
Proceedings of the 2001 IEEE
Workshop on Information Assurance and Security

T2A3 1430 United States Military Academy, West Point, NY, 5–6 June 2001

Design and Implementation of Property-Oriented Detection for Link State Routing

Protocols

Feiyi Wang, Fengmin Gong, Felix S. Wu, Hairong Qi

Abstract—This paper presents a new intrusion detection
approach, property-oriented analysis and detection (POD).
We discuss both the generic paradigm of this new approach
and our design and implementation experience within the
context of link state routing system. A routing system is
modeled as a set of distributed processes. A property is
defined as a state predicate over system variables. For link
state routing protocol, the overall converging property P is
defined as the “equality” among routing information bases
maintained by all processes. We decompose routing proto-
col into different computation phases and specify them us-
ing generic Input/Output Automata (IOA). For each phase,
we use state predicates (liveness and safety property) as our
guide for observation and analysis. The goal of the detection
algorithm is to construct a validation path based on the his-
tory to determine if the fault is natural or malicious when the
property P is rendered invalid by faults. The contribution of
this paper is three-fold: First, this new detection paradigm
proposed differs from the traditional signature based or pro-
file based intrusion detection paradigms in the sense that it
utilizes stable property as a starting point, and correlates
the history and future to validate changes caused by nat-
ural faults and identify the malicious faults in the system;
Second, by exploring primary concerned system properties,
we show that detection effort can be conducted in a more
focused and systematic fashion. Third, our design and im-
plementation experience shows that how this approach can
be effectively applied in complex distributed system, i.e.,
link state routing system.

Keywords—Intrusion detection, distributed system moni-
toring, security management

I. Motivation and Related Work

INTRUSION detection (ID) as a second line of defenseis in no doubt attracting more and more research atten-
tion these days. The basic approaches of ID can be gener-
ally classified as either signature-based or statistical-based.
Signature-based detection relies on its understanding of the
nature of the attack and identify a particular attack by its
state transition sequences or patterns. Statistical-based

Feiyi Wang is with Advanced Network Research Group, MCNC,
Research Triangle Park, NC. Email: fwang2@mcnc.org
Fengmin Gong is with Intrusion Detection Technology Division of

IntruVert Network Inc. Email: fengmin@intruvert.com
Felix S. Wu is an associate professor in University of California,

Davis, Email: wu@cs.ucdavis.edu
Hairong Qi is an asssitant professor in University of Tennessee,

Knoxville. Email: hqi@utk.edu
This work is sponsored by U.S. Department of Defense Advanced

Research Projects Agency and U.S. Air Force Rome Laboratory under
contract F30602-96-C-0325.

detection bases on the comparison of past-observed-normal
and under-or-after attack statistical profile.

Our previous work has been focusing on vulnerabil-
ity analysis for link state protocol [1], [2], building both
statistical-based [3] and finite state machine-based [4] de-
tection engine under JiNao [5], [6] project framework. We
also explored the effective network management based ap-
proach to do similar intrusion detections [7], [8]. Some
of these traditional techniques including finite state based
and statistical-based approaches used in our system have
been studied in other context for intrusion detection as well
[9]. Our experience reveals similar problems that are faced
by other researchers, some of which are amplified by the
unique characteristics of routing system. These problems
are summarized next.

Most of the previous intrusion detection approaches are
based on certain attack models, which are developed with
the understanding of the vulnerabilities of the system from
attacker’s point of view: (1) where are the weak points?
(2) how can one exploit and compromise the system? One
way of doing vulnerability analysis is to check system’s
operational behavior against possible attacker’s cause of
actions. This approach is difficult because it needs good
models for both system itself and the potential attackers.
Routing system as a distributed concurrent system can ex-
hibit a wide variety of possible behaviors. Reasoning di-
rectly about these behaviors can become quite complex,
with many different cases to consider. Moreover, as an
intelligent entity, an attacker can behave in a highly un-
predictable fashion. It seems that any profiles established
for them can be circumvented one way or the other given
the reasonable understanding of basic techniques used to
profile them. It is not clear if there are satisfactory meth-
ods to cope with this complexity.

This uncertainty of potential vulnerabilities and com-
plexity of system behavior directly impacts the correspond-
ing detection algorithm. For example, the finite state
machine-based (FSM) approach adopted in our previous
JiNao project captures the “signatures” of attacks we can
deduce based on the case analysis on system and attacker’s
behaviors. However, it is hard to assess the detection cov-
erage because each attack signature has to be discovered
and programmed into the engine. Overall, there is more

ISBN 0-7803-9814-9$10.00 c©2001 IEEE 91

of art than science for the approach. To overcome the
complexity and uncertainty encountered in our previous
studies, a new detection algorithm is presented in this pa-
per. It bases upon two fundamental ideas: First, for any
distributed systems, even though the system operational
behavior can be quite complex, it is possible to focus on
the critical properties that concern us the most in order
to simplify and organize the analysis process; Second, in
order to validate the current system state, it is necessary
to correlate system history. This idea reflects the basic
philosophy that one cannot understand the present without
learning the history. These two ideas are closely related to
each other. The former (property analysis) provides the
foundation, while the latter step is an instantiation toward
constructing the detection algorithm.
The rest of the paper is organized as follows. Section II

describes the general paradigm of POD approach and basic
steps to apply it in a routing system. Section III presents
a summarization of property analysis for link state routing
system.1. Section IV-A discusses various design and im-
plementation issues related to POD algorithm in GIANT
(Global Intrusion Assessment Through Distributed Deci-
sion Making) framework. Section V analyzes our experi-
mental results and make conclusion remarks.

II. Property-based Analysis and Detection

A. Generic Paradigm of POD Approach

In general, if we can completely specify a system’s prop-
erties, also assume that it is possible to monitor and verify
these properties at run time, then one can claim to able to
able to detect all the faults. However, it would not be prac-
tical for any complicated system. A natural solution would
be to focus on critical properties of the system which con-
cern us the most. Therefore, the challenges are what prop-
erties should we consider as critical properties and how do
we verify that a system does hold these properties.
We first consider a simple example and then outline the

general steps to take for applying the POD in another do-
main. Suppose we want to do intrusion detection for a
banking account, which has $1,000 balance. To further
simply the exposition, we assume that there is no with-
drawal, no deposit and no interest at all. It is evident
to see that x = $1, 000 is the critical property for the sys-
tem: any time this property is violated, we know that some
thing goes wrong and an alarm should be triggered. Fig-
ure 1 illustrates the general steps to take when applying
this approach.
The basic steps to be performed are: (1) We should have

a good specification of the target system. This step is crit-
ical since all properties will be derived and proved from it.
(2) A complex system often exhibit a variety of properties,
we must clearly define a domain of “critical property” that

1Limited by space, we omit the IOA specification and proof part,
interested readers can refer to [10] for more details

Define a domain of critical properties
which are of most interest to verify

POD methodology

Define a complete/abstract system
specifications

Define a domain of natural faults,
which can potentially invalidate
the properties defined above

Define a set of computation phases,
actions, events and their relations
which can support the property
domain

POD algorithm: define procedures to
validate all the violations based
on the natural fault domain defined

Fig. 1. Illustration of general POD methodology

we are mostly concerned to monitor and verify. Domain
of interest can certainly grow with more understanding of
system itself. However, the boundary is vital since this
dictate the detection coverage of the ID system. (3) We
need to inspect if there are inherent natural faults inside
the system which can invalidate the defined properties. In
our simple banking example, there is not such a natural
fault set, i.e., any faults which cause x 6= 1000 should be
considered a compromise of the system. However, as we
can see later, such natural faults could be quite common
in a routing system. (4) We need to define a set of phases
and procedures which make the system uphold these prop-
erties. (5) A detection algorithm is in essence a process
of verifying these phases and procedures are faithfully fol-
lowed by examining and correlating both the history and
potential future traces. Much more details on how this
general paradigm applied and implemented in practice will
be discussed in later sections.

B. POD Methodology Applied in Link State Routing

To apply the above POD methodology to a complex sys-
tem such as link state routing, we first make the following
observations: (1) all the vulnerability analysis and attacks
we have come up so far, they all eventually manifest some
illegal changes to the routing information base. (2) In link
state routing protocol, routing information base is essen-
tially a topology database, which does not change very fre-

ISBN 0-7803-9814-9$10.00 c©2001 IEEE 92

quent in normal situations. (3) these routing information
base information is readily available to an outside observer.
With these observation in mind, we chose synchronization
of routing information base as the critical property for link
state routing.
Link state routing has one important characteristic that

each process’ view of network topology is complete and
constructed by a set of independent LSAs. These LSAs
describe neighbors they are connecting to and states main-
tained by this process. When the network is stable (stable
in the sense that no fault such as link failure occurs), the
view of network topology by each process should be syn-
chronized. This characteristic motivates us to associate it
with liveness property of “something good” (routing in-
formation base is synchronized) eventually happens. The
properties can be satisfied if “nothing bad” (natural or ma-
licious faults) happens. We make more specific definitions
as follows:
A routing system R is modeled by a set of processes p1,

p2, . . . , pn, each of which is associated with a set of local
program variables. Each process possesses a meta variable
called routing information base (RIB) that consists of a set
of LSAs. Let P be a state predicate defined over variables
of R, that is, P(S) is either true or false for a global state
S of R. The predicate P is said to be a stable property
of R if P(S) implies P(S′) for all global states S′ of R
reachable from the global state S of R. Examples of sta-
ble properties in traditional environment are “computation
has terminated”, “the system is deadlocked”, etc. In the
context of our discussion, the stable property P of routing
system is defined as:

P , p1(RIB) = p2 (RIB) = . . . = pn(RIB)

Strictly speaking, the stable property P is not stable once
a fault, such as link failure, occurs. Just like “the system
is deadlocked” is not stable any more if the deadlock is
“broken” and the computation is re-initiated [11]. To keep
the exposition simple, we divide a system computation into
several phases. Each phase has the characteristics that: (1)
reaching stable property represents the termination of one
particular phase, and (2) deviating from stable property
starts a new phase. The key point is that P defined here
provides us a starting point for observation. There must
be a trigger event which renders the system unstable. One
might or might not be able to observe such a trigger event,
but the most important effect one will observe is: P is
invalid. Our detection algorithm starts from this point to
construct a validation path. A validation path is essentially
a correlation process which can correlate the past events
(history) to validate if the previous computation phases are
followed according to the specification and their function
properties are satisfied. If such validation does not hold,
it is deemed as an intrusion event and the corresponding
alarm should be triggered.

As mentioned above, we are reducing the task of vali-
dating history by validating the properties. Therefore, the
critical properties defined have a direct impact on the val-
idation process. From the wisdom of distributed program
analysis, we find that there are two kinds of prominent
properties which are capable of capturing and characteriz-
ing the distributed behavior – safety property and liveness
property. The safety property has the form of “some things
are not allowed to happen”. It is analogous to partial cor-
rectness and expressed by invariant assertions which must
be satisfied by the system state at all times. Liveness prop-
erty has the form of “some things will happen.” Examples
include termination requirements in sequential programs.
Safety and liveness properties are useful guidelines for help-
ing us establish validation path for each phase. Note that
even though theoretically it is possible that all properties
can be expressed directly using assertions [12], we are not
attempting to do so due to vast amounts of states for any
practical protocols. The properties we propose and there-
after prove are the primary function properties that are
supported by protocol specification and that are sufficient
to guarantee the convergence property P.
To realize the above idea in a practical link state routing

system such as OSPF, there are two major steps we have
to take:

• An abstract routing system based on OSPF protocol
needs to be specified. The goal is to capture the essence of
link state routing and keep the important details visible,
while at the same time simplify other insignificant aspects.
The simplified system provides the necessity of giving more
precise specification of protocol behavior. Partitioning sys-
tem into multiple computation phases further reduces the
difficulties of tackling such a complicate distributed sys-
tem. To specify each computation phase of OSPF, we use
IOA for formalization, and prove that their properties are
valid and supported by the specification. (Section III)
• A detection algorithm that constructs the validation path
is then developed based on both the protocol specification
and its corresponding critical properties for each phase.

We also consider the various aspects of applying this new
POD approach in a practical context. This is presented
in Section IV-A. We further take examples of malicious
attacks developed in our previous work to illustrate how
the detection algorithm works.

III. Link State Routing Property Analysis

A. Partition and Abstraction

As an Internet standard, OSPFv2 specification [13] in-
cludes many details which are not essential for our dis-
cussion. The procedure we presented simplifies it in three
aspects: (1) OSPF allows sets of networks to be grouped
together and such a group is called an area. Therefore,
routing in OSPF can take place in two levels: inter-area
routing and intra-area routing. Although this information

ISBN 0-7803-9814-9$10.00 c©2001 IEEE 93

Synchronized RIB

Faults

 Initial State Faults
Neighbor Relationship

Full Database Exchange

Faults
DB Exchange

Flooding

HELLO

Fig. 2. An abstraction of state transition

hiding enables a significant reduction of routing traffic in
practice, we only consider flat area routing, i.e., backbone
routing; (2) OSPF considers many different network types
on top of which it is running, and has corresponding mech-
anisms to best utilize it. For example, it reserves multicast
address 224.0.0.4 and 224.0.0.5 for establishing neigh-
bor relationship on a broadcast network such as Ethernet.
Here, we consider primarily point to point network; (3) To
inter-operate with other routing protocols such as BGP,
OSPF defines AS-external-LSA to describe the routes not
originated from the domain, which we consider inessential
in our discussion.

Based on this simplification, we partition OSPF routing
protocol intoHello, DB exchange and Flooding phases,
an abstraction of state transition driven by these three
phases is illustrated in Fig. 2. In the rest of this section,
we introduce basic notations for routing protocol specifi-
cation, then give an abstract algorithm of LSRP based on
the three-phase partition. We argue that LSRP algorithm
can maintain up-to-date topology information.

We use p, q, r to denote individual process, and dot
concatenation to represent data structures associated with
that process. For example, p.RIB and p.LSA denote the
p’s routing information base and an LSA in the p.RIB re-
spectively. We use LSAj

i to distinguish the LSA’s origi-
nator i and the neighbor j who relays this copy of LSA
over during the flooding phase. When the context is clear,
we skip the process prefix for the associated data struc-
ture we are referring to. p.nbrS is an array of neighbor
states, maintained by process p for each of its neighbors.
It records what process p thinks what its neighbor state
should be. This neighbor state of i satisfies: p.nbrS.[i] ∈
{Down, Init, ExStart, Exchange, Loading, Full}. An-
other intermediate state 2way is skipped because this state
indicates that adjacency should not be established. Within

our domain of discussion, all processes are valid to estab-
lish the adjacency, so it is safe to ignore the state. In our
specification, the sequence is totally ordered with respect
to relation <. For example, p.nbrS[i] ≤ ExStart implies
p.nbrS[i] can be any one of Down, Init, and ExStart. We
use p.nbrO and p.nbrA to denote the set of passive outgo-
ing neighbors 2 of p and active neighbor set of p. p.nbrO

is usually the a-priori knowledge of p, while p.nbrA is es-
tablished dynamically, p.nbrA ⊆ p.nbrO. The only com-
munication primitives used in our specification are send
and recv. Before we go into details on each computation
phase’s algorithm, a high level link state routing algorithm
is presented below.

Algorithm 1 LSRT: process i’s algorithm

1: var i, j, k: process id
2: var m, m′: local topology view
3: var nbrO: passive neighbor set, pre-configured
4: var nbrA: active neighbor set, initially empty
5: repeat

6: Once i becomes operational:
7: for each neighbor j ∈ nbrO do

8: H(i, j)
9: end for

10: for each neighbor j ∈ nbrA do

11: DB(i, j)
12: end for

13: Once i’s local view changes:
14: if link 〈i, j〉 becomes operational then

15: H(i, j)
16: DB(i, j)
17: else

18: m := changed local view
19: F (j,m)
20: end if

21: Once i receives new updates from neighbor j:
22: m′ := new updated view
23: F (i,m′)
24: until no more new updates

H(i, j) denotes Hello phase which is to establish the
neighbor relationship between processes i and j. If the step
is successful, then nbrA := nbrA∪{j}. In this sense, H(i, j)
is a session management protocol, responsible to open and
close a session between two neighbor processes. All sub-
sequence information exchange is based on the assumption
that there is open session in between. DB(i, j) denotes DB
exchange phase which is to exchange complete RIB between
i and j. DB(i, j) phase is called when there is new link or
new process coming up. It is particularly helpful to expe-
dite database convergence when two disconnected networks

2passive outgoing neighbors is defined as a pre-configured knowl-
edge on the possible neighbor processes, which is a equal or subset of
physical neighbor processes

ISBN 0-7803-9814-9$10.00 c©2001 IEEE 94

reconnect. F (i, j,m) denotes the flooding step, whenever
new update (other process’ local view changes) received or
self’s local view changes, this phase will be called for prop-
agating these updates. If we assume that flooding rules can
guarantee that any new update information will reach every
connected process, then it is evident that the algorithm has
the property: Assume that the topological changes cease at

some time, then, eventually, every process in the network

knows the correct topology of its connected component.

This property can be proved by induction on the distance
from every node. The base case follows the assumption
that each process knows its local topology status. The in-
duction follows from the one-way nature of the flooding.
Subtle issues related to session management and flooding
will be discussed in the following sections.

B. Property Specification and Analysis

In this section, we summarize properties defined for each
computation phases discussed above, with particular em-
phasis on flooding phase since it plays such a crucial role
in link state routing system. Formally, the correctness of
these properties can be validated through IOA specifica-
tion.

Property 1 Hello phase satisfies: for any two process i

and j:

alive(i) ∧ alive(j) ∧ alive(〈ij 〉) leads to

(i.nbrS [j] = ExStart) ∧ (j ∈ i .nbrA) (1)

Property 2 Hello phase satisfies: for any two process i

and j:

alive(i) ∧ (¬alive(j) ∨ ¬alive(〈ij 〉)) leads to

i .nbrS [j] = Down ∧ j 6∈ i .nbrA (2)

Property 3 Hello protocol guarantees that the neighbor
relationship is bidirectional:

RID(j) ∈ i .nbrA leads-to RID(i) ∈ j .nbrA. (3)

Property 4 For any two processes i and j, without los-
ing generality, if during the ongoing DB exchange session
between i and j, i does not receive any new LSA updates,
then:

i.nbrS [j] = Full ⇒ i .RIB ⊆ j .RIB (4)

If j at the same time does not have new LSA received either,
then we claim that DB exchange will leads-to

i.nbrS [j] = Full ∧ j .nbrS [i] = Full ⇒ i .RIB = j .RIB (5)

Routing protocol should keep only the most up-to-date
information in the database, Therefore, when a routing
process thinks it possesses a piece of new information and

decides to flood it (in this case, a LSA) to the whole rout-
ing domain, one of the key issue is: how do we judge the
success of this flooding? i.e., desirable properties. Without
loss of generality, we formally define this property using the
state variables defined above and the flooding algorithm es-
tablish the truth of DFP(LSA),

DFP (LSA) , ∀i : alive(i)⇒

newer(i .LSA,LSA) ∨ equal(i .LSA,LSA) (6)

, where i represents process, LSA denotes the new infor-
mation being flooded, i.LSA represents the corresponding
information i already have (If i does not have this infor-
mation at all, we regard i.LSA as NULL). equal and newer
are assumed functions that can compare the freshness be-
tween two LSAs. With this global property in mind, we
further define truth that should be established from each
individual process’s perspective:

DFP (i,LSA) , ∀j : j ∈ i .nbrA⇒

newer(j.LSA,LSA) ∨ equal(j .LSA,LSA) (7)

where the formula basically says for each individual pro-
cess, the truth of successful flooding is that it has made
effort that each of their functional neighbors to have either
this new information, or newer information. With an extra
requirement that all functional process are connected, it is
not hard to come to this conclusion:3

Property 5 If each process i establishes the truth of
DFP(i ,LSA), then the routing system therefore establishes
the truth of DFP(LSA)

IV. POD Detection Algorithm and Its

Implementations

The property oriented detection algorithm (POD) is
based on the assumptions that every process holds a rout-
ing information base (RIB) which consists of a set of (all)
non-faulty LSAs when the system is in stable state. We
treat such a stable state P as an Init state for the detec-
tion algorithm. Also, we assume that a potent observer p0

is doing continuous observation on all n processes.
One observation on all the routing attacks we have an-

alyzed before is, to affect routing behavior, it boils down
to force an unexpected change in routing information base
(RIB). In turn, a change on RIB will reflect a change on
one or more LSAs, which are a set of descriptions on link
status. If we have such potent observer, then we can ob-
serve the first time when RIB changed. In reality, we have
to rely on either the real time inquiry or the traces gener-
ated by running process, which is the topic of Section IV-A.
The detection algorithm takes the advantage of this clear
starting point and then enumerates all possible cases on

3For more details on proof, please refer to [10], [14].

ISBN 0-7803-9814-9$10.00 c©2001 IEEE 95

this LSA. For each possible case, we define its correlation
actions based on the following principles: (1) by looking
at the relevant process’ history to see if we can construct
a validation path which leads to the shift from the sta-
ble property P. Although there may be vast amounts of
details constituting to the history of these processes, our
attention is on the properties defined for each computation
phase. It is our belief that these properties characterize
each phase and simplify the validation process (2) we also
need to inspect the future, which should be a converging
process, i.e., the system should (under normal situations)
converge back to the stable state P. For a formal specifica-
tion of this algorithm, please refer to [10] and [14]. In the
following sections, we focus on discussing its implementa-
tion considerations and trace analysis.

A. POD Implementations

The overall property P is synchronization of RIB. We
assume that routing system starts with a “clean” state,
meaning that at some point after initialization, RIB is sta-
bilized and therefore we can find a synchronized snapshot
of it. To realize this in practice, we have to be able to
have access to RIB. If we have the source code, it is easy to
adapt it to dump RIB whenever it changes. Routing soft-
ware such as GateD even provides a private interface for
you to inquiry on RIB, which makes it possible to periodi-
cally “poll” the information out. Each RIB usually consists
of quite a few LSAs and each LSA consists of quite a few
links. If we do comparison based on each data field, it can
be very time consuming. In practice, we employ a tech-
nique called “checksum comparison”. This technique com-
putes each RIB with same checksum algorithm and com-
pare only the result of checksum. Algorithms such as MD5
possesses the following property: mathematically, there is
little chances that two difference input messages can have
the same checksum. There are cases that RIB’s get par-
tially synchronized in the sense that some parts of topol-
ogy converge faster, each RIB of process is equal at some
instance, then the synchronization is broken by new up-
dates. This is not a concern of POD detection algorithm
since at this stage, the system is assumed clean and the up-
dated should be normal. POD should validate the changes
as usual and update its synchronization point correspond-
ingly.

An implicit assumption is that network topology will
cease the changes in finite time so that RIB will eventu-
ally converge and the frequency of the changes should be
able to be handled by validation process. Our observation
on test-bed is that link and process failures are indeed rare
in a medium sized environment (10-50 routers). Depending
on how many neighbors one router is physically connected,
the average update of RIB (with three neighbors) is 10 min-
utes, and converging process usually takes seconds. This is
radically different from backbone (inter-domain) routing,

where the routing databases with hundreds of thousands
entries are constantly changing and updating. For a single
route to converge, it can take 5 to 30 minutes. POD in its
pure form is not suitable for this environment.

The steps POD performs for each RIB changes are based
on algorithm presented on Page 94. Each checking involv-
ing either H and DB, or H, DB, and F , or F phase alone.
In each case, the properties checked are sufficient to guar-
antee the correct converging behavior for the involved pro-
cesses. We further details on how to validate properties for
each phase.

In Hello phase, we have three properties to consider.
Property (1) claims the neighbor establishment require-
ment: if two neighbor process and the link between them
are operational, then the neighbor state nbrS should even-
tually transit from Down to ExStart and the neighbor ID
will be added to set of nbrA. Property (2) claims that
maintenance requirement: if one process is operational but
its neighbor or link between them are not operational,
then neighbor state nbrS should eventually transit to state
Down; Property (3) claims the neighbor relationship is
bidirectional, i.e., eventually, both neighbor IDs must exist
in both processes’ nbrA. Property (1) should be validated
when the process starts up. Property (3) must be satisfied
during the operation of process and property (2) should be
validated when link is removed from the RIB. Since Hello
message is sent periodically and the message body includes
the current neighbor ID list, there is no problem for an ob-
server to validate these properties.

In DB exchange phase, we have one primary desired
property and two sub-properties to consider. Property (4)
and (5) claim that if process i does not receive any new up-
dates during the execution of DB exchange, then i.RIB is a
subset of j.RIB ; if both processes i and j do not receive any
new updates during the execution of DB exchange, then
i.RIB equals to j.RIB . To reach this (partial) synchro-
nization point, there are two sub-properties to be satisfied.
Property D1 claims the two processes in DB exchange must
establish the Master/Slave relation and a initial sequence
number must be decided by Master ; Property D2 claims
two processes must fully exchange RIB summary informa-
tion and establish the difference set LSR. DB phase only
happens when a process or link just becomes operational.
When DB exchange only brings partial synchronization, a
Flooding phase must be followed to fully synchronize RIB.
The status of RIB can only be observed and validated by
the runtime dump, Master/Slave election process can be
observed and validated by the DB type message exchanged.

In Flooding phase, we defined one overall desired prop-
erty (6) and one property (7) which needs to be satisfied
by each individual process. It is not difficult to validate
the second property for each individual process. However,
it is more important to validate “when” should flooding
procedure are called for and “what” should the procedure

ISBN 0-7803-9814-9$10.00 c©2001 IEEE 96

TABLE I

MaxSeq Attack: First synchronized RIB snapshot

152.45.4.208 152.45.4.210

<rib
lclock="59"
reporter="152.45.4.208"
LSA_num="3"

RIB_checksum="30243"

<nbr
id="152.45.4.210"

state="FULL" />

<nbr
id="152.45.4.207"

state="FULL" />

<lsa
originator="152.45.4.208"
link state ID="152.45.4.208"
num_of_links="2"
relay_rid="152.45.4.208"
lsa_age="0"
lsa_chsum="10336"

lsa_seqno="2"

<link
linkid="152.45.4.210"
linkcost="2" />

<link
linkid="152.45.4.207"
linkcost="5" />

</lsa>
<lsa

originator="152.45.4.210"
link state ID="152.45.4.210"
num_of_links="2"
relay_rid="152.45.4.210"
lsa_age="0"
lsa_chsum="10594"
lsa_seqno="2"

<link
linkid="152.45.4.208"
linkcost="1" />

<link
linkid="152.45.4.207"
linkcost="1" />

</lsa>
...

/>

<rib
lclock="60"
reporter="152.45.4.210"
LSA_num="3"

RIB_checksum="30243"

<nbr
id="152.45.4.208"

state="FULL" />

<nbr
id="152.45.4.207"

state="FULL" />

<lsa
originator="152.45.4.210"
link state ID="152.45.4.210"
num_of_links="2"
relay_rid="152.45.4.210"
lsa_age="0"
lsa_chsum="10594"
lsa_seqno="2"

<link
linkid="152.45.4.208"
linkcost="1" />

<link
linkid="152.45.4.207"
linkcost="1" />

</lsa>
<lsa

originator="152.45.4.208"
link state ID="152.45.4.208"
num_of_links="2"
relay_rid="152.45.4.208"
lsa_age="0"
lsa_chsum="10336"

lsa_seqno="2"

<link
linkid="152.45.4.210"
linkcost="2" />

<link
linkid="152.45.4.207"
linkcost="5" />

</lsa>
...

/>

flood. The flooding validation is more related to overall
protocol execution. As we discussed above, if DB phase
can only establish the partial synchronization, a flooding
phase should be followed. This is essentially the case where
new LSU update received. There are four cases where a
process will perform flooding: (1) local topological view
changes. This includes a new neighbor process starts up
or a new link becomes operational. The updated LSA is
a self-originated with sequence number increased by one.
This new LSA needs to be flooded to each process in nbrA.
(2) a new LSA update received but not originated by itself
or the received LSA with a MaxAge. This new LSA needs
to be flooded to every process in nbrA except the incoming
neighbor process. (3) a new self-originated LSA update re-
ceived. A newer LSA with sequence number increased by
one needs to be flooded to every process in nbrA. (4) An
LSA in its own RIB reaches MaxAge. This LSA needs to

be flooded to every process in nbrA. The flooding phase is
validated by mainly observing incoming and outgoing link
state update.

In the case where multiple topology changes happen to
the RIB at the same time, this will increase the imple-
mentation difficulty. However, POD algorithm still applies
without need of modification since it tracks the phases for
each LSA changes and treats the multiple changes as seper-
ate runs.

V. Experimental Study of POD

In this section, we discuss a case of malicious faults
against POD detection algorithm. We use MaxSeqNumber
attack developed in [2] as an example against POD algo-
rithm. In this scenario, attacker forges an LSA instance
in the following way: (1) it sets the LSA sequence num-
ber to 0x7FFFFFFF, i.e., MaxSeqNumber; (2) it re-computes

ISBN 0-7803-9814-9$10.00 c©2001 IEEE 97

TABLE II

MaxSeq Attack: First RIB changes detected at 210

152.45.4.208 152.45.4.210

<rib
lclock="59"
...

/>

<send
lclock="93"
reporter="152.45.4.208"
to="152.45.4.210"
pktype="LINK STATE UPDATE"

/>
<send

lclock="94"
reporter="152.45.4.208"
to="152.45.4.207"
pktype="LINK STATE ACKNOWLEDGEMENT"

/>
<rib

reporter="152.45.4.208"
LSA_num="3"
RIB_checksum="30243"

<nbr
id="152.45.4.210"
state="FULL" />

<nbr
id="152.45.4.207"
state="FULL" />

<lsa
originator="152.45.4.208"
link state ID="152.45.4.208"
num_of_links="2"
relay_rid="152.45.4.208"
lsa_age="0"
lsa_chsum="10336"
lsa_seqno="2"

<link
linkid="152.45.4.210"
linkcost="2" />

<link
linkid="152.45.4.207"
linkcost="5" />

</lsa>
...

<rib
lclock="91"
reporter="152.45.4.210"
LSA_num="3"
RIB_checksum="30116"

<nbr
id="152.45.4.208"
state="FULL" />

<nbr
id="152.45.4.207"
state="FULL" />

<lsa
originator="152.45.4.210"
link state ID="152.45.4.210"
num_of_links="2"
relay_rid="152.45.4.210"
lsa_age="0"
lsa_chsum="10594"
lsa_seqno="2"

<link
linkid="152.45.4.208"
linkcost="1" />

<link
linkid="152.45.4.207"
linkcost="1" />

</lsa>
<lsa

originator="152.45.4.208"

link state ID="152.45.4.208"
num_of_links="2"
relay_rid="152.45.4.208"
lsa_age="0"
lsa_chsum="10209"

lsa_seqno="2147483647"

<link
linkid="152.45.4.207"
linkcost="6" />

<link
linkid="152.45.4.210"
linkcost="3" />

</lsa>
...

/>

both the LSA and OSPF packet checksums. Then this
forged packet is re-injected into the system. This attack-
ing LSA instance will be considered the “freshest” by other
processes because it has the maximum LSA sequence num-
ber. Eventually it will be propagated to the originator
of this particular LSA. The originator, according to the
OSPFv2 specification, “should” first purge the LSA in-
stance (setting MaxAge) and then flood a new LSA car-
rying correct link status information and the smallest se-
quence number: 0x80000001. Without this purging, all
the processes (except the originator) will accept the faulty
LSA instance. The newly issued LSA from the originator
will have 0x80000001 as the sequence number which will
be considered as the oldest and be discarded. A previous
version of routing software we tested did not handle this
MaxAge correct, namely the purging of MaxSeqNumber LSA
is not done right. This fault (a combined program im-
plementation bug and malicious attack) renders the illegal

MaxSeqNumber LSA staying in every router’s RIB for up to
one hour until it reaches MaxAge. Potentially, this faulty
LSA can cause faulty route calculation.

Table I and II shown here are actual traces from a fully-
connected three nodes network which is part of the GI-
ANT testbed. The trace format is from the XML DTD de-
fined in last section. Their IP address are 152.45.4.207,
152.45.4.208, 152.45.4.210 respectively. Table I shows
the first synchronization point: each process has different
logical clocks but with the same checksum as 30243 (dec-
imal). Looking further, we can compare each LSA inside
the RIB, they are and should be the exactly the same. The
right column in Table II shows the first point we detect the
change of RIB: in this case, it is a new LSA instance with
MaxSeq number and changed link cost value. Following the
detection algorithm, we first identify the originator of this
LSA, which is 208. Then we check if Flooding properties
are satisfied by the originator. To satisfied flooding prop-

ISBN 0-7803-9814-9$10.00 c©2001 IEEE 98

erty, 208 must broadcast the local changed new view to all
its neighbors. As obvious as it is, this type of link attacker
can not replicate the flooding history as long as 208 is not
compromised itself. This can be seen from the left column
of the trace file. The validation process will fail and raise
the alarm.

VI. Summary

In summary, we presented design and implementation of
property oriented fault detection approach (POD) within
the context of link state routing. The goal of POD is to
construct a history and/or future validation path to vali-
date the changes of stable property P, which can be caused
either by natural or malicious faults. As a methodology,
POD can be generalized in other application domain such
as ongoing BGP security project [15]. We believe that POD
not only provides an interesting new angle of studying the
vulnerability and intrusion detection of link state routing
protocol, it also delivers a framework, in which both the
vulnerability and detection can be conducted in a more
focused and systematic way.

References

[1] F. Wang and S. F. Wu, “On the vulnerabilities and protection
of OSPF routing protocol,” in IEEE 7th International Confer-
ence on Computer Communication and Network (IC3N), Octo-
ber 1998.

[2] B. M. Vetter, F. Wang, and S. F. Wu, “An experimental study
of insider attacks on the OSPF routing protocols,” in The 5th
IEEE International Conference on Network Protocols (ICNP),
Atlanta, GA, October 28-31 1997, pp. 293–300.

[3] D. Qu, B.Vetter, F. Wang, R. Narayan, S. Wu, Y. Jou, F. Gong,
and C. Sargor, “Statistical-based intrusion detection for OSPF
routing protocols anomaly detection for link state routing pro-
tocols,” in The 6th IEEE International Conference on Network
Protocols, Austin, Texas, October 13-16 1998, pp. 62–70, IEEE
Computer Society.

[4] H. Y. Chang, S. F. Wu, and Y. F. Jou, “Real-time protocol
analysis for link state routing,” submitted to Transaction on
Information and System Security for review, 1999.

[5] S. F. Wu, Y. F. Jou, F. Wang, H. Chang, D. Qu, C. Sargor,
F. Gong, and R. Cleaveland, “JiNao: design and implementation
of a scalable intrusion detection system for the OSPF routing
protocol,” to appear in the Journal of Computer Networks and
ISDN Systems.

[6] Y. F. Jou, F. Gong, C. Sargor, X. Wu, S. F. Wu, H. C. Chang,
and F. Wang, “Design and implementation of a scalable intru-
sion detection system for the protection of network infrastruc-
ture,” in DARPA Information Survivability Conference and Ex-
position, Hilton Head Island, SC, January 1999, pp. 422–434.

[7] F. Wang, F. Gong, F. Wu, and R. Narayan, “Intrusion detection
for link state routing protocol through integrated network man-
agement,” in IEEE 8th International Conference on Computer
Communication and Network (IC3N, October 1999.

[8] F. Wang, “Vulnerability analysis and protection for link
state routing protocol,” http://worf.mcnc.org/~fwang2/docs/
pre99.ps, September 1999.

[9] Teresa F. Lunt, “A survey of intrusion detection techniques,”
Computers & Security, vol. 4, no. 12, pp. 405–418, December
1993.

[10] F. Wang, Vulnerability Analysis, Intrusion Prevention and De-
tection for Link State Routing Protocols, Ph.D. thesis, North
Carolina State University, Raleigh, NC, August 2000.

[11] K. Mani Chandy, “Distributed snapshots: determining global

states of distributed systems,” ACM Transactions on Computer
Systems, vol. 3, no. 1, pp. 63–75, Febuary 1985.

[12] K. Mani Chandy and J. Misra, Parallel Program Design: A
Foundation, Addison-Wesley, 1988.

[13] J. Moy, “OSPF Version 2,” Internet RFC 2178, July 1997.
[14] Feiyi Wang, Fengmin Gong, and Felix S. Wu, “A property ori-

ented fault detection approach for link state routing protocol,” in
Proceedings Ninth International Conference on Computer Com-
munications and Networks, Ton Engbersen and E.K. Park, Eds.,
Las Vegas, Nevada, October 16-18 2000, pp. 114–119.

[15] FNIISC Project, “Fault-Tolerant Networking Through Intru-
sion Identification and Secure Compartments,” http://fniisc.
east.isi.edu/, 2000.

ISBN 0-7803-9814-9$10.00 c©2001 IEEE 99

