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1 Introduction

The law of conservation of flow states that an input to a system must either be

absorbed by that system, or be sent on as an output, possibly with modification. For an

ideal system, this law should hold, for no messages should be dropped in transit, nor

should any source or destination nodes falsely repudiate having sent or received

messages, respectively. Unfortunately, when the idealized law of conservation of flow is

applied to a realistic situation,e.g., Internet routing, various considerations must be made

in order to compensate for the model’s inadequacy. This thesis considers the application

and implementation of WATCHERS [Brad97, BCPM+98a, BCPM+98b], an existing

protocol designed to detect misbehaving routers using the law of conservation of flow.

1.1 Overview

Conservation of flow is an attractive tool to analyze network protocols for

security properties. One of its uses is to detect disruptive network elements that launch

denial of service (DoS) attacks by absorbing or discarding packets. The WATCHERS

protocol describes a network of coordinated, distributed network monitors, each of which

apply validation and conservation-of-flowtests to their neighbors. This application

requires many assumptions about the protocols and networks being analyzed.

Unfortunately, WATCHERS’ implicit assumptions do not hold in the Internet. The

protocol can consequently be defeated.

1.2 Motivation

In a word,money.
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The Internet’s explosive growth has introduced unprecedented opportunities for

communication and information sharing. As the online population grows, and electronic

commerce matures, our economy may soon depend on this worldwide network. At the

heart of it all arerouters. Unfortunately, routers are vulnerable.

Just as routers can be used passively in an attack, they too can become the active

element, should an attacker gain control of them. Although relatively few such router

vulnerabilities have been widely exploited, if and when the currently “popular attacks”

are prevented or lose their appeal, attackers will almost certainly seek out new

vulnerabilities, including those in routers and their control mechanisms.

Should a significant weakness be discovered and exploited, depending on the

vendors’ response time, an attack on the very infrastructure of today’s Internet could

certainly affect the infrastructure of tomorrow’s economy [Seat00a]. Recent attacks have

even had a significant, perhaps intentional, effect on the U.S. stock market [Merc00,

Seat00b, Wash00]. In one survey, 273 participating organizations reported annual losses

of $265 Billion due to computer security breaches [CSI00].

Regardless of their motive, attackers who control routers pose a significant threat.

While it may be difficult to foresee the weaknesses they might exploit to gain such

power, vulnerabilities are almost certain to exist. The persistence of well-understood

types of vulnerabilities such as buffer overflows is evidence that even when prevention

methods are known and available, it does not guarantee that these weaknesses will be

eliminated [Vene96]. With respect to router vulnerabilities, the potential damage an

attacker might cause can be limited by automatic detection of the attack and subsequent
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isolation of the offending router(s) from the network. WATCHERS is a distributed

network monitoring protocol designed to accomplish this.

1.3 Objectives and Contributions

This thesis explores the WATCHERS protocol, its deficiencies, and how it can be

improved. The primary benefit is an implementation of WATCHERS. This was used to

gather empirical results in the form of performance data and proof-of-concept evidence,

of both WATCHERS’ usefulness and weaknesses.

In the course of analyzing the WATCHERS protocol, many attack scenarios are

presented, each of which poses a particular threat to WATCHERS’ accuracy or

robustness. Some scenarios target the use of conservation of flow, while others

manipulate the supporting routing protocol and network transport features. This

exploration resulted in numerous suggested improvements to allow WATCHERS to

function in the presence of malicious routers that might attempt to disrupt the very

protocol designed to detect them.

Even with these improvements, many more questions remain unanswered.

Despite its outward simplicity, WATCHERS has many parameters and provides intrinsic

opportunities for further research. Many of these possibilities exist only now that an

implementation has been created.

1.4 Thesis Organization

This document is partitioned into five main chapters. This first chapter has

introduced to the reader the concept of conservation of flow and its uses in computer

security protocols today. The motivation, objectives, and contributions of this work have
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also been discussed. The next chapter will expand the motivation by providing a

background to Internet routing and an overview of related work. If the reader is familiar

with the Internet, routers, and routing protocols, and not interested in a brief history of

WATCHERS’ evolution, feel free to skip to chapter 3, where a concise presentation of

the WATCHERS protocol is presented, as it existed prior to the publication of this thesis.

If the reader is intimately familiar with WATCHERS, it may be most appropriate to

begin in section 3.3, where attacks on the protocol are introduced.

In chapter 4, a WATCHERS implementation is presented, along with

experimental results related to the observations in chapter 3. Finally, closing remarks are

found in chapter 5, including a summary of the results obtained and directions for future

research.



5

2 Background

This chapter provides a brief background of routers, routing protocols, and their

historical vulnerabilities. Section 2.4 reviews the evolution of WATCHERS and related

work. It is assumed that the reader has a basic understanding of IP,traceroute, ping,

telnet, andftp [Come95].

2.1 Routers

Routers are machines that direct traffic flow on any sizeable computer network:

Every packet of data a router receives must be correctly forwarded to the next appropriate

router, or hop. In order to do this, each router maintains arouting table listing the

appropriate next hop for specific destinations and/or destination networks. Upon

receiving a packet, a router parses that packet’sheader, extracting, among other things,

the destination address. The router then checks its routing table, performs any

maintenance or special instructions requested in the packet header, and sends the packet

out on the correct network interface.

2.2 Routing Protocols

It is important that the routing tables be kept current in order to prevent

misrouting and network inefficiencies. The task of synchronizing routing information is

delegated torouting protocols. Prevalent Internet routing protocols include the vector-

distance Routing Information Protocol (RIP) [Malk98] and the link-state Open Shortest

Path First (OSPF) [Moy98] protocol [Come95, Huit00].
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The difference between vector-distance and link-state routing protocols lies in the

information exchanged between neighboring routers. Vector-distance protocols

propagate a list of reachable networks, and the distance to each. Link-state protocols

propagate the status of each individual connection. In order to determine distance and

reachability, a router running a link-state routing protocol performs a local computation

based on the “up” or “down” status of each link.

The finer granularity offered by link-state routing protocols is necessary for a

misbehavior detection protocol such as WATCHERS. In order to oversee neighboring

routers’ proper compliance with the WATCHERS protocol, it must know whether each

link is up or down. This information is particularly necessary in order to verify that a

neighbor has not misrouted packets, in addition to other requirements (See section 3.2.2).

Additionally, OSPF can be configured to authenticate routing messages, making it the

recommended routing protocol to complement WATCHERS. (It should be noted that

even in OSPFv2, the built-in cryptographic authentication scheme relies on a shared

secret key, and thus in inadequate to prevent identity spoofing; public-key digital

signatures are one solution, but are computationally expensive. Some alternatives are

discussed in [Cheu97, Zhan98].)

2.3 Attacks

Routers and routing protocols have had their share of weaknesses, both in their

design and implementation. To date, a least one major networking vendor averages more

than two serious vulnerabilities each year [Cisc00], where a serious vulnerability is

defined as an opportunity for an attacker to gain control of the router or its packet

forwarding rules.



7

Compromised routers may cause all packets to be dropped, constituting anetwork

sink (or a black-hole router if it also falsely advertises zero- or low-cost routes).

Malicious routers can also selectively drop packets, constitutingintelligent black-holes.

Routers may misroute packets or even conspire to misbehave together, the latter

constitutingconsorting routers. The WATCHERS protocol was designed to detect and

isolate routers participating in these malicious activities.

2.4 Previous and Related Work

The concept of information flow is not new; security-related models have been

developed from everything from propagation of user rights [BeLa73] to the flow of

“insecurity” in vulnerable systems [MoKa97]. Sampling and visualization of network

flows is discussed in [FSPS95]. Some recent intrusion detection systems attempt to

identify individual network flows for the purposes of tracing attackers [SCCD+96].

WATCHERS attempts to discover malicious network elements that improperly route

network flows.

2.4.1 Conservation of Flow

To this author’s knowledge, use of conservation of flow as a security mechanism

in network protocols is a relatively new and unexplored idea. Cheung and Levitt

introducedFlow analysisas a means of detecting misbehaving routers – those that either

intentionally or accidentally misroute or drop packets [ChLe97]. Those authors made

three assumptions: (1) Neighboring routers share the same view of the network topology,

(2) Routers send packets along the shortest route to their destination, and (3) Neighboring
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routers share bi-directional links over which they can exchange packets. Pseudo-code

was also presented for router synchronization and detection of misbehavior.

These steps were formalized by Bradley with the introduction of the

WATCHERS protocol: Watching for Anomalies in Transit Conversation: a Heuristic for

Ensuring Router Security [Brad97]. Bradley identified additional requirements including

the good neighbor, good path, andmajority good conditions(see section 3.1). He also

recognized the need for clock synchronization among participating routers.

Minor improvements to the WATCHERS protocol were presented in

[BCPM+98a, BCPM+98b], including thelink-state condition(see section 3.1), detection

of certain misrouting andconsorting routermisbehavior, and detection of routers that fail

to properly diagnose bad routers. The authors also explored the issues of WATCHERS’

costs and misbehavior thresholds in more detail. Chapter 3 describes the current status of

the WATCHERS protocol.

2.4.2 Flow Control and Quality of Service

The related concepts ofQuality of service(QoS), Flow Control, and resource

reservationhave garnered much attention in the face of burgeoning computer networks.

Each of these is similar to WATCHERS in that stateful network flow information is

usually maintained. QoS mechanisms such as RSVP [BZBH+97] are later shown to be

complementary to WATCHERS (see section 5.2.2). [BMR97] describes a generic flow

measurement architecture that might meet WATCHERS’ needs.
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2.4.3 Byzantine Agreement

WATCHERS relies on good routers’ shared counters being in agreement

(approximate agreement, if non-zero thresholds are employed). Unfortunately, in the

model that WATCHERS requires (see section 3.1), each link connects only two routers,

and as such, only these two entities have firsthand knowledge of what traffic actually

passes over their shared link. Since Byzantine agreement requires at least three well-

behaved parties to reach agreement in the presence of just one malicious party, solutions

to the Byzantine agreement problem will not be of assistance to counter agreement where

a bad router is involved. If two good routers disagree on shared counter values, the

problem is not that one of them is lying, but instead that each of them truly believes their

asserted values are correct; this incongruity cannot be resolved by an agreement protocol,

and a solution must instead focus on eliminating the underlying cause(s) of the counter

discrepancy.

One context in which Byzantine agreement might be applied to WATCHERS

relates to the participating routers’ decision on when to start a new WATCHERS round

(See section 3.2.1). Currently, WATCHERS requires only a majority consensus, relying

on several requiredconditions to loosen the restrictions that would otherwise be

necessary if a solution to the Byzantine or other agreement problem were used.

Specifically, WATCHERS requires that all messages be authenticated andflooded, a path

of good routers connects each pair of good routers, and a majority of routers in the

system are good (see section 3.1). Provided that connections are loss-less, these

conditions effectively guarantee receipt of good routers’ messages by all other good

routers, as would be the case in a fully connected, loss-less network. In such a situation,
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only a majority of good routers is required, and again, WATCHERS has no need to rely

on a more restrictive agreement protocol.
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3 The WATCHERS Protocol

In this chapter, the WATCHERS protocol and its model are reviewed. Associated

terminology and requiredconditionsare presented first, followed by an overview of the

RRR sub-protocol, thevalidation and conservation-of-flowtests, and WATCHERS’

response mechanism. Weaknesses in the protocol and its model are then explored using

various attack scenarios. Finally, a summary and analysis is given, exploring the

ramifications of the weaknesses presented.

3.1 Model and Terminology

WATCHERS, first introduced in [Brad97] and later improved upon [BCPM+98a,

BCPM+98b], is a distributed network monitoring protocol designed to detect and isolate

malicious routers within an autonomous system (AS). For WATCHERS’ purposes, a

bad, or malicious router is defined as one that discards or misroutes (sub-optimally

routes) packets, or does not participate in or gives incorrect information during execution

of the protocol. Except where noted, the most recent version of WATCHERS is

described [BCPM+98b].

In order to function correctly, WATCHERS requires four conditions:

1. Link-State Condition: A link-state routing protocol must be used,
where each router is aware of all routers and links between them
within the AS. Each router periodically broadcasts an update
message to inform the other routers the “up” or “down” status of
each of its links.

2. Good Neighbor Condition: Every router must be directly connected to
at least one non-malicious router.

3. Good Path Condition: A path of good routers must connect each pair
of good routers.

4. Majority Good Condition: There must be more good routers than bad.

Figure 3.1: Conditions required for WATCHERS to function correctly.



12

Additionally, it has been claimed [BCPM+98a, BCPM+98b] that WATCHERS is

correct, i.e., a good never diagnoses another good router as bad, provided the following

two conditionshold:

1. Perfect Transmission Condition: When any router sends a
WATCHERS message to a neighbor, the message arrives intact with
no delay.

2. Neighbor Agreement Condition: Neighboring routersalwaysagree on
the network topology.

Figure 3.2: Additional conditions claimed to prevent good routers from diagnosing other good
routers as bad.

WATCHERS requires each pair of directly connected routers, orneighbors, to

have only a singleshared link. Each router maintains 7 base counters with respect to

each shared link. For neighborsX andY, counterTX,Y refers to data transiting throughX

and thenY, SX,Y for data originating atX and then sent throughY, and DX,Y for data

destined forY arriving throughX. These three counters representincoming flowto Y, but

outgoing flowto X. MX,Y records the number of misrouted packetsX sends throughY.

Respective counters with “Y,X” subscripts are maintained for data flowing in the opposite

direction. BothX andY maintain their own copies of the six counters shown in Figure

3.3, while onlyX maintainsMY,X and onlyY maintainsMX,Y. Note that no counters exist

for data originating withX and destined forY, or for data exchanged betweenborder

routers and external nodes (external nodes include workstations, terminals, or any

machine or router not participating in the same WATCHERS system). WATCHERS

ignores such packets.
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Figure 3.3: Base transit packet byte counters.1

While the base counters introduced thus far facilitate detection of simple

misbehavior, they are insufficient to discover certainconsorting routers, or those that

cooperate to conceal their wrongdoing. In order to do so, WATCHERS logging

requirements are increased: Instead of twoS and two T counters per neighbor, each

router must maintain twoS counters and twoT countersper destination. Thus,TX,Y[Z]

would refer to data sent throughX and thenY, destined forZ.

3.2 Communication in the WATCHERS Protocol

Participants in the WATCHERS protocol identify malicious routers by

periodically performingvalidation and conservation-of-flowtests on each neighbor. In

each period, orround, the T, S, andD counters must be exchanged, authenticated, and

analyzed. All such Administrative messages (those sent either by WATCHERS or the

routing protocol) must beflooded, i.e., eachnew message(one not seen before) received

1 [HAG00] mistakenly assumed thatT, S, andD counters were intended to countpackets. However, only
M counters actually measurepackets; T, S, andD counters measurebytes. Under certain conditions,
countingpacketsmay be most appropriate (see section 5.2.4).

TX,Y

SX,Y

DX,Y

TY,X

DY,X

SY,X

X Y

X Y
Counters for Packets fromY

Counters for Packets fromX
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by a good router must be forwarded to each of its other neighbors. Flooding, along with

the good path condition, ensures all good routers’ messages will reach every other good

router in the AS. Note that because flooded messages are intermediately originated and

destined for adjacent routers, these messages are not reflected in WATCHERS’ counter

values. Furthermore, every WATCHERS message must be digitally signed, so that the

receiving nodes may authenticate the message’s source and its contents.

3.2.1 The RRR Sub-Protocol

WATCHERS requires that all routers be synchronized to begin each round. The

RRR sub-protocol accomplishes this in three stages: Request, Receive, and Respond.

When a router is ready to begin a new round (usually because its clock indicates it is time

to do so) it will flood arequestmessage to all its neighbors. Upon receipt of requests

from a majority of the other routers in the AS, it will send therequestmessage if it has

not already done so, and will then take a “snapshot” of its own counters. This snapshot is

then flooded as aresponsemessage. When a router has received all the responses it

requires (snapshots from all its neighbors and alltheir neighbors), it begins thediagnosis

phase.

3.2.2 Diagnosis

The first test in the diagnosis phase isvalidation. For each link,local validation

checks that thetesting router’s counters differ by not more than a certainthreshold

(possibly zero) when compared to the corresponding counters maintained by the neighbor

across the link, thetested router. Should a neighbor fail local validation, it is identified

as bad, and further tests on it are unnecessary. A testing router performsRemote
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validation by applying the same test between each neighbor and each of their neighbors.

Should a neighbor fail remote validation, it and the neighbors with whom its shared

counters disagree are added to acheck set.2 If at the start of the next round’s diagnosis,

the neighbors in the check set have not removed the shared links between themselves and

the neighbors with whom their counters disagreed, such routers are identified as bad.

Validation will detect routers that change their counters, but not those that simply

drop packets. The latter are detected by theconservation-of-flowtest. A router will

perform this test on each of its neighbors that pass thevalidation test. Calculated

separately for each possible destination, if the difference between the tested router’s

incoming transit flow(incomingSandT counters) and itsoutgoing transit flow(outgoing

D andT counters) is greater than a certain threshold, the tested router is identified as bad.

Note that incomingD counters and outgoingS counters are not included in incoming

transit flow and outgoing transit flow, respectively, because these do not count bytes

transiting through the tested router.

3.2.3 Response

Once a neighbor is identified as bad, a routing update is flooded, advertising the

shared link between the testing and bad routers as down, thereby signaling the other

routers to also remove those links from their routing tables. WATCHERS assumes that

the routing protocol being used will treat a link as down if it receives conflicting reports

of its operable status. To accomplish isolation of bad routers, messages are no longer

sent to, or accepted from, detected malicious routers. Once a bad router’s neighbors all

2 [HAG00] mistakenly assumed that a router would immediately diagnosed as bad if its counters disagreed
with any of its neighbors. If this were the case, attacks such as Kamikaze routers would be possible
[HAG00].
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take such action, the bad router islogically removedfrom the network. It should be noted

that this reactive approach might invalidate one or more of the requiredconditions,

unbeknownst to the remaining good routers.

3.3 Attack Scenarios

Weaknesses in the WATCHERS protocol and model are explored in the attack

scenarios that follow. In several scenarios, a table of WATCHERS counters is provided

to illustrate the non-zero counter values following the attack. It is assumed that no other

packets are being exchanged,i.e., if the attack had not taken place, all counters would

have a value of zero. Furthermore, for the purposes of identifying a bad router, the

counter disagreement and misrouting threshold is assumed to be zero unless otherwise

specified (a difference of just one misrouted packet or dropped/surplus byte indicates a

bad router).

3.3.1 Packet Modification

Conservation of flow does not saywhich packets or contents proceed to the

destination. It merely ensures thatsomeset of packets with an equal number of payload

bytes arrive at the destination. Even withper-destinationcounters, malicious routers may

continue to misroute packets undetected [BCPM+98b]. As an example, suppose routerA

in Figure 3.4 sends two identically sized packets (|P| denotes the number of bytes in

packet P), one to C and one toX. Bad routerB deliberately swaps the destination

addresses: PacketPAX (originated by routerA, and intended forX) arrives atC and packet

PAC arrives atX. While the operating system or applications running on routersC andX

may realize something has happened, regardless of any added nodes or links to this
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topology (in satisfaction of the requiredconditions), no router will be able to detectB's

misbehavior using the WATCHERS algorithm.

Figure 3.4: Bad router B Switching packets’
destination addresses. For clarity, packet

labels reflect the original intended destination.

A B C X
SA,B[C]=|P| SA,B[C]= |P| DB,C=|P| DB,X=|P|
SA,B[X]=|P| SA,B[X]= |P|

DB,C=|P|
DB,X=|P|

Table 3.1: Non-zero WATCHERS counters at
the conclusion of this attack; |P|=|PAC|=|PAX|.

Note that it would be trivial for a malicious router to grow or shrink transient

packets’ payloads, drop and inject spoofed packets, or a combination of the two, so long

as the net change to the sum of bytes in the packets is zero.

3.3.2 Packet Substitution

While per-destinationcounters have been shown to enable detection of at least

one class ofconsorting routerattack [Brad97, BCPM+98a, BCPM+98b], they are not

sufficient to detect other classes of consorting router attacks. As with packet

modification, conservation of flow does not inhibit a router’s ability to substitute packets.

In Figure 3.5, routerA sends a packet,PAX, destined for routerX. Bad routersB andC

conspire to drop that message, replacing it with identically sized packetPBX. RoutersB

andC then lie by incrementing theirTB,C[X] counters (instead of their S counters). Even

when an additional path of good routers exists betweenA andX (satisfying the required

conditions), as far as the WATCHERS protocol is concerned, the good routers cannot

detect this misbehavior. The ability to mount this attack is unrelated to the position of the

pair of bad routers in the path; unlike the next-to-last consorting router attack

A B

C

X

PAC

PAX
PAC

PAX
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[BCPM+98b], no additional good routers insulatingA andX from the bad routers would

affect this attack’s potential.

Figure 3.5: Packet Substitution.

A B C X
SA,B[X]=|P| SA,B[X]=|P| TB,C[X]=|P| DC,X=|P|

TB,C[X]=|P| D C , X= |P |

Table 3.2: Non-zero WATCHERS counters at
the conclusion of this attack; |P|=|PAX|=|PBX|.

3.3.3 Ghost Routers

Conservation of flow says nothing about the configuration of nodes over which

the flow is measured. If incoming and outgoing flows are measured, the entity between

the measuring points may be one node or multiple nodes; the measurer cannot tell.

Indeed, this may be considered afeature, as [Brad97, BCPM+98a, BCPM+98b] propose

the notion of asupernode, so as to reduce the logging requirements and improve

scalability in large networks for which the topology is fully known. However, if routers

are not only able to broadcast link-state network status messages, but also topological

information, the following attack becomes possible. Figure 3.6 depicts how bad routerA

can announce to the network that it is really composed of two routers,A and B. The

creation of suchghost routersallowsA to misbehave, while shifting blame to itsghost(s).

Generalizing this scenario, bad routers may invent arbitrary network topologies in place

of themselves. As one example application, a single router can mount the packet

substitution attack of section 3.3.2 by pretending to be two adjacent routers. Any

malicious router capable of creatingghost routersmay invalidate the necessarymajority

good condition.

XA B C

PAX PBX
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Figure 3.6: Ghost router creation.

3.3.4 Premature Aging

Internet packets have atime to live(TTL) field that, upon reaching 0, will cause

the packet to be discarded. Even if secure transport and routing protocols are used,

packets can still be prematurely aged. A router can set the TTL to 1 in both originating

and transient packets, forcing the next hop to drop the packets if that router is not the

packets’ destination. Generalizing this, any successive router along the path could be

forced to drop the packet should a malicious router set the TTL to a value less than the

remaining distance to the destination.

Similar attacks are possible against link-state routing protocols. Use of link-state

protocols is required by thelink-state condition. WATCHERS’ suggested routing

protocol is OSPF [Moy98]; unfortunately even OSPF v2 contains vulnerable fields in its

topology-advertising broadcast packets [QVWN+98]. When these topology packets, or

link state advertisements(LSAs), are passed among routers in an AS, the Age field is

incremented. Upon reaching MaxAge, associated topology information is no longer used

in calculating the routing table. At that time, the LSA is re-flooded across the network

with its Age set to MaxAge, forcing the originating router to increment the LSA’s

sequence number and try to resend.

Premature aging is a necessaryfeature in OSPF. However, by setting the Age

field to MaxAge for all transient LSAs, a malicious router can force frequent

A A B
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retransmissions, potentially saturating the network. (Note that the Age field is the only

one excluded from OSPF message checksums. Like TTL, OSPF’s Age filed is dynamic,

and not protected by the available message integrity schemes.) Due to the rapid topology

announcements, routers are also more likely to have inconsistent views of the network

topology at any given time, possibly with sections of the network being unreachable.

3.3.5 Simultaneous Exchange

A critical aspect to WATCHERS’ accuracy istiming. If packets can be

exchanged simultaneously, numerous problems may arise regarding counter

disagreement, especially if counter snapshots aren’t synchronized (even if they were

synchronized, packets still in transit would appear to have been dropped in the

conservation-of-flowtest).

WATCHERS maintains routing tables for each of its neighbors. If updates to

these local routing tables are not made until that neighbor acknowledges the LSA,

malicious routers may refuse or delay their acceptance, resulting in discrepant views of

the network topology. Alternatively, if updates are made prior to a neighbor’s

acknowledgement, or if that neighbor’s outbound traffic is not sent in a strict first-in first-

out (FIFO) manner, a malicious router may use false LSAs to induce packet misrouting.

In the example that follows, bad routerA accomplishes such an attack by

arranging simultaneous packet exchanges between the attacked node,X, and X’s

neighbors, while the parties to the exchanges share differing views of the network

topology.

Figure 3.7 (a) shows routerA sending a broadcast topology message throughout

the network indicating linkA-E is down (broadcast packets are not currently accounted
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for in the WATCHERS protocol, and thus have no effect on the WATCHERS counters in

Table 3.3). For step-wise clarity, Figure 3.7 (b) and Figure 3.7 (c) depict shorter time

slices in the message passing. Figure 3.7 (b) shows routerC receivingA’s next message,

claiming A-E is now up. In Figure 3.7 (c), routerC passes this message on,

simultaneously receivingPXA. Even if routerE has insisted linkA-E is up, only now

would routerC believe so;C also concludes that routerX has misroutedPXA, the packet

intended forA (since linkA-E is now up, routerX should be sending all traffic destined

for A throughE). We can thus convince theX’s neighbor closest toA thatX is bad.

To convince the other neighbor, bad routerA can createghost routers, as

described in section 3.3.3. Using such additional nodes, routerA can arbitrarily make the

clockwise or counter-clockwise path between it and any other router the shorter of the

two. Thus, routerA can use the above attack on any router in the ring from either

direction, and convince both neighbors of each attacked router to consider it bad. It

follows that for WATCHERS rounds of sufficient duration, a single malicious router can

cause all other routers in a ring network to be falsely convicted as being bad.

Figure 3.7: Topology changes used to induce packet misrouting.
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A B C X E
SX,C[A]=|PXA| SX,C[A]=|PXA|

MX,C=1

Table 3.3: Non-zero WATCHERS counters at the conclusion of this attack.

Note that traffic can be solicited from the nodes being attacked by using

acknowledgement-required protocols, and with appropriate timing, increase the

likelihood of successfully exploiting this race condition. While it may not be possible for

multiple messages to co-exist on a particular media,e.g., Ethernet, for the purposes of

achieving simultaneous exchange, the only requirement is that the communication not be

serialized.

Additionally, for a ring network, it should be clear that any malicious router can

remove its two neighboring routers from the ring without the use ofghost routers, since it

can force its own shared link down after accomplishing the above attack on the

neighbors’ opposite link. Thus, for a ring network with only three nodes, if even one is

corrupt, it can, without creatingghost routers, compel the other two nodes to discontinue

communication. Finally, when two or more neighboring bad routers coexist in a ring

network of any size, they can conspire to accomplish this attack, since at least one of

them will always be along the shortest route to every good router on the ring.

3.3.6 Hot Potato

Even when conservation of flow holds, entities may engage in malicious activity

undetected. For this attack, it is hypothesized that some commercial routers are more

interested in processing packets quickly, rather than checking special and rare
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conditions.3 In a ring-network such as that in Figure 3.8, if routers are willing to believe

a neighbor’s claim that a shared link is down, when that message itself comes over that

same shared link, the following attack becomes possible:

If bad routerA continuously broadcasts the topology update messages as shown in

Figure 3.8, any packet destined forA may be sent back and forth betweenB andC, due to

the “thrashing” topology. During this period, the TTL of this packet may expire.

Although an ICMP TTL Expired message may be sent back to the originator,

WATCHERS does not view this kind of effort as compensation for the dropped packet.

Thus, the router that dropped the expired packet will fail theconservation-of-flowtest,

causing it to be labeled as bad.

Figure 3.8: Topology changes used to delay incoming messages.

It should be noted that OSPF does ignore LSAs received within MinLSArrival

seconds of one another. The above attack still might be possible if the previous LSAs

sent by bad routerA can be flushed rapidly. To accomplish flushing,A would

prematurely age the LSA to MaxAge (see section 3.3.4), and after receiving

acknowledgement from its neighbor, would then be free to send a new LSA shortly:

Since the MaxAge LSA will have been removed by the neighbor when it has received

acknowledgement from all ofits neighbors, for a ring network with a sufficient number

3 [Huit98] describes how some vendors have chosen to boost their routers’ performance by not verifying IP
header checksums.

BC

A
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of routers, such acknowledgements may be returned before the MaxAge LSA traverses

the length of the network. Such replies are sent asdelayed acknowledgements, but if this

delay is sufficiently short, the preceding attack can still be effective. Since links

described by a prematurely aged LSA are not considered when updating the routing table,

simply sending a MaxAge LSA is, at least in this context, functionally equivalent to a

message indicating a link is down.

3.3.7 Source Routing

Provided that IP Source Routing is supported, a malicious router can place on the

network a self-addressed packet, requesting either loose or strict source routing, and

specifying either a logically removed or non-existent router as a required hop. Setting a

legitimate and reachable router as the hop immediately preceding the unreachable one

specifies the target of the attack. If intermediate routers only check whether the next hop

is reachable, when the packet arrives at the router under attack, the packet will be

dropped and the attacked router will be identified as bad for failing WATCHERS’

conservation-of-flowtest.

3.4 Fallible Assumptions

WATCHERS makes certain assumptions that allow the preceding attacks to

occur. This section exhibits some of those assumptions and makes suggestions

(potentially expensive) to improve the situation. The risks related to not addressing the

assumptions and the feasibility of the suggested solutions are discussed.



25

3.4.1 Spoofing and Packet Modification

Assumption: Spoofing and packet modification will not occur.

In order for WATCHERS to function correctly, routers must not be allowed to

spoof Administrative messages (WATCHERS, network topology,etc.) or modify packets

as in sections 3.3.1, 3.3.2, and 3.3.4. If a bad router changes a packet's destination

address without detection, the WATCHERS packet counters will not reveal any

misbehavior. Additionally, if network topology messages can be spoofed, variants on the

attacks in section 3.3 could prove devastating.

Possible solution:

WATCHERS currently verifies the integrity of its own communications. This

must also be done for network topology messages. OSPF claims all messages

authenticated, but two of its supported authentication options are “null” and simple

password checking, both inadequate to prevent spoofing.

Packet integrity checking has been discussed extensively elsewhere [HPT97,

SiKe97] and is an element of IPv6 [Huit98]. However, these features are not ubiquitous

throughout the current Internet. Hence WATCHERS must include this as a requirement.

See section 5.2.4 for a discussion of IPv6 and its impact on these scenarios.

3.4.2 Consorting Routers

Assumption: Consorting routers’ misbehavior is detectable usingper-destination

counters.

As shown in section 3.3.2,per-destinationcounters are insufficient to detect all

consorting router misbehavior.
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Possible Solution:

Augment WATCHERS’ counters to beper-source and per-destination. This

would significantly increase WATCHERS logging requirements: GivenR as the number

of routers in the AS,X as the number of external nodes (which without loss of generality

may be taken as 1; see section 3.4.4), andN as the number of neighbors, then a router

must then maintain 2N[(R+X)2+2(R+X)]+N counters. In detail, each router would

maintain 2T counters with each neighbor,per-source, per-destination(2N(R+X)(R+X)

counters); 2S counters with each neighbor,per-destination(2N(R+X) counters); 2D

counters with each neighbor,per-source(2N(R+X)counters); and 1M counter for each

neighbor (N counters).

Because each router must also temporarily store theT, S, andD counter snapshots

for itself, its neighbors, and their neighbors, in order to calculate total storage

requirements, the number of these maintained counters is multiplied by a factor

corresponding to the number of routers within 2 hops ((R+1) if all routers in the AS

qualify). It should be noted that since messages are flooded, every router will need

temporary space to hold the counter snapshots from every other router that sent one

during the round; however, if the originating router is more than two hops away, the

receiving node is able to deallocate the storage space after re-flooding the message if

necessary.

For realistic networks whereN«R for all routers, andX«R, the number of

counters maintained or stored would beO(R2). In the worst case, for fully connected

networks, asN approachesR-1, the number of counters maintained or stored would

becomeO(R4+R3X).
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For any topology, the communication cost for exchanging counters would be

likewise affected. Since each router floods itsT, S, and D counters, and each flooded

message traverses each link in the AS, these create a multiplicative factor ofRL, whereL

is the number of links in the AS. Applying this factor to the number ofT, S, and D

counters, the total counter exchange bandwidth consumption per round would be

proportional to 2RL[(R+X)2+2(R+X)]. Assuming the digital signature and message

overhead add a constant or negligible cost, this would beO(R3) in a realistic network

whereN«R for all routers, andX«R; however this would becomeO(R6+R5X) in a full AS

(whereL=R(R-1)/2). Note that these costs assume all counters are transmittedas is; it

may be possible to significantly decrease the bandwidth usage by sending only non-zero

counters, or applying another message compression scheme.

3.4.3 Observable Routing Actions and Methods

Assumption: All possible routing actions and methods are observable and

appropriately validated by the WATCHERS protocol.

The WATCHERS protocol must also account for misrouted, forged, and modified

packets. Whatever the situation, a router cannot simply drop packets, lest it become

suspected of illegitimately doing so.

Additionally, the WATCHERS specification [BCPM+98b] does not indicate how

to account for broadcast and multicast packets when updating its counters. Although an

easy answer would be to eliminate these from analysis, this would open the door to bad

routers dropping such packets undetected.
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Possible Solution #1:

For misrouted packets, the receiving node should simply forward the packet to the

next hop according to its routing table. To avoid accidental misrouting resulting from

inconsistent views of the topology, routers could be required to synchronize their routing

tables, and hold them constant, while packets were being exchanged. This would be

quite expensive however, since it implies that no packets could be exchanged while

routers disagree on the topology.

In any scenario, diagnosis of a bad router might include the type of malicious

behavior detected, thus giving system administrators additional insight. For example, if

routers are being accused primarily of misrouting (as opposed to dropping packets or

disagreeing with their neighbors’ counters), the source of the problem may only be a

malfunctioning link-state protocol subsystem.

Possible Solution #2:

Packet modification and forging are not among the behaviors WATCHERS was

designed to detect. In order to comply with the conservation of flow principle, these

packets must also be sent on. Such packets are detectable using authentication and

integrity checking. This is an issue for the destination node.

Possible Solution #3:

Broadcast and multicast packets do not observe the conservation of flow

principle, as a single packet may induce the creation of numerous packets. Nevertheless,

broadcast packets can be accounted for if the network topology consists only of pair-wise

connections. Consider each broadcast packet sent over a link as a message originating

with the sender and destined for the receiver. As WATCHERS currently ignores such
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packets, to ensure they reach their destination, such packets could beflooded, as is done

with WATCHERS’ messages.

If, however, more than two nodes share a common link,e.g., multiple machines

connected to a single Ethernet repeater, only the MAC layer is aware of the originating

network address [Davi88]. Here, two equally inelegant options exist. Either operate all

WATCHERS routers in promiscuous mode, enabling them to obtain the originator's

identity, or ignore broadcast packets entirely. If the originator’s identity cannot be

verified, a malicious router may resend a broadcast message just received, making it

appear as though the message was sent twice from the same router. It should be noted

that the WATCHERS model requires that the topology consist exclusively of pair-wise

connections. An extension to handle this discrepancy is discussed in section 3.4.7.

Some routers pass multicast packets through as a single packet, while others

replicate them into multiple packets. How to handle these packets is left as an open

question.

3.4.4 Routers with External Links

Assumption: Routers that have external links are not required to be good

An external link is one that connects aborder routerto an external node. Any

border routercan arbitrarily drop packets to and from the external system(s) to which it

is connected. Assuming authentication andper-sourcecounters are not employed, it can

alternatively substitute internal packets with externally-originated ones with the same

destination or vice-versa.
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Possible Solution #1:

It may not be appropriate to view the set of all external routers as a single external

node (as [BCPM+98a, BCPM+98b] suggest) because as not all the external nodes may be

interconnected. Instead, model each set of interconnected external machines as a single

node. Just as thegood path conditionprovides a trustworthy path within the

WATCHERS network, we should require that each node connected to an external

network also be good. This would also eliminate the issue of next-to-last routers

conspiring with maliciousborder routersto drop packets [BCPM+98b].

Possible Solution #2:

It may prove difficult to determine the correct source or destination when a packet

originates from, or is destined for, an external node. According WATCHERS’

specification, when a packet originates from or is destined for an external node, the

corresponding source or destination router is set to be theborder routerthat accepted or

transmitted the packet. This complicates updating WATCHERS’ counters, especially if

the external destination node is connected to multiple WATCHERS participants.

For complex routing involving source routing, a dynamic network topology, or a

customized routing policy, a single packet may enter and exit the AS multiple times, and

may even return to the originating AS. Thus, a packet entering an AS is not necessarily

destined for that AS. Likewise, if the route to a packet’s destination changes while the

packet is in transit, that packet may pass through the originating node. With such routing,

it is important that the packet cause the originator’s appropriateT counter to be

incremented, and not anScounter.
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In any case, a router must know the routing policies of each of its neighbors in

order to correctly identify misrouted packets. Since source routing itself may facilitate

attacks, and may not be widely supported anyhow (see section 4.3.2.1), it may be best for

networks running WATCHERS not to accept source routed packets at all.

3.4.5 Static Topology

Assumption: Inconsistencies in nodes' views of the network topology will be short-

lived and will have only minor affects

Two problems arise. If all changes in network topology are broadcast using an

unreliable protocol, such a message may be lost. This makes it possible for topological

inconsistencies to persist. Although protocols such as OSPF guarantee that topology

messages will be received, they do not guarantee theirtimeliness. As in section 3.3.4, a

prematurely aged LSA may arrive before legitimate copies, nullifying any effect the latter

might have.

Secondly, a malicious, undetected bad router can announce false topology

changes at will. OSPF enforces certain delays in the transmission and acceptance of

LSAs, which may in turn result in prolonged inconsistent views of the network topology

among routers in the AS. Such disagreement is at the heart of accidental and intentional

misrouting. Since WATCHERS itself influences the topology (by bringing down a

shared link between itself and an identified bad router), it too is contributing to the

potential disagreement.

Possible solution #1:

Do not allow the addition of new links or routers to an existing network running

WATCHERS. This inhibits the creation ofghost routers, thus restricting the number of
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good routers that can be falsely convicted as bad. However, in a ring network with only

three nodes, if one is corrupt, it can still convince the other two that they are bad (see

section 3.3.4).

Possible solution #2:

Regardless of the effect on the routing protocol’s efficiency, it is necessary for

WATCHERS’ sake to attempt to minimize the period in which routers in the AS share

inconsistent views of the network topology. To this end, the routing protocol must be

configured for minimal delays in transmission and processing of topology updates.

Possible solution #3:

Maintain copies of each unique state of every neighbor’s routing table during a

round. During diagnosis, if a packet was routed correctly according to at least one of

these states, assume it has been routed correctly. Although this may result in some false-

negatives,i.e., a bad router whose routing table has changed may continue to route

packets using its old table, it eliminates false-positives that may result from legitimate

topology changes,e.g., a downed link corresponding to a bad router diagnosis.

3.4.6 Dynamic Packet Fields

Assumption: Routers will manipulate the dynamic fields in Administrative messages

only as intended.

The dynamic nature of IP’s TTL and OSPF’s Age and Sequence Number fields

must be accounted for. Currently, any router can alter these fields undetected. A

malicious router can set the TTL on transit or sourced packets in order to deny their

intended recipient and/or attack an intermediate router, which would be forced to drop a

packet once the TTL expired. Similarly, a bad router can repeatedly set an LSA’s Age
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field to MaxAge, resulting in a thrashing topology if the originating router “fights back”

as OSPF intends.

Possible solution #1:

In order to ensure no router (or group of routers) inappropriately increment or

decrement such fields, all routers must be aware of the specific value, if any, each router

is allowed to add or subtract. While TTL is always decremented by 1 for each hop taken,

OSPF’s Age field may be increased by an arbitrary amount on a per-interface basis.

Once these offsets are known, all routers can compute what value a received packet’s

TTL and/or Age field should have, based on the path the packet isassumedto have taken

(if we were to rely on a route recorded in the IP header, it too must have been integrity-

checked).

Possible solution #2:

An expensive alternative (or addition) might be to keepper-source per-

destinationcounters for every TTL value, and perform a modifiedconservation-of-flow

test. This test would take into account that TTL should be decremented by 1 at each hop,

e.g., whenx transient packets with a specific source/destination pair, each with a TTL of

t, wheret>2, are sent through an intermediate router, neighboring routers should see a

total of x packets with that same source/destination pair leave that router with a TTL oft-

1. (This method may need significant modification to handle OSPF’s Age field, since the

offset values are arbitrary.)

One potential attack remaining would be for an intermediate router to swap the

TTL of two packets with the same source/destination pair. This can only be effective in

causing packets to be dropped if some packets with the same source/destination pair
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differ in their initial TTL and the destination can be made farther away from the source

than the smallest initial TTL used.

Possible solution #3:

Self-reporting of dropped packets may be an effective strategy to balance

conservation of flow, but consideration must be given to malicious routers monopolizing

this power undetected. A threshold strategy might be applied to account for the

legitimately dropped packets, but any non-zero threshold would allow for some

misbehavior. If malicious routers are aware of such thresholds (or their methods of

calculation, if dynamic), it may be possible for them to illegitimately drop packets

undetected.

Possible solution #4:

Perhaps the simplest and most effective solution with respect to IP’s TTL field,

would be for every router in the AS tonot send any packet with a TTL insufficient to

reach its destination. This would break certain applications,e.g., traceroute, which rely

on such features. If this functionality were required, WATCHERS could be directed to

ignore ICMP Echo Request messages, but this risks not detecting some malicious

behavior. Some proposals avoid these issues by modifyingtracerouteto not use Echo

Requests with insufficient TTL [Malk93].

However, if sufficient TTL was a requirement, and a packet was then received

with an insufficient TTL, it would indicate that (1) the sending router was malicious, (2)

its routing table disagreed with the recipient, or (3) both. In order to avoid dropping

packets, which would still constitute malicious behavior, consideration might be given to

TTL-boosting, although careful analysis is necessary before applying this remedy, in
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order to avoid the infinite packet life and potential network saturation TTL was designed

to prevent.

3.4.7 Link Failures

Assumption: Diagnosis will be performed on all participating WATCHERS nodes

If a link goes down during a particular WATCHERS round, and the attached

routers attempt to send traffic over it, one or both routers may conclude the other is bad if

the validation or conservation-of-flowtests are performed. For OSPF, unless a lower-

level protocol informs it that a link is inoperative, RouterDeadInterval seconds must pass

without hearing Hello packets before OSPF declares that link as down [Moy98].

Alternatively, if the diagnosis tests ignore traffic sent over a downed link during a

round, any discrepancy between the attached nodes’ counters will not be discovered. In

this case, if a bad router can intentionally down its links for a portion of a WATCHERS

round, it may escape analysis.

Possible solution #1:

As a precaution, whenever a link does down, perform the diagnosis. This may

have the unfortunate side effect of causing connected good routers to be labeled as bad,

but it ensures that a bad router cannot continue to capitalize on downed links.

Possible Solution #2:

If it is desirable to place the blame for a failed link where it is due, a modification

to the WATCHERS model is suggested: treat all links as intermediate nodes. If a link

fails, it corresponds to this intermediate node being bad. One caveat is that these

intermediate nodes would not participate in the WATCHERS protocol themselves. As

such, some router misbehavior would result in an associated link being blamed instead of
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the guilty router. Despite this, detected bad routers will still eventually be removed from

the network if they continue to misbehave.

With this modification, all links conform exactly to theperfect transmission

conditionwith respect toall messages,i.e., all transmissions sent to a neighboring node

arrive intact with no delay. This holds because we can associate any actual delay,

modification, or loss of data with the intermediate node. Additionally, multi-link and

multiple-interface connections are more accurately represented using an intermediate

node for each interface.

3.4.8 Thresholds

Assumption: Realistic discrepancies can be resolved through setting appropriate

threshold levels

Network congestion, unreliable transport, message latency, and bad routers can all

contribute to discrepancies in the counters used in the WATCHERS analysis. While

good networksshouldonly experience minor problems, when an undetected bad router

exists on the network, it can exploit the problems above to generate false positives as in

section 3.4. By induction, we must either set the thresholds high enough to ignore such

noise, thus missing actual problems, or we accept false positives, possibly overlooking

misbehavior.

Possible solution #1:

At a minimum, use a reliable transport mechanism,e.g., TCP, for all

Administrative communication. In this case, further steps should be taken to ensure

prompt message delivery.
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Possible solution #2:

Guarantee that Administrative messages are not dropped. TCP/IP currently

permits a saturated node to drop packets. Selectively drop lower-priority packets and

guarantee bandwidth sufficient for maximal high-priority usage. This scheme may

enable bad routers to squeeze out lower-priority packets by saturating the network with

Administrative messages, lending to DoS attacks. Such behavior may be discoverable by

intrusion or anomaly detection systems,e.g., [NePo99, VLRS99, Cann98, PoVa98,

JGSW+97]. Alternatively, resource reservation protocols,e.g., [BZBH+97], may

accommodate bandwidth requirements while avoiding these DoS issues.

Neither of these solutions solves the latency problem. Rather, each focuses on

limiting the damage potential of bad routers with respect to network congestion and

transport reliability.

3.4.9 Synchronicity

Assumption: Messages are not passed simultaneously, and routers have no

associated delay in WATCHERS’ proof of correctness

Even if WATCHERS’ four required conditions hold, plus the two additional proof

requirements (theperfect transmission conditionand neighbor agreement condition), a

good router may still incorrectly diagnose another good router as bad.

As an example, say routerA has already taken a snapshot of its WATCHERS

counters, and then sends arequestmessage to neighboring routerB. Simultaneously,B

sends a regular packet to routerA. Upon receipt of therequestmessage,B takes a

snapshot of its counters. BecauseA’s requestmessage andB’s packet were exchanged
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concurrently, at least one ofA andB’s counters will disagree, forcing each to declare the

other as bad.

Although the perfect transmission conditionrequires that there be no delay

between sending and receiving a WATCHERS message, the routers themselves may still

delay in placing messages on the network. If they do, when a WATCHERS round begins

and counter snapshots are taken, a node may still have a transient packet waiting to be

sent. This packet will appear to be missing in theconservation-of-flowtest. Again, a

good router may potentially be incorrectly labeled as bad.

Possible Solution:

If we must guarantee that good routers are never falsely diagnosed as bad, we

must ensure either the thresholds are sufficiently high or that no transient packets remain

in the AS while snapshots are taken of WATCHERS’ counters. The latter can be

accomplished by additional synchronization among the participating routers, however,

because the network would need to effectively shut down for a period of time, depending

on the frequency or timing of the WATCHERS rounds, this may result in unacceptable

delays.

3.4.10 Protocol Participation

Assumption: The WATCHERS participants either fully comply the RRR sub-

protocol, or they do not participate in it.

There can be numerous actions taken by a malicious router to disrupt

WATCHERS’ messaging protocol. A bad router may choose to distribute multiple,

varying accounts of its own counters for the same round. It might also attempt to replay,

alter, or spoof other routers’ messages.



39

Additionally, it’s unspecified what to do about routers who communicate, or

claim to have communicated, with bad routers. One might expect that routers should

distinguish between accidental communication with a newly discovered bad router, and

purposeful communication after the router is known to be bad.

Possible Solution #1:

To allow routers supporting the message flooding mechanism to determine

whether or not a message they have received should be re-flooded, they must know

whether it is an old or new packet. If only a sequence number and some form of

windowing are used, as described in [Brad97], it must be done in such a way that all old

packets have been flushed from the network before the window cycles around again.

“Current” Internet standards [Post81] estimate a packet in the Internet has a

maximum lifetimeon the order of tens of seconds; this figure was used in the design of

protocols such as TCP to calculate certain timeout values (2 minutes is defined to be a

packet’s Maximum Segment Lifetime in the Internet). Unfortunately, the speeds at

which modern communication links can send packets allow all 232 TCP sequence

numbers to be consumed on the order ofseconds.4,5 Avoiding such issues with stale

packets in WATCHERS requires prudent selection of round length (thereby determining

the rate of sequence number consumption) and the size of any windowing used.

Note that because a malicious router may indefinitely store a message it intends to

replay, cryptographic keys used for authentication would have to be changed with each

new window if a nonce was not employed. Use of a time-based nonce would require that

4 [Post81] indicates that 232 TCP sequence numbers may be consumed in 5.4 minutes at 100 megabits/sec.
Assuming this rate of consumption scales linearly with bandwidth, a single OC-192 channel capable of 10
gigabits/sec could consume these same 232 sequence numbers in only 3.24 seconds.
5 This implies that each counter would most likely require more than 32 bits for storage when WATCHERS
is run on a router with such high-bandwidth links.
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routers’ clocks were properly synchronized. Provided key generation is done frequently

enough, it would also decrease threats related to compromised keys.

Possible Solution #2:

Note that it would be insufficient for a router to simply authenticate the

WATCHERS messages destined for it, since a malicious router could then take

advantage of the flooding mechanism: If a bad router broadcasted two different counter

snapshots during the same round, and only their sequence numbers were used as the basis

on which intermediate routers chose to re-flood them, the misbehavior would not be

discovered. Such snapshots could be fashioned so as to manipulate other routers and their

conservation-of-flowtests, potentially forcing incorrect diagnoses. Hence, every router

must authenticateall WATCHERS messages it receives.

Possible Solution #3:

Should a router receive more than one unique, but authenticated request or

response for a given round, originated by the same router, it can immediately identify the

sending router(s) (which may include conspiring routers other than the source) as bad.

Possible Solution #4:

In order to handle misbehavior in the WATCHERS protocol itself, it is necessary

that routers pay attention to extra details that serve to further cloud WATCHERS original

purpose: to discover and isolate malicious routers that drop or misroute packets. While it

is correct to require complete compliance with the protocol, unless a specification-based

detection system is employed,e.g., [BBK99, KRL97], it will be necessary to explicitly

enumerate every conceivable form of misbehavior.
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3.4.11 Computational Power

Assumption: The systems on which WATCHERS runs have enough computational

power to keep up with the packet rate.

As with any time-sensitive application, WATCHERS must guarantee that it can

timely process not only the packets for which it must update its counters, but also the

Administrative messages it receives from other WATCHERS daemons.

Possible Solution:

At a minimum, each WATCHERS daemon must be capable of processing packets

as quickly as the router that it monitors, taking into account that WATCHERS messages

will require additional computation (each Administrative message must be authenticated,

see section 3.4.10); it is expected that the bulk of effort expended processing each

WATCHERS message will be spent performing cryptographic authentication.

Although [BCPM+98b] demonstrates that the cost of message processing

(excluding authentication) isO(R4) in a fully connected AS andO(R2) in a sparse AS

(respectively becomingO(R5) and O(R3) using per-source per-destinationcounters),

processing normal packets may prove to be the greatest cost. In fact, WATCHERS

would need to be capable of processing over42 billion TCP packets per OC-192

interface per second.6

Also, considering thatevery Administrative message must be authenticated, it

may be possible for a malicious router to launch a DoS attack by overwhelming a router

with such messages, before any action can be taken in response.

6 Assuming maximal packet rate scales linearly with bandwidth, a 32-channel OC-192 with 10
gigabits/second per channel can transmit 232 TCP packets in only 0.10125 seconds (see footnote 4 on page
39). Dividing 232 by 0.10125 yields 42,419,430,080 packets/second.
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3.5 Summary and Analysis

The original WATCHERS specification is elegant in its simplicity. However, the

domain it intends to model is inherently complex and unreliable. This disparity reveals

itself when attacks such as those described in this chapter are applied to WATCHERS.

Even when WATCHERS is not under attack, conservation of flow inherently fails

for an unreliable protocol like IP. The underlying problem is that the conservation of

flow equations do not take discarded packets into account. In particular, if a router drops

a packet, it is assumed to be malicious. But IP packets may be discarded for a variety of

reasons, many of which are behaviorally correct (such as the TTL expiring).

Assuming conservation of flow equations can be made to account for all

messaging behaviors, a number of prerequisites must still be met. Even when

WATCHERS’ four requiredconditionshold, numerous problems remain. Among the

more costly are the needs for integrity and authentication (digital signatures), a static

network topology, and guaranteed, timely receipt of Administrative messages. Each of

these alone would adversely affect the efficiency of any WATCHERS implementation or

the network on which it is deployed.

Even without these expensive additions, questions remain as to how much

WATCHERS’ counters might disagree whennot under attack. Specifically, the

likelihood of in-transit packets appearing as dropped during the diagnosis phase is

unknown. The ability to process packets quickly enough is also questionable, given the

data rates possible with today’s networking technologies. Some of these questions are

addressed in chapter 4.
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4 A WATCHERS Implementation

In order to better explore how realistic the attack scenarios and assumptions are in

chapter 3, an implementation of the WATCHERS protocol was created. This chapter

describes the implementation and some results of preliminary tests in which it has been

used. The WATCHERS implementation and its source code, documentation,

experimental test data, and list of known bugs are available [Hugh00].

4.1 Design Objectives

The major factors that influenced the WATCHERS implementation design were

the testing objectives and the available equipment. As a primary testing objective, two

major classes of experiments were desirable: attack and non-attack (benign) scenarios.

As some of the attack scenarios discussed in section 3.3 would have required extensive

modification to the routing protocol and possibly the supporting operating system as well;

such tests were left for future work. Instead, the implementation was intended to be a

proof-of-concept only, and was primarily subjected to the readily available benign test

conditions during the preparation of this thesis. Section 4.2 reports the current status of

the WATCHERS implementation.

The equipment available consisted of six x86 PCs and 100MB Ethernet hardware.

The free distribution of RedHat Linux 6.2 was selected for its available modules:gated

(supporting such routing protocols as RIP and OSPF),tcpdump (allowing root-user

access to all network packets), and common utilities includingtraceroute, ping, telnet,

andftp. See chapter 8 for additional details on the network configuration.
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4.2 Current Implementation Status

The core features of WATCHERS have been implemented. Close to 6,000 lines

of C code in eight modules are compiled into the WATCHERS executable. This

executable is run asroot (tcpdumpsubprocesses requireroot privilege) on each of the

participating systems. After parsing a configuration file, each WATCHERS process

waits until it has established a TCP connection to each of its neighbors, and then pauses

an additional 10 seconds. The protocol then commences withrequestmessages to start

the first round of WATCHERS. Configuration information and status messages are

displayed by the user interface shown in Figure 4.1. All status messages are recorded to a

log file for post-processing. Additional implementation details can be found in chapter 7.

Figure 4.1: WATCHERS Implementation user interface screenshots.

4.3 Experimental Results

Each experiment is presented in four parts: its objectives, methods, results, and a

brief interpretation. A more detailed summary and analysis is given in section 4.4.

Unless noted otherwise, the following conditions applied to every experiment:

• Rounds were set to be 10 seconds in duration.
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• All WATCHERS daemons were instructed to participate in the WATCHERS
protocol and make accurate diagnoses. Although the term “daemon” is used,
WATCHERS was run as a normal process.

• Misbehavior thresholds were set to zero (one dropped or missing packet indicated
a bad router), however, for evaluation purposes only, daemons were instructed to
continue to interact with any discovered bad routers.

• Only thevalidationandconservation-of-flowtests were performed (no attempt
was made to identify misrouted packets).

• The network topology was that of Figure 4.2 and was assumed to be static; RIP
was run in the background only to ensure each link remained operational.

• The only network traffic, besides that generated in the individual experiments,
were RIP’s 30-second periodic messages (which had little effect on WATCHERS
performance, and no direct effect on its counters since broadcast messages were
ignored).

Figure 4.2: Ring-network topology used in WATCHERS implementation experiments.

Throughout the following sections, specific calculations and notation worth

mentioning include:

• Percent Counter Disagreement = 100 * (|r1.C – r2.C|) / max(r1.C, r2.C); the
difference between the two values for the same counterC maintained by
neighboring routersr1 and r2, divided by the larger of the two values and
multiplied by 100.

• Percent Flow Unaccounted = 100 * abs(inbound – outbound) / (inbound +
outbound); the difference between the inbound and outbound flow (calculated by
summing the corresponding self-reported counter values), divided by the sum of
the two flows, and multiplied by 100. Note that a non-zero Percent Flow
Unaccounted could represent either a packet deficit or surplus.

• The notations Tr_from,r_to[r_source,r_destination], Sr_from,r_to[r_destination], and
Dr_from,r_to[r_source] are used to denote theper-source per-destinationversions of
theT, S, andD counters described in section 3.1.

• The notationrouter<flow-source,flow-destination> is used to denote the specific
source and destination for a flow belonging torouter.

rushmore

baker

shasta

norquay washington

whistler
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4.3.1 Benign Conditions

The following tests were all performed on the ring network of good routers shown

in Figure 4.2. WATCHERSshould not haveidentified any malicious routers during

these tests, as no packets were dropped. Most of the experiments in this section are

presented in the order performed; the results of one experiment tended to influence the

objective and conditions of the next.

4.3.1.1 Verification of WATCHERS Functionality

Objective: Verify the WATCHERS implementation’s behavior and diagnoses are

correct.

Method: By subjecting the network to “normal” traffic,e.g., that generated separately by

ping, telnet, and ftp, and observing WATCHERS does not identify the good routers as

bad, this test will serve as a partial confirmation of the implementation’s correctness.

Results: In the course of generatingping traffic (ICMP Echo Requests and Replies), it

was discovered that in light traffic, the occasional packet appeared to have been dropped

by an intermediate router in one round, but would then reappear in the next round (as a

surplus packet) and continue to its destination. This occurred almost exclusively when an

purposeful attempt was made to synchronize the traffic to coincide with WATCHERS’

message exchanges. In heavy traffic, as caused by a file transfer or a large recursive

directory listing, extreme counter disagreement rates (exceeding 50% of the larger value)

were common. Failures of theconservation-of-flowtest were also prevalent and extreme.

In some cases, WATCHERS reported its router having sent more transient packets than it

had received, during the first round in which it received any packets!
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Interpretation : In light traffic, it became apparent that WATCHERS was observing all

packets, but was identifying transient packets as dropped when they had not yet reached

their destination. In the rounds following these identifications, the missing packets would

appear to be injected by the same router, and again WATCHERS would report the

resulting counter disagreement. This behavior was more readily induced when compiling

WATCHERS without optimization flags, or by running additional CPU-intensive

processes.

In light traffic, routers occasionally reported temporary packet deficits and

surpluses as predicted in section 3.4.9. In some cases, these occurrences coincided with

and could fully account for counter disagreement among neighbors. In heavy traffic

however, the counter discrepancies could not be balanced in this way.

In the situations where more outbound than inbound transient packets were

reported during the first round with packets, this seemed to indicate that WATCHERS

was obtaining packets out of order. While the implementation did process packets in a

round-robin fashion, not guaranteeing in-order processing, this cannot be the only factor,

as the missing packet phenomenon was not symmetric with respect to Ethernet interfaces:

The WATCHERS implementation checked for packets by polling thetcpdumpprocess

monitoring the interface to the left, and then the one to the right. If packets were missed

due only to this ordering, counter values would have reflected this. Instead, in certain

trials, the source and destination routersboth claimed fewerS and D packets than their

peers during the first round in which traffic was generated. Since the intermediate routers

reported more traffic than the endpoints, yet only the endpoints generated packets, it is
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clear that the WATCHERS daemons running on the endpoint routers were not being

informed of all the packets which their router was sending and receiving.

Finally, discrepant counters did not balance out over successive rounds as they

did in light traffic (“temporarily dropped” packets appeared as a deficit of one packet

followed by a surplus of one packet in the next round), even after the packet generation

had ceased. Although this might suggest routers were actually dropping packets, another

explanation is due: Not all the packets being processed by the system were being

reportedto WATCHERS, in this case, bytcpdump. Evidence of this revealed itself when

usingping in flood mode (using the–f command line switch), asping reported no losses

in receiving Echo Replies, while WATCHERS continued to indicate the same

discrepancies.

4.3.1.2 Complications with Packet Timestamps

Objective: Determine whether packets are being received in order.

Method: By running tcpdumpwith its “unformatted timestamp” feature, out-of-order

packets should be quickly identified, if they exist. A large file transfer usingftp was used

to generate traffic from the same machine runningtcpdump.

Results: Over 37,000 packets were reported in a 4.64-second time slice during the file

transfer. Even when observing just the one Ethernet interface over which the traffic was

sent, slightly more than 2% of all packets reported had anegativeunformatted timestamp

(tcpdumpreported these timestamps as the elapsed time between when the kernel first

began processing the current and previous packets.) The most extreme timestamps in this

trial were -18 ms and 21 ms, while the average and standard deviation of the data set

were 124µs and 760µs, respectively.
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Figure 4.3: Raw timestamps reported bytcpdumpfor first 500 packets during file transfer. Note that
not all packets’ timestamps may be visible due to the printed resolution and that some positive values

far exceed the scale shown.

Interpretation : Further investigation is needed to determine exactly whytcpdumpwould

report negative timestamps at all when monitoring just one interface. If WATCHERS

was forced to accept packets potentially out-of-order, an additional delay would be

necessary when taking counter snapshots in order to ensure all packets corresponding to

the previous round had been accounted for.

4.3.1.3 Unreported Packets as a Function of Process Priority

Objective: Determine whether the rate at whichtcpdumpdrops packets can be improved

by increasing process priority.

Methods:

(1) WATCHERS and its spawned processes (tcpdumps) were set to various

priority levels between 0 (normal priority) and –20 (highest priority) by running

WATCHERS using the commandnice. Ping was set to generate a single burst of 2500

echo requests (using the–f and–c flags) fromwhistlerto norquayduring round #3;
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(2) Same as (1), but only thetcpdumpprocesses WATCHERS spawns were set to

run at various priority levels, leaving the parent process running at its normal priority;

and

(3) To verify thattcpdumpitself would miss packets given minimal competition

for CPU time, it was run separately without WATCHERS, using the command line

“ tcpdump -l -n -q -t -x -s 20 -i eth0 icmp > /dev/null”. These parameters closely

resembled those used by the WATCHERS implementation when it spawnedtcpdump

processes, except that here, only ICMP packets were filtered and standard output was

redirected to /dev/null.Ping was again used to send bursts fromwhistler to norquay; for

these trials, the burst size was varied between 10 thousand and 10.24 million Echo

Requests (each withping’s default 56-byte payload).

Results:

(In the figures that follow, the heavy black lines represent a linear interpolation of

the unweighted average values at each priority level.)

(1) As seen in Figures 4.4 and 4.5, increasing process priority did have a positive

effect on counter disagreement and unaccounted flow, but fell far short of eliminating

these problems.
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Figure 4.4: Percent Counter Disagreement as a function of WATCHERS’ process priority.
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Figure 4.5: Percent Flow Unaccounted as a function of WATCHERS’ process priority.

(2) For the same process priorities used in (1), Figures 4.6 and 4.7 show that

improving the process priority of just WATCHERS’tcpdump subprocesses had an

insignificant effect on the average counter disagreement and unaccounted flow.



52

0

20

40

60

80

100

-20-15-10-50

Process Priority

%
C

ou
nt

er
D

is
ag

re
em

en
t

D.baker,norquay[whistler]

D.rushmore,whistler[norquay]

S.whistler,rushmore[norquay]

S.norquay,baker[whistler]

T.baker,rushmore[norquay,whistler]

T.rushmore,baker[whistler,norquay]

Figure 4.6: Percent Counter Disagreement as a function oftcpdump’s process priority.
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Figure 4.7: Percent Flow Unaccounted as a function oftcpdump’s process priority.

(3) As seen in Table 4.1, whentcpdumpwas run by itself, and its standard output

redirected to /dev/null, it was able to filter significantly more packets than when spawned

by the WATCHERS implementation. Here, maximizing process priority prevented

tcpdumpfrom missing packets except during high packet volume.
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Priority 0 (normal) Priority –10 Priority –20 (highest)

Echo
Requests

Packets
unreported
by tcpdump

min/avg /max
ping
response
times (ms)

Packets
unreported
by tcpdump

min/avg /max
ping
response
times (ms)

Packets
unreported
by tcpdump

min/avg /max
ping
response
times (ms)

10000 0 0.3/0.3/10.3 0 0.2/0.3/10.4 0 0.2/0.3/10.4
20000 0 0.3/0.3/10.3 0 0.2/0.3/10.4 0 0.2/0.3/10.3
40000 0 0.2/0.2/10.3 0 0.2/0.2/10.3 0 0.2/0.3/10.4
80000 0 0.2/0.2/10.5 0 0.2/0.2/10.3 0 0.2/0.3/10.3

160000 0 0.2/0.2/10.4 0 0.2/0.2/10.3 0 0.2/0.3/10.7
320000 0 0.2/0.2/10.8 *16004 0.2/0.3/20.2 *0 0.2/0.4/10.5
640000 0 0.2/0.2/11.3 *576 0.2/0.2/20.3 *0 0.2/0.4/10.5

1280000 513699 0.2/0.3/20.3 *34889 0.2/0.3/20.5 0 0.2/0.3/18.6
2560000 *257265 0.2/0.2/20.5 *132897 0.2/0.4/23.4 *23 0.2/0.4/20.1
5120000 **4508482 0.2/0.4/25.0 *217269 0.2/0.3/23.5 *0 0.2/0.4/19.7

10240000 *5542177 0.2/0.3/40.3 *431492 0.2/0.4/23.7 **3276 0.2/0.5/33.5

Table 4.1: Packets unreported bytcpdump, plus ping response times, at varying process priorities.
Each asterisk indicates thatping reported having sent one more Echo Request than it had been

instructed; these have been taken into account when calculating the packets unreported bytcpdump.

Interpretation : Methods (1) and (3) show that improving process priority can have a

positive effect. This is worth studying to determine the optimal balance between parent

and child priorities. However, method (3) also demonstrated that under high traffic

volume, packetswould eventually be lost, even whentcpdump is given the highest

possible priority.

Although a real-time scheduling algorithm might improve drop rates, software

will always be inherently slower than the available hardware on which it runs. It is

therefore reasonable to expect that any WATCHERS implementation running on a

modern PC and OS,will not be able to process all packets received by high-performance

networking interfaces.
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4.3.1.4 Unreported Packet Threshold as a Function of Burst Size

Objective: Determine whether there exists a packet rate threshold under whichtcpdump

reports all packets, and whether counter disagreement is bounded with increasing burst

size.

Methods: Since increasing WATCHERS and its child processes’ priorities did not

eliminate counter disagreement, it is desirable to know at exactly what thresholds

disagreement begins, and where it levels off. A single burst with a varied number of 56-

byte payload Echo Requests was sent fromwhistlerto norquayduring each round.

Results: As seen in Figure 4.8, disagreement began between 410 and 415 Echo Requests

per burst, and slowly leveled off above 10,000. Note that all counter disagreement

leveled off below 60% except for packets originating withwhistler. This may be due to

the extra burden it carried as the originator of the Echo Requests.
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Figure 4.8: Percent Counter Disagreement as a function of Burst Size with one burst per round.
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Interpretation : There is a clear threshold under which all packets are reported, however,

its low value is quite unacceptable for high-speed networks. Likewise, the Percent

Counter Disagreement levels off at extraordinarily high values. To make matters worse,

the specific packet or burst rate at which this threshold occurs may be adversely affected

by other factors such as CPU usage, traffic characteristics,etc.

4.3.1.5 Unreported Packets as a Function of Throughput

Objective: Determine whether there exists a correlation between unreported packets and

the traffic rate.

Method: For this test, method (3) of section 4.3.1.3 was modified by varying the payload

size of the Echo Requests while maintaining normal process priority.

Results: As shown in Table 4.2, increasing Echo Request payload actually decreased the

number of dropped packets in general.

54-byte payload 512-byte payload 1024-byte payload

Echo
Requests

Packets
unreported
by tcpdump

min/avg /max
ping
response
times (ms)

Packets
unreported
by tcpdump

min/avg /max
ping
response
times (ms)

Packets
unreported
by tcpdump

min/avg /max
ping
response
times (ms)

20000 0 0.3/0.3/10.3 0 0.3/0.3/10.3 *0 0.3/0.3/10.3

40000 0 0.3/0.3/10.3 0 0.3/0.3/10.3 0 0.3/0.3/10.3

80000 0 0.2/0.2/10.3 0 0.3/0.3/10.3 0 0.3/0.3/10.3

160000 0 0.2/0.2/10.5 0 0.3/0.3/10.3 **0 0.3/0.3/10.3

320000 0 0.2/0.2/10.4 0 0.3/0.3/10.3 0 0.3/0.3/10.3

640000 0 0.2/0.2/10.8 ***697 0.3/0.3/10.3 0 0.3/0.3/10.3

1280000 0 0.2/0.2/11.3 *0 0.3/0.3/10.3 **10 0.3/0.3/10.3

2560000 513699 0.2/0.3/20.3 *0 0.3/0.3/10.3 **72 0.3/0.3/10.3

5120000 *257265 0.2/0.2/20.5 **221572 0.3/0.3/10.3 ***99836 0.3/0.3/10.3

10240000 **4508482 0.2/0.4/25.0 **160491 0.3/0.3/10.3 ***176901 0.3/0.3/10.3

20480000 *5542177 0.2/0.3/40.3 ***4291460 0.3/0.3/10.3 7x*2010203 0.3/0.3/10.3

Table 4.2: Packets unreported bytcpdump, plus ping response times, at varying Echo Request
payload sizes. See note in Table 4.1’s caption regarding asterisks.
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Interpretation : The decrease in dropped packets with the increase in payload size seems

to indicate that the kernel and/ortcpdumphad more time to process packets with larger

payloads. Sincetcpdumponly observed the firstn bytes of each packet header, the

longer packet payloads may have afforded more time for it to keep up with the bursts’

packet rate, which appeared to saturate the Ethernet connection during all trials.

4.3.2 Attack Conditions

The following tests were performed with the expectation that WATCHERS

daemons could be induced into declaring good routers as bad.

4.3.2.1 Source Routing

Objective: Verify the potential of the Source Routing attack in section 3.3.7.

Method: Simply by generating source routed packets as specified in section 3.3.7 and

observing that they are dropped by the intended target would be sufficient evidence of the

attack’s viability. To generate source routed packets,traceroutewas used with its “–g”

flag to specify a gateway for loose source routing.

Results: Use of traceroute’s “–g” flag generated an error on the network of machines

used in the previous experiments, and when used on the UC Davis campus network, it

appeared as though loose source routed packets were not always routed as expected.
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Trial 1 > traceroute 169.237.7.254
traceroute to 169.237.7.254 (169.237.7.254), 30 hops max, 40 byte packets

1 169.237.7.254 (169.237.7.254) 0 ms 0 ms 0 ms

Trial 2 > traceroute 169.237.1.245
traceroute to 169.237.1.245 (169.237.1.245), 30 hops max, 40 byte packets

1 169.237.7.254 (169.237.7.254) 1 ms 0 ms 0 ms
2 169.237.246.238 (169.237.246.238) 1 ms 1 ms 1 ms
3 area5-gw.ucdavis.edu (169.237.1.245) 3 ms 4 ms 10 ms

Trial 3 > traceroute -g 169.237.246.238 169.237.1.245
traceroute to 169.237.1.245 (169.237.1.245), 30 hops max, 52 byte packets

1 * * *
2 169.237.246.238 (169.237.246.238) 1 ms 1 ms 1 ms
3 area5-gw.ucdavis.edu (169.237.1.245) 3 ms 4 ms 3 ms
4 area5-gw.ucdavis.edu (169.237.1.245) 3 ms 3 ms 3 ms

Trial 4 > traceroute 198.32.249.53
traceroute to 198.32.249.53 (198.32.249.53), 30 hops max, 40 byte packets

1 169.237.7.254 (169.237.7.254) 0 ms 0 ms 0 ms
2 169.237.246.238 (169.237.246.238) 1 ms 1 ms 1 ms
3 area5-gw.ucdavis.edu (169.237.1.245) 2 ms 2 ms 2 ms
4 BERK--ucd5.ATM.calren2.net (198.32.249.53) 5 ms * 5 ms

/* 198.32.249.53 consistently dropped the 2 nd packet sent to it */

Trial 5 > traceroute -g 169.237.246.238 198.32.249.53
traceroute to 198.32.249.53 (198.32.249.53), 30 hops max, 52 byte packets

1 * * *
2 169.237.246.238 (169.237.246.238) 1 ms 1 ms 1 ms
3 area5-gw.ucdavis.edu (169.237.1.245) 8 ms 18 ms 11 ms
4 BERK--ucd5.ATM.calren2.net (198.32.249.53) 14 ms * 6 ms

Trial 6 > traceroute -g 169.237.246.238 -g 169.237.1.245 198.32.249.53
traceroute to 198.32.249.53 (198.32.249.53), 30 hops max, 56 byte packets

1 * * *
2 169.237.246.238 (169.237.246.238) 1 ms 1 ms 1 ms
3 area5-gw.ucdavis.edu (169.237.1.245) 3 ms 4 ms 3 ms
4 BERK--ucd5.ATM.calren2.net (198.32.249.53) 6 ms * 6 ms

Trial 7 > traceroute 169.237.1.200
traceroute to 169.237.1.200 (169.237.1.200), 30 hops max, 40 byte packets

1 169.237.7.254 (169.237.7.254) 0 ms 0 ms 0 ms
2 169.237.246.238 (169.237.246.238) 1 ms 1 ms 1 ms
3 * 169.237.246.238 (169.237.246.238) 2092 ms !H *

Trial 8 > traceroute -g 169.237.246.238 -g 169.237.1.200 198.32.249.53
traceroute to 198.32.249.53 (198.32.249.53), 30 hops max, 56 byte packets

1 * * *
2 169.237.246.238 (169.237.246.238) 1 ms 1 ms 1 ms
3 * 169.237.246.238 (169.237.246.238) 2772 ms !H *

Trial 9 > traceroute -g 198.32.249.53 169.237.246.238
traceroute to 169.237.246.238 (169.237.246.238), 30 hops max, 52 byte packets

1 * * *
2 169.237.246.238 (169.237.246.238) 2 ms 2 ms 2 ms
3 area5-gw.ucdavis.edu (169.237.1.245) 3 ms 3 ms 9 ms
4 * BERK--ucd5.ATM.calren2.net (198.32.249.53) 5 ms 5 ms
5 ucd1--BERK.ATM.calren2.net (198.32.249.30) 6 ms !S * *

Figure 4.9: Source routed packet trials usingtraceroute.

Regarding the trials in Figure 4.9, trials 1, 2, and 4 were normal traces with no

source routing. Trials 3, 5, 6, 8, and 9 all used loose source routing, specifying at least

one intermediate gateway as a required hop; it is interesting to note that in these trials, the



58

very first gateway in the route refused to return any ICMP message when it dropped

source routed packets. Trials 7 and 8 attempted to trace to a non-existent machine,

169.237.1.200. In trial 8, this non-existent machine was specified as if it would be in the

source routing attack of section 3.3.7; however, the result was the same as in trial 7 where

no source routing was used. In trial 9, a loose source routing was specifically selected

such that the packet would first pass through its destination before reaching the first

required hop in its source route; this packet was not absorbed by its destination, despite

having passed through it, and instead the next hop replied that the source routing had

failed.

Interpretation : If source routing is supported, the attack of section 3.3.7 could be carried

out. Transient packets might also be modified to be source routed, making it appear that

another router was originating the attack. Unfortunately, in an AS only partially

supporting source routing, dropped and misrouted source routed packets may pose a more

complex problem, for even if a source routing attack was discovered, the inconsistent

handling of source routed packets might assist malicious routers in avoiding

identification. Source routing seems to create more problems for WATCHERS than can

be tolerated, and unless justified by users’ needs, source routing should probably not be

supported.

4.3.2.2 Traceroute

Objective: Verify the potential of the Premature Aging attack of section 3.3.4.

Method: Although all routers in this experiment aged packets as they normally would,

decrementing their value by one at each hop, the effect of the TTL running out in transit

is the same as if the preceding router had maliciously altered it.
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Results: As expected, each packet sent with a TTL insufficient to reach its destination

was dropped, and an ICMP Time Exceeded message returned.

Interpretation : While this test relied on legitimately generated packets, a malicious

router could easily modify the TTL of transiting packets and thus attack a router

downstream by causing it to drop those packets. Preventative action must be taken to

ensure a bad router cannot mount such an attack.

4.4 Summary and Analysis

The key finding in these experiments is that packets go unreported to

WATCHERS when a sufficient amount of traffic is processed by the system,even when

the packets’ destination application resides on the same system and does receive the

packets. Adjusting process priorities, compiler optimizations, andtcpdumpsettings does

not adequately compensate, astcpdumpitself cannot keep up with high traffic volume. In

order to obtain all packets, it will almost certainly be necessary to create a WATCHERS

implementationin hardware. As claimed by one commercial router vendor, their ASIC

is capable of filtering more than 20 million packets per second (pps), compared to

software’s 200 thousand pps capacity [Juni00].

Even when traffic rates are kept sufficiently low, allowing all packets to be

reported to WATCHERS, there is still the issue of “temporarily dropped” packets.

Although these may be influenced by implementation issues and delays in the message-

passing mechanisms, the likelihood that there will besometransient packets still in transit

when counter snapshots are taken, especially with heavy network traffic, seem to be quite

good. With this consideration, the minimum misbehavior threshold necessary to

eliminate these false-positives (falsely diagnosing a good router as bad) must be non-



60

zero, and is expected to be proportional to the number of packets a router could process

in a single round. Further work is needed to verify this assertion.

To make matters worse, the attack scenarios displayed that source routing and

premature aging attacks can be a significant threat. While source routing may not be

widely supported, the apparent irregular handling of source routed packets may cause

other dilemmas, either in WATCHERS’ determination of the proper route for such

packets, or for system administrators inundated with WATCHERS’ warnings of related

misbehavior.
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5 Conclusion

WATCHERS has been shown to have some promise as a tool with which to

detect malicious routers, however, there remain significant hurdles to overcome before it

can be so applied. Namely, the quantity of false-positives exhibited is unsatisfactory,

even on a network consisting only of well-behaved routers under modest load. If this

issue is to be resolved, it will almost certainly necessitate running WATCHERSin

hardware. This chapter distills the lessons learned and changes required to construct a

viable WATCHERS implementation.

5.1 Modifications to the WATCHERS Algorithm

Based on the attack scenarios and related assumptions discussed in chapter 3, plus

the empirical results in chapter 4 obtained with an actual WATCHERS implementation, it

is clear that substantial changes to WATCHERS are required to strengthen its robustness

in the presence of malicious routers. In this section, the significant results and suggested

improvements are summarized, and updated pseudo-code of the diagnosis algorithm is

provided.

While risk analysis must be applied when considering whether or not to adopt any

of the suggested improvements provided herein, security tends to be an all-or-nothing

approach, as attackers exploit the path of least resistance. Should any of the more serious

weakness be left unaddressed, the resulting implementation would perform no better in

the presence of a knowledgeable adversary.
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5.1.1 Supplemental Required Conditions

Without additional requirements, the WATCHERS protocol can potentially fail

irrespective of the number of malicious routersand the misbehavior thresholds. To

address these issues, the original requiredconditionsshould be supplemented as follows:

5. FIFO Condition: All good routers process WATCHERS messages in
a FIFO manner, such that the ordering of re-flooded messages is
preserved.

6. Reliable Transport Condition: All Administrative messages are
flooded via a loss-less acknowledgement-required mechanism.

7. Source Routing Condition: Source routed packets must not be
supported, and should be neither sent nor accepted by each router.

8. Border Router Good Condition: Any router with at least one external
link is required either to be good, or lie within another
WATCHERS domain in which it isinsulatedby good routers,i.e.,
there does not exist a path of bad routers from it to aborder router
of the same domain.

Figure 5.1: Supplemental WATCHERS required conditions.

5.1.2 Amelioration of Attacks and False-Positives

To prevent attacks and/or reduce false-positives, the following changes are

recommended:

• Counters should beper-sourceandper-destination. (See section 3.4.2.)
• There should not besimultaneous exchange, as defined in section 3.3.5.
• WATCHERS should distinguish between a link going down, and a router forcing

it down after discovering the neighbor is bad. Bad Router Announcement
messages would solve this. (See section 5.1.4.)

• An upper bound should exist on the propagation delay of Administrative
messages (see section 3.4.9). This would allow an operator to appropriately
choose WATCHERS configuration parameters,e.g., round length, misbehavior
thresholds,etc.

• Disallow the addition of new links and new routers to the topology. This would
preventghost routercreation (see section 3.3.3). If new links and/or routers were
then added, WATCHERS should be restarted.

• All messages must include a corresponding round number and nonce. Request
messages would set the round number to the next round being agreed upon,
response messages would indicate for which round the included counter snapshot
applies, and Bad Router Announcement messages would indicate in which round
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the originator identified the bad router. (See section 5.1.4.) Any time-based
nonce would require synchronization among routers’ clocks. (See section 3.4.10.)

• Each router should keep track of the bad routers it and its neighbors identify, in
order to determine if misrouting and unauthorized communication have occurred.
(See section 5.1.4.)

• Any ring segment must not have neighboring bad routers as nodes in that ring.
(See section 3.3.5.)

• WATCHERS counters and round length must be chosen such that arithmetic
overflow will not occur either by incrementing counters, or summations during
diagnosis. (See section 3.4.10.) Along these lines, any Y2k-similar conditions
must be addressed.

• Keys used to create digital signatures should be evolved periodically (see section
3.4.10).

5.1.3 Miscellaneous Improvements

The following suggestions may improve the overall quality of a WATCHERS

implementation:

• Instead of requiring a majority of requests of all routers to start a new round, a
majority need only be obtained of the non-isolated nodes (those notlogically
removedfrom the network).

• Counting packets instead of bytes may prove less expensive since less processing
would be necessary on each packet header. MTU discovery [MoDe90, MJM96]
and IPv6’s disallowance of in-transit fragmentation eliminate the need to handle
fragmented packets. (See section 5.2.4 for discussion of IPv6.)

• In addition to supernodes[BCPM+98b], scalability might be addressed by
overlapping different WATCHERS domains – by at least two nodes, so that the
border routersof each system are well contained inside the boundary of the other.
In this way, these WATCHERSchains can extend the protocol’s effective
coverage while achieving bounded resource costs. (See section 5.2.2.)

• To permit programs such astraceroute to operate without adversely affecting
WATCHERS, ICMP Echo Requests might be ignored. (See section 3.4.6.)

5.1.4 A Revised Diagnosis Algorithm

Taking into account the suggested improvements to WATCHERS, a revised

pseudo-code diagnosis algorithm is presented in Figure 5.2. Noteworthy details are

explained in line-by line comments following the presentation of the algorithm.
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The revised pseudo-code for WATCHERS’ diagnosis algorithm is as follows.

Routerr performs this diagnosis for the counter snapshots from roundR. All counters are

assumed to have non-negative values.

1 for each (n,*) ∈ r.CheckSet /*r denotes the testing router,n the tested router */
2 AnnounceBadRouter(n); /* n failed to identify its bad neighbor(s) */
3 r.CheckSet = Ø;
4 for eachn ∈ { x| xÿ r and ((x,*) ∉ r.BadSet)}
5 if (Mn,r � 0) or (r has received at least 1 source routed packet from n)
6 then AnnounceBadRouter(n);
7 for eacht∈{ x|xÿn and and ((x,*) ∉ n.BadSet)}
8 if (n and t exchanged at least 1 misrouted packet)
9 thenr.CheckSet =r.CheckSet∪ {( n,t)};
10 end
11 end
12 for eachd,e∈ÿ /* ÿ is defined as the set of all possible destinations */
13 for eachn ∈ { x| xÿ r and ((x,*) ∉ r.BadSet)}
14 /* check thatn did not claim to have communicated with a bad router */
15 if (0� ÿ∀t|tÿn and (((t,Q) ∈ n.BadSet)|Q<R-c) /* R is the round being analyzed */
16 (n.St,n[e] + n.Sn,t[e] + n.Dt,n[d] + n.Dn,t[d] + n.T t,n[d,e] + n.T n,t[d,e])
17 then AnnounceBadRouter(n);
18 /* local validation */
19 if (r.Tr,n[d,e] = n.Tr,n[d,e] ∧ r.Sr,n[e] = n.Sr,n[e] ∧ r.Dr,n[d] = n.Dr,n[d]) and
20 (r.Tn,r[d,e] = n.Tn,r[d,e] ∧ r.Sn,r[e] = n.Sn,r[e] ∧ r.Dn,r[d] = n.Dn,r[d])
21 then
22 if (∀t∈{ x|xÿn and ((x,*) ∉ n.BadSet)} /* remote validation */
23 (t’s response message has been authenticated) and
24 (t.Tt,n[d,e] = n.Tt,n[d,e] ∧ t.St,n[e] = n.St,n[e] ∧ t.Dt,n[d] = n.Dt,n[d]) and
25 (t.Tn,t[d,e] = n.Tn,t[d,e] ∧ t.Sn,t[e] = n.Sn,t[e] ∧ t.Dn,t[d] = n.Dn,t[d]))
26 then /*conservation-of-flowtest */
27 if ((n.Sd,n[e] + ÿ∀t|tÿn and (((t,Q) ∉ n.BadSet)|Q<R-c)(n.Tt,n[d,e])) �
28 (n.Dn,d[d] + ÿ∀t|tÿn and (((t,Q) ∉ n.BadSet)|Q<R-c)(n.Tn,t[d,e]))
29 then AnnounceBadRouter(n);
30 else for eacht∈{ x|xÿn and ((x,*) ∉ n.BadSet)}
31 if (t’s response message has not been authenticated) or
32 (t.Tt,n[d,e] � n.Tt,n[d,e] ∨ t.St,n[e] � n.St,n[e] ∨ t.Dt,n[d] � n.Dt,n[d]) or
33 (t.Tn,t[d,e] � n.Tn,t[d,e] ∨ t.Sn,t[e] � n.Sn,t[e] ∨ t.Dn,t[d] � n.Dn,t[d]))
34 thenr.CheckSet =r.CheckSet∪ {( n,t)};
35 else AnnounceBadRouter(n);
36 end
37 end

Figure 5.2: Diagnosis algorithm performed by routerr using the counter snapshots from roundR.
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Line-by-line notes regarding the Diagnosis algorithm shown in Figure 5.2:

All: For simplicity of exposition, the Diagnosis algorithm shown assumes zero-tolerance,
i.e., all misbehavior thresholds are zero. This can be easily extended. Additionally, it
should be assumed that any deviation from the WATCHERS protocol,e.g., flooding the
same message more than once, flooding messages with pre- or post-dated round numbers,
etc., should be considered misbehavior and flagged as such. Enumeration,
implementation, and debugging of these special cases are left as exercises for the reader.
;) Seriously, specification-based monitoring may ease this burden and should be
explored as a potential solution [BBK99, KRL97].

Line 1: r.CheckSet is updated as Bad Router Announcement messages arrive, removing
any entry in r.CheckSet corresponding to the originator and bad router. The two
elements in each ordered pair added tor.CheckSet correspond to the neighbor who
should identify a bad router, and the router it should identify as bad. For clarity,r ’s
ownership of CheckSet is explicitly shown by prepending “r.”, as is done with BadSet
and counter values, despite the fact thatr does not maintain a CheckSet for any router
other than itself.

Line 2: AnnounceBadRouter(n) setsr.BadSet =r.BadSet∪ {( n,R)} and floods a Bad
Router Announcement indicatingn is bad.

Line 4: An asterisk matches any element, and “ÿ” is defined as “neighbors”. In contrast
to [Brad97, BCPM+98a, BCPM+98b], here “ÿ” is a relationship based on physical, not
virtual, connection,i.e., if a shared link goes down (or is forced down), the two routers at
its endpoints arestill neighborsso long as the cable or transmission medium has not been
permanently disconnected. This difference is duly compensated with the use of BadSet
and Bad Router Announcements. It is important to note that without this change, as
written, this line would excuse routers who misrouted packets, but whose shared link
became inoperative during that round.

Line 8: This covers both routers depicted in the misrouting consorting router scenario
presented in [BCPM+98b]. If this diagnosis is to be done for rounds in which the
topology changed, then each router must remember every unique state of the routing
tables of each of their neighbors; then a packet would not be misrouted if it had been
routed correctly according to at least one of the states of the corresponding routing table.

Line 12: ÿ includes not only the routers participating in the WATCHERS protocol,
including bad routers intended to participate, but also any external nodes that are defined.
(See section 3.4.4.) As line 12 is written, some work within thefor each clause is
duplicated,e.g., comparing counter values by using only one of the two variables,d or e;
these inefficiencies are intentional, as they provide more comprehensible pseudo-code,
but should be rectified for any optimized implementation.

Line 15: If a neighbor reports having communicated with a router it learned was bad in
the previous round, then it too is bad. The constantc is included for completeness, as the
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appropriate value ofQ depends on any propagation delay that might exist (depending on
when a Bad Router Announcement is sent – this could be done in other stages of the
protocol as packets arrive,e.g., source routed packets – entries might be added to
n.BadSet during a different round than n learned of the bad router). Note thatn.BadSet is
not modified during the diagnosis phase; it is intended to be updated during message
exchange, when r receives a Bad Router Announcement, or acknowledgement of

Line 19: “∧” is the logical “and” operator.

Line 23: “t’s message has been authenticated” means “one and only one unique
authenticated message fromt for round R was received.” Authentication includes
verification both of the sender’s identity and the integrity of the message, as well as
proper decoding according to the agreed upon message format. Note that while not
explicitly checked, should these conditions cease to hold for rounds <R, e.g., at least one
authenticated message was received after diagnoses in which different counter values
were claimed, this too should be considered misbehavior. Similar steps should be taken
with respect to all WATCHERS messages.

Line 32: “∨” is the logical “or” operator.

With the recommendations presented and the pseudo-code outlined above, we

now have many reasons why a router may be identified as bad:

• A neighbor’s failed thevalidationtest.
• A neighbor failed theconservation-of-flowtest.
• A neighbor misrouted a packet (or conspired to do so).
• A neighbor flooded a duplicate of a message it already flooded once before.
• A neighbor flooded a message that could not be authenticated.
• A neighbor’s request or response message was never received and authenticated.
• A neighbor originated an authenticated, butincompletemessage (or the neighbor

re-flooded such a message it was required to decode itself).
• A neighbor flooded multiple versions of the same response message for a single

round.
• A neighbor flooded a messageout of sequence(either by disobeying theFIFO

condition, or .by sending a packet with an inappropriate round number).
• A neighbor claimed to have communicated with a non-neighbor or a neighbor it

had previously known to be bad.
• A neighbor failed to take down the shared link with at least one of its neighbors it

should have identified as bad.
• The catchall: A neighbor did not comply with WATCHERS communication

protocol. The above enumeration should by no means be considered complete,
and a specification-based approach is recommended to identify additional
misbehavior not described herein,e.g., [BBK99, KRL97].
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5.2 Future Work

While the WATCHERS implementation suffers from serious performance issues,

and the protocol itself is wrought with problems related to its model, it would be

premature to discount WATCHERS as useless. In this section, three areas of future work

are identified: improvements to the protocol, improvements to the implementation, and

further experiments. Additionally, consideration is given to the impact that IPv6 might

have on the WATCHERS protocol.

5.2.1 Improvements to the WATCHERS Protocol

In order to be successful, it is necessary that the WATCHERS protocol make few

false-positive diagnoses under benign conditions. Legitimately dropped packets must be

recognized as such, and broadcast and multicast packets must be accounted for, as these

are all behaviors typical of today’s networks. It is clear that the concept of conservation

of flow as defined herein does not hold in today’s Internet; adaptations to the flow model,

e.g., [LMPS98], might be considered.

Even with an accurate model of network flow, latency and simultaneous exchange

might still pose problems in benign networks, although their effect may not as significant

as that created by desynchronized WATCHERS participants. Effective yet inexpensive

solutions to these problems would constitute valuable future work.

Another invaluable contribution would be an efficient and correct method to

determine the source and destination of each packet. As discussed in section 3.4.4, these

may not correspond to the source and destination addresses listed in the packet header.
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Perhaps the most serious issue facing WATCHERS is it’s potential in assisting

attackers. It has been asserted that WATCHERS does not open the routing infrastructure

to new vulnerabilities [Brad97]. However, even if the attacks in section 3.3 were

prevented, any temporary router or link failure might result in permanent disconnection

from the network as a result of WATCHERS’ diagnosis. The history of DoS

vulnerabilities in routers makes this threat quite realistic [Cisc00]. What would otherwise

be a brief disruption in service could be catastrophic if WATCHERS were employed. To

avoid undue burden on network administrators, it is necessary that WATCHERS include

a means by which “bad” routers might automatically rejoin the network.

Unfortunately, even if WATCHERS can be made to function well in the presence

of only good routers, in order to accurately detect malicious routers, a number of more

challenging issues must be overcome. Among these are the need for a message

authentication scheme that facilitates intermediate-host authentication, and an integrity

scheme allowing robust manipulation of OSPF’s Age and IP’s TTL fields (or at least

detection of their misuse).

Some solutions to the aforementioned problems have been discussed in previous

chapters, but many are quite inefficient, and some have not been explored in terms of

their cost to the protocol. Again, effective yet efficient solutions would prove invaluable

to WATCHERS.

If false-positives cannot be eliminated, the design and analysis of an algorithm to

amortize these errors related to simultaneous exchange and in-transit packets, yet still

identify misbehavior with a zero- or low-tolerance threshold would constitute valuable

future work.
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Finally, it would be worthwhile to investigate whether attack behavior can be

identified by intrusion detection or specification-based systems. If so, WATCHERS need

not concern itself by adopting potentially expensive remedies, and the protocol might

retain some of its simplicity. In any case, adoption of WATCHERS as asensormay

provide otherwise unavailable data to correlation engines,e.g., [SCCD+96, Goan99].

These possibilities should be researched further.

5.2.2 Improvements to the WATCHERS Implementation

Unreported packets are certainly the most important problem to address in the

WATCHERS implementation. It may be possible to hook into the network stack as

tcpdump does with libpcap, with the hope that more packets could be observed.

Additionally, a real-time scheduling algorithm may be of assistance. Common problems

with packet filters are discussed in [Paxs97a].

The best solution however, would be to implement WATCHERS in hardware.

This would resolve the unreported packet issue both by providing immediate access to

the packets, as well as ensuring that processing speeds would match or exceed those

necessitated by high-bandwidth interfaces.

But before resources are expended on a hardware venture, additional

improvements should be made to the existing software implementation. More rigorous

testing is required and the known bugs should be fixed. Various opportunities for DoS

attacks and non-compliance with the WATCHERS protocol by malicious routers should

be precluded and detected.

Integration with the routing protocol is also required, and routing information

must be maintained locally for each neighbor so that misrouting may be detected.
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Additionally, Bad Router Announcements should accompany any positive diagnosis of

malicious activity.

A necessary addition is the use of digital signatures for authentication. The most

appropriate algorithm, key length, and key management scheme must be chosen. These

would almost certainly depend on available hardware and such implementation

parameters as round length and message size.

The supplementalconditionsof Figure 5.1 must also be met. TheFIFO and

reliable transport conditionsmay compel the use of QoS mechanisms, as FIFO queuing

with loss-less and bounded-delay packet delivery has been shown to be achievable using

source rate control and appropriately sized buffers [CFZF98].

WATCHERS Chains might afford scalability without proportional expense in

messaging, and would complement theborder router good condition. Supernodescould

help relax thegood neighbor conditionin the fine-grained sense. Bothchains and

supernodesmight benefit from the proposed OSPF for IPv6Instance IDs[CFM99].

Lastly, certain tasks such as counter updates, WATCHERS messaging, and diagnosis

may be conducive to parallelization.

5.2.3 Additional Experiments

Additional tests should be run, including the yet untested attack scenarios from

section 3.3. Future tests should also focus on gauging WATCHERS’ performance and

optimal thresholds.
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5.2.3.1 Performance

In order to accurately gauge WATCHERS’ performance, realistic background

traffic must be used. Traffic composition will certainly vary widely depending on the

environment, and the WATCHERS implementation should therefore be exposed to as

many environments as possible. Of particular interest would be the number of non-zero

counters, as this would influence opportunities for message compression, directly

affecting bandwidth consumption during counter exchange. The network topology must

be considered as a factor in performance [ZCD97]. Real production networks should be

used, and if possible, WATCHERS should be configured to run on actual routers.

Actual CPU usage and bandwidth consumption should be measured for counter

updates, key management, and authentication. The impact of varying parameters such as

network topology, AS size, and round length should also be determined.

Finally, it may be useful to determine if the expense of an AS-wide packet flush

would be too inhibitive. If not, these might be used to allow snapshots to be taken in the

absence of in-transit packets.

5.2.3.2 Thresholds

With the current WATCHERS implementation, misbehavior thresholds would

need to be embarrassingly high in order to avoid making false-positive diagnoses. Such

high thresholds would easily allow malicious routers to “fly under the radar.”

Preliminary data suggests thresholds might need adjustment proportional to the network

traffic, but perhaps this is only true when the link or node is near saturation. If the
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number of unreported packets could be significantly reduced, this question could be more

definitively answered.

It is likely that a non-zero threshold will be required. In this case, a variety of

methods are available; appropriate thresholds may be fixed, dynamic, per-misbehavior-

type,etc. Hybrid approaches such aslayered windowtests might also be explored: Keep

n rounds’ worth of data, and performconservation-of-flowanalysis on the sum of these

rounds’ counters. Dynamic or perhaps simply lower thresholds might be applied in this

way to achieve fewer false-positives.

The holy grail of detection systems is zero-tolerance. All data gathered thus far

seems to indicate that this goal will remain elusive for WATCHERS. Even still, it would

be beneficial to determine a concrete upper bound for misbehavior thresholds that would

yield no false-positive diagnoses. Consideration will need to be given to the frequency of

non-malicious routing errors ([LMJ98, Paxs97b] provide empirical data on Internet

routing pathology).

5.2.3.3 Other Parameters

As mentioned above, WATCHERS round length should be varied in many

contexts. Discovering a realistic lower bound on round length may prove useful in

understanding the costs and delays in WATCHERS messaging.

An additional correlation of interest might be the percentage of unreported

packets as a function of round length (or frequency). Increasing the round length should

reduce the percentage of unreported transit packets, but would also lead to a longer delay

in bad router discovery. This tradeoff should be further explored.
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Finally, the precise OSI level at which WATCHERS should operate has not been

explored. A clear advantage of operating at the network level is that the source and

destination IP addresses are available and uniquely identify the source and destination

nodes. Operation above the network layer is unrealistic, as routers and switches do not

implement these [Kesh97], but operation at the Datalink or Physical layers might be

appropriate in limited applications. As illustrated in section 3.4.3, if more than two nodes

share a common link,e.g., an Ethernet repeater, determination of a packet’s source

address will require operation at a lower OSI level.

5.2.4 Implications of IPv6

Although IPv6 promises greater reliability and security, its use still leaves

WATCHERS vulnerable to many of the attacks in chapter 3. Specifically, IPv6 can

detect both header and payload modification, but only at the destination, and only when

the Authentication Header and Encrypted Security Payload are used. The result is that

modified packets may cause intermediate WATCHERS routers to incorrectly increment

their counters. This is consistent with the “steel pipe” analogy: only the source and

destination can be confident of message authenticity and integrity. It is suggested that

intermediate source address verification may be accomplished by some variant of the

Authentication Header, but this remains an open question [Huit98].

Introducing another potential attack, IPv6 routers will not fragment packets

already on the network, but will instead drop them and return an ICMP message if they

are too large for the next hop. Again, because WATCHERS does not consider this ICMP

message as compensation for the dropped packet, theconservation-of-flowtest will fail.
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Another aspect of IPv6 is that its OSPF link-state database will not be shared with

the IPv4 database; IPv6 OSPF and IPv4 will run in parallel, significantly increasing

WATCHERS’ memory and computational requirements on an AS supporting both IPv4

and IPv6.

Two offsetting simplifications IPv6 offers are a single 32-bit identifier for each

router, independent of its network addresses, and its intolerance for in-transit

fragmentation. Per the latter point, it may be sufficient for WATCHERS to simply count

packets instead of bytes. Since malicious routers could always balance the byte count for

packets they alter during a WATCHERS round, there would no longer be any advantage

to counting bytes on a network using only IPv6, or one in which in-transit fragmentation

was not permitted.

Note that while TCP/IP scenarios have been discussed exclusively, WATCHERS

suffers similar shortcomings when applied to IPX/SPX, SNA, and other network

protocols, due to their similarities to TCP/IP.
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7 Appendix: WATCHERS Implementation Details

This Appendix provides a loosely structured account of design, compilation, and

execution details of the WATCHERS implementation.

7.1 Design

In anticipation that no in-transit fragmentation would occur in the router testbed

of Figure 4.2, all WATCHERS counters were made to beper-packet, not per-byte(See

sections 3.1 and 5.2.4).T, S, andD counters were split into two tables each, one for the

inbound traffic, and one for outbound.

All WATCHERS counters were stored in arrays indexed by an internalrouter

table unique to each router. Assuming no changes to the topology would occur during

run-time, these tables were stored in configuration files read once upon initialization.

Router tables always listed the host router as the first entry, followed by immediate

neighbors, then their neighbors, and then other routers in the AS (See Figure 4.1 for

example). No support was included forexternal nodes(See section 3.1).

This router table indexing strategy was chosen to simplify counter storage and

exchange, at the expense of remote manipulation during the diagnosis phase (See section

3.2.2). Because each router table was unique, every router needed to know the router

tables for each of its neighbors, and each of their neighbors.

In the interest of rapid development, the entire set of each router’s WATCHERS

counters (excludingM counters) and its router table were passed during counter

exchange, and without regard to byte order (the x86 machines used during testing all

store variables usinglittle endian, or Least Significant Byte first).
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Only a few optimizations were undertaken in the source code; these included

elimination of spin-wait loops to improve CPU performance, manual parsing oftcpdump

output, and improved synchronization using more accurate timers. Thencurseslibrary

was used to create a portable text-windowed user interface (See Figure 4.1).

7.2 Compilation

The WATCHERS source code was written in C and comprised roughly 6,000

lines of code at the time of this writing. Separate modules were defined for high- and

low-level counter and message manipulation, router index table maintenance, timers, and

user interface routines.

WATCHERS and its modules were compiled usinggcc version egcs-2.91.66

19990314/Linux (egcs-1.1.2 release) with the flags “–O3 –Wall”. Any reported errors

and warnings were corrected prior to running the tests in section 4.3.

7.3 Execution

Except where specified otherwise, WATCHERS was run byroot on the command

line at normal priority. An attempt was made to minimize CPU utilization during tests;

when queried, the machines reported near-zero load at all times, even during

WATCHERS execution.
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8 Appendix: Network Configuration

100MB Ethernet category 5 crossover cables were used to connect pairs of router-

configured machines as in Figure 4.2. In Table 8.1 below, information is shown for each

of the machines in the testbed. Right and left interfaces refer to the clockwise and

counter-clockwise directions in Figure 4.2. Netmasks were assigned to 255.255.255.0 for

each Ethernet interface.

Host Name rushmore whistler shasta washington norquay baker
OS RedHat Linux release 6.2 (full installation)
Kernel 2.2.14-5.0 2.2.14-5.0 2.2.14-

5.0smp
2.2.14-5.0 2.2.14-5.0 2.2.14-5.0

Processor Type i686
Processor Name Pentium II Pentium III Pentium Pro Pentium III Pentium III Pentium III
Stepping 2 3 9 3 3 3
CPU MHz 448.061111 451.029699 199.435738 551.260463 551.258695 551.247374
Cache Size
(KB)

512 512 256 512 512 512

Bogomips 447.28 448.92 199.07 548.86 550.50 548.86
Total Memory
(KB)

257684 127916 62992 257684 257684 257684

Memory Used
(%)

31 60 95 30 30 33

Total Swap
Space (KB)

72252 72252 80284 72252 80284 72252

Swap Space
Used (%)

0 0 4 0 0 0

Root Filesystem
Capacity (MB)

8485 19171 1914 19178 19171 19171

Root Filesystem
Space Used (%)

21 47 76 12 12 12

Left Ethernet
Card

Intel Ether-
Express

PRO/100
PCI WOL

Built-in Intel Ether-
Express

PRO/100
PCI WOL

Built-in Built-in Built-in

Right Ethernet
Card

Linksys
EtherFast

10/100 PCI

3Com
EtherLink

10/100 PCI

3Com
EtherLink

10/100 PCI

Linksys
EtherFast

10/100 PCI

Linksys
EtherFast

10/100 PCI

Linksys
EtherFast

10/100 PCI
Left Ethernet
Driver

eepro100 3c59x eepro100 3c59x 3c59x 3c59x

Right Ethernet
Driver

tulip 3c90x 3c90x tulip tulip tulip

Left IP Address 10.0.12.1 10.0.11.1 10.0.10.1 10.0.9.1 10.0.14.1 10.0.13.1
Right IP
Address

10.0.11.10 10.0.10.10 10.0.9.10 10.0.14.10 10.0.13.10 10.0.12.10

Table 8.1: Selected configuration parameters as reported byLinuxconf and GNOME’s System
Information tool, and manual inspection of the hardware.


