
Protecting Routing Infrastructures from Denial of Service Using

Cooperative Intrusion Detection

Steven Cheung

Department of Computer Science

University of California

Davis, CA 95616

cheung@cs.ucdavis.edu

Karl N. Levitt

Department of Computer Science

University of California

Davis, CA 95616

levitt@cs.ucdavis.edu

Abstract

We present a solution to the denial of service prob-
lem for routing infrastructures. When a network
su�ers from denial of service, packets cannot reach
their destinations. Existing routing protocols are
not well-equipped to deal with denial of service;
a misbehaving router|which may be caused by
software/hardware faults, miscon�guration, or ma-
licious attacks|may be able to disable entire net-
works. To protect network infrastructures from
routers that incorrectly drop packets and misroute
packets, we hypothesize failure models for routers
and present protocols that detect and respond to
those misbehaving routers. Based on realistic as-
sumptions, we prove that our protocols have the fol-
lowing properties: (1) A well-behaved router never
incorrectly claims another router as a misbehaving
router; (2) If a network has misbehaving routers,
one or more of them can be located; (3) Misbehav-
ing routers will eventually be removed.

1 Introduction

Through a myriad of applications, including elec-
tronic mail, WWW, and electronic commerce, com-
puter networks play an increasingly important role.
Most of the existing network security work concerns

0DRAFT: To appear in Proc. New Security Paradigms
Workshop, Cumbria, UK, September 23-26, 1997.

con�dentiality, data integrity, user authentication,
and non-repudiation, typically as associated with
hosts. Until recently, very little attention was given
to securing routing infrastructures. By routing in-
frastructures, we refer to routers and routing pro-
tocols. Denial of service for the routing infrastruc-
tures may be caused by natural faults as well as by
malicious attacks. Because disabling a network can
have a huge impact (e.g., time-critical information
cannot be communicated) on a large scale, networks
are inviting targets for sabotage.

We use a detection-response (i.e., an expansive
view of intrusion detection) approach to protect
networks from denial of service. In our approach,
routers cooperatively diagnose each other to detect,
locate, and respond to misbehaving routers. The
idea of system diagnosis is not new; Preparata's,
Metze's, and Chien's seminal paper [19] proposed a
framework for automated system diagnosis. Our
contribution is on designing tests speci�cally for
router diagnosis and proving their detection and re-
sponse properties. In simple terms, a testing router
A sends a packet to a tested router B and veri�es
B's behavior against its expected behavior. The
veri�cation problem includes two sub-problems: de-
termining B's expected behavior and determining
B's actual behavior.

In a network that uses a dynamic routing pro-
tocol, B's behavior depends on the current state
of the network. Moreover, A and B may not al-
ways share the same view of the state. Thus A
may not always know the expected behavior of B.
We argue that by concentrating on certain types of
routing protocols (e.g., in link state routing, unlike
distance vector routing, a router propagates rout-
ing updates to its neighbors as soon as it receives

them) and careful test assignments (e.g., choosing
the tester A to be a direct neighbor of the tested
B), A and B can see the same network state most
of the time. (We will further justify this point in
Section 8.) These approximations seem to be nec-
essary because of the impossibility of constructing
global states of distributed systems.

This paper assumes that A can determine the
expected behavior of B and focuses on the second
sub-problem (i.e., determiningB's actual behavior).
There are two basic ways to choose \test" packets|
normal tra�c or packets created speci�cally to test
B. As we will see later, these two strategies give
rise to di�erent diagnosis techniques, both of which
we consider. If A generates its packets to test B,
a major issue is what packets A should generate to
uncover the bad behavior of B, if any. Solutions
may not exist in all cases. If we assume the worst-
case scenario in which B could distinguish ordinary
packets from those test packets, B could misbehave
only on ordinary packets to avoid being detected.
(This motivates us to use normal tra�c to diag-
nose a router, which will be discussed in Section 7.)
To further complicate the problem, unless the path
traversed by a test packet avoids routers other than
A and B. The tester A may need to collaborate
with other routers and depend on their reports to
diagnose B. (Section 6 discusses a technique on
choosing a tester and a test packet that avoids us-
ing a third router for the diagnosis.) Using multi-
ple routers to test a router gives rise to additional
issues. First, if A uses reports from mischievous
routers for its analysis, it may incorrectly deduce
that B is a misbehaving router or that B is a good
router. Second, the set of testing routers need to
communicate without being a�ected by the pres-
ence of misbehaving routers in the network.

Router diagnosis seems to be very expensive if
we assume the worst-case adversary. We �nd that
there are special cases that have practical signif-
icance and are indeed solvable without incurring
substantial overhead. We develop failure models
that characterize the behavior and the \strength"
of misbehaving routers. For example, we assign
routers that misbehave permanently and those that
misbehave intermittently to di�erent failure classes,
with the former being a subclass of the latter. Based
on these models, we design distributed diagnosis
protocols that detect and logically remove misbe-
having routers. Once misbehaving routers are lo-
cated, the other routers respond by recon�guring

the network to restore its operational status. It is
essential that misbehaving routers cannot misuse
the network recon�guration capability to give them-
selves additional power to disable the network. Our
protocols solve the misuse problem by only allow-
ing a router to disconnect itself from its neighbors,
which misbehaving routers can emulate by drop-
ping or misrouting packets, yet guarantee that all
misbehaving routers will eventually be removed.
The outline of this paper is as follows: Section 2

presents some denial of service examples for com-
puter networks. Section 3 reviews related work on
securing routing protocols and routers, and on in-
trusion detection. Section 4 describes our system
model and failure models for routers. Section 5
presents our overall approach for diagnosing routers
and the desirable properties of diagnosis protocols.
Sections 6 and 7 detail our techniques and proto-
cols for misbehaving-router detection and present
how automated response can be carried out to logi-
cally remove those routers, thus restoring the oper-
ational status of the networks. Section 8 concludes
the paper and discusses the limitations of our work.

2 Examples of Routing In-

frastructure Failures

In this section, we describe three denial of service
examples related to routers and routing protocols.
They are the 1980 ARPANET collapse, \black hole"
routers, and routers that misroute packets.
In the 1980 ARPANET collapse [20], the source of

the problemwas mainly due to a faulty router which
generated a sequence of bad control packets. The
sequence numbers of these control packets were or-
dered such that one was \fresher" than another and
thus formed a cycle. Because those control packets
received a higher priority than the data packets, the
routers in the ARPANET spent most of their time
handling these routing updates. Thus the network
was unavailable for hours. This particular problem
was �xed, but other similar problems might still ex-
ist. Finn's comments [5] on the ARPANET incident
are as follows:

\It is clear that many such update se-
quences can be found. This occurred en-
tirely by accident, from an unlikely set of
circumstances. Network designers did not
consider it a serious possibility. However,

a malicious router could easily create this
situation and halt the network. Such an
attack would be extremely damaging, dif-
�cult to prevent, and di�cult to correct
once it occurred."

Routers exchange control packets to reect
changes, such as topology changes, in a network.
A black hole router (e.g., [5]) sends out routing up-
dates claiming that it is on zero-cost (or low-cost)
paths to all destinations and then proceeds to drop
the packets that it receives. In shortest-path-based
routing protocols, the most common kind of rout-
ing protocols, routers in the neighborhood of a black
hole router will direct (some of) their network traf-
�c to the black hole. Figure 1 depicts a black hole
router. The black hole problem has occurred in op-
erational networks and can cause a widespread de-
nial of service.

trash bin misrouting
router

black hole

router

m

m bb

destination

Figure 1: Black Hole Routers and Misrouting
Routers.

Ideally, routers cooperate with each other to de-
liver the packets to their destinations. However, if
the routers make their routing decisions based on
di�erent views of the state of the network, rout-
ing loops may be formed and the packets caught
in them may never reach their destinations. Tem-
porary routing loops occur naturally, say when a
link goes down, and solutions have been proposed
to deal with them (e.g., [3]). Permanent routing
loops or misrouting by a malicious router, depicted
in Figure 1, are more serious problems. In an IP
network, packets have a time-to-live (TTL) �eld,
which guarantees a packet will not stay in the net-
work forever. Hence routing loops and misrouting
can cause packets to be dropped.
The �rst example belongs to a family of prob-

lems in which routers receive a lot of high prior-
ity control packets originating from a router, and
the routers spend a signi�cant portion of their time

processing those packets. This type of problems
is easy to detect and excessive control packets can
usually be dropped. The second example (i.e., black
hole routers) and the third example (i.e., misrout-
ing routers) are di�cult to counter. We will model
these two types of failures and present diagnosis
protocols to detect and to respond to them.

3 Related Work

Many existing routing protocols are not very se-
cure. For example, sending plain-text passwords
in the clear is the only authentication method cur-
rently de�ned to protect routing update packets in
RIP version 2 [10]. For OSPF version 2 [14], the
OSPF standard de�nes a cryptographic authentica-
tion scheme in addition to a simple plain-text pass-
word scheme. However, in that cryptographic au-
thentication scheme, routers on a network/subnet
use a secret shared key to authenticate routing pro-
tocol packets. Thus the cryptographic authenti-
cation scheme does not o�er adequate protection
against some misbehaving routers. Perlman [17, 18]
presents a scheme for public-key distribution and
for protecting link state updates by means of digital
signatures. Finn [5] discusses using public-key and
secret-key routing update authentication in general
and proposes a secure routing protocol. Kumar and
Crowcroft [8] propose a design to secure IDPR, an
inter-domain routing protocol. Murphy and Badger
[16] propose a design to incorporate public-key dis-
tribution and signing link state updates in OSPF.
Using strong authentication methods on routing in-
formation does not solve all the problems. If a
router is faulty or compromised, it may send out
erroneous but authentic routing control packets.
Thus when we remotely download router software
to routers or con�gure routers, we need to use se-
cure remote access protocols. Finn's report [5] is a
good source of background information on the vul-
nerabilities of computer networks.

Intrusion detection (e.g., [4, 6, 9, 15]) is a retro�t
approach to improve the security of computer sys-
tems and networks. Intrusion detection systems de-
tect and possibly respond to policy violations. A
fundamental assumption of intrusion detection is
that we have to live with existing systems and net-
work infrastructures. Thus changes to them should
be kept at a minimumwhen we improve their secu-
rity. It is impractical to assume that we will replace

the existing (insecure) computer and network sys-
tems by secure systems in the near future because
of the huge costs and the di�culties in building a
useful yet perfectly secure system. Designing and
deploying secure systems and protocols are impor-
tant; we should do everything we can to prevent
accidents and attacks. We view intrusion detection
as the second line of defense. To the best of our
knowledge, no work has been published on intru-
sion detection in routing infrastructures. Moreover,
very little intrusion detection work has been done
on detecting denial of service attacks [1].

4 Our Model

A network is modeled by a directed graph G =
(V;E). Vertices represent routers and edges repre-
sent communication channels, which may be point-
to-point links or networks attached to more than
one router. Note that we do not model hosts that
are not routers. If a source host cannot send a
packet directly to the destination host, the source
will send the packet to a router. We call this router
the source router. When a router receives a packet,
it will send the packet directly to the destination
host if it can; otherwise, it will forward the packet to
another router \closer" to the destination host. We
call the router that delivers the packet to the desti-
nation host the destination router. A packet gener-
ated by a host is represented by a packet generated
by the source router. That packet is called a source
packet with respect to the source router. Moreover,
a packet destined for a host is represented by a
packet destined for the destination router. That
packet is called a destination packet with respect
to the destination router. Packets processed by a
router that are neither source packets nor destina-
tion packets of the router are called transit packets
with respect to that router.
We make the following network assumptions. As-

sumptions 1, 2, and 3 are used to ensure that a
testing router knows the expected behavior of the
tested routers. Note that Assumptions 1 and 2 can
be realized by using link-state routing1. We will

1In link-state routing, a router periodically computes the
cost (e.g., delay) to each of its neighboring routers and gen-
erates an update packet that contains its own identity and
the costs to neighboring routers. The update packet is then
distributed to all other routers by ooding. Each router col-
lects the update packets from all other routers, constructs
the shortest path tree with itself as the root, and updates

justify Assumption 1 in Section 8.

Assumption 1 (Shared Views on Network
States) Neighboring routers share the same map
that shows how routers are connected and the cost
of the communication links.

Assumption 2 (Shortest-path Routing) A
router always chooses the shortest path to route a
packet to its destination.

Assumption 3 (Bidirectional Channels)
8i; j 2 V , (i; j) 2 E) (j; i) 2 E. In other words,
neighboring routers can send packets directly to each
other.

Traditionally, security research works on the
worst-case assumption that an adversary has un-
limited power. Solutions developed under that as-
sumption, if they exist at all, may be impractical
to use [12]. In reality, some failures may be less
likely to occur than others. For example, many
router failures are caused by accidents. Another
example is that an attacker may be able to change
the routing table of a router but not the router
software. Modifying the router software may re-
quire detailed knowledge about the routing proto-
col and the router's operating system and access
to the (possibly proprietary) source code. In the
rest of this section, we present failure models for
routers by characterizing the behaviors of an adver-
sary. Enumerating failure models allows us to study
the problems and develop solutions for them.
We de�ne a network sink as a router that drops

(some of) its transit packets. A black hole is a
network sink that also sends out routing adver-
tisements claiming it can reach certain destinations
with costs lower than that it should advertise ac-
cording to the routing protocol speci�cation. We
de�ne a misrouting router as a router that for-
wards a transit packet to a router other than the
one on the shortest path to the destination router.
A router that exhibits network sink or misrout-
ing behavior is called a bad router; otherwise, it is
called a good router. Bad routers may be caused by
software/hardware faults, miscon�guration, or ma-
licious attacks. We make the following assumption
about good routers.

its own routing table. Examples of link-state routing pro-
tocols are Open Shortest Path First (OSPF)[14], IS-IS[7], a
proprietary protocol used in the Internet core system known
as SPREAD, and a proprietary routing protocol used in the
ARPANET[11].

Assumption 4 (Existence and Connectivity
of Good Routers) There exists at least one good
router in the network. Good routers are connected
via good routers. In other words, bad routers do not
partition the network.

We present two independent ways to classify bad
routers with the property that a stronger class is a
subset of a weaker class. Thus any solution for a
weaker class is also applicable to a stronger class.
Note that a bad router from a weaker class is usually
harder to detect than one from a stronger class. Our
classi�cations are depicted in Figure 2. The �rst

Almost permanent

Intermittent

Probabilistic

Content-aware

Address-aware

IndifferentPermanent

Figure 2: Classi�cations of Bad Routers.

classi�cation concerns the timing when bad routers
misbehave, and the second classi�cation addresses
on what packets bad routers misbehave. In the
�rst classi�cation, the classes are permanent, almost
permanent, probabilistic and intermittent. A per-
manently bad router exhibits the anomalous (i.e.,
network sink or misrouting) behavior all the time.
An almost permanently bad router is like a per-
manently bad router, except when it sees explicit
control packets that correspond to diagnosis which
will reveal its anomalous behavior, it may behave
like a good router. After the diagnosis is over, it
may switch back to the bad-router mode. The pur-
pose for the almost permanent class is to model how
a bad router can \trick" a diagnosing router. For
every transit packet, a probabilistic bad router ex-
hibits the anomalous behavior with a certain prob-
ability. An intermittently bad router may not ex-
hibit the anomalous behavior consistently but mis-
behaves in�nitely often2. \Permanent" is weaker

2Routers that misbehave only once or a small number
of times are usually not very harmful. In fact, virtually all
existing routing protocols support best-e�ort delivery only;
there is no guarantee that all packets can reach their desti-

than both \almost permanent" and \probabilistic".
\Almost permanent" and \probabilistic" are in turn
weaker than \Intermittent".
In the second classi�cation, the classes, from the

strongest to the weakest, use the following cri-
teria to drop or to misroute packets: all pack-
ets, the values of source or destination attributes3

that satisfy certain conditions, and the contents
of entire packets, which include the values of the
source/destination attributes and the packet pay-
load, that satisfy certain conditions. Those classes
are called indi�erent, address-aware, and content-
aware respectively. In our de�nition, the \address-
aware" class includes the \indi�erent" class; an in-
di�erent bad router is a special case of address-
aware bad routers in that it does not use the ad-
dress information. Similarly, an address-aware bad
router is a special case of content-aware bad routers.
For example, an address-aware bad router may act
on packets sent by a certain organization and a
content-aware bad router may act on packets that
contain certain keywords in their payload.

5 Our Approach

In our approach, routers diagnose each other to
identify the bad routers. Preparata, Metze, and
Chien (PMC) [19] proposed a framework for this
kind of diagnosis. (Barborak, et al.'s paper [2] sur-
veys work that [19] has initiated.) Preparata, et
al. modeled a system equipped with automatic fault
diagnosis in which system components can test each
other to detect and to locate faulty components.
After a component applies a test to another com-
ponent, the tester will know if the tested component
is fault-free or faulty. Permanent faults and perfect
test coverage4 are assumed. In the PMC model, a
centralized supervisor is used to collect and analyze
all the test results and determine which components
are faulty. Note that the test results from a faulty
component may be unreliable. The PMC model is

nations. Bad routers that misbehave only once or a �nite
number of times may still be detected by a good router us-
ing the protocol presented in Section 7; however, we cannot
guarantee that the protocol can completely disconnect a bad
router in this case because that may require multiple rounds
of diagnosis and recon�guration.

3For IP networks, the attributes for a source or a destina-
tion are an IP address and a port number. Standard services
are usually associated with well-known port numbers.

4A fault-free tester can always determine accurately the
state of a tested component.

a starting point for our work, but we need a more
realistic model in the context of routing infrastruc-
tures.

There are two main issues in our approach. First,
given a failure model, we need to design tests that
can reveal the anomalous behaviors of bad routers.
Second, we need to determine how to carry out the
diagnosis. In the PMC model, test assignments
are designed assuming that a component can test
any other component directly. However, we need
to consider the topology of the underlying physical
communication network in router diagnosis|how
routers can communicate/coordinate with or test
each other without being a�ected by the presence of
bad routers. Sections 6 and 7 present two di�erent
techniques for detecting network sinks and misrout-
ing routers, namely distributed probing and ow
analysis, and discuss how to perform automated
response to recon�gure the network so as to logi-
cally remove the bad routers. Distributed probing
assumes a more benign bad router model and has
a lower cost. Moreover, it works well even if multi-
ple bad routers exist simultaneously. Flow analysis
works on a more malicious bad router model; how-
ever, it is more expensive because it requires the
routers to monitor every transit packet. Our di-
agnosis protocols are distributed in nature and do
not assume a centralized analyzer that gathers and
analyses the test results, which may become a single
point of failure.

Assuming that testing routers can determine the
expected behavior of tested routers and that well-
behaved routers do not drop or misroute transit
packets, we use the following criteria|the �rst two
concern detection and the third concerns response|
to evaluate our diagnosis protocols:

� Soundness: If a router is diagnosed as a bad
router by good routers, the router is a bad
router.

� Completeness: If there are bad routers in the
network that have misbehaved, our diagnosis
routine can locate at least one of them at a
time.

� Responsiveness: Eventually, all bad routers
in the network will be identi�ed and logically
removed, and the good routers will still be con-
nected.

6 Distributed Probing

In distributed probing, a router diagnoses its neigh-
boring routers by sending them directly (i.e., with-
out passing through intermediate routers) a test
packet whose destination router is the tester itself.
Based on whether a tester can get back the test
packet within a certain time interval5, the tester
can deduce the goodness of the tested router. Note
that this test is not applicable for all neighboring
router pairs, but we will show that there are enough
of them to meet the soundness, the completeness,
and the responsiveness criteria. If the shortest path
from the tested router to the tester involves other
intermediate routers, the fact that the test packet
cannot reach the tester does not necessarily mean
the tested router is bad.
Distributed probing is applicable to detecting

network sinks and misrouting routers that cause de-
nial of service|that is, the misrouted packets can-
not reach their destinations. In this section, we
will present two protocols that detect two di�er-
ent classes of bad routers. The �rst protocol works
for almost permanent, indi�erent bad routers. The
second protocol works for almost permanent bad
routers that are source-address-aware and payload-
aware. Before we present our protocols, we will de-
�ne our notation and state additional assumptions
that are speci�c to distributed probing.
Recall that a network is modeled by a directed

graph G = (V;E) where vertices denote routers
and edges denote communication channels. Let
e = (i; j) 2 E be an edge that goes from ver-
tex i to vertex j. The cost of e is denoted by
cost(i; j) or cost(e). Note that our de�nition al-
lows cost(i; j) 6= cost(j; i) to model asymmetric cost
metrices. An edge (i; j) 2 E is called testable if
cost(j; i) is strictly less than the cost of any other
path from j to i in G, where the cost of a path
is the sum of the costs of all edges on the path.
We use Assumption 1 to ensure that i and j see
the same network state. The notion of testable
edges characterizes the edges useful to distributed
probing. Consider a network, depicted in Figure 3,
that has three routers, namely a, b, and c. We de-
note cost(b; c), cost(b; a), and cost(a; c) by c1, c2,
and c3 respectively. The edge (c; b) is testable if
c1 < (c2+c3). If (c; b) is testable and router c sends
a packet p whose destination is c itself to b, then

5The time interval is set as an upper bound of the round-
trip time between the testing router and the tested neighbor.

2c 3c

1c

p
b c

a

Figure 3: Testable Edges.

p will return to c if and only if b does not misbe-
have on p. For i 2 V , N (i) = fj j (i; j) 2 Eg
denotes the set of neighbors of vertex i. For S � V ,
N (S) = fj 62 S j (i; j) 2 E ^ i 2 Sg denotes the set
of neighbors of S, a set of vertices. If the context
is clear, we sometimes use i, i 2 V , to refer to the
router represented by vertex i.

Assumption 5 (Positive-Cost Edges) 8e 2 E,
cost(e) > 0.

Assumption 6 (Pairwise Private Addresses)
For all i 2 V and j 2 N (i), i has an address that
i can, but j cannot, reach without using any inter-
mediate routers6. We call this address the pairwise
private address of vertex i with respect to vertex j
and denote it by paddrj(i). This requirement en-
sures that a testing router can generate a packet
whose destination is the testing router itself and the
packet is a transit packet for the tested router.

Protocol 1 (Autonomous Distributed Prob-
ing)
8i 2 V , vertex i executes the following at random
times7:

For each j 2 N (i) such that (i; j) is testable
Send a packet whose destination is

paddrj(i), say p, to j via (i; j);
If p does not return to i
Then i ceases its neighbor relationship with

6If necessary, we may assign an unused address to a router
interface to realize this requirement.

7The protocol is executed at random times to assure a
tester does not reveal its testing mode.

j8 (i.e., i thinks j is bad)
Else i does nothing (i.e., i thinks j is good)

Lemma 1 Given that bad routers are almost per-
manent and indi�erent, Protocol 1 is sound.

Proof: Because Protocol 1 does not use any con-
trol packets, it is applicable to diagnosing almost
permanently bad routers. The soundness of the pro-
tocol follows from the de�nition of testable edges.
2

Lemma 2 Given that bad routers are almost per-
manent and indi�erent, Protocol 1 is complete.

Proof: Consider a maximal connected compo-
nent of bad routers in G. We denote the set of
those bad routers by B. If N (B) is empty, then
by Assumptions 3 and 4 the bad routers are dis-
connected from the network. Otherwise, we claim
that at least one vertex in N (B), the set of good
neighbors of B, has a testable edge to a vertex in
B. On the contrary, we assume that none of the
vertices in N (B) has a testable edge to a vertex
in B. Let BN = f(x; y) j x 2 B ^ y 2 N (B)g,
the set of edges incident to a vertex in B and a
vertex in N (B). Moreover, let (b; n) 2 BN be
an edge such that 8e 2 BN; cost(b; n) � cost(e).
Because we assume (n; b) is not testable, there ex-
ists a multi-edge path P = (b ! ::: ! n) such
that cost(P) � cost(b; n). Thus, by Assumption 5,
9e 2 BN such that cost(b; n) > cost(e), which con-
tradicts the choice of (b; n). 2

Lemma 3 Given that bad routers are almost per-
manent and indi�erent, Protocol 1 is responsive.

Proof: Lemma 2 proves that at least one of the
bad routers, say b, will be located by a good router,
say g. Then, by Protocol 1, g will cease its neighbor-
hood relationship with b. Recall that we assume the
good routers are connected in G. The new graph
G0 = (V;E0) where E0 = E � f(b; g); (g; b)g has all
the good routers remaining connected. Note that
bad routers disconnecting themselves from their
neighbors, no matter good or bad, does not af-
fect the result. Thus running Protocol 1 continu-
ously will eventually remove all the edges between
a good router and a bad router, yet maintaining
good routers connected. 2

8Broadcasting neighbor relationship changes can be done
by ooding, the procedure used by link state protocols to
distribute routing updates.

Theorem 1 Given that bad routers are almost per-
manent and indi�erent, Protocol 1 is sound, com-
plete, and responsive.

Proof: The proof follows from Lemma 1,
Lemma 2, and Lemma 3. 2
Protocol 1 can be modi�ed to cope with perma-

nently bad routers that are source-address-aware
and payload-aware. A fresh and authenticated9 di-
agnosis request that contains the values of source
attributes and payload can be distributed to all
routers by ooding. Then the routers will use those
values to construct their test packets. However,
the request may alert the bad routers about the
upcoming diagnosis. Thus the ooding of that di-
agnosis request disquali�es the protocol for detect-
ing almost permanently bad routers. In the follow-
ing, we present another modi�cation to Protocol 1,
which we call source-initiated distributed probing,
that (almost) avoids the problem of alerting bad
routers about the diagnosis.
In source-initiated distributed probing, a fresh and

authenticated start diagnosis request that contains
an identi�er, id, and the values of source attributes
and payload is sent to a router, say r. The protocol
assumes that r is a good router. For example, we
can choose the source router with respect to the val-
ues of source attributes as r. If a host �nds out its
packets cannot reach their destinations, it can send
a request that contains the information about those
packets, which can be used to construct a diagnosis
packet, to the source router r. Note that in Proto-
col 2, a router forwards a start diagnosis request to
a neighbor only after that neighbor is diagnosed to
be a good router. Thus routers will not be alerted
about the diagnosis before they are judged to be
good routers unless r is a bad router. To stop the
diagnosis, an authenticated quit diagnosis request
that contains id will be sent to all routers.

Protocol 2 (Source-initiated Distributed
Probing)
8i 2 V , if i receives a fresh and authenticated start
request, sr, that contains the values for source at-
tributes, s, and the payload, l, then i executes the
following at random times:

If i receives the authenticated quit request qr

9The message authentication requirements for our diag-
nosis protocols are the same as those for link state routing
protocols. Thus one may use the digital signature schemes
proposed by Perlman[17, 18] and Murphy and Badger[16] to
authenticate the diagnosis control messages.

Then i forwards qr to all neighbors to which i
has sent the corresponding sr;
i quits the diagnosis;

For each j 2 N (i) such that (i; j) is testable
Send a packet p whose source is s,

destination is paddrj(i), and payload is
l, to j via (i; j);

If p does not return to i
Then i ceases its neighbor relationship with

j (i.e., i thinks j is bad)
ElseIf i has not forwarded sr to j, do so

(i.e., i thinks j is good)

Lemma 4 Given that bad routers are almost per-
manent and source-address- and payload-aware, and
the �rst router chosen to initiate the diagnosis is
good, Protocol 2 is complete.

Proof: Let r be the router chosen to initiate
the diagnosis and KG be the set of known \good"
routers. KG is initialized to frg. We will prove
the completeness of Protocol 2 by induction on the
cardinality of KG.
Base case (i.e., KG = frg): Let MIN = fi 2

N (r) j 8j 2 N (r); cost(j; r) � cost(i; r)g. We claim
that r has a testable edge to every vertex in MIN ;
otherwise, by Assumption 5, it violates the de�ni-
tion of MIN . If all vertices in MIN are good,
then the new KG equals the old KG [MIN (i.e.,
the cardinality of KG is increased by at least one).
Otherwise, a bad router is located.
Induction step: Consider an arbitrary vertex g1 2

KG. Let x1 2 N (g1) � KG. If (g1; x1) is testable,
then either the new KG equals the old KG [fx1g
or x1 is diagnosed as a bad router. If (g1; x1) is not
testable, then 9g2 2 KG ^ x2 2 N (g2) �KG such
that cost(x1 ! :::x2 ! g2::: ! g1) � cost(x1; g1).
In other words, we have cost(x2; g2) < cost(x1; g1).
Again, if (g2; x2) is not testable, then we can apply
the same argument and eventually we can �nd a
testable link originating from a vertex in KG. As a
result, either the cardinality ofKG can be increased
by at least one, or a bad router can be located. 2

Theorem 2 Given that bad routers are almost per-
manent and source-address- and payload-aware, and
the �rst router chosen to initiate the diagnosis is
good, Protocol 2 is sound, complete, and responsive.

Proof: The proof follows from Lemma 4 and the
fact that the proofs of the soundness and the respon-
siveness properties are the same as those of Proto-
col 1. 2

7 Flow Analysis

Flow analysis monitors the transit packets owing
in and out of a router to detect abnormal behaviors.
For each router, the neighbors collaborate with each
other to diagnose the router. To enable robust com-
munication among the neighbors, ooding, a tech-
nique �rst proposed by Perlman [17, 18], is used.
To detect network sinks, the neighbors verify \con-
servation of transit tra�c", depicted in Figure 4, by

N2

N1

B
y2

x1

x2

y1

Nn

yn
xn

Figure 4: Conservation of Transit Tra�c:Pn

i=1 xi =
Pn

i=1 yi.

comparing the amount of transit tra�c with respect
to the tested router going in and that going out
of the router. To detect misrouting routers, they
verify that the transit packets coming out of the
tested router are correctly forwarded. Flow analy-
sis is applicable to bad routers that are intermittent
and content-aware|that is, all failure models dis-
cussed in Section 4. In this section, we will �rst
de�ne our notation, and then state additional as-
sumptions that are speci�c to ow analysis. Finally,
we will present our diagnosis protocol and prove its
properties.

For all (i; j) 2 E and k 2 fi; jg, let t(i;j)(k)
be the accumulated number of bytes of the packet

payload10 for the transit packets with respect to
both i and j sent from i to j from k's point of view11,
n(i;j)(k) be the accumulated number of bytes of the
packet payload for the packets that are transit to i
but non-transit to j sent from i to j from k's point of
view, g(i;j)(k) be the accumulated number of bytes
of the packet payload for the packets that are source
packets of i and transit to j sent from i to j from
k's point of view, and m(i;j)(j) be the accumulated
number of bytes of the packet payload for the mis-
routed transit packets with respect to i sent from i
to j from j's point of view. Figure 5 depicts t(i;j)(k),
n(i;j)(k), and g(i;j)(k), which concern packets sent
from router i to router j. A router can compute
the above counters because of the assumption that
routers know the topology of the network and the
costs of the edges (i.e., Assumption 1).

(i,j)
t (j)t (i)

(i,j)

(i,j)
g (i)

(i,j)
g (j)

(i,j)
n (i)

(i,j)
n (j)

i j

Figure 5: t(i;j)(k), n(i;j)(k), and g(i;j)(k), where k 2
fi; jg.

Assumption 7 (No Adjacent Bad Routers)
8(i; j) 2 E, i is a good router or j is a good router.

Assumption 8 (Good Routers are in the Majority)
The number of good routers > jV j=2.

Assumption 9 (Per-hopPacket Delay is Neg-
ligible) The propagation delay, the processing de-
lay, and the queueing delay per hop are negligible.

10Because of possible packet fragmentation, we use packet
payload sizes instead of packets counts. Packet fragmenta-
tion occurs because networks have di�erentmaximumpacket
sizes, also known as maximum transfer units (MTU).

11We introduce k here to detect disagreements between i

and j.

The execution of Protocol 3 is divided into
phases. In simple terms, routers checkpoint their
counters at the same time12 and then broadcast
their values via ooding to other routers. Assump-
tion 9 ensures that conservation of transit pack-
ets holds13. Based on the checkpoint messages
received, routers can decide if a router exhibits
anomalous behaviors|not sending out checkpoint
messages, sending out bogus checkpoint messages,
removing transit packets, or misrouting packets.
Protocol 3 would be simpler if we assume that the
routers' clocks are synchronized so that all good
routers can depend on their clocks to advance to
the next phase. We do not make that assump-
tion. In Protocol 3, a router waits until it receives a
\phase change" message (which we call a next phase
readymessage) from d(jV j+1)=2e routers before ad-
vancing to the next phase. Because we assume the
majority of the routers are good (Assumption 8),
at least one good router is involved in each phase
change. Bad routers cannot signi�cantly increase
or decrease the time interval between any two con-
secutive phases.

Protocol 3 (Flow Analysis)
8i 2 V , i initializes the current phase variable,
phasei, to zero. Let � be the pre-de�ned time inter-
val between consecutive phases and �ti be the local
time elapsed since the last phase started. If i has
just started, \last phase started" denotes the time
i started running the protocol. A message is called
current if its phase number equals phasei. Then i
executes the following:

Wait until (1) �ti = � or (2) d(jV j+ 1)=2e
authenticated current next phase ready
messages have been received;

Broadcast an authenticated next phase ready
message that contains phasei;

Wait until d(jV j+ 1)=2e authenticated current
next phase ready messages have been
received;

Store and then reset local counters (i.e.,

12In practice, we only require a router and its neighbors to
checkpoint at approximately the same time. Because com-
munication channels are bidirectional (Assumption 3) and
ooding is used, neighboringrouters see other routers' \phase
change" messages at roughly the same time. A bad router
could delay forwarding packets to its neighbors; however, it
can only cast suspicion on itself for not having a consistent
view with its neighbors.

13We can realize negligible per-hop packet delay by choos-
ing an appropriate �, time interval between consecutive
phases.

t(i;j)(i); t(j;i)(i); n(i;j)(i); n(j;i)(i); g(i;j)(i);
g(j;i)(i); and m(j;i)(i));

Set �ti = 0;
Broadcast an authenticated checkpoint message

to all routers that contains (1) phasei,
(2) 8j 2 N (i), t(i;j)(i), n(i;j)(i), and
g(i;j)(i), and (3) 8k 2 V such that i 2 N (k),
t(k;i)(i), n(k;i)(i), and g(k;i)(i);

For each j 2 N (i)
If j's authenticated current checkpoint

message has been received and
t(i;j)(i) = t(i;j)(j) ^ n(i;j)(i) = n(i;j)(j) ^
g(i;j)(i) = g(i;j)(j)

Then

If 8k 2 V such that k 2 N (j) or
j 2 N (k), k's authenticated current
checkpoint message has been received
and (k 2 N (j)) t(j;k)(j) = t(j;k)(k)
^ n(j;k)(j) = n(j;k)(k) ^
g(j;k)(j) = g(j;k)(k)) and
(j 2 N (k)) t(k;j)(j) = t(k;j)(k) ^
n(k;j)(j) = n(k;j)(k) ^
g(k;j)(j) = g(k;j)(k))

Then

If
P

l2fn j j2N(n)g(t(l;j)(j) + g(l;j)(j))

6=
P

l2N(j)(t(j;l)(j) + n(j;l)(j))

(i.e., conservation of transit tra�c
violated)

Then i ceases its neighbor relationship
with j;

Else do nothing (because other routers
will respond to the problem);

Else i ceases its neighbor relationship with j;
For each j 2 fn j i 2 N (n)g

If j's authenticated current checkpoint
message has not been received or
t(j;i)(i) 6= t(j;i)(j) _ n(j;i)(i) 6= n(j;i)(j) _
g(j;i)(i) 6= g(j;i)(j) _m(j;i)(i) 6= 0

Then i ceases its neighbor relationship
with j;

Set phasei = phasei + 1

Lemma 5 Given that bad routers are intermittent
and content-aware, Protocol 3 is sound.

Proof: We prove the lemma by case analysis.
First, there are three ways a router, say b, can be
diagnosed as a network sink by good routers:

� 9i 2 V , a good router, such that i 2 N (b) or
b 2 N (i) and i does not receive authenticated
current checkpoint messages from b. Because

we assume all good routers are connected, and
ooding, which takes negligible time, is used
to broadcast checkpoint data, i's not receiving
b's checkpoint data implies that b has not sent
any.

� 9i 2 V , a good router, such that (i 2 N (b) ^
(t(b;i)(i) 6= t(b;i)(b) _ n(b;i)(i) 6= n(b;i)(b) _
g(b;i)(i) 6= g(b;i)(b))) or (b 2 N (i) ^ (t(i;b)(i) 6=
t(i;b)(b) _ n(i;b)(i) 6= n(i;b)(b) _ g(i;b)(i) 6=
g(i;b)(b))) implies either b or i has lied. Thus b
must be a bad router.

�
P

k2fn j b2N(n)g(t(k;b)(b) + g(k;b)(b)) 6=
P

k2N(b)(t(b;k)(b)+n(b;k)(b)) implies b is a net-
work sink because the amount of transit tra�c
owing in b is not equal to that owing out of
b.

Note that b is diagnosed by i 2 N (b) as a misrouting
router only when m(b;i)(i) 6= 0. Hence Protocol 3 is
sound. 2

Lemma 6 Given that bad routers are intermittent
and content-aware, Protocol 3 is complete.

Proof: By performing a case analysis similar to
that of Lemma 5 together with Assumption 7, one
can show that bad routers which have misbehaved
and are connected to the network will be located
by at least one of their good neighbors in the next
phase. 2

Lemma 7 Given that bad routers are intermittent
and content-aware, Protocol 3 is responsive.

Proof: By Assumption 7 and Lemma 5, we know
that only edges incident on a good router and a
bad router are removed from E. Thus good routers
will remain connected. By Lemma 6, when a bad
router that is connected to the network misbehaves,
it will be located by a good router in the next
phase. Together with the fact that an intermittently
bad router misbehaves in�nitely often, eventually
all bad routers will be logically removed from the
network. 2

Theorem 3 Given that bad routers are intermit-
tent and content-aware, Protocol 3 is sound, com-
plete, and responsive.

Proof: The proof follows from Lemma 5,
Lemma 6, and Lemma 7. 2

8 Discussion

This paper addresses denial of service on routers
and routing protocols. We present failure models
for routers that characterize the behavior of failed
routers, which may be due to natural faults or ma-
licious attacks. Based on the failure models, we
develop techniques and protocols to detect and to
logically remove misbehaving routers from the net-
work, and prove properties of the protocols, namely
soundness, completeness, and responsiveness. Our
diagnosis protocols are designed to avoid introduc-
ing additional vulnerabilities to the routing infras-
tructures through the use of them|a bad router
cannot disconnect a good router from the rest of
the network and a bad router cannot initiate the di-
agnosis too often to make all routers spend most of
their time executing the protocol (c.f. the ow anal-
ysis protocol in Section 7). In conclusion, if there
is a path between the source and the destination on
which all routers are good, our protocols guarantee
that the network will eventually be able to deliver
packets from the source to the destination.
Our work does not solve the entire denial of ser-

vice problem of routing infrastructures. This paper
represents a �rst step to protect routing infrastruc-
tures from denial of service using an intrusion de-
tection approach. Issues not addressed include the
following:

� There are router failures not covered by our
failuremodels (c.f. the motivation of the failure
models in Section 4). For example, a compro-
mised router may modify the body of a transit
packet. Distributed probing can be adapted to
handle this problem|a router can check the in-
tegrity of test packets after they are sent back
by tested routers. However, adapting ow anal-
ysis to diagnose this kind of failures appears to
be non-trivial and is a future work item. An-
other example is that a failed router may gen-
erate spurious packets to overwhelm links or
other routers. One may impose a limit on the
amount of source packets that can be generated
by a router per unit time and have its neigh-
boring routers to verify it. Moreover, the ow
analysis technique can be used to cope with
replication of transit tra�c.

� Link failures are not modeled. Note that in our
protocols, a link failure that results in packet
loss may be viewed as a node failure. The

routers incident on the link will detect the fail-
ure and cease the neighbor relationship. Con-
sequently, the failed link will not be used.

� Our de�nition of bad routers may include be-
haviors of legitimate routers, which may lose
packets due to congestion. We may restrict our
protocols to be used in lightly loaded networks
or for network connections with reserved band-
width. To apply our protocols for a more gen-
eral setting, we may extend them by using a
threshold on how many packets a good router
can drop. To illustrate, we may incorporate the
\k-out-of-n" method in our distributed probing
protocols. A router is considered good if it can
pass k out of n tests. A related future work
is to address inter-domain issues such as policy
routing (in which routers may not use short-
est paths to route packets) and �rewalls (e.g.,
packet �lters).

� We assume that neighboring routers see the
same network state so that testable edges in
the distributed probing protocols can be deter-
mined and consistent checkpointing in the ow
analysis protocol can be performed. We ar-
gue that is a reasonable assumption. First, by
using ooding to disseminate routing updates
(as is done in link-state routing protocols) and
checkpoint packets and requiring communica-
tion channels to be bidirectional, neighboring
routers see the control packets at almost the
same time. Although a bad router could delay
forwarding those control packets, it only hurts
that bad router itself for not having a consis-
tent view among that router and its neighbors.
Second, as noted in [13], link costs are static,
independent of link load, in modern link-state
routing protocols. Thus normally link states do
not change often. To cope with the few cases
in which our assumption does not hold, again
the threshold technique can be used. For the
checkpointing problem, we can also use a longer
time interval between consecutive phases to re-
duce the impact of slightly di�erent checkpoint
times among neighboring routers. Future work
is needed to validate the practicality of the as-
sumption.

� Our models only consider transit tra�c. In
other words, packets sent by source hosts to
source routers and those sent by destination

routers to destination hosts are not addressed.
Our work is useful in containing the damage
that can be caused by a router to its source
and destination packets. A related issue is
that a router may claim that it is directly
connected to a local network, thus becoming
a source/destination router for that local net-
work. To address this problem, routers can be
given a list of potential neighbors and use it to
identify those false advertisements.

� We have not examined the diagnosis overhead
on routers in detail, but the overhead does not
seem to be excessive. For distributed probing,
a router needs to determine the testable links
from itself to its neigbhoring routers, based on
the link state updates received, and then sends
(and receives) a test packet to (and from), in
the worst case, each of its neighbors. The
overhead depends on how often the diagno-
sis is performed. For ow analysis, there are
two main sources of overhead: First, for each
transit packet, the router needs to lookup a
table, which may need to be updated when
there is a topology change, and then increments
the appropriate counter. Second, at the end
of each phase, routers broadcast an authenti-
cated packet containing the values of their local
counters and an authenticated packet to signal
that it is ready to advance to the next phase.
Then routers will verify the goodness of their
neighboring routers by computing the amount
of transit tra�c owing in and out of those
neighbors.

Acknowledgments

This research is supported by DARPA under grant
ARMY/DAAH 04-96-1-0207. We would like to
thank Che-lin Ho, Frank Jou, and our colleagues
in the Computer Security Laboratory at UC Davis
for helpful discussions. We thank Kirk Bradley and
the workshop participants for their useful comments
on this paper.

References

[1] The Fourth Workshop on Computer Misuse
and Anomaly Detection (CMAD IV), Mon-
terey, California, November 12-14, 1996.

[2] M. Barborak, M. Malek, and A. Dah-
bura, \The Consensus Problem in Fault-
Tolerant Computing." ACM Computing Sur-
veys, Vol.25, No.2, June 1993, pp.171-220.

[3] D. Comer, \Internetworking with TCP/IP."
Vol.1, Prentice Hall, 1991.

[4] D. Denning, \An Intrusion-Detection Model."
IEEE Transactions on Software Engineering,
Vol.SE-13, No.2, Feb. 1987, pp.222-232.

[5] G.G. Finn, \Reducing the Vulnerability of Dy-
namic Computer Networks," ISI Research Re-
port RR-88-201, University of Southern Cali-
fornia, June 1988.

[6] K. Ilgun, R.A. Kemmerer, and P.A. Porras,
\State Transition Analysis: A Rule-Based In-
trusion Detection Approach." IEEE Transac-
tions on Software Engineering, Vol.21, No.3,
March 1995, pp.181-199.

[7] Joint Technical Committee ISO/IEC JTC 1
Information Technology, \Intermediate System
to Intermediate System Intra-domain Route-
ing Information Exchange Protocol for Use
in Conjunction with the Connectionless-mode
Network Service (ISO 8473)," ISO/IEC 10589,
April 1992.

[8] B. Kumar, and J. Crowcroft, \Integrating
Security in Inter-domain Routing Protocols."
Computer Communication Review, Oct. 1993,
Vol.23, No.5, pp.36-51.

[9] T.F. Lunt, \A Survey of Intrusion Detection
Techniques." Computer and Security, June
1993, Vol.12, No.4, pp.405-418.

[10] G. Malkin, \RIP Version 2 | Carrying Ad-
ditional Information." RFC 1723, November
1994.

[11] J. McQuillan, I. Richer, and E. Rosen, \The
New Routing Algorithm for the ARPANET."
IEEE Transactions on Communications,
Vol.COM-28, No.5, May 1980, pp.711-719.

[12] C. Meadows, \The Need for a Failure Model for
Security", Proceedings of the 4th Conference
on Dependable Computing for Critical Applica-
tions, San Diego, California, January 4-6, 1994,
pp.383-385.

[13] J. Moy, \Link-State Routing", in M. Steen-
strup, ed., Routing in Communications Net-
works, Prentice Hall, 1995, pp.135-157.

[14] J. Moy, \OSPF Version 2." RFC 2178, July
1997.

[15] B. Mukherjee, L.T. Heberlein, and K.N. Levitt,
\Network Intrusion Detection." IEEE Net-
work, May-June 1994, Vol.8, No.3, pp.26-41.

[16] S.L. Murphy, and M.R. Badger, \Digital Sig-
nature Protection of the OSPF Routing Proto-
col", Proceedings of the Symposium on Network
and Distributed System Security (SNDSS '96),
San Diego, California, February 22-23, 1996,
pp.93-102.

[17] R. Perlman, \Network Layer Protocols with
Byzantine Robustness." Ph.D. dissertation,
Massachusetts Institute of Technology, August
1988.

[18] R. Perlman, \Interconnections: Bridges and
Routers." Addison-Wesley, 1992.

[19] F.P. Preparata, G. Metze, and R.T. Chien,
\On the Connection Assignment Problem of
Diagnosable Systems." IEEE Transactions on
Electronic Computers, Vol.EC-16, No.6, Dec.
1967, pp.848-854.

[20] E. Rosen, \Vulnerabilities of Network Control
Protocols: An Example." RFC 789, September
1981.

