
How to Protect DESAgainst

Exhaustive Key Search

Joe Kilian1 and Phillip Rogaway2

1 NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA.
E-mail: joe@research.nj.nec.com

2 Department of Computer Science, University of California at Davis, Davis,
CA 95616, USA. E-mail: rogaway@cs.ucdavis.edu

Abstract. The block cipher DESX is de�ned by DESXk:k1:k2(x) =
k2 � DESk(k1 � x), where � denotes bitwise exclusive-or. This con-
struction was �rst suggested by Ron Rivest as a computationally-cheap
way to protect DES against exhaustive key-search attacks. This pa-
per proves, in a formal model, that the DESX construction is sound.
We show that, when F is an idealized block cipher, FXk:k1:k2(x) =
k2 � Fk(k1 � x) is substantially more resistant to key search than is
F . In fact, our analysis says that FX has an e�ective key length of at
least �+n� 1� lgm bits, where � is the key length of F , n is the block
length, and m bounds the number of hx; FXK(x)i pairs the adversary
can obtain.

1 Introduction

The susceptibility of DES to exhaustive key search has been a concern and a
complaint since the cipher was �rst made public; see, for example, [6]. Careful
analysis by Wiener [15] indicates that the problem has now escalated to the
point that for $1 million one could build a DES key search engine which, given a
hplaintext, ciphertexti pair, would recover the key in about 3.5 expected hours.

Many people have suggested overcoming the threat of exhaustive key search
by using DES in some appropriate way. One approach is to construct a DES-
based block cipher which employs a longer key. Triple DES (typically in \EDE
mode") is the best-known algorithm in this vein. It seems to be quite secure,
but e�ciency considerations make triple DES a rather painful way to solve the
exhaustive key-search problem. This paper analyses a much cheaper alternative.

We recall an elegant suggestion of Ron Rivest [11]. He proposes an extension
of DES, called DESX, de�ned in the following simple manner:

DESXk:k1:k2(x) = k2 � DESk(k1 � x):

The key K = k:k1:k2 (here : denotes concatenation) is now 56 + 64 + 64 =
184 bits. Compatibility with DES is maintained by setting k1 = k2 = 064.
Existing DES CBC hardware can be gainfully employed by �rst masking the
plaintext, computing the DES CBC, and then masking the ciphertext. Most

signi�cantly, the computational cost has hardly been increased over ordinary
DES. Yet, somehow, DESX seems no longer susceptible to brute-force attacks
of anything near 256 time.

It is unintuitive that one should be able to substantially increase the di�culty
of key search by something as simple as a couple of XORs. Yet working with the
DESX de�nition for a while will convince the reader that undoing their e�ect is
not so easy.

Does the \DESX trick" really work to improve the strength of DES against
exhaustive key search? This paper will give a strong positive result showing that
it does.

1.1 Our model

Key-search strategies disregard the algebraic or cryptanalytic speci�cs of a cipher
and treat it as a black-box transformation, instead. Key-search strategies can be
quite sophisticated; recent work by [14] is an example. We want a model generous
enough to permit sophisticated key-search strategies, but restricted enough to
permit only strategies which should be regarded as key search. We accomplish
this as follows.

Let � be the key length for a block cipher and let n be its block length. We
model an ideal block cipher with these parameters as a random map F : f0; 1g��
f0; 1gn ! f0; 1gn subject to the constraint that, for every key k 2 f0; 1g�, F (k; �)
is a permutation on f0; 1gn. A key-search adversary is an algorithmwhich is given
the following two oracles: one which, on input (k; x), returns F (k; x); and one
which, on input (k; y), returns F�1(k; y). The last expression names the unique
point x such that F (k; x) = y.

A key-search adversary tries to perform some cryptanalytic task which de-
pends on F . She can perform complicated and subtle computations, use as much
time or space as she sees �t, but her only access to F is via the F/F�1 oracles.
We look at the adversary's rate of success in performing her cryptanalytic task
as a function of the amount of computation she performs.

To apply the above to DESX, we begin by generalizing the DESX construc-
tion. Given any block cipher F we can de�ne FX : f0; 1g�+2n�f0; 1gn! f0; 1gn

by setting FX(k:k1:k2; x) = k2 � F (k; k1 � x). For both F and FX we shall
sometimes write their �rst argument (the key) as a subscript, Fk(x) and FXK(x),
where K = k:k1:k2.

To investigate the strength of FX against key search we consider a key-
search adversary A with oracles for F and F�1, and determine how well A can
play the following \FX{or{�?" game: given one of two types of \encryption
oracles" |an oracle which computes FXK(�), for K a random string of length
�+ 2n, or else an oracle which computes �(�), for �(�) : f0; 1gn ! f0; 1gn a
random permutation| guess which type of encryption oracle you have. The
FX construction \works" if the resources which are necessary to do a good job
in winning the above game are substantially greater than the resources which
are su�cient to break F .

1.2 Our main result

We show that if key-search adversary A can make only a \reasonable" num-
ber to queries to her encryption oracle, then A must ask an excessive number of
F/F�1 queries in the FX-or-�? game, and therefore Amust run in an excessively
long time. More speci�cally, we prove the following. Let m bound the number
of hx; FXK(x)i pairs which the adversary can obtain. (This number is usually
under the control of the security architect, not the adversary.) Suppose the ad-
versary asks a total of at most t queries to her F/F�1 oracles. (This number is
usually under the control of the adversary, not the security architect.) Then the
adversary's advantage in winning the FX{or{�? game is at most mt � 2���n+1.
In other words, the adversary's advantage is at most t � 2���n+1+lgm, so the
e�ective key length of FX, with respect to key search, is at least �+n�1� lgm
bits.

To understand the above formula, let's think of a block cipher F with 55-bit
keys and a 64-bit block size.3 Key-search adversary A is going to attack FX.
Suppose A can obtain up to m = 230 blocks of enciphered data. Suppose A runs
in time at most T . Then A has advantage of at most T �2�55�64+30+1 = T �2�88

of just knowing if the enciphered data really was produced by FX, and not a
random permutation.

Because our main result indicates the infeasibility of key search even when we
ignore the adversary's space requirement, this \omission" only strengthens what
we are saying. Similarly, \good" adversaries may, necessarily, use an amount of
time, T , which far exceeds their number of F/F�1 queries, t. So focusing on the
query complexity makes our results all the more meaningful.

1.3 Related work

Even and Mansour [7] construct a block cipher PX : f0; 1g2n � f0; 1gn !
f0; 1gn from a random permutation P : f0; 1gn ! f0; 1gn by PXk1:k2(x) =
k2 � P (k1 � x). Clearly this is a special case of the FX construction, where
� = 0. While their motivation for looking at PX was quite di�erent from our
reasons to investigate FX, our model and methods are, in fact, quite similar.
Our main result can be seen as a natural extension of their work.

The modeling of a block cipher by a family of random permutations has its
roots in [13].

Ron Rivest had invented DESX by May of 1984, but the scheme was never
described in any conference or journal paper [11]. It was implemented within
products of RSA Data Security, Inc., and it is described in the documentation
for these products [12]. DESX has also been described at conferences organized
by RSA DSI, including [16].

Encryption methods similar to DESX have been invented independently.
Blaze [3] describes a DES mode of operation in which the ith block of plain-
text, xi, is encrypted using 112-bit key k:k1 by Ek:k1(xi) = si � DESk(si � x),

3 See the �rst remark at the end of Section 3 if you're thinking the �rst number is
probably a typo.

where s1s2 � � � is a stream of bits generated from k1 by, say, si = DES
(i)
k1 (0

64).

Here DES(i) denotes the i-th iterate of DES.
Many authors have suggested methods to increase the strength of DES by

changing its internal structure. Biham and Biryukov [1] give ways to modify DES
to use key-dependent S-boxes. Their suggestions improve the cipher's strength
against di�erential, linear, and improved Davies' attacks, as well as exhaustive
key search. Ciphers constructed using their ideas can exploit existing hardware
exactly in those cases where the hardware allows the user to substitute his own
S-boxes in place of the standard ones.

1.4 Discussion

Understanding our result. It may be hard to understand the rami�cations
of our main theorem, thinking it means more or less than it does. Let us try to
clarify one important point right away.

DES, of course, is not a family of random permutations, and we can not con-
clude from our theorem that there does not exist a reasonable machineM which
breaks DESX in say, 260 steps, given just a handful of hplaintext, ciphertexti
pairs. What we can say is that such a machine would have to exploit structural
properties of DES; it couldn't get away with treating DES as a black-box trans-
formation. This contrasts with the sort of machines which have been suggested
in the past for doing brute-force attack: they do treat the underlying cipher as
a black-box transformation.

We note that while remarkable theoretical progress has been made on the
linear and di�erential cryptanalysis of DES (see [2, 10]), thus far these attacks
require an impractically large number of plaintext-ciphertext pairs. To date,
the only published practical attacks against DES remain of the key-search vari-
ety. The DESX construction was not intended to improve the strength of DES
against di�erential or linear attack, or any other attack which exploits structural
properties of DES.

On export controls tied to key length. Our results indicate how al-
gorithmically trivial it can be to get extra bits of strength against exhaustive
key-search attack. The impact of these extra bits can be especially dramatic
when the key length of the block cipher had been intentionally made short.

Consider, say, a block cipher F with a 40-bit key and a 64-bit plaintext. (Some
products using such block ciphers has been granted U.S. export approval.) With
these parameters, our results guarantee an e�ective key length (with respect to
exhaustive key search) of at least 40 + 64 � 1 � lgm = 103� lgm bits. Under
the reasonable assumption that m < 230, say, the 40-bit block cipher has been
modi�ed, with two XORs, to a new block cipher which needs at least 273-time
for key exhaustive key search.

Allowing weak cryptography to be exported and strong cryptography not to
be is a policy which can only make sense when it is impractical, for the given
system, to replace the weak mechanism by a strong one. Our results indicate
that this impracticality must cover algorithmic changes which are particularly
trivial.

1.5 Outline of the paper

In Section 2 we de�ne some basic notation and de�ne what comprises a suc-
cessful attack in our model. In Section 3 we state and prove our main theorem
on the security of the DESX construction. Section 4 is a discussion. Section 5
demonstrates that the analysis underlying our main result is tight. In Section 6
we give some conclusions and open questions.

2 Preliminaries

Let F : f0; 1g��f0; 1gn ! f0; 1gn be a block cipher. This means that for every
k 2 f0; 1g�, F (k; �) is a permutation on f0; 1gn. We interchangeably write Fk(x)
and F (k; x).

Given a block cipher F as above, the block cipher F�1 : f0; 1gk � f0; 1gn !
f0; 1gn is de�ned from F by F�1(k; y) being the unique point x such that
F (k; x) = y. We interchangeably write F�1

k (y) and F�1(k; y).

Given block cipher F as above, the block cipher FX : f0; 1g�+2n�f0; 1gn!
f0; 1gn is de�ned from F according to FX(K;x) = k2 � Fk(k1 � x), where
K = k:k1:k2, jkj = � and jk1j = jk2j = n. We interchangeably write FXK(x)
and FX(K;x).

Given a partially de�ned function F from a subset of f0; 1gm to a subset of
f0; 1gn we denote the domain and range of F by Dom(F) and Range(F), and
de�ne Dom(F) = f0; 1gm �Dom(F) and Range(F) = f0; 1gn �Range(F).

Let Pn denote the space of all (2n)! permutations on n-bits.

De�nition 1. A key-search adversary is an algorithm A with access to three
oracles, E(�), F�(�) and F�1

� (�). Thus, A may make queries of the form E(P),
Fk(x) or F

�1
k (y). An (m; t) key-search adversary is a key-search adversary that

makes m queries to the E(�) oracle and a total of t queries to the F�(�) and
F�1
� (�) oracles.

Note that A supplies the value of k as part of its queries to the F�(�) and F
�1
� (�)

oracles.

We are now ready to de�ne what it means for a key-search adversary A
to have an attack of a certain speci�ed e�ectiveness. We begin by choosing a
random block cipher F having �-bit keys and n-bit blocks. This means that

we select a random permutation Fk
R

 Pn for each �-bit key k. Thus each Fk
is chosen independently of each Fk0 , for k 6= k0. Then we give A three oracles.
One oracle computes F�(�). Another oracle computes F�1

� (�). The �nal oracle is
one of the following: real-encryption-based-on-F : the oracle computes FXK(�)
for a random key K of �+2n bits; ideal-encryption-independent-of-F : the oracle
computes �(�), for a random permutation � 2 Pn. The adversary's job is to
guess which type of encryption oracle she has. The adversary's advantage is her
probability of guessing right, normalized so that 0 indicates a worthless strategy
and 1 indicates a perfect strategy.

De�nition 2. Let �; n � 0 be integers, and let � � 0 be a real number. Key-
search adversary A is said to �-break the FX-scheme with parameters �; n if

AdvA
def
= Pr

h
for each k 2 f0; 1g� do Fk

R

 Pn od; K
R

 f0; 1g�+2n :

AFXK(�); F�(�); F
�1

� (�) = 1
i
�

Pr
h
for each k 2 f0; 1g� do Fk

R

 Pn od; �
R

 Pn :

A�(�); F�(�); F�1

� (�) = 1
i

� � :

The above de�nition uses a very liberal notion of adversarial success. We are
not demanding that, say, A recover K; nor do we ask A to decrypt a random
FXK(x); nor to produce a not-yet-asked hx; FXK(x)i pair. Instead, we only
ask A to make a good guess as to whether the hplaintext, ciphertexti pairs she
has been receiving really are FX-encryptions (as opposed to random nonsense
unrelated to F). The liberal notion of success is chosen to make our main result
stronger: an adversary's inability to succeed becomes all the more meaningful.

3 Security of the DESX Construction

We now prove a bound on the security of FX against key-search attack.

Theorem3. Let A be an (m; t) key-search adversary that �-breaks the FX-

scheme with parameters �; n. Then � � mt � 2���n+1:

Proof. By a standard argument we may assume that A is deterministic (note
that A may be computationally unbounded). We may also assume that A always
asks exactly m queries of her �rst oracle, which we shall call her E-oracle. (In
the experiment which de�nes A's advantage, E was instantiated by either an
FXK-oracle or a �-oracle.) We may assume that A always asks exactly t queries
(total) to her second and third oracles, which we shall call her F - and F�1-
oracles. We may further assume that A never repeats a query to an oracle. We
may assume that if F (k; x) returns an answer y, then there is no query (neither
earlier nor later) of F�1(k; y). All of the above assumptions are without loss
of generality in the sense that it is easy to construct a new adversary, A0, that
obeys the above constraints and has the same advantage as A.

We begin by considering two di�erent games which adversary A might play.
This amounts to specifying how to simulate a triple of oracles, hE;F; F�1i, for
the bene�t of A.

A first game. The �rst game we consider, Game R (for \random"), will exactly
correspond to the experiment which de�nes the second addend in the expression
for the advantage:

PR = Pr
h
A�(�); F�(�); F

�1

� (�) = 1
i

The de�nition of Game R will be de�ned to contain several extra (and seemingly
irrelevant) steps. These steps aren't needed in order to behave in a manner
which is identical (as far as A sees) to the manner of behavior de�ning PR; these
steps are used, instead, to facilitate our analysis. To identify these \irrelevant"
instructions we put them in italics. Game R is de�ned in Figure 1.

Initially, let F�(�) and E(�) be unde�ned. Flag bad is initially unset. Randomly choose

k�
R

 f0; 1g�, k�1 ; k
�

2

R

 f0; 1gn. Then answer each query the adversary makes as follows:

E(�) On oracle query E(P):

1. Choose C 2 f0; 1gn uniformly from Range(E).
2. If Fk�(P � k

�

1) is de�ned, then set bad.
If F�1

k� (C � k
�

2) is de�ned, then set bad.
3. De�ne E(P) = C and return C.

F�(�) On oracle query Fk(x):

1. Choose y 2 f0; 1gn uniformly from Range(Fk).
2. If k = k� and E(x � k�1) is de�ned then set bad.

If k = k� and E�1(y � k�2) is de�ned then set bad.
3. De�ne Fk(x) = y and return y.

F�1

� (�) On oracle query F�1

k (y):

1. Choose x 2 f0; 1gn uniformly from Dom(Fk).
2. If k = k� and E�1(y � k�2) is de�ned then set bad.

If k = k� and E(x � k�1) is de�ned then set bad.
3. De�ne F (x) = y and return x.

Fig. 1. Game R

Let PrR[�] denote the probability of the speci�ed event with respect to Game R.
From the de�nition of Game R we can see that:

Claim 3.1 PrR

h
AE;F;F�1

= 1
i
= PR.

A second game. Now we de�ne a second game, Game X . It will exactly cor-
respond to the experiment which de�nes the �rst term in the expression for the
advantage:

PX = Pr
h
AFXK(�); F�(�); F

�1

� (�) = 1
i

Once again, the de�nition of Game X will be de�ned to contain some \irrelevant"
instructions, which, for clarity, are indicated in italics. Game X is de�ned in
Figure 2.

The intuition behind Game X is as follows. We try to behave like Game R,
choosing a random (not-yet-provided) answer for each E(P), and a random (not-
yet-provided for this k) answer for each Fk(x), F

�1
k (y). Usually this works �ne

for getting behavior which looks like the experiment de�ning PX . But some-
times it doesn't work, because an \inconsistency" would be created between

the FX-answers and the F/F�1-answers. Game X is vigilant in checking if any
such inconsistencies are being created. If it �nds an inconsistency about to be
created, it changes the value which it had \wanted" to answer in order to force

consistency. Whenever Game X resorts to doing this it sets the
ag bad. In
the analysis, we \give up" (regard the adversary as having won) any time this
happens.

Let PrX [�] denote the probability of the speci�ed event with respect to Game
X . The de�nition of Game X looks somewhat further a�eld from the experiment
which de�nes PX . Nonetheless, we claim the following:

Initially, let F�(�) and E(�) be unde�ned. Flag bad is initially unset. Randomly choose

k�
R

 f0; 1g�, k�1 ; k
�

2

R

 f0; 1gn. Then answer each query the adversary makes as follows:

E(�) On oracle query E(P):

1. Choose C 2 f0; 1gn uniformly from Range(E).
2. If Fk�(P � k

�

1) is de�ned, then C Fk�(P � k
�

1)� k
�

2 and set bad.
Else if F�1

k� (C � k
�

2) is de�ned, then set bad and goto Step 1.
3. De�ne E(P) = C and return C.

F�(�) On oracle query Fk(x):

1. Choose y 2 f0; 1gn uniformly from Range(Fk).
2. If k = k� and E(x � k�1) is de�ned then y E(x � k�1) � k�2 and set bad.

Else If k = k� and E�1(y � k�2) is de�ned then set bad and goto Step 1.
3. De�ne Fk(x) = y and return y.

F�1

� (�) On oracle query F�1

k (y):

1. Choose x 2 f0; 1gn uniformly from Dom(Fk).
2. If k = k� and E�1(y � k�2) is de�ned then x E�1(y � k�2) � k�1 and set

bad.
Else if k = k� and E(x � k�1) is de�ned then set bad and goto Step 1.

3. De�ne Fk(x) = y and return x.

Fig. 2. Game X

Claim 3.2 PrX

h
AE;F;F�1

= 1
i
= PX .

The proof of this claim is in the appendix.

Bounding the advantage by PrR [BAD]. In either Game R or Game X , let
BAD be the event that, at some point in time, the
ag bad gets set. Games R
and X have been de�ned so as to coincide up until event BAD. That is, any
circumstance that causes Game R and Game X to execute di�erent instructions
will also cause both games to set bad. The following two claims follow directly
from this fact.

Claim 3.3 PrR [BAD] = PrX [BAD].

Claim 3.4 PrR

h
AE;F;F�1

= 1jBAD
i
= PrX

h
AE;F;F�1

= 1jBAD
i
.

What we have shown so far allows us to bound the adversary's advantage by
PrR [BAD].

Claim 3.5 AdvA � PrR [BAD].

The argument is quite simple:

AdvA = PX � PR

= PrX

h
A
E;F;F�1

= 1
i
� PrR

h
A
E;F;F�1

= 1
i

(Claims 3.1, 3.2)

= PrX
�
A = 1jBAD

�
PrX

�
BAD

�
+ PrX [A = 1jBAD]PrX [BAD]�

PrR
�
A = 1jBAD

�
PrR

�
BAD

�
� PrR [A = 1jBAD]PrR [BAD]

= PrR [BAD] (PrX [A = 1jBAD] � PrR [A = 1jBAD]) (Claims 3.3, 3.4)

� PrR [BAD]

A third game. We have reduced our analysis to bounding PrR [BAD]. To
bound PrR [BAD], let us imagine playing Game R a little bit di�erently. Instead
of choosing k�; k�1 ; k

�

2 at the beginning, we choose them at the end. Then we set
bad to be true or false depending on whether or not the choice of k�; k�1 ; k

�

2

we've just made would have caused bad to be set to true in Game R (where
the choice was made at the beginning). The new game, Game R0, is described
in Figure 3. From the de�nition of Game R0 we see that:

Claim 3.6 PrR [BAD] = PrR0 [BAD].

Completing the proof. Now that we have su�ciently manipulated the games
a simple calculation su�ces to bound PrR0 [BAD], and, thereby, to bound AdvA.

After having run the body of Game R0, not having yet chosen k�; k�1 ; k
�

2 , let
us simply count how many of the 2�+2n choices for (k�; k�1 ; k

�

2) will result in bad
getting set.

Fix any possible values for E and F which can arise in Game R0. Let jEj
denote the number of de�ned values E(P), and let jF j denote the number of
de�ned values Fk(x). Note that jEj = m and jF j = t. Fix E and F . Call
(k�; k�1 ; k

�

2) collision-inducing (with respect to E and F) if there is a some de�ned
y = Fk(x) and some de�ned C = E(P) such that

k� = k and (P � k�1 = x or C � k�2 = y):

Every choice of (k�; k�1 ; k
�

2) which results in setting bad is collision-inducing, so
it su�ces to upper bound the number of collision-inducing (k�; k�1 ; k

�

2).

Claim 3.7 Fix E, F , where jEj = m and jF j = t. There are at most 2mt � 2n

collision-inducing (k�; k�1 ; k
�

2) 2 f0; 1g
� � f0; 1gn � f0; 1gn.

Initially, let F�(�) and E(�) be unde�ned. Answer each query the adversary makes as
follows:

E(�) On oracle query E(P):

1. Choose C uniformly from Range(E).
2. De�ne E(P) = C and return C.

F�(�) On oracle query Fk(x):

1. Choose y uniformly from Range(Fk)
2. De�ne Fk(x) = y and return y.

F�1

� (�) On oracle query F�1

k (y):

1. Choose x uniformly from Dom(Fk).
2. De�ne Fk(x) = y and return x.

After all the queries have been answered:
Flag bad is initially unset.

Randomly choose k�
R

 f0; 1g�, k�1 ; k
�

2

R

 f0; 1gn.
If 9 x such that Fk�(x) and E(x � k�1) are both de�ned then set bad.
If 9 y such that F�1

k� (y) and E
�1(y � k�2) are both de�ned then set bad.

Fig. 3. Game R0

The reason is as follows: for each de�ned (P;E(P)), (k; x; Fk(x)) there are at
most 2 � 2n points (k�; k�1 ; k

�

2) which induce a collision between these two points:
they are the points (k�; k�1 ; k

�

2) 2 fkg � fx � Pg � f0; 1gng [fkg � f0; 1gn �
fy � Cgg. Now there are only mt pairs of such points, so the total number of
collision-inducing (k�; k�1 ; k

�

2) is as claimed.
Finally, in Game R0 we choose a triple (k�; k�1 ; k

�

2) at random, independent of
E and F , so the chance that the selected triple is collision-inducing (for whatever
E and F have been selected) is at most 2mt � 2n=2�+2n = mt � 2���n+1. Pulling
everything together, this probability bounds AdvA, and we are done.

4 Discussion

Health warnings.We emphasize that when F is a concrete block cipher, not a
random one, its internal structure can interact with the FX-construction in such
a way as to obviate the construction's bene�ts. As a trivial example, if F already

has the structure that it XORs plaintext and ciphertext with key material, then
doing it again is certainly of no utility.

Our model considers how much FXK(�) looks like a random permutation
(when key K is random and unknown). It should be emphasized that some con-
structions which use block ciphers |particularly hash function constructions|
assume something more of the underlying block cipher. The current results im-
ply nothing about the suitability of FX in constructions which are not based on
FXK(�) resembling a random permutation when K is random and unknown.

Structure in the block cipher F when F = DES. There is one structural

property of DES which has been suggested to assist in brute-force attack: the
DES key-complementation property. This property comprises a signi�cant sense
in which DES is not behaving like a family of (independent) random permu-
tations. To \factor out" the key-complementation property just think of DES
as having a single key bit �xed. Then one can conclude that if this is the only
structural property of DES to be exploited by a key-search attack, DESX will
still limit the attack's advantage to tm � 2�55�64+1 = tm � 2�118.

Chosen-ciphertext attack. The de�nition we used models a chosen-plaintext
attack. One could easily allow, as [7] did, a chosen-ciphertext attack: simply pro-
vide A an oracle for FX�1(�), in addition to her oracle for FX(�). In that case
m would count the sum of the number of queries to the FX and FX�1 oracles,
and Theorem 3 would continue to hold. The proof would change very little.

Setting k1 = k2. It is easy to see that constructions FXin
k:k1(x) = Fk(x � k1)

and FXout
k:k1(x) = k1 � Fk(x) don't improve F 's strength against key search. But

what about FX 0

k:k1(x) = k1 � Fk(x � k1) | is it OK to use the same key inside
and out? In fact this does work, in the sense that Theorem 3 still goes through,
the proof little changed.

Nicer key lengths. A minor inconvenience of DESX is its strange key size.
In applications it would sometimes be preferable to extend the de�nition of
DESX to use arbitrary-length keys, or else to use keys of some �xed but more
convenient length. Standard key-separation techniques can be used. For example,
when jKj 6= 184, we might de�ne DESXK(x) to be equal to DESXK0(x) where
K 0 is de�ned as follows:

� If jKj = 56 then K 0 = K:0128,

� Otherwise, K 0 = k:k1:k2, where

8<
:
k = SHA-1(C:K)1:::56;
k1 = SHA-1(C1:K)1:::64; and
k2 = SHA-1(C2:K)1:::64

Here, SHA-1 is the map of the NIST Secure Hash Standard, X1:::` denotes the
�rst ` bits of X , and C, C1 and C2 are distinct, equal-length strings that are
part of the DESX speci�cation.

Differential and linear cryptanalysis. Operations besides XOR. We
emphasize that the DESX construction was never intended to add strength
against di�erential or linear cryptanalysis. The attacks of [2, 10] do not rep-
resent a threat against DES when the cipher is prudently employed (e.g., when
a re-key is forced before an inordinate amount of text has been acted on), so we
were content that the DESX construction does not render di�erential or linear
attack any easier.

Nonetheless, the proof of Theorem 3 goes through when � is replaced by
a variety of other operations, and some of these alternatives may help to de-
feat attacks which were not addressed by our model, including di�erential and
linear cryptanalysis. In particular, an attractive alternative to DESX may be

the construction DESPk:k1:k2(x) = k2 + DESk(k1 + x), where LR + L0R0
def
=

L+̂L0 : R+̂R0, where jLj = jRj = jL0j = jR0j = 32 and +̂ denotes addition

modulo 232. Burt Kaliski has suggested such alternatives, and he has gone on to
analyze their security with respect to di�erential and linear attack [8].

5 Our Bound is Tight

We have shown that the adversary's advantage is at most t � 2���n+1+lgm. We
now show that for a wide range of m (comprising all m that would be considered
in practice), an attacker can, with probability very close to t �2���n�4+lgm (the
exact bound is Section 5.3), recover a key K = k:k1:k2 that is consistent with
the encryptions under FX of m plaintexts chosen before any oracle queries are
made. For reasonable values of m, this at least as strong as simply distinguishing
FX from a purely random permutation.

To motivate our attack, we can view the FX block cipher as choosing a
random key k and then applying the Even-Mansour construction to the func-
tion Fk. We can therefore adapt Daemen's chosen plaintext attack [5] on the
Even-Mansour construction [7]. Unfortunately, we don't know the value of k, so
we instead try all possible ones. For completeness, we describe the attack and
calculate the amount of work required to have probability � of recovering the
key.

5.1 Preliminaries

Assume that m is even, m � 2n, and � < 1
2 . Fix a constant C 2 f0; 1gn � f0ng.

For any function G, de�ne G�(x) = G(x � C) � G(x). Given an oracle for G
one can compute G� by making two calls. Let the secret key K = k:k1:k2. Let
E by a synonym for FX. By our de�nitions and simple algebra we have

E�
K(x) = F�

k (x � k1) = F�
k (x � C � k1):

5.2 The basic attack

The attacker chooses x1; : : : ; xm=2 2 f0; 1g
n such that x1; : : : ; xm=2, x1 � C; : : : ;

xm=2 � C are distinct. She computes E�
K(xi), for 1 � i � m=2. This operation

requires m calls to E. Let ` =
l
�2n ln(1��)

m

m
. The attacker then chooses random

r1; r2; : : : ; r` 2 f0; 1g
n, testing each ri as follows. She searches through all pos-

sible k0 2 f0; 1g� and 1 � j � m=2, looking for promising pairs| values (j; k0)
such that F�

k0 (ri) = E�
K(xj). At this point, the attacker hopes that k

0 = k and r
is equal to either xj � k1 or xj � C � k1. If so, then k1 must be either xj � ri
or xj � C � ri. Given candidate values (k0; k10) for (k; k1), a guess k20 can be
determined by, say, k20 = Fk0 (x1 � k10) � EK(x1). A set of candidate values
k0; k10 and k20 can be tested by checking whether they give the correct values
for each of EK(x1); : : : ; EK(xm); EK(x1 � C); : : : ; EK(xm=2 � C). If they pass
this test, the attack returns the candidate k0:k10:k20 and halts.

5.3 Analysis of the attack

Due to space limitations, we omit an analysis. See the full version of this pa-
per [9].

6 Open Problems and Conclusions

Analysis of other multiple encryption schemes. The model we have used
to upper bound the worth of key-search applies to many other block-cipher based
constructions. For example, it would be interesting to apply this model to bound
the maximal advantage an adversary can get for triple DES with three distinct
keys, or triple DES with the �rst and third keys equal. It would be interesting
to demonstrate that some construction has a better e�ective key length then
DESX (e.g., k + n� 1 bits).

Use it! Work within some standards bodies continues to specify encryption
based on DES in its most customary mode of operation. We recommend DESX
(or one of its variants, as in Section 4). DESX is e�cient, DES-compatible,
patent-unencumbered, and resists key-search attack. In virtually every way,
DESX would seem to be a better DES than DES.

Acknowledgments

Mihir Bellare was closely involved in the early stages of our investigation. Burt
Kaliski, Ron Rivest, and anonymous referees provided useful comments and in-
formation.

References

1. E. Biham and A. Biryukov, \How to strengthen DES using existing hardware."
Advance in Cryptology| ASIACRYPT '94. Springer-Verlag (1994).

2. E. Biham and A. Shamir, Di�erential Cryptanalysis of the Data Encryption Stan-
dard. Springer-Verlag (1993).

3. M. Blaze, \A cryptographic �le system for UNIX." 1st ACM Conference on Com-

puter and Communications Security, 9{16 (November 1993).
4. D. Coppersmith, D. Johnson and M. Matyas, \Triple DES cipher block chain-

ing with output feedback masking." These proceedings.
5. J. Daemen, \Limitations of the Even-Mansour construction" (abstract of a rump-

session talk). Advances in Cryptology| ASIACRYPT '91. Lecture Notes in Com-
puter Science, vol. 739, 495{498, Springer-Verlag (1992).

6. W. Diffie and M. Hellman, \Exhaustive cryptanalysis of the NBS Data Encryp-
tion Standard." Computer, vol. 10, no. 6, 74{84 (June 1977).

7. S. Even and Y. Mansour, \A construction of a cipher from a single pseudoran-
dom permutation." Advances in Cryptology| ASIACRYPT '91. Lecture Notes in
Computer Science, vol. 739, 210{224, Springer-Verlag (1992).

8. B. Kaliski, personal communication (April 1996).

9. J. Kilian and P. Rogaway, \How to protect DES against exhaustive key search."
Full version of this paper. http://wwwcsif.cs.ucdavis.edu/~rogaway/

10. M. Matsui, \The �rst experimental cryptanalysis of the data encryption stan-
dard." Advances in Cryptology| CRYPTO '94. Lecture Notes in Computer Sci-
ence, vol. 839, 1{11, Springer-Verlag (1994).

11. R. Rivest, personal communication (1995, 1996).
12. RSA Data Security, Inc.. Product documentation, \Mailsafe Note #3."

13. C. Shannon, \Communication theory of secrecy systems." Bell Systems Technical
Journal, 28(4), 656{715 (1949).

14. P. van Oorschot and M. Wiener, \Parallel collision search with cryptanalytic
applications." Manuscript (December 19, 1995). Earlier version in 2nd ACM Con-

ference on Computer and Communications Security, 210{218 (1994).
15. M. Wiener, \E�cient DES key search." Technical Report TR-244, School of Com-

puter Science, Carleton University (May 1994). Reprinted in Practical Cryptogra-

phy for Data Internetworks, W. Stallings, editor, IEEE Computer Society Press,
31{79 (1996).

16. Y. Yin, The 1995 RSA Laboratories Seminar Series, \Future directions for block
ciphers." Seminar proceedings (page 23) for a talk given in Redwood Shores, Cali-
fornia (August 1995).

A Proof of Claim 3.2

We �rst de�ne a new game, denoted Game X 0, which matches more directly the
de�nition of the experiment de�ning PX . Game X 0 is de�ned in Figure 4.

First, note that no adversary can distinguish between playing Game X 0

and playing with oracles hFXK(�); F�(�); F
�1
� (�)i drawn according to the exper-

iment de�ning PX . Indeed the only di�erence between these scenarios is that
Game X 0 generates values for E(�) and F�(�) by \lazy evaluation," whereas the
experiment de�ning PX would generate these values all at the beginning. Thus

PrX0

h
AE;F;F�1

= 1
i
= PX .

Now we what to show that PrX

h
AE;F;F�1

= 1
i
= PrX0

h
AE;F;F�1

= 1
i
: no

adversaryA can distinguish whether she is playing Game X or X 0. We emphasize
that A's ability to distinguish between Games X and X 0 is based strictly on the
input/output behavior of the oracles; the adversary can not see, for example,
whether or not the
ag bad has been set.

We will show something even stronger than that Games X and X 0 look iden-
tical to any adversary. Observe that both Game X and Game X 0 begin with
random choices for k�; k�1 and k�2 . We show that, for any particular values of
k�; k�1 and k�2 , Game X with these initial values of k�; k�1 and k�2 is identical, to
the adversary, from Game X 0 with these same initial values of k�; k�1 and k

�

2 . So,
for the remainder of the proof, we consider k�; k�1 and k

�

2 to have �xed, arbitrary
values.

A basic di�erence between Games X and X 0 is that Game X separately
de�nes both E and Fk� while Game X 0 only de�nes Fk� and computes E(P),
in response to a query P , by Fk�(P � k�1) � k�2 . The essence of our argument is
that Game X can also be viewed as answering its E(P) queries by referring to
Fk� . But, strictly speaking, it's not really Fk� which can be consulted. We get
around this as follows.

Given partial functions E and Fk� , these functions having arisen in Game X ,
de�ne the partial function bFk� by

bFk�(x) =
8<
:
Fk�(x) if Fk�(x) is de�ned,
E(x � k�1) � k�2 if E(x � k�1) is de�ned, and
unde�ned otherwise.

Initially, let F�(�) be unde�ned. Randomly choose k�
R

 f0; 1g�, k�1 ; k
�

2

R

 f0; 1gn. Then
answer each query the adversary makes as follows:

E(�) On oracle query E(P):

1. If Fk�(P � k
�

1) is de�ned, return Fk�(P � k
�

1) � k�2 .
2. Otherwise, choose y uniformly from Range(Fk�), de�ne Fk�(P � k�1) = y and

return y � k�2 .

F�(�) On oracle query Fk(x):

1. If Fk(x) is de�ned, return Fk(x).
2. Else, choose y 2 f0; 1gn uniformly from Range(Fk), de�ne Fk(x) = y and

return y.

F�1

� (�) On oracle query F�1

k (y):

1. If F�1

k (y) is de�ned, return F�1

k (y).
2. Else, choose x 2 f0; 1gn uniformly from Dom(Fk), de�ne Fk(x) = y and return

x.

Fig. 4. Game X 0

Thus, in executing Game X , de�ning a value for E or Fk� can implicitly de�ne
a new value for bFk� .

At face value, the above de�nition might be inconsistent| this could happen
if both Fk�(x) and E(x � k�1) are de�ned for some x, and with \clashing" values
(ie., values which do not di�er by k�2). Before we proceed, we observe that this
can never happen:

Claim A.1 Let E and Fk� be partial functions which may arise in in Game X.

Then the function bFk� , as described above, is well-de�ned.

The proof is by induction on the number of \De�ne" steps (Steps E-3, F -3,

or F�1-3) in the de�nition of Game X , where points of bFk� become de�ned
as Game X executes. The basis (when E and F�1 are completely unde�ned) is
trivial. So suppose that, in step E-3, we set E(P) = C. Is it possible that this def-

inition of E(P) will cause bFk� to become ill-de�ned? The only potential con
ict
is between the new E(P) value and a value already selected for Fk�(P � k�1). So
if Fk�(P � k�1) was not yet de�ned, there is no new con
ict created in Step E-3.
If, on the other hand, Fk�(P � k�1) was already de�ned, then its value, by virtue

of Step E-2, is E(P) � k�2 . This choice results in
bFk� remaining well-de�ned The

analysis for the cases corresponding to Steps F -3 and F�1-3 is exactly analogous,
and is omitted. }

The function bFk� , as de�ned for Game X , also makes sense for Game X 0, wherebFk�(x) = Fk�(x). Our strategy, then, is to explain the e�ect of each E(�), Fk�(�),

and F�1
k� (�) query strictly in terms of bFk� . We then observe that Game X 0 re-

sponds to its oracle queries in an absolutely identical way. This su�ces to show
the games equivalent.

Case 1.We �rst analyze the behavior of Game X on oracle query E(P). To be-
gin, note that Game X never de�nes the value of E(P) unless it has received P
as a query. So since A never repeats queries (see the assumptions just following
the theorem statement) E(P) must be unde�ned at the time of query P . Conse-

quently, at the time of query P , bFk�(P � k�1) will be de�ned i� Fk�(P � k�1) is

de�ned, and bFk�(P � k�1) = F (P � k�1). Case 1a. When bFk�(P � k�1) is de�ned,

then Game X returns the value of C = bFk�(P � k�1) � k�2 . In this case, setting

E(P) = C leaves bFk� unchanged. Case 1b. When bFk�(P � k�1) is unde�ned, then
C is repeatedly chosen uniformly from Range(E) until F�1

k� (C � k�2) is unde�ned.

By the de�nition of bFk� it follows that y = C � k�2 is uniformly distributed over

Range(bFk�). In this case, setting E(P) = C sets bFk�(P � k�1) = y.
Now compare the above with Game X 0 on query E(P). When Fk�(P � k�1)

is de�ned, then C = Fk�(P � k�1) � k�2 is returned and no function values are
set. When Fk�(P � k�1) is unde�ned, y is chosen uniformly from Range(Fk�),

Fk�(P � k�1) is set to y (and implicitly bFk�(P � k�1) is set to y), and C = y � k�2
is returned. Thus, the behavior of Game X 0 on query E(P) is identical to the
behavior of Game X on query E(P).

Case 2. We will be somewhat briefer with our analyses of the F�(�) and F
�1
� (�)

oracles, which are similar to the analysis above. Case 2a. On oracle query Fk(x),
when k 6= k� then the behavior of Game X is clearly identical to Game X 0. Case
2b. When k = k� then Fk�(x) is de�ned i� a query of the form E(x � k�1) has

been made. This holds i� bFk�(x) is de�ned (since Fk�(x) would not have been
queried before). By a straightforward argument the value y returned from the

query F (x) will then be y = E(x � k�1) � k�2 = bFk�(x) in both games. Case

2c. When bFk�(x) is unde�ned, then in both games y is uniformly chosen from

Range(bFk�) and bFk�(x) is de�ned to be y. Thus, in all cases, Game X behaves
identically to Game X 0.

Case 3. Finally, on oracle query F�1
k (y), the case k 6= k� is again trivial. When

k = k�, then bF�1
k� (y) will be de�ned i� E�1(y � k�2) is de�ned, in which case

x = E�1(y � k�2) � k�1 = bF�1
k� (y) in both games. When bF�1

k� (y) is unde�ned,

then in both games x is chosen uniformly from Dom(bFk�) and bFk�(x) is de�ned
to be y. Again, Game X behaves identically to Game X 0.

This article was processed using the LATEX macro package with LLNCS style

