Verification of Secure Distributed Systems
in Higher Order Logic:

A Modular Approach Using Generic Components *

Jim Alves-Foss and Karl Levitt
Division of Computer Science
University of California at Davis
Davis, CA 95616

Abstract

In this paper we present a generalization of McCul-
lough’s restrictiveness model as the basis for proving se-
curity properties about distributed system designs. We
mechanize this generalization for an event-based model
of computer systems in the HOL (Higher Order Logic)
system to prove the composability of the model and sev-
eral other properties about the model. We then develop
a set of generalized classes of system components and
show for which families of user views they satisfy the
model. Using these classes we develop a collection of
general system components that are specializations of
one of these classes and show that he specializations
also satisfy the security property. We then conclude
with a sample distributed secure system, based on the
Rushby and Randell distributed system design and de-
signed using our collection of components, and show
how our mechanized verification system can be used to
verify such designs.

1 Introduction

This paper is concerned with mechanizing the verifica-
tion of distributed system design. Following the work
of McCullough and his colleagues at Odyssey Research
Associates [8, 9, 10, 13, 14], we characterize the secu-
rity of components of a design using the restrictiveness
model: A user of the component is prevented from ob-
serving any outputs dependent on inputs outside his
view. McCullough also provides a definition of hook-
up, where two components, each satisfying the restric-
tiveness model, are connected in a way that guarantees
their composition also satisfies restrictiveness. This way
a systemn can be created that is guaranteed to satisfy
the security model as long as each component and their
connections satisfy the model.

We extend the McCullough model by writing specifi-
cations for a class of generic building blocks, the class
including filters of various kinds. Next we define a large
class of components that are specializations of these fil-
ters and show that the specializations satisfy restrictive-
ness. These components include queues, transformers,

*This work was supported in part by contracts from Rome Air
Development Center and LLNL.

CH2986-8/31/0000/0122$01.00 © 1991 |IEEE

122

multiplexors, de-multiplexors and switches. To estab-
lish the generality of the class of components, we show
they can be connected to produce the Rushby-Randell
distributed system design.

All proofs are mechanically checked using the Higher
Order Logic (HOL) system developed at Cambridge
University [6]. HOL was selected for this project based
on its support for higher-order logic, generic specifica-
tions, and polymorphic type constructs - all in support
of writing and reasoning about general classes of com-
ponents.

Section 2 of this paper gives an overview of the HOL
theorem proving system. Section 3 describes how to
use the HOL system to develop the theories for the se-
quence and event system abstract data types. Section 4
presents a generalized definition of restrictiveness and
theorems that we have proven about it. It also presents
a definition of composability and shows how it relates
to restrictiveness. Section 5 presents a description of
generic system component classes and the verification
of the security property applied to them. It discusses
how the classes are developed in the HOL system, and
shows how the generic components can be specialized to
system components. Finally section 6 presents an ex-
ample distributed secure system (the Rushby - Randell
system) and how the generic components can facilitate
its specification and verification. General conclusions of
this work and plans for future work are also presented.

2 The HOL System

To formally model the security properties of a secure
distributed system and to ensure the accuracy of our
proofs, we felt that it was necessary to develop the
proofs and properties using a mechanical verification
system. This prevents proofs from containing logical
mistakes, and assures that the foundations on which
the work is based are sound. Due to the nature of the
proofs, which include quantification over sets of objects,
we felt that a system which supports higher-order logic
and a typed lambda calculus would facilitate our efforts.
The HOL system was selected for this project due to its
support for higher-order logic, generic specifications and
polymorphic type constructs. Furthermore its availabil-
ity, ruggedness, local support, and a growing world-wide

user base made it a very attractive selection. In this sec-
tion we will provide a brief description of HOL.

HOL is a general theorem proving system developed
at the University of Cambridge (6, 3] that is based
on Church’s theory of simple types, or higher-order
logic [5]. Although Church developed higher-order logic
as a foundation for mathematics, it can be used for rea-
soning about computational systems of all kinds. Simi-
lar to predicate logic in allowing quantification over vari-
ables, higher-order logic also allows quantification over
predicates and functions thus permitting more general
systems to be described.

HOL is not a fully automated theorem prover but is
more than simply a proof checker, falling somewhere
between these two extremes. HOL has several features
that contribute to its use as a verification environment:

1. Several built—in theories, including booleans, indi-
viduals, numbers, products, sums, lists, and trees.
These theories build on the five axioms that form
the basis of higher-order logic to derive a large num-
ber of theorems that follow from them.

2. Rules of inference for higher-order logic. These
rules contain not only the eight basic rules of in-
ference from higher—order logic, but also a large
body of derived inference rules that allow proofs to
proceed using larger steps. The HOL system has
rules that implement the standard introduction and
elimination rules for Predicate Calculus as well as
specialized rules for rewriting terms.

3. A large collection of tactics. Examples of tactics
include REWRITE.TAC which rewrites a goal accord-
ing to some previously proven theorem or defini-
tion, GEN_TAC which removes unnecessary univer-
sally quantified variables from the front of terms,
and EQ_TAC which says that to show two things are
equivalent, we should show that they imply each
other.

4. A proof management system that keeps track of the
state of an interactive proof session.

5. A metalanguage, ML, for programming and ex-
tending the theorem prover. Using the metalan-
guage, tactics can be put together to form more
powerful tactics, new tactics can be written, and
theorems can be aggregated to form new theories
for later use. The metalanguage makes the verifi-
cation system extremely flexible.

In the HOL system there are several predefined con-
stants which can belong to two special syntactic classes.
Constants of arity 2 can be declared to be infix. In-
fix operators are written "randl op rand2" instead of
in the usual prefix form: "op randi rand2". Table 1
shows several of HOL’s built-in infix operators.

Constants can also belong another special class called
binders. A familiar example of a binder is V. If cis a
binder, then the term "c x.t" (where x is a variable)
is written as shorthand for the term "c(A x. t)". Ta-
ble 2 shows several of HOL’s built-in binders.

Operator | Application | Meaning
=] tl = t2 t1 equals t2
, | t1,t2 the pair t1 and t2
Al tl A t2 t1 and t2
V]tlVt2 t1or t2
=—> | t1 => t2 | t1 implies t2

Table 1: HOL Infix Operators

Binder | Application | Meaning
V[iVx ¢t forallx, t
3| 3Ix. ¢t there exists an x such that t
elex. t choose an x such that t is true

Table 2: HOL Binders

In addition to the infix constants and binders, HOL
has a conditional statement that is writtena — b | ¢,
meaning “if a, then b, else ¢.”

3 Formal System Model

The work presented in this paper involves the specifica-
tion and verification of secure distributed systems. This
requires the development of the system specifications in
a formal framework, the definition of certain security
properties for the system, and the validation that these
properties are held true for the system.

We define a secure distributed system using an event-
based model.! This model is derived from the one pre-
sented by McCullough in [10, 8], which is based on the
processes (CCS, CSP) of Milner [11] and Hoare [7].

This model defines systems in terms of sequences of
events where each event is either a communication event
8nput or output), or an internal transition event. Mc-

ullough’s model of event-systems requires a 4 - tuple
representation consisting of the set of events, set of in-
puts, set of outputs, and set of valid traces for the sys-
tem. A valid trace of the system is a sequence of events
that is a possible event history for the system. Any two
event systems will be considered identical if there ex-
ists no difference in their behavior; that is, if the set of
traces for the systems are identical.

To use the HOL theorem proving system we had to for-
mally specify the theory of event systems and the the-
ory of restrictiveness. This work is similar to other work
on mechanizing event based systems and restrictiveness
[13, 14, 4]. Once these theories were complete we could
then use them to develop the basic system.

The event system model consists of a collection of four
sets. These four sets are the component fields of the
event system that represent the events, inputs, outputs
and traces of the event system. The theory of event
systems in the HOL system combines these sets into a
4 - tuple representation and enforces relationships be-
tween the fields. The relationships ensure that the in-
puts and outputs of the event system are disjoint sub-
sets of the set of events and that the set of traces of the

L Also known as the trace model.

event system are sequences of events. We also developed
many operations and theorems for the theory of event
systems. We have included a partial description of the
HOL event-system theory in Appendix B.

A major portion of the event system model is the set of
system traces. To model these traces in the HOL sys-
temn we first had to develop a theory of sequences (very
similar to listst). The abstract data type specification
we developed for sequences is a polymorphic abstrac-
tion. A sequence thus consists of an ordered collection
of objects of some single type. Any particular sequence
is either the empty sequence or is some sequence with
an entry appended to the end of the sequence. HOL
allowed us to define many operations on sequences to
ease their manipulation. Given these operations one
can develop a library of useful theorems relating to the
operations and then use them in subsequent proofs. We
have included a partial description of the HOL sequence
theory in Appendix A.

These sequences and event system theories are used as
the basis for the rest of our work. We develop a security
property and generic component specifications for event
systems. The security property and generic specifica-
tions rely on the existence of the data types described
above. Complete listings of the libraries for these data
types and the security property are given in [1, 2].

4 Formal Security Property

This section describes a formal security property that is
a generalization of McCullough’s Restrictiveness prop-
erty. This property is true if the event system does not
enable a user to deduce any information from events
that the user is not authorized to see. For a classical
military system to be restrictive, it must prohibit, for
example, a Secret level user from being able to deduce
any information from Top-Secret level events in the sys-
tem.

In general, proving that a system satisfies restrictiveness
is difficult. To simplify this proof, we have shown that
restrictiveness satisfies McCullough’s hook-up property.
Thus, if components of a system are restrictive, we can
use that information in the proof that the system de-
rived from the proper hook-up of the components is re-
strictive.

4.1 Restrictiveness

The security property we present here is based on
the restrictiveness property defined by McCullough in
[8, 9, 10]. Below we present the HOL version of McCul-
lough’s Testrictiveness for event systems and an auxil-
iary predicate, SAME-VIEW, This auxiliary predicate
is true if two traces (sequences of events) are the same
when restricted to the events in a particular view (i.e.
When ignoring events outside the view, the sequences
are the same).

14

SAME_VIEW
tdef Vv t1 t2.
SAME_VIEW v t1 t2 =
(t1 SEQ_RESTRICT v = t2 SEQ_RESTRICT v)

IS_RESTRICTIVE_DEF
Fdef Vv es.
IS_RESTRICTIVE v es =
(Va b1 b2 gi.
let EV = EVENTS es and

TR = TRACES es and
INP = INPUTS es and
I_D_V = (INPUTS es) DIFF v in

(a IN TR A

SEQ_IN_SET_STAR b1 INP A

SEQ_IN_SET_STAR b2 INP A

SEQ_IN_SET_STAR g1 EV A

((a SEQ_CONC b1) SEQ.CONC g1) IN TR A

(SAME_VIEW v b1 b2) A

(g1 SEQ_RESTRICT I1_D_V = RULL_SEQ) =
(3g2.
(SEQ_IN_SET_STAR g2 EV A

((a SEQ_CONC b2) SEQ_COKC g2) IN TR) A

(SAME_VIEW v g2 gl1) A
(g2 SEQ_RESTRICT I_D_V) = NULL_SEQ)))

Consider a set of events representing a user’s view of the
system v, an event system es, and a valid initial trace
of the event system a. Let bl and b2 be sequences
of inputs of the event system such that they appear
the same with respect to the view v. We know, due to
the fact that this definition assumes the event system
is input total, that a concatenated with either b1 or b2
is a valid trace of the system. Since these traces will
appear the same with respect to the view v, the system
will be secure only if the sets of possible future events,
for each trace, appear the same with respect to the view
v. Thus, if we let g1 be a sequence of future events for
the trace (a SEQ_CONC b1), the event system will be
restrictive, with respect to v, if there exists a sequence
of future events g2 for the trace (a SEQ_CONC b2) that
appears the same as g1 with respect to the view v.

We began our work trying to duplicate the proofs pre-
sented in [8]. Two of these proofs involve showing that
restrictiveness is a composable property, and that a
delay-queue specification is restrictive. Working with
this definition requires induction over the sequence rep-
resenting the differences between the input sequence bl
and b2. Although we have been able to use this induc-
tion scheme in HOL we came to the conclusion that this
particular definition was very difficult to work with. The
requirement that we look at future sequences of events
;nd sequences of inputs presented a great deal of over-
ead.

In [8] McCullough stated this difficulty and proceeded to
present definition and proofs based on a state-machine
model. In the state-machine definition he changed his
perspective and only considered single state transitions
instead of a sequence of events as in the event system
definition. This change in perspective greatly reduces
the complexity of the proofs and the overhead required
for sequences of events.

As we stated earlier, we wanted to continue our work
using the event-based model. So, we decided to change
our perspective and rework the definition of restrictive-
ness for event systems based on single events instead of
sequences of events.

Our definition given below does not insist that the event
system be input-total, only that for any two traces ¢I
and 2, that appear the same in a user’s view, if an input
event following t1 is a legal trace then that same event
following 12 must be a legal trace. This expanded def-
inition permits us to explore component specifications
which cannot be input-total. Rosenthal in [14] presents
other approaches to expanding the definition of restric-
tiveness to deal with non input-total systems.

RESTRICT
Fdef Vv es.
RESTRICT v es =
(Vt1 t2 e.
let EV = EVENTS es and
TR = TRACES es and
INP = INPUTS es and
seq_e = ENTRY e NULL_SEQ and
I_U_V = (INPUTS es) UNION v in
(t1 IN TR A
t2 IN TR A
SEQ_IN_SET_STAR t1 EV A
SEQ_IN_SET_STAR t2 EV A
e IN EV A
(ENTRY e t1) IN TR A
SAME_VIEW v t1 t2 —
(e IN v —
(e IN INP —
(ERTRY e t2) IN TR |
(3g1 g2.
(t2 SEQ_CONC
(g1 SEQ_CONC (seq_e
IN TR A
(g1 SEQ_RESTRICT I_U_V
(g2 SEQ_RESTRICT I_U_V
(3g.
(t2 SEQ_CONC g) IR TR A
(g SEQ_RESTRICT I_U_V = NULL_SEQ)))))

SEQ_CONC g2)))

NULL_SEQ) A
FULL_SEQ))) |

I}

Therefore, our definition considers a system to be re-
strictive with respect to a user’s view if, for two traces
t1 and t2 that appear the same in the view, and an
event e such that 17 followed by e is a legal trace of the
system, then:

o If eis in the user’s view and e is an input event, t2
followed by e is a legal trace for the system.

o If eis in the user’s view and is a non-input event,
there exists a sequence of events, containing e, and
not containing any input events or events in the
user’s view, such that t2 followed by this sequence
is a legal trace of the system.

o If ¢ is not in the user’s view, there exists a se-
quence of events (possibly the NULL sequence) not
containing any input events or events in the user’s

125

| ol hl
: I_1_ esl 01 :
INp ! ' OUT
X HE
VoI2 es2 02 ,
. es ;

Figure 1: The hook-up of two event systems

view, such that t2 followed by this sequence is a
legal trace of the system.

Proving properties with respect to this definition can
be accomplished using induction on the length of the
traces t1 and t2. This induction naturally falls out of
the recursive definition of sequences presented in Ap-
pendix A, and works well with our definition based on
single events. Using the HOL system we have proven
the theorem below tﬁat state for input-total systems our
definition implies McCullough’s original definition, thus
assuring that our definition relates to McCullough’s.

RESTRICT_IMP_RESTRICTIVENESS
F Vv es.
IS_INPUT_TOTAL es —

RESTRICT v es = IS_RESTRICTIVE v es

4.2 Hook-Up of Restrictiveness

The hook-up of two event systems to create a third
event system is used in the construction of complicated
systems. The system specification can be decomposed
into a collection of simpler components that behave as
the system when they are hooked-up. An advantage of
this decomposition is that for some predicates (hook-up
predicates) one can show that if the components of a
system satisfy the predicate, then the hook-up of those
components will also satisfy that predicate. This en-
ables one to prove the predicate for a simple component
specification and use the hook-up property to prove the
predicate for the hook-up of the components.

If the two event systems es! and es2 are running in
parallel and communicate by sharing some events then
the combination of these two component systems is their
hook-up. The two component systems only share events
that are an input of one component and an output of
the other component. Figure 1 presents a block diagram
showing the hook-up of two event systems.

IS_HOOK_UP_INPUT_TOTAL
b ges Ves esl es2.
I1S_HOOK_UP_INPUT_TOTAL es esl es2 =
(let EV = EVENTS es and INP = INPUTS es

and OUT = OUTPUTS es and TR = TRACES es
and E1 = EVENTS esi and I1 = INPUTS esl
and 01 = OUTPUTS es1 and T1 = TRACES esi
and E2 = EVENTS es2 and I2 = INPUTS es2
and 02 = OUTPUTS es2 and T2 = TRACES es2 in

((EV = E1 UNION E2) A
(INP = (It DIFF 02) UNION
(OUT = (01 DIFF I2) UNION
(I1 INTER I2 = EMPTY) A
(01 IBTER 02 = EMPTY) A
(((E1 DIFF I1) DIFF 01) INTER E2 = EMPTY) A
(((E2 DIFF I12) DIFF 02) INTER E1 = EMPTY) A
(Vx.

x INTR =

SEQ_IN_SET_STAR x EV A

(x SEQ_RESTRICT E1) IN T1 A
(x SEQ_RESTRICT E2) IN T2)))

(I2 DIFF 01)) A
(02 DIFF I1)) A

The above equation is the HOL definition of the hook-
up predicate presented in [8]. There are several clauses
in this predicate to determine if es is the hook-up of the
component systems es! and es2.

e The events of es are the events of es! and es2.

o The inputs of es are the inputs esI and es that are

not shared events.

The outputs of es are the outputs of esl and es?
that are not shared events.

The input—output pairs of esI and es2 are the only
shared events.

The traces of es are all sequences of events of es
such that when restricted to the events of any com-
ponent system they are a trace of that component
system.

This predicate is adequate for a system consisting of
two input-total components, which are always ready to
receive new input events. To expand the predicate to
non-input-total components we only need to add the two
clauses shown below, which state that for shared events,
if it is possible for one component to send an output then
the other component must be ready to receive it.

IS_HOOK_UP
Fdes Ves esl es2.
IS_HOOK_UP es est es2 =
.. % same as IS_HOOK_UP_INPUT_TOTAL def. % A
(Vt x.
t IN TR A x 1IN 01 A
(ENTRY x(t SEQ_RESTRICT E1)) IN T1 =>
((ENTRY x t) SEQ_RESTRICT E2) IN T2) A
(Vt x.
t INTR A x IN 02 A
(ENTRY x(t SEQ_RESTRICT E2)) IN T2 —>
((ENTRY x t) SEQ_RESTRICT E1) IN T1)

126

We have proven that our definition of restrictiveness is
a composable property, using our modified definition
of hook-up for non input-total systems. The following
theorem is the result of this proof.

RESTRICT_IS_HOOK_UP
F Ves es1 es2 V.
RESTRICT V es1 A RESTRICT V es2 A
IS_HOOK_UP es esl es2 —>
RESTRICT V es

Using this proof we can show that any event system
that is the hook-up of two event systems is restrictive
if it’s components are restrictive. Taking this a step
further we can show that any system that is a hook-up
of a collection of event systems is restrictive if all the
components are restrictive.

5 Specifying and Verifying System

Components

In this section we discuss the development of system
components. When we first started work on this phase
of our research, we attempted to formalize the delay-
queue specification and proofs presented by McCullough
[10]. We quickly confirmed that McCullough’s claims
about the complexity of the proofs. Attempting to re-
peat proofs of this complexity for several different com-
ponents with simple specifications was not appealing.

We felt that the development of generic building blocks
would simplify the proof process. We decided to classify
the system components into four classes. Three of the
classes are sequential (i.e. “first come first serve”) and
the last is scheduled. All of the components described
in this paper are input-total, if we expand on the work
in [14] we can specify non-input total or input limited
versions of these classes. We name these classes based
on the way they relate inputs to non-inputs, on a one-to-
one, one-to-many, many-to-one or many-to-many basis.

o 1-1 (Set Filter). This class consists of components
that process messages on an first-come first-serve
basis. Each input event is either ignored or trans-
formed by a simple constant function and sent as
an output event.

1-M (Generator). This class consists of components
that process messages identically to the 1-1 class
except that each input event generates a sequence
of non-input events according to the function.

M-1 (Programmable Filter). This class consists of
components that process messages on a first-come
first-serve basis. FEach input event is considered
either a control event or a data event. Control
events do not generate any additional events, but
can change the future behavior of the system. Data
events are transformed based on the history of pre-
vious events, and sent as non-input events.

e M-M (Scheduled Programmable Filter). This class
is the catch-all. It takes input events, and process
them based on the history of events. The inputs are
not necessarily processed on a first come first serve
basis, and the transformations are not necessarily
constant.

Once we defined these classes of components we de-
veloped a generic specification for components in each
class. Every specific component can be specialized from
the generic definition. Not only does this standardize
and simplify the specification of components, it also aids
in the proof of properties about the components. Since
each component is a specific instance of the generic com-
ponent, a proof of a property about the generic compo-
nent will automatically apply to the specific instance.
For each of our classes we proved, for a collection of
views, that the generic specification is restrictive for
those views.

To demonstrate our techniques we also specialized a
collection of parameterized components for each class,
and showed which parameters give us valid components.
The remainder of this section presents in detail the steps
necessary for developing the set filter class of compo-
nents.

The set filter consists of components that take inputs
one at a time, process them and then send an output
if necessary. We can summarize the set filter with the
following properties:

1. Input-total. The components are always ready to
receive inputs.

2. FIFO. The components process inputs on a first-
come first-serve basis.

3. Filter. Each input message is either ignored or
transformed into a single output.

IS_SET_FILTER_DEF
Fief Ves fn setl.
IS_SET_FILTER es fn setl =
(let EV = EVENTS es and INP = INPUTS es
and OUT = OUTPUTS es and TR = TRACES es
((Vx. x IN (INP INTER setl) =
(fn x) IN OUT) A
(EV = INP UNION OUT) A
(Yseq. seq IN TR =
IS_SET_FILTER_TRACE seq es fn set1)))

in

To define the filter we created a predicate in the HOL
logic, IS-SET-FILTER presented above. This predicate
is parameterized by a set of events, a function and an
event system. The event system is considered to be a
filter if:

¢ The function maps inputs in the set to outputs.
¢ The events of the system are only inputs or outputs.

e The component only processes messages in the set.

127

o The set of traces of the event system are the traces
of the filter.

The definition IS-SET-FILTER-DEF defines the predi-
cate that determines if an event system is a filter. Al-
though we have explicitly defined three of the fields of
the event system, we still need to elaborate on the fourth
field, the traces. The three definitions given below al-
low us to define a trace of the filter. One can see that
a s}fquence is defined to be a valid trace of the filter if
either:

o The sequence is the Null sequence.

o The sequence is of the form ENTRY ¢ seq and e
is a legal next event for seq. This means that e
is either an input event or it is the correct output
event for the next unserviced input event.

SET_FILTER_MSGS
"def (Ves setl. SET_FILTER_MSGS NULL_SEQ es setl =
NULL_SEQ) A
(Vx 8 es setl,
SET_FILTER_MSGS(ENTRY x s)es seti =
(x IN (INPUTS es) —
(x IN seti —
ENTRY x(SET_FILTER_NSGS s es seti) |
SET_FILTER_MSGS s es setl) |
SEQ.TAIL(SET_FILTER_MSGS s es set1)))

IS_SET_FILTER_NEXT_EVENT

Fdef Ve seq es fn setl.
IS_SET_FILTER_NEXT_EVENT e seq es fn setl =
e IN (INPUTS es) V
e IN (OUTPUTS es) A
—(SET_FILTER_MSGS seq es setl =
(e = fn(SEQ_FIRST_ENTRY

(SET_FILTER_MSGS seq es set1)))

BULL_SEQ) A

IS_SET_FILTER_TRACE

Fdes (Ves fn seti.
IS_SET_FILTER_TRACE NULL_SEQ es fn setl =

(Ve seq es fn setl.

IS_SET_FILTER.TRACE(ENTRY e seq)es fn setl
(IS_SET_FILTER_NEXT_EVENT e seq es fn setl —
IS_SET_FILTER_TRACE seq es fn setl |
F))

T A

Note that we keep track of the unserviced input events
through use of the function SET-FILTER-MSGS. This
function takes an entire sequence as a parameter and
recursively builds a sequence of unserviced messages.
All inputs are added to the end of the sequence while
outputs remove an input from the front of the se-
quence. This function only handles the bookkeeping
while the predicate IS-SET-FILTER-NEXT-EVENT
handles checking whether the output events actually are
correct for the next input event.

Now that we have defined what we mean by a filter we
can use it in our proof of security properties. The the-
orem presented below states when a set filter is restric-
tive. It relies on the definition VISIBLE-OUT-IMP-INP

which determines if all the outputs in the view are de-
rived from inputs also in the view 3, Thus if a view
satisfies this predicate, a filter is restrictive with respect
to that view.

VISIBLE_OUT_IMP_INP
i-def Vv es fn.
VISIBLE_OUT_IMP_INP v es fn =
(Vx.
x IN v A x IN (OUTPUTS os) =
(Vx'. x' IN (INPUTS es) A (x = fn x') =
x' 1M v))

SET_FILTER_IS_RESTRICTIVE
t Vv setl es fn.
VISIBLE_OUT_IMP_INP v es fn A
IS_SET_FILTER es fn setl —
RESTRICT v es

5.1

In this section we describe several components that have
been specialized from the set filter specification. Each
of these components is defined through a predicate that
determines if an event system behaves like that type
of components. We then prove a theorem which deter-
mines which parameter values allow this predicate to
be true. Once this is done one can easily instantiate
these components with specific parameters that satisfy
the conditions.

Filter Components

We have also shown that each component satisfies
the restrictiveness property for the views described for
generic filters. All the components discussed in this sec-
tion share some similar properties that are a product of
the event system model, the filter specification or exist
for convenience in the proofs.

o All external events are labeled pairs. The first el-
ement of the pair is the name of the I/O channel
where the message occurs, and the second element
of the pair is the actual message.

o The names of the input and output channels for
this component are disjoint.

o There exist output messages for all possible input
messages.

o The components are generic enough that the actual
messages and names of the I/O channels can be
specified upon instantiation.

We have defined six different components that are spe-
cializations of the set filter classification. Each of these
components has been formally specified, and verified as
being restrictive for a set of views.

The Delay Queue is the simplest of the filter specializa-
tions. It receives messages through an input port, and

2We don't want a system to permit a user to see an output
event that was generated from inputs the user was not permitted
to view

128

at some later time sends them out an output port. It
is parameteriged by the names of the two ports and the
set of messages that it handles.

The Simple Filter component is very similar to the delay
queue component with an additional set of messages
as a parameter. Any input message received by the
simple filter that is not in this set is ignored and does
not generate any output message.

The Transformer component is also very similar to the
delay queue component with a function as an additional
parameter. This function maps the input messages to
corresponding output messages.

The Multiplezor component is a slightly more compli-
cated device. It receives input messages on many chan-
nels, and places them, in order received,® on a single
output channel. It is parameterized by a set of input
port pairs and output port name. Each input port pair
consists of the input port name and the set of messages
that can arrive at that port.

The De-multiplezor component receives input messages
on a single channel and places them on one of many pos-
sible output channels. It is parameterized by an input
port name and a set of output port pairs. Each output
port pair consists of an output port name and a set of
messages that can be sent on that port. Each output
port has a unique set of messages. Each input message
is then uniquely routed to a particular output port.

The Switch component is effectively a combination of
the multiplexor, de-multiplexor and transformer com-
ponents. It receives messages on many input ports and
sends a corresponding output to one of many output
ports. The switch is parameterized by a set of input
port pairs, a set of output port pairs and a transforma-
tional routing function. Each pair consists of the port
name and the set of messages that can occur on that
port. The routing function generates an output mes-
sage for each input message and determines the correct
output port for that message.

5.2 Specifying Components

Each component is specified following a standard
method. In this section we present the method as it
was applied to the delay queue component. This set of
specifications is the first step of our method.

For this first step we present any auxiliary definitions
needed to define the components, which for the delay
queue is the function DELAYQ-FN. This function maps
input events to output events. This mapping is accom-
plished by changing the 1/O port identifier of the event
to the output port identifier o-port.

3Recall that all events are separate so the system can always
coose one to be first.

DELAYQ_FN
Fdef Vo_port x. DELAYQ_F¥ o_port x = o_port,SED x

DELAYQ_P
Fdej Ves msgs i_port o_port.
DELAYQ_P es msgs i_port o_port =
(¥x. x IN (INPUTS es) =
(FST x = i_port) A (SHD x) IN msgs) A
(Vx. x IN (OUTPUTS es) =
(FST x = o_port) A (SED x) IN msgs) A
—(i_port = o_port) A
IS_SET_FILTER es(DELAYQ_FN o_port) (EVENTS es)

DELAYQ_DEF
Faef Vmsgs i_port o_port.
DELAYQ msgs i_port o_port =
(ces. DELAYQ_P es msgs i_port o_port)

These auxiliary definitions are used to simplify the main
predicate, in this case DELAYQ-P 4. This predicate de-
termines if an event system satisfies a relationship with
the set input parameters. For the delay queue those
parameters are a set of messages msgs, and I/O port
identifiers i-port and o-port. As can be seen in the def-
inition, an event system is considered a delay queue if:

o The set of inputs consists of pairs, where the first
element of the pair is the input port identifier i-
port, and the second element of the pair is a mes-
sage. There exists a pair for each message in the
parameter msgs.

o The set of outputs consists of pairs, where the first
element of the pair is the output port identifier o-
port, and the second element of the pair is a mes-
sage. There exists a pair for each message in the
parameter msgs.

e The port identifiers are different.

¢ The event system is a filter.

The characteristic predicate is then used in the cre-
ation function. This function generates an event system,
based on a set of parameters, that satisfies the charac-
teristic predicate. For the delay queue, this function
is defined in DELAYQ-DEF. Note that the definition
uses the Hilbert Choice operator, €, which will return
an event syhstem that satisfies the characteristic predi-
cate. If none satisfy the predicate, and arbitrary event
system is returned.

To avoid the arbitrary choice of an event system we
develop an existence theorem that states under which
conditions there exists an event system that satisfies the
characteristic predicate.

* We use the notation comp-name-P for the components char-
acteristic predicate, comp-name-DEF for the component creation
function.

129

DELAYQ_EXISTS
I Vmsgs i_port o_port.
=(i_port = o_port) =—
(Jes. DELAYQ_P es msgs i_port o_port)

DELAYQ_MEMBER_LEMMA
I Vmsgs i_port o_port.
-(i_port = o_port) —
DELAYQ_P(DELAYQ msgs i_port o_port)
msgs i_port o_port

The above DELAYQ-EXISTS theorem states that when
the input and output port identifiers are distinct, there
exists an event system that satisfies the characteristic
predicate of a delay queue. Using this theorem we can
now prove an existence lemma, DELAYQ-MEMBER-
LEMMA, which states that if the input and output port
identifiers are distinct, then the creation function DE-
LAYQ always returns an event system which satisfies
the characteristic predicate DELAYQ-P.

DELAYQ_RESTRICTIVE
F Vv msgs i_port o_port.
let DQ = DELAYQ msgs i_port o_port in
(—~(i_port = o_port) A
VISIBLE_OUT_IMP_INP v DQ(DELAYQ_FN o_port) =—
RESTRICT v DQ)

Now that we know when a delay queue exists, we need

to show when it satisfies the security property. The

above theorem states when a delay queue is restrictive.

Here we once again use the predicate VISIBLE-OUT-

%MP-INP since a delay queue is an specialization of a
lter.

The restrictiveness theorem, in this case DELAYQ-
RESTRICTIVE, is generated from the existence the-
orems and the generic class restrictiveness theorem. In
this thoerem one can see that we define the event system
component, in this case DQ, using the creation function.
Using this component we develop the two clauses of the
antecedent of the implication. The first clause consists
of the antecedent in the component existence theorem,
in this case the requirement that the input and output
port identifiers are different. The second clause con-
sists of the view restriction predicate from the generic
class restrictiveness theorem. In this case the predi-
cate is VISIBLE-OUT-IMP-INP, parameterized by the
component DQ and its output function DELAYQ-FN.
Given that these conditions hold we then know that the
component DQ is restrictive.

Although the work presented here was generated inter-
actively in the HOL system, several of the theorems and
predicates presented in this section, such as the restric-
tiveness theorem and existence lemma, can be automat-
ically generated and proven in the HOL system. Given
a formal format for the steps presented above one could
create a more automated system that would guide the
user through this process, automatically generating the
necessary proof goals, theorems and definitions as they

are needed. We are currently developing such a format
and generation techniques for our collection of generic
classes and components. The Ulysses system [13] pro-
vides such automatic generation for specific instances of
components.

6 The Rushby Randell Distributed Sys-
tem

This section contains a description of a real system
specification that was proven using the generic classes
and components developed with the method presented
above. The specification we use is based on the Dis-
tributed Secure system presented in [15].

This system consists of a collection of untrusted sin-
gle level hosts, a network and a multilevel file server.
A diagram of such a system, without the file server is
shown in Figure 2. The major component of this sys-
tem is the Trusted Network Interface Unit (TNIU). This
device is an intermediary that sits between hosts on a
network and the actual network. The TNIU prevents
information on the network from reaching the host if
the information does not come from another host with
the same security classification level, the exception be-
ing the Multi-Level file server. This server is actually a
collection of single level servers and a trusted interme-
diary that routes the messages to the servers.

The implementation of the TNIU requires that there
exist a collection of security partitions. Each host and
its corresponding TNIU belong to exactly one partition.

To specify the system one needs to define the scope of
the system. This includes the set of data messages,
security partitions, host ids, and user view’s. One also
needs o define functions that determine the security
classification level for host ids, system events, and data
messages.

Following the method presented in this paper, events
must be characterized as pairs. The first element of the
event pair is the name of the I/O channel on which the
event occurs, the other element is the message. For a
network system each message must consist of at least
three components. The first component is the source
host 1D, the second component is the destination host
ID and the third component is the data message. One
can define functions that will return the correct compo-
nent for a given message.

Views in this system correspond to the security par-
titions. There is one view per partition. That view
contains all events such that the classification level of
the event is dominated by the view’s classification level.
One determines the classification level of an event based
on the classification level of the source host.

Using our method we have developed a high level
specification of the system and shown that it satisfies
restrictiveness®. Describing this system in our classifi-

cation system is straightforward.

The TNIU consists of two components, a transformer
that places the messages on the network and a filter

5Due to limitation of the security model we are using, we do not
include any of the encryption requirements in our specification.

130

that pulls messages off the network. The network is
a broadcasting device that takes single input messages
and places them on every single output port (a 1-M
generator). The file server is a simple database (a M-1
programmable filter).

8.1 TNIU

In this section we describe how we specify a single TNIU
for the system and show that it satisfies restrictiveness.
After accomplishing this for all components of the sys-
tem it is a simple matter to hook them up and show
that the whole system satisfies restrictiveness.

In each predicate there exists the variable sys, which
is used to characterize the system. This variable is an
abstraction of the secure system we are modeling. Com-
ponents of the variable consist of the set of security
partitions, a hierarchy function on those partitions, a
mapping of host ids to the partitions and the labeling
of I/O ports for the various system components. The
user can instantiate this variable to any system, as long
as the naming of I/O ports is unique, there exists no di-
rect feedback for single components, and the hierarchy
on the security partitions is a partial ordering.

The predicate TNIU-P shown below is the HOL char-
acteristic predicate for a TNIU. This predicate is true
if the TNIU is the hook-up of a filter component
and a transformer component. The theorem TNIU-
RESTRICTIVE also shown below states that a given
event system that satisfies the TNIU characteristic
predicate is restrictive.

THIU_P
Fdes Vsys es host_id.
THIU_P sys es host_id =
(Jesi es2.
(IS_HOOK_UP es esl es2) A
(THIU_FILTER_P sys esl host_id) A
(THIU_TRANS_P sys es2 host_id))

TNIU_RESTRICTIVE
I Vsys v es host_id.
(TRIU_P sys es host_id) A
(VISIBLE_OUT_IMP_INP v es
(TNIU_OUT_FN sys host_id)) =
RESTRICT v es

The theorem TNIU-RESTRICTIVE depends on two
TNIU specific definitions. The first, TNIU-P, is the
TNIU characteristic predicate defined earlier, while the
other, TNIU-OUT-FN, is a function that returns the
output function for the TNIU for a given host id. This
output function is used to ensure that all outputs in the
view are derived from inputs in the view.

The proof of the theorem TNIU-RESTRICTIVE is
based directly on the composability of the restrictive-
ness property. Given that the TNIU is the hook-up of
two components, if one has already shown that these
components are restrictive then the TNIU is restrictive.

SECRET
UNIX

TOP SECRET
UNIX

UNCLASSIFIED
UNIX

|TNIUI

ITNIUI

TNIUI

|TNIU|

UNCLASSIFIED
UNIX

LAN

ITHIUl

SECRET
UNIX

Figure 2: A distributed secure system.

Transformer

LAXN

HOST :

~————— Simple Filter

Figure 3: Decomposition of a TNIU.

The actual decomposition of the TNIU into these com-
ponents is shown in Figure 3. Here we have both the
filter and the transformer components of the TNIU
hooked-up (although not sharing any communication
channels) into a single TNIU.

TNIU Filter. The filter component of the TNIU al-
lows messages to pass through if the destination of the
message is the TNIU host and if the security classifica-
tion of the source host is equivalent to the security clas-
sification of the destination host. This filter is a direct
instantiation of the simple filter component described
previously. The set of messages that parameterizes the
simple filter consists of all messages whose destination
host id is the TNIU host id and whose source host id
has a classification level equivalent to that of the TNIU

131

host.

The predicate TNIU-FILTER-P presented below is the
HOL characteristic predicate for the TNIU filter com-
ponent. This predicate is true if a given event system
is the filter component of the TNIU for a given host id.
This TNIU filter component is actually an instantiation
of the generic 1-1 simple filter component.

TNIU_FILTER.P
Fdey Vsys es host_id.
THIV_FILTER_P sys es host_id =
SIMFIL_P es (TNIU_LEGAL_SET sys host_id)
(TNIU_MSGS sys)
(abs_TNIU_HOST_IN sys host_id)
(abs_TNIU_NET_OUT sys host_id)

In this definition the instantiation of the simple filter in-
cludes four TNIU specific parameters. TNIU-LEGAL-
SET is the function that returns the set of all possible
system messages sent to a given host id. TNIU-MSGS
is the set of all possible system messages. abs-TNIU-
HOST-IN is the function that returns the I/O channel
name of the input port for a given host id. abs-TNIU-
NET-OUT is the function that returns the I/O channel
name of the network output port that connects to the
TNIU for a given host id.

The theorem, TNIU-FILTER-RESTRICTIVE, given
below states that the TNIU filter component is restric-
tive. It depends on two TNIU specific definitions. The
first, TNIU-FILTER-P, is the TNIU filter component
characteristic predicate defined earlier, while the sec-
ond, TNIU-FILTER-OUT-FN, is a function which re-
turns the output function of the TNIU filter component
for a given host id. This output function is a simple
identity function that is used to ensure that all outputs
in a view are derived from inputs in that view.

TNIU_FILTER_RESTRICTIVE
I Vsys v es host_id.
TRIU_FILTER_P sys es host_id A
VISIBLE_OUT_IMP_INP v es
(TNIU_FILTER_OUT_FN sys host_id) —
RESTRICT v es

TNIU Transformer. The transformer portion of the
TNIU places the TNIU host id in the source host field
of the message. This ensures that the data in that
field is correct regardless of what the host placed in the
message. This transformer is a direct instantiation of
the transformer component described previously. The
transformation function that parameterizes the compo-
nent is a function that places the TNIU host id in the
source field of the message and redirects the message to
the network.

THEIU_TRANS_P
Fges Vsys es host_id.
TNIU_TRANS_P sys es host_id =
TRAKS_P es (TNIU_MSGS sys)
(THIU_SET_SRC_FN sys host_id)
(abs_TNIU_HOST_OUT sys host_id)
(abs_TNIU_NET_IN sys host_id)

The predicate TNIU-TRANS-P presented above is the
HOL characteristic predicate for the TNIU transformer
component. This predicate is true if a given event sys-
tem is the transformer component of a the TNIU for
a given host id. The TNIU transformer component is
actually an instantiation of the generic 1-1 transformer
component.

In this definition the instantiation of the transformer
includes four TNIU specific parameters. TNIU-MSGS
is the set of all possible system messages. TNIU-SET-
SRC-FN is the function that returns the transformation
function for a given host id. This transformation func-
tion ensures that the source host id in the message is
the host id. abs-TNIU-HOST-OUT is the function that
returns the 1/O channel name of the output port for a
given host id. abs-TNIU-NET-IN is the function that
returns the I/O channel name of the network input port
that connects to the TNIU for a given host id.

THIU_TRANS_RESTRICTIVE
I Vsys v es host_id.
TNIU_TRANS_P sys es host_id A
VISIBLE_OUT_IMP_INP v es
(THIU_TRANS_OUT_FN sys host_id) =
RESTRICT v es

The theorem, TNIU-TRANS-RESTRICTIVE, shown
above, states that the TNIU transformer component is
restrictive. It depends on two TNIU specific definitions.
The first, TNIU-TRANS-P, is the TNIU transformer

component characteristic predicate presented earlier,
while the second, TNIU-TRANS-OUT-FN, is a func-
tion which returns the output function of the TNIU
transformer component for a given host id. This output
function is a simple identity function that is used to en-
sure that all outputs in a view are derived from inputs
in that view.

6.2 Network

The network can be specified as a broadcasting device.
It receives input messages from one of the TNIUs in the
system. This message is the duplicated and sent to all
the other TNIUs in the system.

Using the 1-M generator classification one can specify
a generic component broadcasting device that behaves
in this manner. This component can then be shown to
satisfy the restrictiveness property. One then instanti-
ates the broadcasting component for the particulars of
this system. Due to the fact that the generic compo-
nent satisfies restrictiveness one can easily show that
this instantiation satisfies restrictiveness.

6.3 File Server

The file server is the most complicated component of the
system, but can be specified as a simple database device.
It receives messages from its TNIU and sends responses
back through the TNIU. The responses are determined
by previous messages received by the server. Possible
messages from hosts of the system include publish and
acquire requests for access to files in the server.

The server originally described by Rushby and Randell
consists of a simple switch (multiplexor, de-multiplexor
pair) and a collection of untrusted single level file
servers. This configuration can easily be defined us-
ing a 1-1 filter switch component for the switch and
a simple M-1 programmable filter database component
for the file servers. Unfortunately this does not define
the possible behavior of untrusted file servers, in that
it requires the file servers perform as expected. An un-
trusted file server can change the contents of a file based
on the history of acquire requests it has received.

To define the system as it should behave one defines the
whole file server as a M-1 programmable filter database
component. This component receives publish and ac-
quire messages from the network. It will then respond
as defined by the security policy. If a Secret level host
publishes a file File! a Top Secret level host can acquire
Filel but an Unclassified level host cannot.

7 Conclusions

In this paper we presented a generalization of McCul-
lough’s restrictiveness model. We used this generaliza-
tion and an event-based model of computer systems de-
fined in the HOL system [6] to prove the composabil-
ity of the model and several other properties about the
model. This composability permits us to use modular
specification techniques in the development of a system,
and then when all components are shown to satisfy re-
strictiveness we automatically know that their composi-
tion satisfies restrictiveness. We then developed a set of

generalized classes of system components and showed
for which families of user views they satisfied restric-
tiveness. Using these classes we developed a collection
of general system components that are specializations
of one of these classes and showed that they also sat-
isfied the security property. These proofs were easy to
develop due to the existence of proofs showing that the
general models satisfy the restrictiveness property. We
then defined a sample distributed secure system, based
on the Rushby and Randell TNIU, and showed how our
mechanized system could be applied to reasoning about
it.

Continuing this work, we plan to incorporate some of
the ideas presented by Rosenthal in [13, 14] to expand
our mechanized system classifications to include non-
input total systems. Using these expanded classifica-
tions we will apply our to a network mail server [12]
and a secure labeler [16]. Once we have developed an
adequate library of generic system component specifica-
tions and used them to specify sample systems, we will
apply our method to a kernel for a secure distributed
system. The method we have developed, and the com-
posability of the security model we are using will enable
us to fragment this task into several simple components.
We expect all of these components to fit into one of our
generic component classifications.

Acknowledgements

We would like to thank Phillip Windley for his well writ-
ten description of the HOL system and his help on using
HOL in general. We would also like to thank Amit Ja-
suja, Sara Kalvala, Jing Pan and Tom Schubert for their
help and discussions during the development of the HOL
theories and proofs presented in this paper.

References

(1] J. Alves-Foss and K. Levitt. A Model of Event Sys-
tems in Higher Order Logic: Sequence and Event
System Theories. Technical Report CSE-90-45, Di-
vision of Computer Science, University of Califor-
nia, Davis, November 1990.

(2] J. Alves-Foss and K. Levitt. A Security Property in
Higher Order Logic: Restrictiveness and Hook-Up
Theories. Technical Report CSE-90-46, Division of
Computer Science, University of California, Davis,
December 1990.

[3] A. Camilleri, M. Gordon, and T. Melham. Hard-
ware verification using higher order logic. In D.
Borrione, editor, HDL Descriptions to Guaranteed
Correct Circuit Designs, Elsevier Scientific Pub-
lishers, 1987.

[4] AJ. Camilleri. Mechanizing CSP trace theory
in Higher Order Logic. IEEE Transactions on
fg&ware Engineering, 16(9):993-1004, September

(5] A. Church. A formulation of the simple theory of
types. Journal of Symbolic Logic, 5, 1940.

133

[6] M. Gordon. A Proof Generating System for Higher-
Order Logic. Technical Report 103, University of
Cambridge Computer Laboratory, January 1987.

[7] C.A.R. Hoare. Commaunicating Sequential Pro-
cesses. Prentice Hall, London, 1985.

[8] D. McCullough. Foundations of Ulysses: The The-
ory of Security. Technical Report RADC-TR-87-
222, Odyssey Research Associates, Inc., July 1988.

(9

—

D. McCullough. Noninterference and the compos-
ability of security properties. In Proc. IEEE Sym-
posium on Security and Privacy, pages 177-186,
1988.

[10] D. McCullough. Specifications for multi-level secu-
rity and a hook-up property. In Proc. IEEE Sym-
posium on Security and Privacy, pages 161-166,
1987.

R.A. Milner. Communicating and concurrency.
Prentice Hall, New York, 1989.

S. Owicki. Specification and verification of a net-
work mail server. In F.L. Bauer and M. Broy,
editors, Program Construction, pages 198-234,
Springer-Verlag, 1979.

(11]

(12]

[13] D. Rosenthal. Implementing a verification method-
ology for McCullough security. In Proc. Computer
Security Foundations Workshop, pages 133-140,
IEEE Computer Society Press, June 1989.

[14] D. Rosenthal. Security models for priority buffer-
ing and interrupt handling. In Proc. Computer Se-
curity Foundations Workshop, pages 91-97, IEEE

Computer Society Press, June 1990.

(15] J. Rushby and B. Randell. A distributed secure
system. IEEE Computer, 16(7):55-67, 1983.

[16] W.D. Young, P.A. Telega, W.E. Boebert, and R.Y.
Kain. A verified labeler for the Secure Ada Target.
In Proc. National Computer Security Conference,
1986.

A The Sequence Theory

let sequence = define_type ‘sequence’
‘sequence = FULL_SEQ | EETRY * sequence‘;;

The HOL definition for the sequence data type abstrac-
tion is shown above. In this definition one can observe
that a sequence is defined as either as NULL-SEQ or
as a sequence with an entry appended to it. This is
similar to a Lisp cons operation except that the entry
is added to the end of the sequence. The “*” in the
second disjunction of the definition is a place holder for
a type specifier, it permits us to define sequences as a
ordered collection of objects of type “*”. We can later
instantiate a sequence to consist of objects of a spe-
cific type (i.e. int, bool, lists, or even more sequences).

The HOL system automatically generates the abstrac-
tion and representation axioms for the sequence data
type, permitting us to deal with the abstraction and
ignore the internal representation.

SEQ_LAST_ENTRY
Fdef Vx s. SEQ_LAST_ENTRY(ENWTRY x 8) = x

SEQ_HEAD
Fdef (SEQ_HEAD NULL_SEQ = NULL_SEQ) A
(V¥x s. SEQ_HEAD(ENTRY x 8) = s)

SEQ_FIRST_ENTRY
Fgef VX s
SEQ_FIRST_ENTRY(ENTRY x 8) =
((s = NULL_SEQ) — x | SEQ_FIRST_ENTRY s)

SEQ.TAIL
Fges (SEQ-TAIL NULL_SEQ = BULL_SEQ) A
(Vx s.
SEQ_TAIL(ENTRY x 8) =
((s = NULL_SEQ) — NULL_SEQ |
ENTRY x(SEQ_TAIL 8)))

Once we define the recursive data type we need some
simple definitions for manipulating elements of the se-
quence type. As seen above we defined four simple ex-
tractors, which take a sequence as a parameter and
returns a component of the sequence. SEQ-LAST-
ENTRY returns the last element added to a sequence
and is undefined for the NULL sequence. SEQ-HEAD
is the opposite of SEQ-LAST-ENTRY in that it returns
the sequence that existed prior to the last element being
added and returns NULL-SEQ for a NULL sequence.
SEQ-FIRST-ENTRY returns the first element added in
a sequence and is undefined for the NULL sequence.
SEQ-TAIL is the converse of SEQ-FIRST-ENTRY in
that it returns the sequence that exists after the first
entry and returns NULL-SEQ for the NULL sequence.

SEQ_LENGTH
Fdef (SEQ_LENGTH NULL_SEQ = 0) A
(Vx s. SEQ_LENGTH(ENTRY x 8) = SUC(SEQ_LENGTH 8))

SEQ_CONC
*_def (Vs. s SEQ_CONC NULL_SEQ = 8) A
(Vs s1 x. s SEQ.CONC (ENTRY x s1) =
ERTRY x(s SEQ_CONC s1))

SEQ_RESTRICT
}‘def (Ve. NULL_SEQ SEQ_RESTRICT e = NULL_SEQ) A
(Vx s e.
(ENTRY x s) SEQ_RESTRICT e =
(x 1IN e — ENTRY x(s SEQ.RESTRICT e) |
s SEQ_RESTRICT e))

We have defined several functions on elements of the
sequence abstract data type. We present three of these
functions above. SEQ-LENGTH is a simple recursive

function that takes a sequence as a parameter and re-
turns its length. SEQ-CONC is an infix operator that
takes two sequences as parameters and returns their
concatenation (similar to a Lisp append operation).
SEQ-RESTRICT in an infix operator that takes a sin-
gle sequence and a set of elements as parameters and
returns the sequence with elements not in the set re-
moved from the sequence.

PREFIX
Fgey (Va. a PREFIX NULL_SEQ = (a = NULL_SEQ)) A
(Va b x.
a PREFIX (ENTRY x b) =
((a = ENTRY x b) — T | a PREFIX b))

PPREFIX
4.y V81 82.
s1 PPREFIX 82 = —(sl = s2) A sl PREFIX s2

SEQ_IN_SET_STAR
Fdep (Vsetl. SEQ_IN_SET_STAR NULL_SEQ set1 = T) A
(Vx 8 setl.
SEQ_IN_SET_STAR(ENTRY x s)setl =
(x IN setl — SEQ_IN_SET_STAR s seti | F»)

We have also defined some useful predicates based on
sequences. We present four of these above. PREFIX is
an infix operator which is true if the first sequence isa
prefix of the second sequence. PPREFIX is an infix op-
erator which is true if the first sequence is a proper pre-
fix of the second sequence. SEQ-IN-SET-STAR takes
a sequence and a set and is true if all elements of the
sequence are members of the set.

In the course of our research, we have developed a large
library of functions and predicates for the sequence ab-
stract data type. To aid our proof efforts, we have also
proven many theorems related to sequences and their
selectors, predicates and functions. A complete listing
of the library is given in [1].

B The Event system Theory

The event system is a polymorphic structure consisting
of four fields. Three of the fields are sets of elements,
and the fourth is a set of sequences of elements. These
fields represent the set of events of the system, set of in-
put events of the system, set of output events of the sys-
tem, and the set of all valid traces (sequences of events)
of the system. The inputs and outputs must be sub-
sets of the set of events and traces must be sequences
of the events. The valid traces represent all the possi-
ble sequences of events that could have occurred in the
history of the event system.

To develop the event system abstract data type we need
to first define a characteristic predicate that will deter-
mine the relationship between the components of the
event system and a predicate that determines our rep-
resentation of the abstract data type. These predicates
are presented below.

IS_EVENT_SYSTEM

Fg4ef Vevents inputs outputs traces.
IS_EVENT_SYSTEM events inputs outputs traces =
inputs SUBSET events A
outputs SUBSET events A
DISJOINT inputs outputs A
(Vs e. (EBTRY e s) IN traces =—> s IN traces) A
(Vs. s 1IN traces => SEQ_IN_SET_STAR s events)

IS_EVENT_SYSTEM_REP
'_def Vr.
IS_EVERT_SYSTEM_REP r =
(Jev in out tr.
(r = ev,in,out,tr) A
IS_EVENT_SYSTEM ev in out tr)

EVERTS

'_def Ves.
EVEETS es = FST(REP_event_system es)

INPUTS

"dcf Ves.
INPUIS es =

FST(SED(REP_event_system es))

OUTPUTS
"'def Ves.
OUTPUTS es = FST(SND(SED(REP_event_system es)))

TRACES
Fdes Ves.
TRACES es = SED(SHD(SED(REP_event_system es)))

The predicate IS-EVENT-SYSTEM determines if a col-
lection of sets can be combined into an event system.
This is true onmly if the inputs and outputs are dis-
joint subsets of the events, and the traces are event
separable sequences of events (i.e. (ENTRY e s) IN
traces =>s IN TRACES). The predicate IS-EVENT-
SYSTEM-REP determines if a four-tuple of sets rep-
resents a valid event system. This is true only if the
components of the four-tuple map to the four fields of
the event system and satisfy the characteristic predi-
cate. These two predicates are used to define the event
system abstract data type in the HOL system.

EMPTY_EVENT_SYSTEM_REP
Fdef EMPTY_EVENT_SYSTEM_REP = EMPTY,EMPTY,EMPTY,EMPTY

EMPTY_ES_REP_IS_REP
+ IS_EVENT_SYSTEM_REP EMPTY_EVENT_SYSTEM_REP

ES_EXISTS_THM
F 3x. IS_EVENT_SYSTEM_REP x

event_system_AXIOM
I 3rep. TYPE_DEFINITION IS_EVENT_SYSTEM_REP rep

To complete the creation of the abstract data type we
need to prove an existence theorem that states that
there exists a value that represents an element of the ab-
stract data type. The first definition, EMPTY-EVENT-
SYSTEM-REP, is a representation of the EMPTY event
system. EMPTY-ES-REP-IS-REP is the theorem that
proves that this definition represents an event system.
We use this theorem to prove the existence theorem ES-
EXISTS-THM. The HOL system then automatically
generates the abstract data type axiom event-system-
AXIOM. It also generates mapping operators between
events systems and their representations.

To access the fields of the abstract data type one needs
selectors. The operators enable the user to access the
fields of the event system while ignoring the actual rep-
resentation being used. The four field selectors are pre-
sented below.

135

Through the course of our research we have developed a
large library of theorems and definitions related to the
eve[nﬁ system. A complete listing of this library is given
in [1].

