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Abstract

An attractive target for a computer system attacker
is the router. An attacker in control of a router
can disrupt communication by dropping or misrout-
ing packets passing through the router. We present a
protocol called WATCHERS that detects and reacts to
routers that drop or misroute packets. WATCHERS
is based on the principle of conservation of 
ow in
a network: all data bytes sent into a node, and not
destined for that node, are expected to exit the node.
WATCHERS tracks this 
ow, and detects routers that
violate the conservation principle. We show that
WATCHERS has several advantages over existing net-
work monitoring techniques. We argue that WATCH-
ERS' impact on router performance and WATCHERS'
memory requirements are reasonable for many envi-
ronments. We demonstrate that in ideal conditions
WATCHERS makes no false-positive diagnoses. We
also describe how WATCHERS can be tuned to per-
form nearly as well in realistic conditions.
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1 Introduction

The router is a primary component in the infras-
tructure of today's Internet, and is therefore an at-
tractive target for attackers. If an attacker can gain
control of a router, the attacker can disrupt commu-
nication by dropping or misrouting packets passing
through the router. We present a protocol that detects
and reacts to routers that drop or misroute packets.

The protocol is called WATCHERS: Watching for
Anomalies in Transit Conservation: a Heuristic for
Ensuring Router Security. WATCHERS protects the
routers in an autonomous system (AS), a set of routers
and networks controlled by one administrative author-
ity. WATCHERS is distributed: each participating
router concurrently runs the WATCHERS algorithm.
Each router checks incoming packets to see if they
have been routed correctly. Also, each router counts
the data bytes that pass through neighboring routers.
Periodically, the routers report their counter values
to one another, and each router checks if any of its
neighbors have violated the principle of conservation
of 
ow. This principle asserts that all data bytes sent
into a node, and not destined for that node, are ex-
pected to exit the node. When a router �nds a neigh-
bor that violates the principle, or a neighbor that is
misrouting packets, the router stops sending packets
to that neighbor. Eventually, the bad router is e�ec-
tively removed from the network, because all of the
bad router's neighbors stop sending packets to it.

WATCHERS has four signi�cant advantages over
other network monitoring techniques:

� A network monitoring tool (e.g., traceroute [5] or
an implementation of the Simple Network Man-
agement Protocol (SNMP) [4]) may fail to detect
an attack because the attacker is able to disrupt
messages sent by the tool, including messages be-
tween separate tool components. WATCHERS



uses 
ooded transmissions (see Section 1.1) and
message authentication to prevent attackers from
interfering with communication.

� WATCHERS can detect routers that selectively
drop or misroute packets, as well as routers that
cooperate to conceal malicious behavior.

� When they detect suspicious behavior, most net-
work monitoring techniques are unable to locate
the malicious (or faulty) routers, or they are
only able to identify a list of potential suspects
[4, 5, 8, 13]. WATCHERS can identify the exact
router(s) which are dropping or misrouting pack-
ets.

� In ideal conditions we show that WATCHERS
never identi�es a good router as bad (i.e., never
makes a false-positive diagnosis). We also show
how WATCHERS can be tuned to perform nearly
as well in realistic conditions.

The rest of this section provides background in-
formation on (1) our model of an AS, (2) routing,
(3) malicious router behavior, and (4) current router
monitoring techniques and their limitations1. Section
2 presents the WATCHERS protocol. Section 3 de-
scribes future research tasks. The Appendix proves
that WATCHERS is correct: WATCHERS does not
make any false-positive diagnoses (when certain con-
ditions hold). For more details on this work, consult
the comprehensive report [3].

1.1 Our Model and Associated Terminol-
ogy

An internetwork is a group of networks connected
so that computers in di�erent networks can commu-
nicate. The networks are connected by routers. Each
communication between two computers across a net-
work (or internetwork) is divided into segments of data
called packets. When a packet must travel from one
network to another, it is sent to a router. The router
receives the packet from one network, and forwards
the packet to another network closer to the packet's
destination. Each router uses a routing table, a matrix
that indicates where to forward a packet based on the
packet's destination. Each entry in the routing table
maps a destination address to the address of the �rst
router on the shortest path to that destination.

The routers and networks in an AS comprise an
internetwork. We model an AS as a directed graph
in which nodes represent routers and edges represent
communication links. (Thus a physical link should be
represented by two edges with opposite directions. For

1Readers familiar with these topics may wish to skip to Sec-
tion 2 (our WATCHERS protocol).

clarity, though, we will often represent a link with a
single bi-directional edge.) Routers at either end of a
link are called neighbors. When a packet travels from
one computer to another, it traverses a sequence of
zero or more routers (a route). A hop is a traversal of
one link from one router to another.

A 
ooded transmission is one in which the data is
sent over every link in the network (reaching every
node). Flooding is fast and is the most robust form of
communication in a network containing faulty nodes
[13].

1.2 Routing

The routers in an AS communicate to update their
routing tables as the network topology changes accord-
ing to a routing protocol. Each router in an AS runs
the same routing protocol. Many routing protocols �t
the following description. Each router monitors the
network for topology changes (e.g., temporarily inop-
erative links) and reports changes to the other routers
in the AS via update messages. When a router re-
ceives an update message, it recomputes the shortest
path to each other router in the AS, and adjusts its
routing table accordingly.

1.3 Malicious Router Behavior

WATCHERS detects routers that drop packets
and/or misroute packets. We refer to such routers as
bad routers, and we more speci�cally refer to a router
that drop packets as a network sink. The simplest
network sink drops all packets. It behaves just like
an inoperable router, so it can be detected using ex-
isting methods (e.g., traceroute). However, an intelli-
gent network sink drops packets selectively. Some drop
packets periodically, while others drop packets based
on their content, including the source and destination
address. Still other network sinks consort with other
routers to conceal evidence of packet-dropping.

Intelligent network sinks are di�cult to detect,
since neither the source nor the destination is noti-
�ed of the location where the packet was lost. Often,
the source does not even know the route traversed by
the packet before it was lost. Thus, the source cannot
pinpoint the location of the network sink.

1.4 Current Router Monitoring Tech-
niques

Many router monitoring techniques already exist.
Here we summarize several of them and comment on
their abilities to detect bad routers.

1.4.1 Hop-by-Hop Acknowledgements

Perlman �rst proposed the idea of intermediate hop
acknowledgments [13]. Under this scheme, when a



host S sends a packet to host D, S receives an ac-
knowledgement (ACK) from D and from each router
on the path from S to D.

If a packet is dropped on the path from S to D, it
appears that the bad router must be either the �rst
router on the path which did not send an ACK to S,
or the router previous to that router in the path.

�
�������������������
��S 1 2 3 4 D

Figure 1: A path of four routers between two hosts.

However, this security mechanism can be defeated
by consorting bad routers (routers that cooperate to
hide malicious behavior) [13]. In Figure 1, suppose
router 4 drops a packet (from S and intended for D)
while router 1 covers for router 4 by dropping the ACK
from router 3. Then it appears to S that either router
2 dropped the packet (but sent an ACK) or router 3
dropped the packet (and sent no ACK). Router 1 has
shifted the blame away from router 4.

1.4.2 Protection from Packet Corruption

A router can alter a packet's contents to cause the
packet to be dropped or misrouted. For example, if
a packet's destination address is changed in transit,
that packet will be misrouted. Such alterations can be
prevented by checksums and cryptographic authenti-
cation mechanisms. However, these measures do not
protect a packet from being dropped.

A hop-by-hop checksum veri�cation has been pro-
posed [13]. The checksum is veri�ed at each router
to isolate a packet-corrupting router. This method is
both time-intensive and open to attack. The simplest
way to defeat this method is to corrupt the packet and
regenerate the checksum. Hence, it is not a realistic
solution for malicious router problems.

1.4.3 A Probing Technique

Another way to detect misbehaving routers is a prob-
ing technique based on peer testing of routers [6]. Us-
ing this strategy, a router (the testing router) can test
its peers along a suspicious route. The testing router
sends a probe to the �rst router on the route. A probe
is a packet that will follow a pre-determined path, end-
ing back at the testing router. If the probe returns, the
next probe is sent through the �rst (already-tested)
router to the second router. If this second probe re-
turns, the next probe is sent through the �rst and

second routers to the third router, and so on until a
probe does not return or the destination is reached. If
a probe does not return, the router farthest away from
the testing router along the probe path is considered
faulty or malicious.

While probing should be useful for locating faulty
routers, probing does have a weakness: A malicious
router can avoid detection if it can distinguish testing
probes from ordinary packets.

1.4.4 Network Management

A network management tool monitors the routers and
networks in an AS, and can be used to debug prob-
lems, control routing, and �nd computers that vio-
late protocol standards [4, 7]. Unfortunately, current
network management tools (e.g., implementations of
SNMP) cannot be used to monitor all of the tra�c in
a network [2, 4, 9], and therefore they cannot be used
to detect all bad routers.

1.4.5 Recording and Tracing Routes

Route recording and route tracing are often the �rst
methods used to isolate faults in routers [5]. For the
Internet Protocol (IP), route recording is optional for
each packet. When this option is selected, each router
on the path to the packet's destination appends its IP
address to a list in the packet's header. However, route
recording is a poor way to isolate malicious routers for
three reasons. First, the source and destination must
agree in advance to use the recording mechanism; if
the destination is not informed, it will disregard the
route list. Second, the list can be altered by an in-
termediate router. Third, an intermediate router can
simply drop the packet, so that the route list never
reaches the destination [7].

Route tracing is similar to probing. The main di�er-
ence is that probing tests the routers on a pre-selected
path between two hosts; route tracing identi�es and
tests the routers in the path that a packet would ac-
tually take between the hosts. Thus, route tracing re-
veals the routing decisions of the intermediate routers,
and so the method can be used to detect a router that
misroutes packets. (The traceroute program [5] is a
popular implementation of route tracing.)

Route tracing su�ers from the same limitation as
probing; a bad router might be able to identify a test
packet, and thereby avoid detection. Furthermore,
since route tracing tests one route at a time, and the
number of possible routes in an AS is often large, it
is usually impractical to use route tracing to continu-
ously monitor all the routers in AS.



To summarize, existing router monitoring tech-
niques are not adequate for detecting bad routers. In-
stead, it is necessary to monitor packet 
ow to detect
routers that drop and/or misroute packets. This is the
technique that WATCHERS implements.

However, WATCHERS will not detect all malicious
behavior in routers, because routers can misbehave in
many other ways. A router can send false topology up-
date messages that a�ect the routing tables of routers
throughout the network. Multiple problems may re-
sult, including the routing of packets to compromised
routers, sub-optimum routes through the network, and
isolated routers (i.e., routers that do not receive any
packets from their neighbors). A router may also al-
ter or inspect the packets passing through it, or inject
packets spuriously into the network. Detailed exam-
ples of other malicious router behaviors appear in ref-
erences [1] and [11].

2 The WATCHERS Protocol
This section describes the details of WATCHERS.

The goal of WATCHERS is to identify bad routers.
Section 1.3 de�nes a bad router as a router that drops
or misroutes packets; here we extend the de�nition
to include routers that refuse to participate in the
WATCHERS protocol.

2.1 Conditions

The following conditions are necessary forWATCH-
ERS to work correctly.

1. Link-State Condition: The routers must use a
link-state routing protocol. In such a protocol,
each router is aware of each other router and each
link between pairs of routers in the AS. Also, each
router periodically broadcasts an update message
to indicate which of its links to other routers are
\up" and which are \down" [7].

2. Good Neighbor Condition: Every router must be
directly connected to at least one good router.

3. Good Path Condition: Each pair of good routers
must be connected by at least one path of good
routers. From this condition and the Good Neigh-
bor Condition, it follows that when a router 
oods
a message, it reaches every good router in the AS.

4. Majority Good Condition: Good routers must be
in the majority. This condition prevents a group
of bad routers from triggering the start of a new
round of WATCHERS (see Section 2.3.1).

2.2 WATCHERS Counters

Each router maintains counters for transit tra�c
and misrouted tra�c.

2.2.1 Counting Transit Packets

Henceforth we will refer to the �rst router in a packet's
route as the packet's source, and to the last router
in a packet's route as the packet's destination. A
packet is a transit packet for a router if the packet
passes through the router, but the router is neither
the packet's source nor its destination. For any pair
of routers, we identify three types of transit packets
for each direction of tra�c. Each router counts the
number of data bytes in each transit packet, using a
separate counter for each type. Figure 2 illustrates the
three types of transit packets and the associated coun-
ters. Consider tra�c 
owing from X to Y . The TX;Y
counter refers to packets that pass through both X
and Y . The SX;Y counter refers to packets with source
X that pass through Y . The DX;Y counter refers to
packets with destination Y that pass through X . The
other three counters are similar, but for the opposite
direction of 
ow. Routers X and Y both maintain
copies of all six counters to check each other during
the WATCHERS diagnosis phase.
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Figure 2: Transit packet byte counters.

2.2.2 Counting Misrouted Packets

Each router also counts the number of times each of
its neighbors misroutes tra�c. For each neighbor X
of router Y , the counter MX;Y records the number
of times router X wrongly, with respect to the op-
timal path, forwards (misroutes) a packet to Y . To
detect such misrouting, each router maintains a copy
of each neighbor's routing table. If an M -counter
value is larger than an acceptable threshold (possi-
bly zero), then WATCHERS identi�es the associated
neighbor as a bad router during the WATCHERS di-
agnosis phase.



2.3 Communication and Diagnosis in
WATCHERS

Each router executes the WATCHERS protocol at
regular intervals; each execution of WATCHERS is a
round. In each round, each participating router in
the AS runs the protocol concurrently. Each round
has two components. First, the request, receive,
and respond sub-protocol is used to synchronize the
routers and to exchange counter values among the
routers. Second, each router runs the validation and
conservation-of-
ow algorithms to diagnose neighbor-
ing routers as good or bad.

2.3.1 Request, Receive, and Respond

A router participates in the request, receive, and
respond (RRR) sub-protocol as follows. First, the
router 
oods a synchronization message (called a re-
quest message) to indicate a desire to start a new
round of WATCHERS. Each request message includes
a digitally-signed message digest so that the receiver
can authenticate the message's source and contents.
The router then waits until it has received a request
message from a majority of the routers in the AS. Next
the router records a \snapshot" of its counter values,
and 
oods a message containing the values (called a
response message) to the other routers. Like the re-
quest messages, each response message must include a
digitally-signed message digest. Neighbors that do not
send response messages will be identi�ed as bad dur-
ing the WATCHERS diagnosis phase. When a router
has received all of the counter values it needs, it be-
gins the diagnosis phase of WATCHERS, explained in
Section 2.3.2.

Typically, a router starts executing the RRR pro-
tocol when its clock indicates that it is time to start
a new round of WATCHERS. However, a router will
also start the RRR protocol when it receives a request
message from a majority of the other routers in the
AS. Thus, a router with a malfunctioning clock can
still synchronize itself with the other routers.

2.3.2 Diagnosis

The WATCHERS diagnosis algorithm appears in Fig-
ure 3. The algorithm has two parts: validation and
conservation-of-
ow analysis.

Terminology and Concepts
A testing router is a router running the diagnosis al-
gorithm to test its neighbors (the tested routers). A
shared link is the link between a testing router and a
tested router. To test another router, a testing router

needs to use its own counters, the tested router's coun-
ters, and the counters from each of the tested router's
neighbors.

Validation
During validation, a testing router examines its neigh-
bors' counters. Each neighbor's counters for the
shared link should match the testing router's corre-
sponding counters. A discrepancy between any pair
of corresponding counters that is larger than a pre-
determined threshold (possibly zero) indicates that
the tested router is bad.

Each testing router must also check if each neigh-
bor's counters match the counters of their neighbors.
If there are discrepancies, then the testing router will
not perform the next stage of diagnosis (conservation-
of-
ow analysis) on that neighbor. Instead, the testing
router can assume that the neighbor will fail at least
one of the validation tests administered by the neigh-
bor's neighbors.

Validation cannot locate all bad routers. Validation
identi�es routers that drop packets and then change
their counters to conceal their behavior. To �nd bad
routers that drop packets but leave their counters in-
tact, we use conservation-of-
ow analysis.

Conservation-of-Flow Analysis
In the second stage of diagnosis, a testing router per-
forms conservation-of-
ow analysis on each neighbor.
For example, if router X in Figure 4 is the testing
router, it performs a test on routersA and B, its neigh-
bors. To test the 
ow through A, X needs counters
from A and each of A's neighbors: C, E, and X itself.
To test the 
ow through B, X needs counters from B,
C, F , and X itself.

Conservation-of-
ow analysis is based on a simple
principle: in any time interval, the number of data
bytes going into a router (less the number of bytes des-
tined for the router) should match the number of data
bytes that come out of the router (less the number of
bytes sourced by the router). The former quantity is
the incoming transit 
ow and the latter quantity is the
outgoing transit 
ow.

For example, suppose X , in Figure 4, wants to test
A. X can calculate the incoming transit 
ow by using
the counters for A's incoming edges (i.e., the coun-
ters tracking 
ow from routers X , C, and E). The
expression for the incoming transit 
ow (I) is:

I =
X

8N jA$N

(SN;A + TN;A)

The summation does not include DN;A, since this
counter is for data bytes destined for A.



Algorithm 1 (Diagnosis algorithm, for a given router r)
For each d 2 destinations in the AS

For each n such that r $ n
/* Local validation of r's outgoing edges */
if (n's respond message has been received and authenticated) and

(r:Tr;n[d] = n:Tr;n[d] ^ r:Sr;n[d] = n:Sr;n[d] ^ r:Dr;n[d] = n:Dr;n[d])
then

/* Compare neighbor's counters to its neighbors' counters */
if (8t 2 fxjx$ ng �

(t's respond message has been received and authenticated) and

(n:Tn;t[d] = t:Tn;t[d] ^ n:Sn;t[d] = t:Sn;t[d] ^ n:Dn;t[d] = t:Dn;t[d]) and

(n:Tt;n[d] = t:Tt;n[d] ^ n:St;n[d] = t:St;n[d] ^ n:Dt;n[d] = t:Dt;n[d]))
then

/* Conservation-of-
ow analysis */
if
P

8tjt$n(n:Tt;n[d]; n:St;n[d]) 6=
P

8tjt$n(n:Tn;t[d]; n:Dn;t[d])
then r diagnoses n as bad;

else do nothing (other routers will diagnose the problem);
else r diagnoses n as bad;

end

For each n such that r $ n
/* Local validation of r's incoming edges */
if (n's respond message has NOT been received and authenticated) or (r:Mn;r 6= 0) or

(r:Tn;r[d] 6= n:Tn;r[d] _ r:Sn;r[d] 6= n:Sn;r[d] _ r:Dn;r[d] 6= n:Dn;r[d])
then

r diagnoses n as bad;
end

end

Figure 3: WATCHERS Diagnosis algorithm. (Note: The character before the dot in each counter reference
identi�es the counter's owner.)

Similarly, the expression for the outgoing transit

ow (O) is:

O =
X

8N jA$N

(DA;N + TA;N)

The counters needed to compute the incoming tran-
sit 
ow and the outgoing transit 
ow are illustrated in
Figure 5. Now, to test A for conservation of 
ow, X
simply compares A's incoming transit 
ow to its out-
going transit 
ow:

if jI �Oj > threshold
then X diagnoses A as a network sink.

2.3.3 Destination-Speci�c Counters

The counters described in Section 2.2.1 have one prob-
lem: they do not provide enough information to detect
consorting routers (see Section 1.4.1).

Testing
Router

Tested
Router

Tested
Router

X

E

G

F

A

B

C

Figure 4: A sample router con�guration labeled ac-
cording to testing terminology.
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Figure 5: Incoming transit 
ow vs. outgoing transit

ow: X testing A from Figure 4.

For example, suppose that routers 3 and 4 in Figure
6 are consorting to drop packets. Assume that the
correct route from A to B is A �! 1 �! 3 �! 4 �!
B. However, when A sends a packet to B, the packet
travels through routers 1 and 3 (correctly), but then
router 4 drops the packet instead of forwarding it to
B.

Routers 3 and 4 can hide this attack by increment-
ing their D3;4 counters (instead of their T3;4 counters)
when the packet reaches router 4. Then conservation-
of-
ow analysis will not detect the attack.
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Figure 6: A sample router con�guration.

To solve this problem, we need to increase the log-
ging requirements. Instead of two S counters and two
T counters per neighbor, each router must maintain
two S counters and two T counters per neighbor per
destination. For example, given Figure 6, suppose that
a packet travels from router A to router B along this
route: A �! 2 �! 3 �! 5 �! B. When router
2 sends the packet to router 3, both routers 2 and 3
should increment their T2;3[B] counters. The T2;3[B]
counter is for packets with destination B that pass
through router 2 and then pass through router 3.

Then, instead of one conservation-of-
ow check per

neighbor, each router must perform one check per
neighbor per destination. The 
ow of data bytes with
a particular destination into a router must match the

ow of data bytes with that same destination out of
the router.

Consider the attack example again, in which router
A sends a packet to router B, and the correct packet
route is A �! 1 �! 3 �! 4 �! B. When router 1
sends the packet to router 3, both routers must incre-
ment their T1;3[B] counters. When router 3 forwards
the packet to router 4, router 4 drops the packet, and
both routers 3 and 4 increment their D3;4 counters to
attempt to hide the attack. However, when router 1
checks the 
ow of data bytes with destination B into
and out of router 3, it will �nd less data bytes com-
ing out than went in. Thus, using this new strategy,
router 1 can detect router 3's bad behavior.

The ability to detect such an attack by consorting
routers is an improvement over the conservation-of-

ow analysis technique as it �rst appeared in reference
[6].

2.4 Response

During a round of WATCHERS, a testing router
can diagnose a neighbor as a bad router for four rea-
sons:

1. the testing router did not receive a response mes-
sage from the neighbor during the RRR sub-
protocol;

2. the neighbor misrouted a packet;

3. the neighbor failed the validation test; or

4. the neighbor failed the conservation-of-
ow test.

For all four cases, the testing router takes the same
actions. It 
oods a routing update advertising the
shared link as down (inoperable), which signals the
other routers in the AS to remove that link from their
network maps. (The bad router may continue to ad-
vertise the link as up. However, in at least one link-
state routing protocol, the Open Shortest Path First
protocol, when two neighbors advertise con
icting in-
formation about the status of their shared link, the
other routers treat the link as down [12].) Also, the
testing router ceases to send packets along that link,
and acknowledge tra�c received on that link. After all
of a bad router's neighbors take these steps, then the
bad router is logically disconnected from the network.

2.5 Thresholds

Ideally, the transit counters of neighboring good
routers should match perfectly, and for each good
router the corresponding misrouting counter values



should be zero. In practice, though, the counter values
are likely to be di�erent than the ideal values, even
for good routers. Therefore, WATCHERS accepts a
counter value that is di�erent than the ideal value if
the di�erence is less than a pre-selected threshold.

Three reasons why counter values may be di�erent
from the ideal or expected values are:

� We have implicitly assumed that good routers
never drop packets. However, typical network
protocols, including several within the TCP/IP
suite, drop packets due to errors in transmission
or congestion in the network [7]. Routers with ex-
tremely heavy tra�c may drop packets for these
reasons at signi�cant rates.

� Neighbors may not be perfectly synchronized
when a new round of WATCHERS begins. As-
sume that there are N routers in the AS, and let
k = dN=2e. According to the RRR sub-protocol,
each router records a snapshot of its counter val-
ues as soon as the kth request messages arrives.
We call this instant the recording time. The di�er-
ence in recording times for two neighbors should
be less than or equal to the delay on their shared
link, since 
ooding is used to distribute request
messages. However, any di�erence in recording
times may cause the counter values of neighbors
to disagree.

� Our misrouting detection method depends on
neighboring good routers to agree on the network
topology. Since a good router sends routing up-
dates whenever it changes its own routing table,
and its good neighbors immediately change their
own tables accordingly, any period of discrepancy
between the routing tables of neighboring good
routers should be brief [10]. Moreover, in modern
link-state routing protocols, link costs are static
and therefore link-state changes are infrequent
[15]. Even so, a momentary disagreement over
topology may cause a router to increment an M
counter with the mistaken belief that a neighbor
has misrouted a packet.

The threshold values are also dependent on
the WATCHERS period (time between consecutive
rounds). The period should be adjusted to �t the en-
vironment. The period must be at least as long as
the time needed by the slowest router to execute one
round of WATCHERS. The period should be short
enough to avoid counter over
ow. Finally, since the
threshold values depend on the period, the period and
thresholds should be adjusted together.

Setting the thresholds correctly is critical. If the
threshold values are too small, too many false alarms

may occur. If they are too large, too many attacks
might escape detection. However, in some environ-
ments, choosing thresholds may be di�cult, due to
rapidly changing conditions in the network (e.g., net-
work load). Such environments may require threshold
values that change dynamically. While we have iden-
ti�ed some of the issues involved in setting thresholds,
this is an open research problem. Some related work
on this problem appears in the intrusion detection lit-
erature [14].

2.6 Memory Requirements and Perfor-
mance

In many environments, WATCHERS' memory re-
quirements are reasonable. Let R be the number of
routers in the AS. (Note that R is then also the num-
ber of destinations, according to our de�nition of des-
tination in Section 2.2.1.) In the worst case, a router
stores 4 � N � R + 3 � N counters, where N is the
number of neighbors the router has. To elaborate,
each router stores two S counters and two T counters
per neighbor per destination (4 � N � R counters),
two D counters for each neighbor (2 � N counters),
and one M counter for each neighbor (N more coun-
ters). However, often a router will send packets to
only a few di�erent destinations during one round of
WATCHERS, and therefore will only need to use the
counters corresponding to those destinations. Thus,
usually a router will need just a small fraction of the
maximum number of counters during each round of
WATCHERS.

We have so far ignored the issue of a packet with a
source and/or destination outside of the AS. WATCH-
ERS can handle such packets by treating the set of all
routers outside the AS as a single extra node in the
AS graph (the external node). Each router in the AS
that has a link to any router outside the AS is con-
sidered a neighbor of the external node. With these
minor modi�cations, WATCHERS can monitor intra-
AS tra�c. Since this approach adds only one node
to the AS graph, it does not signi�cantly change the
memory requirements for WATCHERS.

Next, we divide the performance analysis of
WATCHERS into several parts.

� Counter Upkeep | Incrementing the packet
counters requires only a few additional (simple)
operations per packet. Depending on the data
structure used to store the counters (e.g., a linked
list), additional operations may be required to lo-
cate the appropriate counter.

� Routing Table Computation | Each router must
compute routing tables for each of its neighbors
whenever the network topology changes. This



must be done quickly so that packets are not mis-
takenly logged as misrouted. Alternatively, the
counting of misrouted packets can be suspended
until the new tables are ready. Also, a separate
processor can compute the new tables so that
routing performance is not a�ected.

� Flow Analysis | In the worst case, each router
must perform one conservation-of-
ow check per
neighbor per destination. In practice, though,
each router will usually do much less work, since
it is unlikely that each neighbor will receive pack-
ets for each destination during a single round
of WATCHERS. Also, the diagnosis phase of
WATCHERS can be performed by a separate
processor, and need not a�ect the router perfor-
mance.

To summarize, the memory requirements and per-
formance cost of WATCHERS both depend on the
number of routers in the AS. For an AS with a very
large number of routers, the memory requirements
may be high, although the performance costs can be
defrayed by using separate processors for the compu-
tation of routing tables and for diagnosis.

3 Future Work

We can identify several potential future tasks, the
�rst of which is to implement and test WATCHERS.
By implementing WATCHERS, we could study its
memory requirements and performance costs in de-
tail. We could also investigate the important prob-
lem of setting good threshold values for WATCHERS
counters.

We expect that WATCHERS can be adapted to
monitor the collective behavior of a group of several
routers (a supernode). Each router incident to the su-
pernode would treat the supernode as a single router
while running WATCHERS. We predict that it may
be less expensive (in terms of memory and computa-
tion) to run WATCHERS in this con�guration than
it would be to run WATCHERS on each router in the
supernode. If the supernode is ever diagnosed as bad,
then WATCHERS can be run as usual inside the su-
pernode to pinpoint the bad routers.

Finally, WATCHERS' use of message authentica-
tion, 
ooded transmissions, and the validation stage of
the WATCHERS diagnosis algorithm all make it dif-
�cult for a bad router to escape detection. A valuable
future task would be a formal analysis of WATCH-
ERS' e�ectiveness in detecting bad routers, similar to
our demonstration of WATCHERS' correctness in the
Appendix.

Appendix: Proof of WATCHERS' Cor-

rectness
We say that a bad router detection mechanism is

correct if the mechanism has this property: When any
router B is diagnosed as bad by a good router G, B
is in fact a bad router. We claim that WATCHERS is
correct if the conditions in Section 2.1 hold, and the
following conditions also hold:

� Perfect Transmission Condition: When any
router sends a WATCHERS message to a neigh-
bor, the message arrives intact with no delay.

� Neighbor Agreement Condition: Neighboring
good routers always agree on the network topol-
ogy.

Proof:

A good router G can diagnose a neighboring router
B as bad for four di�erent reasons. For each case, we
show that the diagnosis implies that router B is bad.

1. Missing \response" message: Suppose that G
does not receive a \response" message from B
during the RRR sub-protocol. Since B and G
are neighbors, it follows from the Perfect Trans-
mission Condition that B must not have sent the
message. Thus B is bad since it did not partici-
pate correctly in the protocol.

2. Misrouted packet: Suppose that G detects that B
has misrouted a packet. Then B either disagrees
with G on the network topology, or B agrees with
G but intentionally misrouted the packet. In the
latter case, B is bad because it misrouted the
packet, and in the former case, since G is good,
B must be bad by the Neighbor Agreement Con-
dition.

3. Validation test fails: Suppose that at least one of
G's counters associated with the link between G
and B disagrees with B's corresponding counter.
The disagreement implies that either G or B is
lying. Since G is good, B must by lying, and is
therefore a bad router.

4. Conservation-of-
ow test fails: Suppose that G
�nds that B has violated the conservation-of-
ow
principle. Two explanations are possible. The
�rst is that at least one of the counter values that
G used in conservation-of-
ow analysis is incor-
rect. Let S be that set of values. By the action of
the detection algorithm, G does not perform 
ow
analysis on B unless the values in S match B's
corresponding counter values. Thus, if at least



one value in S is incorrect, then at least one of
B's counters must be incorrect, and so B is a bad
router. The second possible explanation is that
B is dropping packets (or injecting packets) and
is therefore a bad router. 2
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