.
Second, in general, the trust rating obtained for an intermediate query result
can be “better” (with respect the underlying trust-type lattice) than the trust
ratings of the input trust-types. That is, it is in general not possible to prune a
plan before it is completely constructed. However, there are several cases where
such a pruning can be done, i.e., when it is known that based on the rating of an
intermediate result, the final query result will never satisfy the client’s trust re-
quirements. We are currently investigating this aspect in the context of mediated
relational databases. Finally, it can happen that there is no query plan that sat-
isfies the client’s trust requirements. In this case, the mediator needs to provide
the client with respective feedback, e.g., by stating the trust levels that could
be assigned to the query result. Another interesting aspect is that the query
plan generation is not purely cost-driven anymore. That is, one can construct
scenarios where a query plan does not satisfy the client’s trust requirements but
a more expensive plan does. This is typically the case if the information sources
referred to in a query plan contain non-disjoint data.

5 Related Work

The concept of trust in distributed, mediated information sources has mainly
been investigated in the context secure mediation [1,2,3,5]. These works address
the problem of managing client credentials to ensure that a mediator does not
violate information source security policies when integrating data to satisfy client
queries.

Our proposed static type inferencing framework provides an orthogonal as-
pect to these works and is most closely related to the management and handling
of data quality aspects in data integration and source mediation [11,12,13,14,16].
Our model can be considered as an abstract formal framework, which can incor-
porate a variety of data quality aspects as one or more aggregated trust-types.
However, while most works on managing data quality aspects in mediation deal
with the run-time aspects of data quality, our work leverages existing mediation
architectures and query processing strategies in particular by performing static
type-checking of potential query results. Thus, our framework in general pro-
vides the chance of avoiding expensive query execution in case no query result
will satisfy the (trust) requirements specified by clients. Finally, compared with
work in data quality management, our proposed framework provides a formal
framework for static typing and also an effective algorithmic infrastructure to
deal with ratings of information sources in the context of recommender systems
[7,17,18]. Currently, our results are limited to the basic completeness type sys-
tem (CTS). In future work, we hope to extend it to other notions of data quality
and trust.

Static Type-Inference for Trust in Distributed Information Systems 387

6 Conclusions and Future Work

In this paper, we address the problem of obtaining trustworthy information for
clients in mediated architectures deployed in a WAN setting. In such settings,
not all information sources may be trustworthy; mediators must be careful to use
query plans that only take data from sources that clients would find acceptable.
We describe a general model of static trust-typing to infer the trustworthiness
of the results of query plans, even before executing these plans. Such a static
trust-typing approach can be used by mediators to prune and thus avoid query
plans that would compute query results that would be unacceptable to clients
because they do not satisfy the trust requirements specified by clients. In the
general model, we discuss desirable properties of static trust-typing systems,
viz., correctness, precision, and completeness. We then give an example of a
trust-typing system in the context of relational databases that does show these
properties.

In our ongoing work, we are currently developing a fine-grained trust-typing
system in which trust authorities can assign trust-types to different components
of a source (object sets, object attributes etc). In combination with such a frame-
work, we are also studying how such fine-grained trust assignments can be used
in query plan generation to annotate individual data items in query results with
trust levels, eventually to provide clients with more detailed information regard-
ing the trustworthiness of query results.

References

1. J. Biskup, U. Flegel, and Y. Karabulut: Secure mediation: Requirements and
Design. In IFIP WG11.3 13th International Working Conference on Database
Security (DBSec 98), Kluwer, 127–140, 1999.

2. J. Biskup, Y. Karabulut: A Hybrid PKI Model with an Application for Secure
Mediation. In Proceedings of the 16th Annual IFIP WG11.3 Working Conference
on Data and Application Security, Kluwer, 2002.

3. K. S. Candan, S. Jajodia, V. S. Subrahmanian: Secure Mediated Databases. In
12th International Conference on Data Engineering (ICDE 96), IEEE Computer
Society 1996, 28–37.

4. R. Domenig, K. R. Dittrich: An Overview and Classification of Mediated Query
Systems. SIGMOD Record 28(3): 63–72, 1999.

5. S. Dawson, S. Qian, P. Samarati: Secure Interoperation of Heterogeneous Sys-
tems: A Mediator-based Approach. In the 14th IFIP International Conference on
Information Security, Kluwer, 1998.

6. R. Fagin, J. Y. Halpern: I’m OK if You’re OK: On the Notion of Trusting Commu-
nication. In Proceedings of the Symposium on Logic in Computer Science (LICS
’87), IEEE Computer Society, 280–292, 1987.

7. W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and Evaluating
Choices in a Virtual Community of Use. In Proceedings of the ACM Conference on
Human Factors in Computing Systems, CHI’95, ACM/Addison-Wesley, 194–201.

8. V. Josifovski, and T. Risch: Query Decomposition for a Distributed Object-
Oriented Mediator System. Distributed and Parallel Databases 11(3): 307–336
(2002)

388 P.T. Devanbu, M. Gertz, and B. Toone

9. J. C. Mitchell, Concepts in Programming Languages. Cambridge University Press,
2003.

10. I. Manolescu, L. Bouganim, F. Fabret, E. Simon: Efficient Querying of Distributed
Resources in Mediator Systems. In Confederated International Conferences DOA,
CoopIS and ODBASE 2002, LNCS 2519, Springer, 468–485, 2002.

11. G. A. Mihaila, L. Raschid, M.-E. Vidal: Using Quality of Data Metadata for Source
Selection and Ranking. In Proceedings of the Third International Workshop on
the Web and Databases, WebDB 2000 (Informal Proceedings), 93–98, 2000.

12. M. Mecella, M. Scannapieco, A. Virgillito, R. Baldoni, T. Catarci, C. Batini: Man-
aging Data Quality in Cooperative Information Systems. In Confederated Inter-
national Conferences DOA, CoopIS and ODBASE 2002, LNCS 2519, Springer,
486–502, 2002.

13. F. Naumann: Quality-Driven Query Answering for Integrated Information Sys-
tems. Lecture Notes in Computer Science 2261, Springer, 2002.

14. F. Naumann, U. Leser, J. C. Freytag: Quality-driven Integration of Heterogeneous
Information Systems. In Proceedings of the 25th International Conference on Very
Large Data Bases, 447–458, 1999.

15. NIST (National Institute of Standards and Technology). Glossary of Computer
Security Terminology. NIST Technical Report, NISTIR 4659, September 1991.

16. L. Pipino, Y. W. Lee, R. Y. Wang: Data Quality Assessment. In Communications
of the ACM 45(4): 211–218, 2002.

17. D. Pemberton, T. Rodden and R. Procter: GroupMark: A WWW Recom-
mender System Combining Collaborative and Information Filtering. In the
6th ERCIM Workshop “User Interfaces for all”, ui4all.ics.forth.gr/UI4ALL-
2000/proceedings.html, 2000.

18. Recommender Systems. Special Section in Communications of the ACM, Vol. 40,
No. 3; March 1997

19. B. Toone, M. Gertz, P. Devanbu: Trust Mediation for Distributed Information
Systems. In Security and Privacy in the Age of Uncertainty, IFIP TC11 18th
International Conference on Information Security (SEC2003), Kluwer, 1–12, 2003.

20. V. Zadorozhny, L. Raschid, M. Vidal, T. Urhan, L. Bright: Efficient Evaluation of
Queries in a Mediator for WebSources. In ACM SIGMOD International Conference
on Management of Data, ACM, 85-96, 2002.

	Introduction
	Trust Mediation
	Mediated Query Systems
	Conceptual Architecture

	General Static Trust-Typing Model
	Preliminaries
	Trust
	Trust-Type Inference
	Soundness and Completeness

	An Example Trust-Type System
	Algorithm for CTS Trust-Type Inference
	Query Processing and Trust-Type Inference

	Related Work
	Conclusions and Future Work

