
Cryptographic Veri�cation of Test Coverage Claims

Prem Devanbu & Stuart G. Stubblebine

Information Systems and Services Research Center,

2b417, 600 Mountain Ave,

Murray Hill, NJ 07974, USA

AT&T Labs | Research

prem,stubblebine@research.att.com

Keywords: Testing, Veri�cation, Cryptography, Components

February 12, 1997

Abstract

The market for software components is growing, driven on the \demand side" by

the need for rapid deployment of highly functional products, and on the \supply side"

by distributed object standards. As components and component vendors proliferate,

there is naturally a growing concern about quality, and the e�ectiveness of testing

processes. White box testing, particularly the use of coverage criteria, is a widely

used method for measuring the \thoroughness" of testing e�orts. High levels of test

coverage are used as indicators of good quality control procedures. Software vendors

who can demonstrate high levels of test coverage have a credible claim to high quality.

However, verifying such claims involves knowledge of the source code. In applications

where reliability and quality are critical, it would be desirable to verify test coverage

claims without forcing vendors to give up valuable technical secrets. In this paper, we

explore cryptographic techniques that can be used to verify such claims. Our techniques

have some limitations; however, if such methods can be perfected and popularized, they

can have an important \leveling" e�ect on the software market place: small, relatively

unknown software vendors with limited resources can provide credible evidence of high-

quality processes, and thus compete with much larger corporations.

1

1 Introduction

As the size, functionality, and complexity of software applications increase (e.g. the Microsoft
O�ceTM products are in the range of O(106) lines) vendors seek to break applications into
components (spell checkers, line breakers, grammar checkers etc.). Distributed component
standards such as CORBA, ubiquitous networking, portable object-oriented platforms such
as Java are also additional drivers of this trend. As a result, a vibrant market for software
components is growing. The cost of entry into this market is low, and small vendors can
be players. As the number and types of components proliferate, and smaller, newer vendors
enter the market, there is a natural concern about quality.

Traditionally, systems with stringent quality requirements undergo a rigorous veri�cation
process, often under the auspices of third party veri�cation agents [1, 17, 18]. One common
testing technique used is white box testing; The goal is to ensure that a system has been
adequately exercised during testing. In this approach, an abstraction of the system (e.g., a
control
ow graph) is used to identify the parts of the system that need to be exercised. Each
of these parts is called a coverage point, and the entire set is the coverage set. When a suite
of tests can exercise the entire coverage set, it is called a covering test suite with respect to
this coverage set. One popular criterion for adequate test coverage is that all basic blocks in
the control
ow graph have been exercised. Typically, test coverage is veri�ed by building an
\instrumented" version of the system; the instrumentation is placed in the appropriate parts
of the system; the added instrumentation keeps records when executed; thus it is possible
to verify that the necessary parts of the system have been exercised. We can abstract the
situation as follows:

There is a system X, with source code SX , out of which a (shipped) binary BX
s is built.

Also, from the source SX , we can generate a coverage set CX

 (for some coverage criterion

) as follows:

CX

 = c1; c2; : : : cn

Each of the ci's refer to a coverage point. To cover these coverage points, it is necessary to
develop a covering test suite TX

 that can exercise the coverage set for the criterion
:

TX

 = t1; t2; : : : tm

such that for any given coverage point c, there is a t such that the execution of test t hits c.
This is veri�ed by �rst building an appropriately instrumented binary BX

 , and running the
test suite TX

 .

A vendor who undertakes the cost of developing an adequate set TX

 for some stringent

can reasonably expect that the system is less likely to fail1 in the �eld due to undetected

1Providing, of course, that the system passes the tests!

2

faults in in system X [13]. Often, in �elds with exacting reliability requirements (such as
transportation, telecommunications or health) software users demand high quality standards,
and expect vendors to use testing processes that achieve high levels of coverage with stringent
coverage criteria. In such situations, in order to establish that the requirements have been
achieved, a vendor may balk at giving a customer access to the entire source code, and all
the test scripts so that coverage can be veri�ed. This can also be done via a third party who
is trusted by both the vendor and customer to operate according to well de�ned procedures.
Typically, these procedures restrict the third party from revealing the source code. In either
case, there are considerable risks, delays, and/or expense involved for the vendor; these may
be acceptable in some situations, and not in others. Indeed a given situation (where test
coverage has to be veri�ed) comprising of a vendor, a piece of software and a customer can
be analyzed by considering the following issues.

1. How much information (source code, coverage set, test scripts etc.) is the vendor
willing to reveal?

2. Is there a third party trusted by both the vendor and the customer?

3. How much time/money can be spent on test coverage veri�cation?

4. To what level of con�dence does the customer want to verify test coverage?

These questions represent di�erent goals, which are sometimes con
icting; any practical
situation will surely involve trade-o�s. Di�erent trade-o�s will be acceptable under di�erent
circumstances. This paper describes one set of possible solutions that cover some typical
cases; we certainly have not covered all the possibilities.

Much of the work described in this paper is aimed at reducing the amount of information that
the vendor has to disclose, viz., source code, symbol tables, and (particularly) the test cases.
Source code is clearly the most valuable information; the symbol table, which is typically
embedded in the binary, can be a valuable aid to reverse engineering. A large and exhaustive
set of test scripts is also valuable information regardless of whether the source code or symbol
table is known. Generating such a test set involves careful analysis of the requirements, as
well as familiarity with the design and implementation of the system. While the most typical
functions of the system may be widely known, a complete set of test cases would have to
exercise unusual situations, create various feature interactions, cause exceptions to be raised
etc. A comprehensive consideration of all these special cases is a valuable piece of intellectual
property that demands protection. Indeed, there are vendors who make it their business to
develop and sell comprehensive test suites [15, 25]. Our goal is to protect this information,
while allowing the vendor to make credible test coverage claims.

3

Caveats and Assumptions. First, we assume that vendors are strongly motivated
by market forces2 to provide the highest quality software. In this context, test coverage
veri�cation protocols simply provides a way of convincing customers that the vendors have
really undertaken the rigorous process of �nding tests to cover all or most of the coverage
points. Second, coverage testing (like any other testing method) is not perfect. All faults
may not be revealed by testing every coverage point. Contrariwise, vendors may contrive to
create test sets that achieve coverage while concealing faults. Coverage levels may also be
arti�cially boosted by adding spurious code. These issues are dealt with greater detail in
x 7, and some strategies for dealing with these problems are suggested; however, a signi�cant
practical disincentive to such practices is the market demand for high quality software, and
the high cost of cancelled sales, refunds and/or �xing bugs in the �eld. Third, we assume
that all parties involved in coverage veri�cation protocols have access to a test oracle[26]
that decides, at low cost, whether the output for any test case is right or not.

Finally, we have little to say about techniques for defeating reverse engineering; our focus
is more to protect the secrecy of the largest possible number of test cases (which represent
a signi�cant investment by the vendor), while allowing the use of common methods for
repelling reverse engineering, viz., shipping only binaries without symbol tables. Without a
physically protected hardware platform, a determined adversary can reverse-engineer a good
deal of information about software. Techniques and tools to support reverse engineering
are an area of active research. In fact, previous research [3, 5, 19, 22] demonstrates how
control-
ow graphs, pro�le information, compiler-generated binary idioms, and even slices
can be derived by analyzing and instrumenting binaries. Decompilation (converting binary
to source code) and binary porting (converting binaries from one machine architecture to
another) are typical goals of binary analysis. We say more on this in the conclusion.

We employ several di�erent cryptographic techniques in this paper. We begin with a brief
description of these techniques; readers familiar with cryptography may skim this section

2 Summary of Cryptographic Methods

Di�erent combinations of customers, vendors and software require di�erent solutions. In this
paper, we apply several cryptographic techniques to address some common scenarios that
may arise in practice. We now brie
y describe the techniques we have used in our work;
more complete descriptions can be found in [23]. All of these techniques are used to build
assurance in the customer (C) that the vendor(V) has high test coverage, while attempting
to protect V's secrets. For the descriptions that follow, we use some public/private key pairs:
assume K�1

P is a good private signing key for the individual P and KP is the corresponding
public signature veri�cation key for the lifetime of the test coverage veri�cation process.

2Di�erent kinds of software sell in di�erent markets, so quality needs do di�er. For example, software
components used in servers need to be of much higher quality than software used in clients

4

1. Cryptographic Signatures Given a datum �, �K�1
P

(�) is a value representing the

signature of � by P, which can be veri�ed using KP . Note that �K�1
P

(�) is not the

same as encrypting � with KP ; typically, it is just an encrypted hash value of �.
In particular, � cannot be reconstructed from �K�1

P

(�) with KP ; however, given �, the

signature can be veri�ed. This is a way for P to \commit" to a datum in an irrevocable
manner. Bids for a sealed-bid auction, for example, could be submitted as signatures
of cash amounts prior to the deadline; on the day of the auction, the bids are \opened"
by each participant revealing the actual amount, which can veri�ed by comparison to
the signature.

2. Trusted Third Party. If there is a trusted third party (denoted by T) that can
act as a \bu�er" between C and V, T can use information supplied by V to assure C
about V's testing practices, while protecting V's secrets. T can be relied upon both to
protect V's secrets, and operate fairly, without bias. Note that T can certify a datum
� by appending the signature �K�1

T

(�).

3. Trusted Tools. To verify any type of white box coverage, it is necessary to pro-
vide information extracted from source �les. Tools (trusted by all parties involved)
that extract exactly the information required for coverage veri�cation, and adjoin a
cryptographic signature with a published key, can be used to extract trusted coverage
information (providing the tools are not tampered with). (Later, we address limitations
of using trusted tools.)

4. Random Sampling. Consider an adversarial situation where a party Pa claims that
a proportion � of the members of a set � have a property �, and Pa is willing to
reveal the proof that � holds for only some members of �. A skeptical party Pb can
choose a member �i, of this set at random, and challenge Pa to demonstrate that �(�i)
holds. After several such trials, Pa can estimate � subject to con�dence intervals. This
technique can be used to estimate test coverage levels.

5. Autonomous Pseudo-Random Sampling. The random challenges discussed above
can be performed by Pa herself, using a published pseudo-random number generator
G with a controlled seed. If G can be trusted by adversaries to produce a fair random
sample, Pa can publish a credible, self-veri�ed estimate of �. Notice that successive
fragments of a very long hash string produced by a one-way hash function can also be
used to generate samples.

3 Exploring the Problem

To explore this problem, we exhibit a series of methods that are applicable in di�erent
situations as we discussed earlier.

5

We start with the basic third party method, that is the currently used approach to verifying
test coverage while simultaneously protecting a vendor's secrets. We then gradually introduce
cryptographic techniques to protect the vendor V's secrets while simultaneously making it
di�cult for V to cheat. Our focus of security is not at the session layer but at the application
layer. Thus we assume the testing protocols occur over secure channels such as those provided
by Secure Socket Layer (SSL [12]). In the following scenarios, V refers to the vendor who
claims to have achieved
 test coverage on a systemX, and C refers to the skeptical customer
who wants to be convinced.

Basic Third Party Method

1. V sends T , a trusted third party, the source code SX, and the test suite TX

 , and a

description of the coverage criterion
.

2. T builds BX

 from SX, and constructs the coverage set CX

 .

3. T runs the test suite TX

 against BX

 and veri�es that the suite hits the coverage set.

4. T tells C that the
 coverage criterion for X has been met by the test suite TX

 .

5. V ships BX
s to C, with the claim that T has veri�ed coverage.

This approach is weakened by some questionable assumptions. First, there may not be a
trusted third party acceptable to both T and C, and to whom V is willing to to reveal
the source and the test suite. There may be a commercial incentive for T to exploit this
information in some legal or undetectable ways; a truly trustworthy T may be hard to
�nd. Second, T has to replicate V's entire build apparatus, (viz., compilers, libraries, and
auxiliary tools) and execute the build (which may be complex). There is also a glaring
weakness: V could have sent an older, well tested version to T , and ship a newer version of
X, with additional functionality (but with the same old test suite) to C (One way to avoid
this problem is to have T also build an uninstrumented binary version of X, from the same
source, sign it, and have this be the version that V ships to her customers). Finally, there is
a subtle and inevasible attack whereby V can try to �nd \fault-hiding" test cases, which we
discuss later3 (x 7, page 19).

The Basic Method requires signi�cant e�ort of T . This will probably increase V's costs and
cause delays. However, this method can be used when there is a suitable T , the costs are
acceptable, and C wants an accurate estimate of test coverage. It would be better if V could
just ship T the binary and not the source. This gives V a few opportunities to cheat, some
of which can be addressed; the remaining ones may sometimes be acceptable. This is the
motivation for the next section.

3All the protocols we describe in this paper are subject to this attack, although there are mitigating
considerations.

6

3.1 Simple Binary Patching approaches

We now explore some approaches that use just the binary to verify test coverage claims.
Note that we usually mean binaries built with full symbol tables, i.e., compiled with the \-g"
option in most C compilers; the issue of eliminating (or abridging to the extent possible) this
symbol table is visited in the next section.

Protocol 1

1. From SX , V constructs the system BX
s and the set of coverage points CX

 .

2. V sends T : BX
s , C

X

 and the test suite TX

 , with the locations in the source �les
corresponding the coverage points.

3. T uses a binary instrumentation tool, either interactive (e.g., a debugger, or batch-
oriented (e.g., ATOM [24], EEL [19]) to instrument BX

s , using the line number/�le
information sent by T , and the symbol table information embedded in BX

s . For exam-
ple, a debugger, can set break points at the appropriate locations (e.g., line numbers
in �les).

4. T runs the test suite TX

 against the instrumented binary, and veri�es coverage level.

For example, the debugger can be set to delete each break point when \hit". The
coverage level is veri�ed by the number of remaining breakpoints.

5. T signs the �le BX
s (perhaps after extracting the symbol table from BX

s) and sends
�K�1

T

(BX
s) to V.

6. V veri�es the signature on �K�1
T

(BX
s), using KT ; then, V sends BX

s and �KT (B
X
s)) to

C.

This method improves upon the Basic Method in a few ways: �rst, the source is not
revealed to T . Second, T does not recreate V's build environment. Third, T works with the
shipped version of the software, so he can directly \sign" it after he has veri�ed the coverage
claims. Finally, T 's work is reduced; rather than building instrumented and uninstrumented
versions, he only has to instrument the binary, which is not harder than the link phase of
a build. So presumably, Protocol 1 would be cheaper, faster and less error-prone than the
Basic Method.

A major weakness in Protocol 1 is that V is trusted to build an accurate coverage set CX

 .

V can cheat and build a smaller coverage set, and thus convince C that he has a higher test
coverage than he really does. However, he may have di�culties if he ships faulty software
while falsely claiming high levels of test coverage. If the software fails frequently in the �eld,
he could be called upon to reveal the source code to a trusted third party, and prove that his
coverage analysis was accurate, and that the shipped binary was built with the same source
code.

7

Even so, V still has to reveal a lot to T : the entire coverage set and the entire test set. If X is
a very popular and/or di�cult system to build, this information may be very valuable, and T
may quietly sell this information to V's competitors. The next protocol reduces the amount
of information V has to reveal, while not increasing V's opportunities to cheat; Protocol 3
goes further in restricting V's ability to construct spurious coverage sets.

Protocol 2

1. V builds BX
s from SX , creates CX

 , �K�1
V

(i; CX

 (i)); for i = 1 : : : j CX

 j. and

�K�1
V

(i; CX

 (i); ti; ri); for i = 1 : : : j CX

 j. ti is the corresponding test case4, and ri
is a random number inserted to confound attacks which attempt to guess the content
before it is revealed.

2. V sends T all the above signatures and BX
s .

3. T challenges V with some small number l of the coverage points.

4. For each challenge, V reveals CX

 (i); ti, and ri. T can cross-check with the signatures

delivered above.

5. T uses the coverage point location information, instruments BX
s and runs the supplied

test case to check coverage.

6. T signs the binary and sends �K�1
T

(BX
s) to V.

7. T archives the testing procedure including all the information sent in step 2.

8. V ships (BX
s ; �K�1

T

(BX
s)) to C.

We shall discuss the commitments in step 1 presently; for now, we focus on steps 3-5. Here
T randomly picks a small number of challenges to V. This method betters Protocol 1 in one
important way: V reveals only some coverage points, and some tests. Since V cannot predict
which coverage points T will pick, he must prepare tests to cover most of them. V packages
the test cases with the corresponding coverage point, and a random number; this discourages
T from brute-force searching for test cases and coverage points using the signatures from
step 1; he reveals these on being challenged. With a small number of random challenges,
T can bound V's test coverage. If V's responses cover a proportion ps of T 's challenges,
T can estimate V's actual coverage p (using Hoe�ding's version of Cherno� bounds for the
\positive tail" of a binomial distribution, see [16], pp 190-191):

P (ps � p � �) � e
�n�

2

2p(1�p) when p � 0:5 (1)

4Or a string indicating the lack of a test case for this coverage point.

8

For a 95% con�dence level, we can bound �:

e
�n�

2

2p(1�p) � 0:05

� =

s
2ln(1

0:05
)p(1 � p)

n

Clearly, as n goes up, T gains con�dence in his estimate ps. Thus, at the 95% con�dence
level, T can reasonably conclude that an estimate of p = 0:95 is no more than 0:09 too high
with about 25 samples. Experimental work [20, 13] indicates that branch coverage levels in
the range of 80-90% have a high likelihood of exposing faults in the software. Estimated
coverage levels in this range can give a customer high con�dence that the V's testing has
exposed a good number of faults. so it is in V's interest to allow T the largest possible
number of challenges, with a very high expected p. Clearly, this will incent V to achieve
very high coverage levels. It is also important to keep in mind that this \random sampling"
places limits on the accuracy of T 's estimate of V's test coverage; essentially, we are trading
o� the amount of information disclosed for T . In cases where this trade-o� is acceptable,
this technique is applicable.

There is a threat to the validity of the con�dence level calculation described above: the
sampling process is not really a series of independent events. Executions of coverage points
(blocks, branches, or functions) are often strongly correlated. Agrawal [2] shows how to
determine the set of statically independent coverage points from the control
ow graph by
computing the post-dominator and pre-dominator trees of basic blocks. The leaves of such
trees could be used to form an indepedent set of coverage points. However, there could
still be dynamic dependencies between blocks which cannot be feasibly determined by static
analysis. One way to quantify these e�ects is to use sub-samples and statistical tests to
determine if the estimates are stable. This is can be complex, may require more samples,
and can enlarge the con�dence intervals. In a later protocol, we commit ahead of time to a
coverage level; this avoids sampling di�culties.

Now we return to the two sets of commitments (signatures) in step 1. The �rst set reveals a
signature on each element of the coverage set and the corresponding test case; T needs only
to know the actual coverage points for his challenges. V pads each signature computation
with a random number to securely hide the association of the test case and the coverage
point for the unchallenged coverage points. The second set of signatures, on the unpadded
coverage points can be used to check that the coverage points are indeed di�erent. If V dares
to ship software with a spurious (smaller) coverage set, and the software fails badly, V may
be forced to reveal the source code, (as discussed above) to T who can compute the coverage
points, build the binary, and compare the coverage points against the signature committed
to in Step 1. If V was cheating, he could be caught in a lie. This may be su�cient to dissuade
large vendors with established brand names, but not smaller ones.

9

Protocol 3

1. V uses a trusted coverage analysis tool, which generates the covering set. This tool
analyzes the source code, to �nd the requisite coverage points for
 and generates a
set of individually signed coverage points.

2. Proceed as Protocol 2, with V sending T his signatures of the coverage points, and T
randomly challenging V.

With this approach, V uses a trusted coverage analysis tool to generate the coverage set
CX

 which is cryptographically \signed" by the tool. Now, T can verify the signature on

the coverage set, and be assured that V has not generated a spurious (presumably smaller)
coverage set. The elements of this coverage set are sealed as in Protocol 2 with test cases,
and random numbers, and the coverage veri�cation proceeds with coverage point challenges
from T to V. The main advantage of this approach is an increased level of trust in the set
of coverage points generated by T ; the disadvantage is the risk that the trusted tool may be
compromised.

As noted in the beginning of this section back on page 7. The \binary-patching" approaches
used in Protocols 2 and 3 both assume that the binary is shipped to T with the symbol table
information intact. We now explore the implications of this, and approaches to eliminating
the symbol table.

3.2 Verifying coverage claims without symbol tables

Binary instrumentation tools such as debuggers use the symbol table in the binary to locate
machine instructions corresponding to source level entities. This information is used by
debuggers to set breakpoints, to inspect the elements of a structure by name, etc. The symbol
table has information about global symbols (functions/entry-points and variables), source
�les, and data structures (sizes, elements etc.). With this information, one can reverse-
engineer a good deal of information about the implementation. Typically, symbol tables
are stripped out of delivered software; as we discussed earlier, T could easily perform this
stripping after veri�cation. Sometimes, the V may balk at revealing this symbol table to T .
Can we verify test coverage without revealing the symbol table? Protocol 4 addresses this
issue. It uses a pure binary patcher, that is trusted by the parties involved. This tool, given
actual binary o�sets, can insert break points to verify test coverage. Interactive debuggers
such as gdb can readily perform such a task; a command such as break 0x89ABC to gdb

will set a break point at the machine address 0x89ABC in the program. A batch-oriented
tool like EEL [19] can also be used. Such a tool will be used by T to insert instrumentation
at coverage points, and verify coverage. We also use a binary location �nder (blf), which
uses the symbol table to �nd binary addresses for the coverage points. For example, the
\info line �le:line" command in gdb, for a given a line number in a �le, calculates the

10

corresponding binary position and size. The blf will be used by V to identify coverage
points by physical addresses in the binary; this tool would have to be trusted by T , and
would cryptographically \sign" its output.

Protocol 4

1. V uses a trusted coverage analysis tool (which signs its output) and generates the
coverage set CX

 .

2. V then uses a binary location �nder (blf) to �nd binary locations corresponding to
each element of CX

 . Call this set fblf(C
X

). We assume that the blf signs its output;

we can also have blf verify the signature of the coverage analysis tool from the previous
step.

3. The protocol proceeds as before, with V sending T signatures of coverage points, ran-
dom numbers, and test cases. T then conducts random challenges as before; however,
in this case, he uses a pure binary patcher to insert instrumentation and verify coverage.

This approach reduces the amount of information about the symbol table and the source
�le, that is revealed to T . However, it increases the reliance on \trusted tools". In addition
to the coverage analyzer used above, T needs to trust the binary location �nder. This may
not always be acceptable.

Trusted tools which \sign" their output are threatened by commercial incentives to cheat.
The coverage analysis tool could be modi�ed and made to sign spurious, small coverage sets;
a binary location �nder could be made to always point to false locations; the \secret" key
could be stolen from the tool and used to sign false data. One way to avoid this problem
is through the use of a physically secure co-processor. Various forms of these processors are
available in tamper-proof enclosures, running secure operating systems; they are expected to
become ubiquitous in the form of smart cards [27, 14], which are expected to become quite
powerful in a few years. The physical enclosure is a guarantee of integrity; if tampered with,
the processor will erase its memory and cease to function. We envision placing customizable,
trusted source code analyzers [7, 6] in secure co-processors. Such a device can be installed
as a co-processor at the site of the vendor; it can be sent an authenticated message which
describes the type of analysis to be conducted. The smart-card resident tool can perform
the analysis, and sign the results. The signature veri�es that the results were created by
trustworthy software resident in a secure machine, even at a potentially hostile site.

3.3 Eliminating coverage analysis tools

Such physically secured source analysis tools, however, are not yet available; we now suggest
an approach to eliminate the dependence on the source altogether. However, there are
complications with this approach. In the veri�cation protocol listed below, we use basic-block

11

coverage as an illustration; this approach can be extended to some other coverage models.
The approach used here depends upon analysis of the binary, which T has access to. Given
an instruction at an arbitrary location in the binary, and a knowledge of the instruction set
of the architecture, it is possible bound the basic block containing that instruction. This
property can be used for verifying basic block coverage.

Protocol 5

1. V sends to T the binary BX
s , and �K�1

V

(i; CX

 (i); ti; ri); for i = 1 : : : j CX

 j.

2. T chooses a random location, l, within the binary.

3. V reveals the corresponding test case, coverage point, and random pad.

4. T can set a breakpoint at l using his favorite instrumentation technique, and execute
the test to verify the coverage.

5. Repeat the above steps for the desired number of challenges and proceed as before.

With this approach, we don't need to analyze source code to determine the set of coverage
points Here, T (presumably) chooses random points in the executable, and it is up to V to
provide the coverage evidence. This can be done by V, since he has access to both the binary
symbol table and the source code. Given a machine address, V can identify the corresponding
source line easily, using a debugger (e.g., with gdb, the \info line *addr" will translate a
given machine address to a source �le and line number). If the V has previously developed
a good covering test set, and veri�ed his coverage levels, he can readily identify the speci�c
covering test using the �le/line number and data from his coverage veri�cation process.

However, there are several di�culties with this approach; they all have to do with \testa-
bility" of the binary. Finding test cases to cover a given location in a binary can be harder
than with source code, specially when:

1. the location occurs in code generated by the compiler in response to a complex source
language operator (e.g, inlined constructors or overloaded operators in C++); this code
may contain control
ow not present in the source, or when

2. it occurs in unreachable code generated by the compiler, or when,

3. it occurs in o�-the-shelf (OTS) software incorporated by vendor in his product, for
which the vendor has no tests;

There are approaches to dealing with some of these issues. Generated code often corresponds
to idioms; this information can be used to �nd test cases. Sometimes generated code may
contain additional control
ow that represent di�erent cases that can occur in the �eld, and

12

V can legitimately be expected to supply covering test cases. When the generated code
is genuinely unreachable [21], V can claim it as such, and supply source code that C can
compile to create similar binaries. Occurrences of dead code in the binary are really bugs in
the compiler, and are likely to be rare.

Even when a challenge happens to fall within the bounds of an OTS binary, V has several
options for test coverage veri�cation. If the OTS is a well-known, reputable, piece of public
domain software, he can simply identify the software, and C can download the software and
do a byte-comparison. Even if the OTS in not public, signatures can be obtained from Vots,
the vendor, for comparison. If the OTS is not well known, but has been independently
subject to test coverage veri�cation, then evidence of this veri�cation can be provided to C.
Another approach is for V to relay challenges to Vots, who may be able to handle them, and
pass her responses back to C.

Binary-based random challenges can be performed without revealing source code, or symbol
tables, and without resorting to trusted tools; the trade-o� here is that the mapping to
source code may be non-trivial for some parts of the binary; for this and other reasons, it
may be hard to construct an exercising test case. As binary decompilation tools [4] mature
and become more widely available, they can be used by customers to build con�dence about
areas of the binary that V claims to be non-testable for the reasons listed above.

4 Towards Eliminating the trusted third party

All the approaches described above rely upon a trusted third party (T). However, it may
sometimes be undesirable to use T , for reasons of economy or secrecy.

A naive approach to eliminating T would be for V to rerun the veri�cation protocols described
above with each software buyer. This is undesirable. First, repeating the protocol with each
buyer is expensive and slow. Second, V would reveal information to di�erent, potentially
adversarial parties who might collude to reverse engineer secrets about BX

s : Third, since
a potentially adversarial buyer is involved, there is a risk that the challenge points might
be deliberately chosen to expose the most valuable information about V's software. For
example, if T was forced to reveal (on a challenge from a customer c1) some test cases that
pertained to handling some unusual or di�cult case in the input domain), other customers
might collude with c1 to probe other points in the same area of the binary to expose V's
implementation/design strategies for dealing with some di�cult cases.

Re-examining Protocols 1 : : : 5 listed in the previous section, it becomes clear that the main
role played by T is choosing the challenge coverage points; we eliminate his role using
autonomous pseudo-random sampling.

Protocol 6

1. V prepares the binary BX
s , and �K�1

V

(i; CX

 (i); ti; ri); for i = 1 : : : j CX

 j.

13

2. V computes a well-known, published one-way hash function of BX
s to yield a location

control string, L. Successive byte groups of L are used to derive locations l1; : : : ; lj:

3. For each li, V reveals the test cases, random numbers and coverage points; call each
revelation Ri.

4. After some set of challenges li, V stops, and packages theRi's and the �K�1
V

(i; CX

 (i); ti; ri)'s,

along with his release of BX
s

5. C veri�es test coverage by repeating the generation of the location control string, and
checking the corresponding revelations by V for coverage.

Protocol 6 o�ers several advantages. We have eliminated the \middleman", T , thus saving
time and money. This approach is also advantageous where secrecy is involved. Instead of
T , a one-way hash function now drives the choice of the challenges. V cannot control the
value of the string Svc; a customer can easily verify the value of the location control string
using the delivered software and the public hash function. Furthermore, there is no need for
V to repeat this process with each customer. There is no risk that customers might collude
and pool information.

There is, however a plausible risk in the above scenario: since V has control over the input
to the hash string, he could automatically repeat the following:

1. Compute L = hash(BX
s).

2. If a very large subset of the resulting locations l1 : : : ln are not covered, stop. Otherwise,

3. Generate another binary BX
s 1

by padding BX
s with null instructions. Go to step 1

This amounts to repeated Bernoulli trials drawn from the set of coverage points; after some
trials, V could �nd an L that arti�cially boosts his coverage ratio. To avoid this attack, we
need a way to \monitor" his trials.

Protocol 7

We introduce a trusted \general purpose" archive, TA to record the fact that V initiates
testing. We assume TA archives all information submitted to it, and can provide signed
responses to queries concerning archive contents and history.

1. When V is ready to verify coverage, he \registers" with T 1) a query of historical usage
of the archive 2) identifying string I of the program to be tested 3) �K�1

V

(BX
s ; I), and

4) �K�1
V

(i; CX

 (i); ti; ri); for i = 1 : : : j CX

 j.

14

2. TA acknowledges V's registration with his registration history and a signature of the
history. (For brevity, let's assume that the returned signature is random for each query
response even if the query is the same e.g., a parameter of the the signature function
may include a random number).

3. V follows a procedure like Protocol 8 except that: in step 2) V computes the location
control string by seeding a well-known, published pseudo-random number generator
using the signature returned by TA. In step 4), V also packages the identifying string,
and the historical usage of V signed by TA. In step 5, C uses the historical information
from the archive to determine the V's use of the archive. Also, C veri�es TA's signature
on the testing pro�le and the signature that seeded the pseudo-random process.

Our approach involves a string identifying the system that is also archived. When releasing
a trace of the test coverage veri�cation protocol, this identifying string is included in the
release, and is input to the process that generates the location control string. V is free to
generate many location control strings, but each time, step 1 above requires him to register
with TA. Each registration become a part of his history that is available to customers. Given
a release from V that incorporates a system (with identifying string), and a veri�cation trace,
C can query TA to �nd registrations from V. Let us assume that there arem such registrations
with similar identi�cation strings. Further assume that the location control string checks
out, and that V presents the most favorable value of ps and includes n challenges, of which
a proportion p are found to be covered by running the test cases provided by V. Given this
data, C can estimate the the probability that p di�ers from actual coverage level pa by �,
using m disjoint occurrences in the inequality 1,Page 8):

P (ps � p � �) � me
�n�2

2p(1�p)

Therefore, for a 95 % con�dence level, we can estimate the error � as follows:

� =

s
2ln(m

0:05
)p(1 � p)

n

Recall from Page 8 that with about 25 samples, one can achieve a 95% con�dence level
with an error ceiling of 0.09 on an estimate of p = 0:95. With 5 registrations, this error
ceiling increases to 0.12. With more registrations, the C's faith in the actual coverage results
from a particular veri�cation trace is limited. Clearly, it is in the interests of V to a) delay
registration for test coverage veri�cation until he has already developed enough tests for a
high coverage level, b) provide clear, distinguished identifying strings for each of his software
o�erings so that customers don't con
ate registrations for di�erent products and c) limit the
number of registrations for any particular piece of software5. For a vendor whose development
processes already achieve high levels of coverage, this not a signi�cant burden. Finally, TA's
services are quite limited, fully automatable, and thus should be inexpensive.

5Unless, of course, he reveals the veri�cation trace for each of them, in which case the customers can get
very tightly bounded estimates of his coverage level.

15

5 Committing and Enforcing an Upper Bound on Test

Coverage

The protocols described up to this point have a weakness: V may get lucky and demonstrate
a higher test coverage then he actually has. This is inherent to challenges based on random
sampling. We now describe a technique that requires the vendor to assert an upper bound on
test coverage. This technique can be used in conjunction with any of the protocols described
above. With this approach, the vendor can be caught cheating if he is called upon to reveal
a test case corresponding to a coverage point which he did not account for as a untested
coverage point. However, the vendor is not forced to reveal potentially sensitive information
about exactly which coverage points have no test cases. We present the technique here as a
series of steps that can be interleaved into the protocols described above.

1. V commits to untested coverage points by sending Hash(i; ri; Ci); i = 1 : : : Nnt for each
coverage point not tested (where ri is chosen at random by V). Using this, the C or T
can compute the upper bound on test coverage claims.

2. When the vendor is called upon to reveal a test point for which it does not have a
test case, the vendor reveals ri and i, the reference to the particular hash in the �rst
step. The tester can recompute the hash of the tuple i; ri; and Ci and compare it to
the commitment of the untested coverage points.

3. If testing results with numbers higher than the coverage claims, the results are de-
creased to the upper bound.

In step 1, V commits to all the coverage points which are admittedly not covered by test
cases. From this information C (or T , as the case might be) can determine an upper bound
on the actual coverage ratio. For example, in the case of Protocols 6 and 7, C can determine
the coverage set by analysis of the binary; if the size of this set is Ncs, he can bound the
coverage ratio as

Ncs �Nnt

Ncs

Step 1 can be done at the same time as the �rst step in (e.g.,) Protocols 6 and 7. Step 2
above is basically an extension to the random challenge step in many of the protocols. Given
a random challenge, the vendor may or may not have a test case; if he does, the protocols
work as described earlier. In the case where there is no test case, he reveals ri and i, thus
\checking o�" one of the uncovered coverage points committed in step 1. If V is unable to
reveal a test case, or an ri; i pair, he is caught in a lie. Finally, in Step 3 above, the tester
can compare his estimate from the random sample to the a priori upper bound computed
above.

In this technique, V makes a clear claim about the proportion of tests he has coverage for,
and the total number of tests. The purpose of the random trials therefore is not to narrow

16

the con�dence intervals around an estimate the value of the coverage ratio, but just to make
sure V is not lying. With each trial, there is a probability that he will be caught; this
increases with the number of trials. To model this analytically, assume that there are N

total coverage points, and V is lying about l of those. i.e., for l of those he has no coverage
points for, but he is trying to pretend he does. Denote the fraction l

N
by f . On any one

trial, the chance that he will be caught is f , and that he will sneak through is 1 � f . After
n trials, the probability that he will escape6 is

(1� f)n

Let's bound this above by �:

(1� f)n � �

i:e: n log (1� f) � log �

i:e:; n �
log �

log (1 � f)

With f = 10%, (i.e., V is lying about one-tenth of the coverage points), there is a 95%
chance (i.e., � = 0:05) that V will be caught after roughly 28 random challenges. Again,
it behooves V to provide many trials to build con�dence that he is not lying. Note that
the value of the coverage ratio is always what the vendor says it is|the con�dence value
refers to C's subjective probability of V's veracity, i.e., the likelihood that V would have been
caught trying to cheat. Such an event will seriously damage a vendor's credibility; most
vendors may not be willing to tolerate even a small chance of being caught, and thus would
be cautious about misrepresenting the coverage ratio. If V tried to cheat on even 5% of the
cases, with 20 trials, there is a 50% chance of exposure. For many vendors, this may be
intolerable. We expect that this approach should provide C with a more accurate coverage
estimate.

6 Disclosure Concerns

We now return to the key �rst issue in the list of desiderata in x 1, page 3: How much of V's
valuable technical secrets do our techniques reveal?

At a minimum, V has to ship the binary BX
s . Simply from the binary (even without a symbol

table) an adversarial customer CA can construct a good deal of information by static analysis:
the control
ow graph, the size of the data space, the number of functions/entry points etc.
A limited amount of static control & data dependency analysis is even possible. Indeed,
tools like EEL can perform much of this analysis. In addition, by instrumentation, and

6For simplicity, we assume trials can be repeated.

17

dynamic analysis. CA can detect which paths of the control path are activated for di�erent
input conditions. Some recent work by Ball & Larus [3] show how it is possible to trace
and pro�le control
ow path execution using just the binary. Additional information can
be gained by tracing memory references and building dynamic slices. Given the degree of
information that can be reconstructed, it is important to evaluate carefully if the approaches
listed above yield additional opportunities for CA.

First, assume that the symbol table is stripped from the delivered binary BX
s . During the

veri�cation process, whether driven by T or not, the only additional information revealed
in response to challenges are the relevant coverage points and the applicable test cases.
The coverage points, if based on the binary, can be independently generated by CA or T ;
the only additional information is the test case, and its connection to this coverage point.
A priori, the value of this information is di�cult to estimate. Important factors include the
manner in which the test cases are supplied, the resulting behavior of the system, etc. Test
cases could be supplied in the form of source code or ASCII input (which might be very
revealing) or in the form of binary objects or binary data (which could be more di�cult
to interpret). As far as the veri�cation protocol is concerned, the only relevant behavior is
that the selected challenge coverage point be exercised; however, there may be additional
behaviour that reveals information to the adversary.

In the best case, if the relevant test case re
ects a fairly \typical" type of usage, then the
information given away is minimal; presumably CA would very likely �nd this out during his
attacks using dynamic analysis. However, if the test case re
ects an unusual circumstance,
and the test case is delivered in a manner transparent to CA, then some valuable information
about unusual but important design and requirements details of BX

s may be revealed. The
risk of such an exposure is traded-o� against the ability to verify test coverage.

The delivery of test cases to CA, particularly the tests that somehow embody valuable pro-
prietary information is an important issue that remains to be addressed: Can we deliver test
cases in a way that protect V's secrets, while still exhibiting test coverage?

Now we relax the assumption that the symbol table is stripped out. While it is possible to
verify test coverage without the symbol table, there are some di�culties (discussed above)
associated with omitting it. In several of the protocols we listed above, we assumed that the
symbol table was included in the binary shipped to the veri�er. Clearly, the symbol table
o�ers additional opportunities for CA to reconstruct information. Some standard obfuscation
techniques such as garbling the symbolic names would be helpful. But in general, the
advantages of omitting the symbol table may override the resulting di�culties.

7 Coverage Veri�cation Limitations

There are limitations to the type of coverage that can be veri�ed with our protocols. Any
protocol that hides source code from the veri�er (Protocols 1 thru 9) is limited by the

18

available binary instrumentation facilities, and by the testability of the binary (which we
discussed earlier). For simplicity, in the above discussion, we have assumed basic block
coverage, since it very simple to check e.g., with a debugger. If a far more stringent coverage
is desired, such as all paths [10] then a tool based on [3] could be used to monitor the various
paths during coverage veri�cation. However, this level of coverage testing is extremely rare
in practice.

Another limitation is the manner in which the challenge coverage points are selected. The
discussion above again assumes \single point" type of coverage criteria (e.g. basic block
or statement coverage). Other criteria, such as all d-u paths7. involve pairs of statements.
We have not addressed d-u path coverage; for practical software, particularly in the context
of heap memory usage, there are formidable obstacles to using this type of coverage. Our
protocols can, however, be adapted to branch coverage, with suitable extensions to the
instrumentation tools and to our random sampling protocol. Thus, to adapt Protocols 6 and
7 to branch coverage: �rst, a random location in the binary is chosen; then, the bounding
basic block is found; at this point, if entry point of this basic block has a conditional branch,
a coin is
ipped to determine the direction of this branch; now, V can be challenged for a
covering test case. With a suitable instrumentation facility, the binary can be instrumented
and coverage veri�ed.

It should be noted here that while coverage testing has widely used in industry, some re-
searchers dispute the e�ectiveness of whitebox (or \clearbox") coverage methods. Most
recent empirical work [13, 20] has found that test sets with coverage levels in the range of
of 80-90% have a high chance of exposing failures. Earlier work [9] had yielded inconclusive
results; however, the programs used in [9] were substantially smaller than [13, 20]. On the
analytic front, rigorous probabilistic models of the relationship between increasing white-
box coverage and the likelihood of fault detection have been developed [8, 11]. However, no
known testing process is perfect; all known methods, white box or black box will let some
faults slip! The best current experimental work [13, 20] suggests that high levels of white box
test coverage can guarantee high levels of fault detection. However, since white box testing
is not perfect, there are several complications. Given a coverage point that has faults, there
may be several test cases that exercise that point. Some of these test cases will expose faults,
but others may not. Consider a particular coverage point c, which has a fault f . When V
generates a covering set of test cases, assume he �nds a test � which just happens to not
expose the fault f . Since his software tests correctly, he will simply supply this test case
along with the (faulty) delivered program. No malice is intended; particular case) coverage
testing is imperfect, the vendor honestly delivered a program with a fault that just happened
to slip by.

Now consider the case where the test case chosen by V happens to expose the fault. V now
has two choices. He can �x the fault, or he can cheat: he can try to �nd a di�erent test
case � �, which covers c but does not expose a fault. The incentive for V to cheat depends

7A d-u path is a control
ow path from the de�nition of a variable to its use, free of additional de�nitions
of the same variable

19

on several factors: the likelihood the fault will occur in the �eld, the market conditions for
the software (how many copies can he sell, for how long?), the cost of �xing the software,
and the di�culty of �nding a fault-hiding (but c-covering) test case � �. In most cases, it will
probably be best to �x the fault. In the absolute worst case, assuming that the nature of
the fault and the business conditions really motivate V to cheat, the cost �nding such a � �

depends on the distribution of failure-causing input within the subdomain of the input that
causes the coverage point c to be exercised. If V is lucky, the failure region is small and well
isolated within this input partition; he may succeed in �nding a covering test case that is
fault hiding. On the other hand, if the fault is provoked by many inputs from the subdomain
of the input that exercises c, then V may have to read the code carefully (or spend a lot of
time randomly sampling the input partition) to �nd such a � �; in this case, it may be easier
to simply �x the problem. Finally, this method of attack (�nding covering test cases that
hide the fault) is not speci�c to the cryptographic techniques we have described; even the
third party coverage certi�cation method that is currently used is vulnerable.

We can favorably bias the situation by encouraging vendors provide (and commit to) more
than one test case per coverage point. The more tests a vendor provides for a coverage point,
the less likely it is that all these tests are fault-hiding. A random search for fault-covering
cases in the corresponding input partition is not likely to work; it becomes necessary to
understand the nature of the fault, and carefully construct several examples that exercise
that coverage point, but hide the fault. As this e�ort increases, so does the incentive for V
to simply �x the fault. The more test cases V can provide8 for each coverage point, the less
likely it is that he is hiding a fault in that coverage point.

Another di�culty inherent in coverage analysis is the opportunity to pad. Vendors can add
spurious code which introduces additional control
ow. Such code can be designed to be
readily covered, thus arti�cially boosting coverage. It is not feasible to determine if this has
been done. The only way to totally avoid this problem insist upon 100% coverage for some
criteria; padding becomes irrelevant. For some criteria 100% coverage may be feasible for
a medium-sized component; since such coverage levels are indicators of thorough testing,
there may be market incentives that push vendors to achieve such a level. A series of
coverage levels for increasingly stronger criteria, starting at and gradually decreasing from
100%, would be a desirable goal. Another approach to discourage padding is to demand
explanations when challenge points are uncovered by tests. A vendor can voluntarily build
con�dence that he hasn't padded by making large number of pseudo random choices among
his uncovered set and providing explanations for why they are not covered, and describing
the conditions under which the points would be executed. Such conditions had better be
highly unusual and di�cult to create; if they are not, the vendor could be expected to
provide a test case. If a large number of such disclosures are made, the vendor would be at
risk of embarrassment by subsequent revelation that the coverage point was executed under
less uncommon circumstances. A large number of such disclosures can build con�dence that

8The test cases do not all have to be revealed; they could be hidden as a hash value, and revealed only
upon a (random) challenge.

20

points do not remain uncovered simply as a result of padding. Again, another powerful
disincentive to excessive padding is the vendor's inherent desire to produce high-quality
software, and thus avoid costs of refunds, cancelled sales and extra update releases.

Finally, a customer may care only about one part of the vendor's claimed functionality,
perhaps one that the vendor claims as a competitive advantage. In such cases, proof of
an overall coverage level is less useful than a targeted demonstration of coverage of the
subsystem that handles this functionality (If a 100% coverage has been achieved, this is
not a concern, of course). It is not feasible for the customer to determine after the fact
exactly which part of the system provides the indicated functionality. One approach to this
problem is to require the vendor to identify ahead of time subsets of the coverage points
that correspond to di�erent sub-categories of the functionality of the system. In this case, a
pseudo-random sample could be targeted just at coverage points in the indicated category;
this can build con�dence in the customer that the speci�c portion of the software had been
tested thoroughly. If the vendor falsely makes this set of coverage points too small, the
customer might �nd (perhaps by analyzing and instrumenting the binary) that a great many
more coverage points are actually involved in the indicated functionality; the customer can
then demand a pseudo random sampling of the entire set of coverage points, to try to �nd if
the vendor can be caught lying about the other points that were claimed to be not involved in
the indicated functionality. However, a statement such as \this piece of the code is involved
in this functionality" can be di�cult to prove or disprove, even if the entire system were
laid wide open. If a speci�c sub-functionality of a system is of paramount concern, it may
be best to either purchase from a vendor who has a well-tested component that factors just
this functionality out, or insist on 100% coverage, or perform careful acceptance testing of
the indicated functionality.

To summarize, our work rests on the assumption (again, supported by [13, 20]) that com-
prehensive coverage testing tends to expose faults, and on the assumption that vendors will
most often �nd it more pro�table to �x faults exposed by a covering test (rather than search-
ing for a test that covers but hides faults). In the worst case, when the di�culty of �xing
the faults exceeds the di�culty of �nding test cases to hide the fault, and V expects the
faults in question are rare enough so that he can collect enough revenue before the fault is
exposed in in the �eld, then he may be tempted to �nd a hiding test case. By encouraging
vendors to reveal many test cases for each coverage point, we can decrease the incentive to
hide faults. But even in this worst case, the use of these techniques can provide customers
with the justi�ed belief that the vendors have every incentive and the means to �nd and �x
all but the ones that are very unusual and/or di�cult to �x. Padding is another problem;
100% coverage is the best way to preclude the chance of padding. We have suggested some
ways that vendors can provide evidence that they did not pad; we are actively pursuing
better ways of determining if padding has occurred.

In any case, during practical use of the protocol, it is important for both customers and
vendors to be mindful of the suspected limitations of white box coverage testing. Additional
black-box and/or acceptance testing will often be needed.

21

Protocol Reveals Reveals Reveals all Reveals entire Uses trusted Uses trusted Comments
id source code symbol table test cases coverage set tools third party

Basic yes yes yes yes no yes
1 no yes yes yes no yes a
2 no yes no no no yes a,f
3 no yes no no yes yes f
4 no no no no yes yes b,f
5 no no no no no yes c,f
6 no no no no no no c,d,f
7 no no no no no no c,e,f

a Vendor can cheat by building a spurious coverage set.

b Vendor uses two trusted tools, a coverage analyzer and a binary location �nder.

c Verifying test coverage on binary, rather than source, complicates �nding test cases. Binary analysis tools may help build
C's con�dence

d Vendor can try to cheat by performing repeated trials by padding the binary.

e Involves trusted third party archive (minimally).

f Vendor's coverage level can only be estimated, subject to con�dence levels; however, the \upper bound" technique
described in Section 5 is applicable.

Table 1: Characteristics of the various protocols.

8 Conclusion

We have shown a set of protocols that can be used to verify test coverage, while protect-
ing information valuable to the vendor and simultaneously reducing the vendor's ability to
cheat. The results are summarized in Table 7. These protocols use various techniques such
as trusted third parties, trusted tools, signatures, random challenges, and \autonomous"
random challenges. These techniques can be used in di�erent combinations, depending on
the needs of the customer and the vendor. Combinations other than the ones we have pre-
sented are possible. For example, in Protocol 4, rather than using a third party to generate
the challenges, the vendor could a location control string like that used in Protocol 7 to
generate the challenges.

Some of our techniques are compatible with a widely used method for repelling reverse
engineering, which is shipping binaries without source code or a symbol table. The only
additional vendor information that our techniques need reveal are a small proportion of
test cases. While it is possible to conceive of reverse engineering countermeasures that
may not be compatible with our techniques, we believe that we can adjust our methods
to be compatible with countermeasures that may complicate reverse engineering, such as
the introduction of additional static control
ow, additional dynamic control
ow, or even
certain other approaches that involve dynamically decrypting code prior to execution; we
are actively exploring these issues.

Finally, we note that \self-validated" approaches (if they can be perfected) that verify testing
e�ectiveness may have an important leveling e�ect on the software market. Using such meth-

22

ods, any vendor, without the help of a trusted third party, and at relatively low overheads,
can provide a credible claim that their software quality control is stringent, while disclosing
only a minimal amount of information. This enables small and unknown vendors to compete
e�ectively (on the basis of perceived quality) with very large vendors with established brand
names. It is our hope that such approaches, as they are perfected and widely adopted, will
engender a creative \churn" in the software market place, to the ultimate bene�t of the
consumer.

References

[1] Delta Software Testing (accredited by Danish Accreditation Authority-DANAK).
http://www.delta.dk/se/ats.htm.

[2] H. Agrawal. Dominators, super blocks and program coverage. In Proceedings, POPL
94, 1986.

[3] T. Ball and J. Larus. E�cient path pro�ling. In Micro '96. IEEE Press, December
1996.

[4] C. Cifuentes. Partial automation of an integrated reverse engineering environment for
binary code. In Third Working Conference on Reverse Engineering, 1996.

[5] C. Cifuentes and J. Gough. Decompilation of binary programs. Software Practice and
Experience, July 1995.

[6] P. Devanbu. Genoa- a language and front-end independent source code analyzer genera-
tor. In Proceedings of the Fourteenth International Conference on Software Engineering,
1992.

[7] P. Devanbu and S. G. Stubblebine. Building software with certi�ed properties. Unpub-
lished Manuscript, available from the authors, February 97.

[8] P.G. Frankl, R. Hamlet, B. Littlewood, and L. Strigini. Choosing a testing method
to deliver reliability. In Proceedings of the 19th International Conference on Software
Engineering (To Appear). IEEE Computer Society, 1997.

[9] P.G. Frankl and S. N. Weiss. An experimental comparison of the e�ectiveness of branch
testing and data
ow testing. IEEE Transactions on Software Engineering, August
1993.

[10] P.G. Frankl and E. J. Weyuker. An applicable family of data
ow testing criteria. IEEE
Transactions on Software Engineering, August 1988.

[11] P.G. Frankl and E. J. Weyuker. A formal analysis of the fault-detecting ability of testing
methods. IEEE Transactions on Software Engineering, March 1993.

23

[12] A. Freier, P. Karlton, and P. Kocher. The ssl protocol, version 3.0 (internet draft),
March 1996.

[13] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the e�ectiveness
of data
ow- and control
ow-based test adequacy criteria. In Proceedings of the 16th
International Conference on Software Engineering. IEEE Computer Society, May 1994.

[14] Mondex Inc. http:/www.mondex.com.

[15] Plum Hall Inc. http:/www.plumhall.com.

[16] M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory.
MIT Press, 1994.

[17] National Software Testing Labs. http://www.nstl.com.

[18] Software Testing Labs. http://www.stlabs.com.

[19] J. Larus and E. Schnarr. Eel: Machine-independent executable editing. In ACM SIG-
PLAN PLDI. ACM Press, 1995.

[20] Y. Malaiya, N. Li, J. Bieman, R. Karcich, and B. Skibbe. Software test coverage and
reliability. Technical report, Colorado State University, 1996.

[21] Doug McIlroy. Personal e-mail communication, 1996.

[22] N. Ramsey and M. Fernandez. Specifying representations of machine instructions. ACM
Transactions on Programming Languages and Systems, 1997.

[23] B. Schneier. Applied Cryptography. John Wiley & Sons, 1995.

[24] A. Srivastava and A. Eustace. Atom: A tool for building customized program analysis
tools. Technical Report 1994/2, DEC Western Research Labs, 1994.

[25] Applied Testing and Technology Inc. http://www.aptest.com.

[26] E. J. Weyuker. On testing non-testable programs. The Computer Journal, 25(4):465{
470, 1982.

[27] Bennet Yee and Doug Tygar. Secure coprocessors in electronic commerce applications.
In Proceedings of The First USENIX Workshop on Electronic Commerce, New York,
New York, July 1995.

24

