

chime: customizable hyperlink insertion and maintenance
engine for Software Engineering Environments

P. Devanbu
Dept. of Computer Science

University of California
Davis, CA, USA
+1 530 752 7324

devanbu@cs.ucdavis.edu

Y-F. Chen, E. Gansner
AT&T Labs–Research

190, Park Drive
Florham Park, NJ 95030
+1 973 360 8653/8646

chen,erg@research.att.com

H. Müller, J. Martin
Dept. Of Computer Science

University of Victoria
Victoria, BC V8W 3P6

+1 250 721 7630
hausi,jmartin@csc.uvic.ca

Abstract
Source code browsing is an important part of program
comprehension. Browsers expose semantic and syntac-
tic relationships (such as between object references and
definitions) in GUI-accessible forms. These relation-
ships are derived using tools which perform static anal-
ysis on the original software documents. Implementing
such browsers is tricky. Program comprehension strate-
gies vary, and it is necessary to provide the right brows-
ing support. Analysis tools to derive the relevant cross-
reference relationships are often difficult to build. Tools
to browse distributed documents require extensive cod-
ing for the GUI, as well as for data communications.
Therefore, there are powerful motivations for using ex-
isting static analysis tools in conjunction with WWW
technology to implement browsers for distributed soft-
ware projects. The chime framework provides a flex-
ible, customizable platform for inserting HTML links
into software documents using information generated by
existing software analysis tools. Using the chime spec-
ification language, and a simple, retargetable database
interface, it is possible to quickly incorporate a range
of different link insertion tools for software documents,
into an existing, legacy software development environ-
ment. This enables tool builders to offer customized
browsing support with a well-known GUI. This paper
describes the chime architecture, and describes our ex-
perience with several re-targeting efforts of this system.

1 Introduction
The World Wide Web (WWW) is an accessible, power-
ful, and ubiquitous medium for the delivery and access
of widely distributed documents. The low cost, flexi-
bility, and ease of access has led to rapid advance of
browser technology. HTTP clients such as web browsers
support sophisticated interactive capabilities: hot lists,
browsing history, drag and drop, selection forms, etc.

In addition, they have the ability to handle different
types of networking protocols. These clients are ubiqui-
tous, and are constantly being enhanced. There is thus
a strong incentive to leverage this increasingly power-
ful browsing technology in other contexts; in particu-
lar, chime is aimed at exploiting web-based browsing
in software engineering environments. Software devel-
opment projects are becoming increasingly more dis-
tributed, in response to personnel costs and market seg-
mentation. Such projects will involve distributed soft-
ware documents that have complex inter-relationships.
Browsers that can handle such distributed documents,
and expose their inter-relationships as traversable hy-
perlinks, will be helpful to developers in these projects.

Web-based source code browsing has been discussed by
other authors [15, 14, 23]; our specific goal is to facil-
itate the addition of web-based browsing into existing
software development environments (SDEs). The cen-
tral focus of chime is the task of inserting HTML links
into source code, using information stored in reposito-
ries associated with existing SDEs. Specifically, chime
assumes that the online documents are stored in some
sort of (possibly distributed) repository, and that syn-
tactic and semantic inter-relationships between docu-
ments are derived by some analysis tools and stored in
a repository in some format (not pre-determined). A
user of chime can then specify a set of links, the rela-
tionship of the links to the contents of this database,
as well as the action to be taken when the links are
activated. From this specification, chime generates a
link insertion engine that reads documents, queries the
database and interprets the results, inserts the appro-
priate HTML links, and outputs the resulting text. An-
other key goal in the chime project is to provide flexi-
bility in link insertion. The variability that chime tries
to accommodate includes database implementation, in-
terpretation of database contents, number of links, and
the meaning of links.

The rest of this paper is organized as follows. In sec-
tion 2, we discuss the importance of browsing functions
in software development environments, and the moti-
vations of chime. Then, in Section 3, we discuss the

1

details of how chime tries to achieve the goals outlined
above. In Section 4, we briefly describe some applica-
tions of chime. In section 5, we discuss relevant work
on automatic link insertion, including related projects,
and the relationship of that work to the goals of chime;
this is followed by the conclusion.

2 HTML browsing for Software Documents
A key functionality in software development environ-
ments is browsing. It has been reported [7] that pro-
grammers can spend 50% or more of their time trying
to understand the system, especially in large projects.
Good browsing support can be helpful during this pro-
cess. Students of program understanding have described
two strategies used by programmers to comprehend
programs: top-down and bottom-up. Empirical stud-
ies [19, 17] indicate that programmers use both styles
of exploration and comprehension. Thus, it would be
desirable for a browser to support both kinds of explo-
ration. For example, a C++ programmer might start
first examining the class structure of a system; she might
then focus on a few specific methods and their calling
structure; then she might scrutinize the precise use of
class member data of a specific class within the member
functions. This might again lead to examine the type
definitions of some class data members, which leads to
further exploration of the class structure, etc. Different
users’ styles and different comprehension tasks require
different links. This has led us to emphasize flexible
link configuration as a vital, key goal of the chime sys-
tem. A secondary goal in the chime system is retar-
getability. Large legacy projects have a lot of inertia.
Part of this is due to personnel and training: it can be
time-consuming, expensive and difficult to introduce an
entirely new development environment into an ongoing
project just because part of the development effort has
been delegated a geographically far removed site. So
it would be desirable to introduce tools to support dis-
tributed development into the project in a minimally
disruptive manner.

In addition, because of the complexity of the config-
uration and build procedures [31] in large projects, it
can be very expensive to bring new tools and processes
into the environment, specially if these tools need to be
run over the entire source base. If at all possible, it
is advantageous to introduce new capabilities into the
development environment in a minimalist, incremental
fashion that avoids global analysis with new tools. A
goal of the chime system is to introduce web-based
source code browsing into an existing development en-
vironment without forcing changes to the configuration
and build procedures. This has two advantages. First
existing processes are not disrupted. Second, the de-
velopers don’t have to learn a new browsing tool: their
current familiarity with the WWW browsing tools can

be leveraged.

A browsing tool [28, 4] includes a graphical interface
(GUI), and it accesses the document repository and
a cross-referencing relational database (XRDB). The
relational database has the relations corresponding to
browsing steps (e.g., from a reference to a function to
its definition). The GUI includes document viewers and
other devices such as buttons, menus and scroll bars for
manipulating the viewers. For example the GNU emacs
editor [28] can use the GNU tags database to support
browsing of C code: a simple mouse action can move the
view from a function reference to a function definition.
C++ development environments such as those available
from Symantec [25] also support various browsing ac-
tions. With distributed environments, browsers need to
access remote documents transparently in response to
browsing requests and queries. It is important to note
here that the information in the relational database used
by the browser is typically built by analyzing source
documents. For example, the databases used by the
Ciao [4] browser are built by running analysis tools
over C, C++, or Java programs. These analysis tools
are quite difficult to build, particularly for complex lan-
guages with sophisticated pre-processors. Tools such as
CIA[3], CIA++ [13], and Acacia[5], which analyze C
and C++, take many person-years to construct. To the
extent possible, it would be highly desirable to use the
databases built by existing analysis tools.

Some key issues to be addressed in browser implemen-
tation are GUI design, extraction of browsing relations
from source code, and distribution. The goals of chime
are to leverage existing tools and technologies in all of
these areas. HTML, the source language of WWW, pro-
vides a powerful and simple GUI interface paradigm.
Public domain (or low cost) browsers such as Netscape
Communicator support HTML, and are well known to
many users. These browsers come with many desirable
features such as “click-to-browse”, browsing trails, hot
lists, etc. Distribution of documents over different ma-
chines that communicate using TCP/IP and associated
protocols is handled in a transparent manner. Before
HTML browsers can be used to browse source code, one
must insert software browsing relations into source code
as HTML links. We now describe how chime addresses
this link insertion task.

3 The chime Architecture
chime is a meta tool; it generates tools that insert
HTML links into raw text. The overall framework in
which chime-generated tools function is shown in Fig-
ure 1.

Example and Background
An example fragment of C source code is shown in
Figure 2 before and after link insertion. In this frag-

2

Input Source:
if (transmutable(a,b))

j = interSolve(a, b);
else j = -1;

Output HTML:
if (

transmutable (a,b))
j =

interSolve (a, b);
else j = -1;

Figure 2: Input Source and Output HTML

Database
Static Analysis

Tools

Document Repository
(Distributed)

Link Insertion
Engine

Input Source

Output HTML

Figure 1: Architecture of a link insertion device

ment, links are inserted into the occurrences of function
names; these would be highlighted in browsers. The
developer can then click on the names, and the corre-
sponding gateway tool mach/cgi-bin/find would be
executed. The effect of this would be to retrieve the
source text constituting the definition of the relevant
function, into which HTML links would be inserted; the
resulting HTML would be returned to the browser. This
can then be a basis for further browsing. It is impor-
tant to note that links are inserted on demand. Storing
“with links” and “without links” versions of all source
would be undesirable in many cases, given the volume
of software documents, the frequency of change, and the
importance of presenting accurate information to main-
tainers. The advantages of dynamic link insertion have
been explored at length elsewhere [2, 11].

As discussed earlier, different sorts of links may be re-
quired for different types of program understanding and
maintenance tasks. chime can be used to generate link
insertion engines to insert different sorts of links. A sin-
gle chime-based link insertion engine can expose differ-
ent types of links depending on the current maintenance
task. We now describe the elements of an HTML link

that are relevant to chime, and the range of variabilities
in links that can be handled.

Links, and their insertion
There are two important parameters of an HTML link:
the position: where the link gets inserted (this is often
called the link anchor) and the semantics: what hap-
pens when the user of an HTTP client activates that
link by clicking on it.

In most software browsers, the position of the link is
determined by an XRDB, which is derived by mechani-
cal static analysis of the source code. For example, the
positions in the source code (viz., line numbers, column
numbers) of all function calls, variable references, etc.,
are stored in an XRDB. The link insertion engine uses
this information to introduce links in the input software
document. If the original XRDB can generate informa-
tion on link positions in the order of their occurrence
in the source code, the insertion can be performed very
efficiently.

An HTML link can either be a simple URL that points
directly to another HTML page, or an invocation of
a CGI engine to generate HTML from a data source.
Links can also contain additional information that is
used by the CGI engine for its processing. For exam-
ple in Figure 2, the first link, http://mach/cgi-bin/-
find?name=transmutable&type=fundlink, contains two
additional parameters, name and type, along with val-
ues. We assume that HTML documents are created
“on-the-fly” from source code; all chime links are of
the CGI type. For example, if the first link shown in
Figure 2 is clicked, the definition of the function trans-
mutable will be transformed to HTML with embedded
links and then displayed. This is done using the find
(or other) CGI executable, in several steps.

Step 1 find will query the database to find the URL
of the target document that actually contains the
definition of the function transmutable. We refer

3

to this query as the target query below, since it
finds the target document. Then, the document
itself will be retrieved.

Step 2 After retrieving the document, the database
will be queried again to locate cross-referencing in-
formation about where function calls occur within
the body of the definition of transmutable. This
query is called the anchor query below. Each tu-
ple in the anchor relation resulting from this query
gives a position or (anchor) for a link to be inserted.

Step 3 Next, the links will be inserted to invoke a spe-
cific CGI such as find; additional information in
the form of parameters (such as name and type in
Figure 2) that could be used by find could also be
placed in the link. This information can be drawn
from the corresponding tuple in the anchor relation.

chime allows each of the steps above to be customized,
so that both the position and meaning of links can be
tailored. It is also designed to be database-retargetable;
the chime user can specify how to get the relevant in-
formation out of a range of different XRDBs. In this
way, chime can accommodate the browsing needs for
different types of tasks (via different links) and can pro-
vide a way to add WWW browsing into legacy projects
(via XRDB-retargetability).

In the rest of this section, we discuss the different cus-
tomizable aspects of chime.

4 Chime Language
The chime language is used to specify the particulars
of the three steps described in the previous section. We
first describe the main concepts of the language, and
then illustrate the details of the specification language
with an example.

chime language concepts
The language deals with several basic concepts of brows-
ing. First, there are documents, which can be of vari-
ous document types: source code documents, test doc-
uments, configuration management documents, formal
specification documents, etc. In the following examples,
we just deal with source code documents. Each docu-
ment type is associated with one or more views, which
are collections of links. Link specifications are central to
chime. They identify: first, for Step 1, the target query
that is used to locate the target document. Link specifi-
cations also determine the type of the target document
(function definition, class definition, etc.). They also
specify the anchor query (which is also specified sepa-
rately) for Step 2, and the details on what parameters
are to be inserted into the links (in Step 3). A view rep-
resents a specific HTML rendering of a document type,
exposing a certain set of links relevant for a particular
task, such as design, implementation, maintenance, etc.

There may be several views applicable to a given docu-
ment type. For example, in a function declaration, one
view may expose links from classes to their declarations,
another from a class to a list of its members or ances-
tors, etc. Whenever a document is viewed with chime,
alternate views (if available) will be presented as a series
of links at the top of the page. A default view is used
for each document type; selecting an alternative view
makes that the default view for that document type.

A chime application is generated from a set of specifica-
tions (see examples in Figures 3 and 5) each describing
different elements of the 3 steps of link insertion de-
scribed above. Each specification names an element,
specifies what type it is (view, link, target query, link
query, etc.), and gives values for several attributes of
the element (e.g., for a link, the specification would say
what its target query is, what its anchor query is, etc.).

chime is a domain specific language [26]. As an aside,
we note here that the chime language differs from lan-
guages for other domains like source code analysis [8]
or web applications [16]. All chime-based applications
have the same basic 3-step algorithm for link insertion.
So unlike [8, 16], the chime language has no procedu-
ral constructs, but a series of table-like structures that
describe the elements of each step of the (fixed) 3-step
application algorithm. In this sense, chime resembles
parser-generator or lexer-generator systems, which use
a fixed table-driven algorithm; the languages for spec-
ifying lexers and parsers have no procedural elements
either.

Implementation Details
Now we consider in detail how a browsing action (i.e.,
a click on a link) is processed in chime, along with the
applicable chime specifications and their interpretation.

Each URL in the HTML generated by a chime insertion
tool names the link that it is associated with. For exam-
ple in Figure 1, the name of the link is fundlink1 in the
first URL. This link is described in a chime specifica-
tion, from which the invoked link insertion engine is gen-
erated. The engine recognizes fundlink as a link from
a function to its definition; its specification is shown
in Figure 3. The attribute resulttype gives the docu-
ment type of the target document that will be displayed
when this link is exercised: in this case, it has the value
functioncode, which indicates that it is the body of
a function definition. This document type is used to
identify a default view that would be used to display
the document.

The specification also names a target query to be eval-

1As we shall see below, the names of links, views, etc. are
encoded into HTML links. Thus, in practice, to minimize resource
usage, it is important to keep these names much smaller than the
ones we use in our illustrative examples.

4

uated against the XRDB. All queries are separately
specified in the chime specification. The target query

fundlink = {LINK
resulttype=function-code
focus = function
anchor-query=funrefs
target-query=fdlq
mapparms = {(name,name2)}

}

Figure 3: Example of a link specification

named in the specification of fundlink is fdlq; this
query specification is shown in Figure 4. This speci-
fication includes a query string in which to substitute
certain parameters specified in the link before executing
the query. For example, the first link in Figure 2 in-
cludes a parameter name whose value names a function
transmutable; this value would be substituted into the
query string. The resulting query “rigigrep Function
type.db | fgrep transmutable” would then be eval-
uated. The precise mechanics of evaluating the query
is determined by the database interface, which is de-
scribed in the following section. The target query spec-
ification also describes how to find the document loca-
tor in the result. The specification of fdlq says that
the file locator is given by the attribute file1 of the
resulting tuple, and the starting line number is given
by refline. Let’s assume here that the document loca-
tion is file://mach2/src/transmutable.c. Using the
document location, the document is then retrieved. The
precise mechanics can vary with the particular SDE; the
retargeting mechanism is described in the following sec-
tion. This concludes Step 1 of the link insertion process.

Associated with each document type, there is a default
view. In this case (Figure 3) the resulting document
type is functioncode. The default view associated with
document type is plaincodeview,2 shown in Figure 5.
This default view specifies two links, vardlink and
fundlink. We now turn back to fundlink (Figure 3),
and examine how Step 2 of link insertion proceeds. The
fundlink specification names an anchor query, funrefs
which is specified separately (Figure 4).

The funrefs query specifies a query string into which
the document locator is substituted. For example, the
locator file://mach2/src/transmutable.c is substi-
tuted into the query string given for funrefs, resulting
in the actual query “rigigrep "file://mach2/src/-
transmutable.c" call.db” Evaluating this query re-
sults in a list of tuples, each of which corresponds to the
location of a link (an anchor position) in the document.

2Details of associating document types with default views are
fairly straightforward, and are omitted here.

fdlq = {TARGET QUERY
string="rigigrep Function type.db \

| fgrep \"$name$\"
focus=function
resultdocument={ATTRIBUTE

start ="refline"
locator = "file1"
}

}

funrefs = {ANCHOR QUERY
string = ‘‘rigigrep \"loc\" call.db’’
position = {ATTRIBUTE

linenumber = "refline"
matchstring = "name2"
}

}

Figure 4: Example specifications of a target query and
an anchor query

plaincodeview = {VIEW
fortypes = <function-code>
links = <fundlink,vardlink>
}

Figure 5: Example of a view specification

The anchor query also specifies the attributes of the
returned anchor tuples that contain location informa-
tion. For example, the funrefs query corresponding to
fundlink would return tuples containing line numbers,
(in the attribute refline) and strings to be matched
in each line (in the attribute name2). For example, a
tuple might have a value 200 for the attribute refline,
and the value "isFixed" for the attribute name2, indi-
cating that an HTML link of the type fundlink should
be inserted at the position where the string "isFixed"
is matched on line 200 of the target document. Thus,
this anchor tuple indicates the position of a call to
the function isFixed occurring in the body of the tar-
get document containing the definition of the function
transmutable.

Once the locations where the HTML links to be inserted
are known, we can begin Step 3, the actual link inser-
tion. Each link always contains the URL of the link
insertion engine; in addition the link always includes
a parameter-value pair specifying the type of the link
(fundlink in this case). Additional parameter-value
pairs, such as the name of the item that is linked (in
our example, the function name isFixed) can also be in-
serted. The values are drawn from the anchor tuple that

5

is associated with each specific link insertion. If such ad-
ditional link parameters are required, they are specified
in the link specification, as a mapparm attribute. For
example, the fundlink specification indicates that the
value of the name2 attribute of each anchor tuple is to
be entered into the corresponding link as the value of
the parameter name. Link insertion is the final step; the
resulting HTML is returned as the result of the acti-
vation of the original link from the call to the function
transmutable.

5 Retargeting to different software engineering
environments

Two of chime’s key objectives are compatibility and
leverage. First, we want to introduce WWW brows-
ing into legacy software development environments, to
reduce disruption to the ongoing projects; second, we
would like to reuse the results of existing analysis tools
whenever possible. However, this presents an implemen-
tation difficulty: the XRDB and the document reposi-
tory may use a variety of different data models, schemas,
and storage strategies. It is impossible to determine a
priori the storage format and access methods that could
be used. chime makes some assumptions and tradeoffs.
First, we assume a relational model for the XRDB, and
a “bag of flat streams” model for the document reposi-
tory. Within the relational model, the chime language
and retargeting machinery can accommodate different
schemas for relations, attributes, etc.

The retargeting machinery in chime is based on a cou-
ple of design patterns [12]: the adapter pattern and
the factory method. The basic chime link insertion
engine is implemented in C++. It defines and uses some
virtual base classes (interfaces) corresponding to a sim-
ple relational database access. To retarget chime to a
specific XRDB, it is necessary to define an implementa-
tion class that inherits publicly (interface inheritance)
from each of these base classes, and implements the vir-
tual member functions. In the classic adapter pattern
(See [12], page 139), these implementation classes would
inherit privately (implementation inheritance) from the
actual implementation classes of the particular XRDB.

A synopsis of the public base classes for the XRDB
and document interfaces, along with the details of some
of the classes, are shown in Figure 5. There are sev-
eral classes: Document, DB (for database), Relation,
Tuple, and Query. Some of the classes are shown in
more detail: thus, class DB has methods for opening,
and closing databases, and evaluating a query. These
are virtual methods to be implemented by a specific
database interface. The result of evaluating a query
(via method DB::evaluate is an instance of class
Relation (details not shown), which provides ways of
iterating through the relation, a tuple at a time, and
for applying selections. The class Tuple has a method

class DB;
class Query;
class Relation;
class Tuple;
class Document;
class Repository;
class attrValue;
class Document {

public:
virtual int

getNextLine(String &) {};
virtual String getId() {};
virtual int linePos() {};
virtual int docSize() {};

};

/* Factory Method examples */

Repository &makeRep(Map <String,
String> &parms);

Query &makeQuery(String &qstr);
DB &makeDB(Map <String,String> &parms);

class DB {
public:

virtual void
DBopen(Map <String,

String> &parms)
virtual void

DBclose() {};
virtual Relation*

evaluate(const Query &) {};
};

class Tuple {
public:

virtual attrValue
getField(const String & attr) {};

};

Figure 6: Some of the interface classes in the chime
database and document interface

for accessing values of individual attributes. The class
attrValue provides virtual methods for accessing val-
ues that are not in first normal form. Details are not
shown here, but the abstraction used here corresponds
to the composite pattern (see [12], page 163), which
provides a uniform way to access compositions of objects
and individual objects. Likewise class Document has
member functions for processing the individual lines in
the document. The Repository class (not shown) has
methods for opening and closing documents.

There are also several factory methods (See [12],
page 107), to create the top-level objects such as queries,
the database and the document repository. These meth-
ods are to be implemented to return instances of the im-
plementation classes that derive from DB, repository
and Query interface classes discussed above. The use
of the factory method allows the chime implemen-
tation to invoke the creational operations to create in-
stances at the right times, while deferring the actual
implementation to the specific retargeting.

6 Experience
chime has been retargeted to four different environ-
ments. Our first experience was using a simple C++
cross reference analyzer based on gen++ [9], a C++
analyzer generator. Our second experiment was with an
old version of CIA [6], a C cross referencing tool. Our
third experiment was with Rigi [29], a reverse engineer-
ing environment. Finally, our most recent retargeting
was to Acacia [5]. In this section, we describe our expe-
rience with these retargetings.

We first describe our experience with gen++ and
CIA++. Analyzing C and C++ programs is notori-
ously difficult because of syntactic and semantic irregu-
larities caused by macros, typedefs, etc [8]. Given this,
the popularity of the languages, and especially the CIA
and Acacia tools, implementing a WWW browsing ca-

6

pability for C and C++ using existing analysis tools
was an attractive proposition. Our experience with
gen++ was relatively easy: we built an analyzer that
produced a simple cross referencing relation for func-
tions and global variables into a flat file database. The
document repository was simply the UnixTM file sys-
tem. Our second effort, with CIA, exposed several prob-
lems: most notably, the relations were not in first nor-
mal form. The CIA family of tools [13, 5, 4] uses a
highly compacted database format to store potentially
quadratic sizes of cross-reference relations. This for-
mat sometimes stores a list of values (for example, a
list of line numbers where a name is referenced) in an
attribute. Our database interface, and the chime lan-
guage were extended to accommodate this sort of non-
first normal form attribute values in the XRDB. We im-
plemented several links, including links from functions,
variables and macros to their definitions, and views that
presented different combinations of these links.

Our third and fourth efforts followed a major restructur-
ing of the chime database interface: originally, we had
used templates, but we changed that to use design pat-
terns. This was motivated by the desire to release the
chime software in binary form rather in the source form.
The third retargeting, to Rigi, was relatively easy and
straightforward. The fourth retargeting, to a newest
member of the CIA family, Acacia, was easy as well.

7 Evaluation
The chime system is a retargetable domain specific
framework intended to support the introduction of cus-
tomizable web-based browsing into software develop-
ment environments. The arguments for customizability
and retargetability, have been presented earlier in this
paper. As a result of our retargeting work with chime,
we believe it is now a mature, reusable framework that is
both retargetable and customizable. Our secondary goal
in undertaking the retargeting trials described in the
previous section was to address another hypothesis—
that a retargetable framework such as chime is better
than implementing an HTML link insertion engine from
scratch for each software development environment. We
now discuss our findings relating to this issue.

Our experience with the four retargeting efforts indicate
that the bulk of the retargeting effort is implementing
the database interface. With both the prior template-
based interface, and the current adapter-based inter-
face, it takes around 200-250 lines of C++ code (LOC)
to implement the interface–about 10-15 hours of coding,
for some one knowledgeable about specific XRDB and
document repository. Once this is complete, one can
write specifications for several different links, and views
that group these links in different ways. The database
interface code can be leveraged across the different types
of links and views, and even different link insertion en-

gines. The chime specifications are compiled into tables
that are used by a core engine that inserts links. This
engine is about 1300 LOC (the chime language com-
piler is not included in this count). The small size is
due to heavy use of templates (both custom and the
C++ standard template library[21]). Roughly a fifth
of this code is for interpreting the tables–the rest does
the string matching and manipulation, HTML encod-
ing/decoding, database interaction and document ac-
cess (via the adapter interfaces), attribute/parameter
mapping during link-insertion, etc. This core link-
insertion engine code is leveraged for every retargeting
of chime.

One alternative would be to implement a link inser-
tion engine for each software development environment.
Such an engine (for reasons described earlier) should
be customizable, and allow ready addition of new links
and views. This indicates the use of a layered architec-
tural style [27, 24], with the bottom layers implement-
ing the database access, and HTML encoding/decoding
primitives, the middle layer providing primitives to sup-
port basic link insertion functionality, and the top layer
for implementing different links. Without such a struc-
ture, it would be difficult to provide different sets of
links for different browsing needs. Building a robust,
mature, reusable infrastructure of this type (with the
right abstractions) is difficult, and nearly impossible
to engineer correctly the first time. The core chime
engine provides precisely such an infrastructure. We
find that we can leverage about 1K LOC, by writing
the (about) 250 LOC adapter interfaces to an exist-
ing XRDB/repository. The lines of code comparison,
while providing a baseline for comparison, is not defini-
tive. There are several other favourable (+) and un-
favourable (-) factors, such as the effort to learn the
chime language (-), the effort to design, develop and
debug a reusable link-insertion framework similar to
chime’s from scratch (+), the difficulty of understand-
ing and implementing the chime adapter interfaces
(-), the convenience of using the chime language (+),
etc. Our experience, however, indicates that the chime
framework offers a viable alternative to “from scratch”
implementation of WWW browsing in a legacy software
environment. In addition, once the retargeting interface
is implemented, it’s fairly simple and quick to produce
as many customized links and views as desired.

8 Related Work
WWW is a research hotbed—there are too many
projects and efforts to discuss here, so we provide com-
parisons to what we believe to be a representative sam-
ple. Storing and managing links separately from content
is a key issue, and several systems have addressed this
issue. The Microcosm [2] project at University of Leeds
is specifically concerned with this problem. Hyperlinks

7

are stored in a separate link base, and are dynamically
inserted into documents at the time they are dispensed
by an HTTP server. This system has sophisticated fea-
tures for handling link insertion into “cooked” docu-
ments. For example, Microcosm can read the hypertext
content from a Microsoft WordTM document, perform
the appropriate text formatting, and then insert the
links. The delayed, dynamic link insertion policy al-
lows the browsing context to determine which links are
actually inserted. Microcosm has special link definition
features that allow links to be parametrized; this allows
links to be dependent on textual context in a seman-
tic way rather than on specific locations in a file. This
reduces the “tight binding” between content and links,
allowing content to evolve somewhat more freely of the
linkage. Their custom authoring facility has specialized
features for creating links.

However, Microcosm uses a specialized database for stor-
ing the link information. While chime’s link insertion
facilities are more limited, it can accept link information
from much more varied sources; indeed, it is predicated
on the assumption that this information is readily avail-
able for re-use from various existing sources. In the case
of software documents, source code analyzers that gen-
erate such link information are hard to build and/or
modify. The key contribution of chime in this regard is
the retargetable database interface, as well as the chime
specification language, which is used to specify the pre-
cise mapping of the link insertion information in a given
database.

Constellation [30] is a broad conception of a distributed
software development environment based on WWW
technology. Typical HTTP clients, perhaps augmented
with significant client side GUI extensions can be used
to handle variable functionalities for editing, browsing,
debugging, etc. On the server side, enhanced services
are offered for source code control, debugging, and other
development oriented activities. Integrated facilities for
tele-conferencing are also envisioned. chime could help
leverage existing WWW and software engineering assets
to implement the functionality envisioned in [30].

Hyper-G [11] has some similarities to Microcosm, but
it has also many advanced features for handling mul-
tilingual documents, as well as links into and out of
multimedia content such as video. Hyper-G is also con-
cerned with maintaining consistency of link informa-
tion across distributed documents. Sophisticated, dis-
tributed, probabilistic algorithms have been developed
to distribute the state of the link information. chime
has a specific focus on link insertion for software docu-
ments; however, the link insertion capabilities are more
flexible. Using the specification language and the retar-
getable database interface, it is possible to insert links
based on information stored in a wide range of databases

derived using existing analysis tools.

Another noteworthy related system is Genera [18]
(which is also a specification-driven environment like
chime). Using Genera, one can specify detailed ways of
formatting sophisticated object-oriented database con-
tent. Examples of Genera usage in the Human Genome
Database are shown in the link from the citation [18].
Since much summary information about software ob-
jects might be available in cross-reference databases or
software repositories, some of the features of Genera
could be used in conjunction with chime for informa-
tion display. We are exploring this possibility.

Complementary WWW tools
The WWW is a very fertile environment for innovation;
numerous tools to supplement the basic web technology
are available, and new ones emerge frequently. Browsing
source code using the web can leverage these technolo-
gies. Any type of tool which can work with dynamically
generated web pages can be useful in this context. For
example, tools such as htmldiff [10] could be adapted
and used to find and view in a web browser the pre-
cise differences in source files, including differences in
inter-source file relationships that are exposed as links.
Alerting systems such as netmind [22] are available to
monitor and report changes. Convenient graphical tools
for visualizing and using browsing histories can be help-
ful: tools such as [1] provide graphical visualization of
browsing histories in distributed, shared context that
can be used by teams co-operating over an intranet.

A novel application of the web is in distributed code
inspections. Empirical studies [23] suggest that dis-
tributed inspections based on the WWW can save
costs and reduce intervals while preserving effectiveness.
New technologies such as GroupWalk[20] allow a dis-
tributed group of browsers to follow a leader through a
series of links. This is achieved by “slaving” a group of
browsers to a master; browsing events are distributed
via notification system. This has a clear application to
distributed inspections. In addition, it could be used by
an experienced developer to lead a distributed group of
novices through a large body of source code, and explain
the design and function.

A major project in the area of WWW-applications to
software development is the Hypercode [15] effort at
Columbia University. Hypercode is an architecture for
distributed collaborative software development which
leverages the web infra-structure. Hypercode has an
open architecture that accommodates new tools and in-
formation sources [14]. On the one hand, chime could
fit in nicely as a link insertion tool within the Hypercode
framework. On the other hand, there is a difference in
motivations. chime can introduce the incremental ben-
efit of WWW-browsing into a legacy software develop-

8

ment environment, while leaving the rest of the envi-
ronment unchanged. Hypercode is a completely novel
approach, based on WWW-based integration of a dis-
tributed set of environments under a uniform WWW-
based interface. The persistence of legacy environments
offers a continuing and viable opportunity for incremen-
tal tools such as chime.

9 Conclusion, Limitations and Future Work
chime is a generator of HTML link-insertion engines.
chime is customizable and retargetable. Different soft-
ware engineering tasks require different strategies for
exploring code; the ability to customize links allows
the creation of browsing support to suit the specific
needs of different tasks. The retargetability of chime
allows us to introduce web-browsing into legacy soft-
ware development environment with minimal effort and
disruption. This has several benefits. First, the analy-
sis tools and build procedures (which build the cross-
referencing database) in the legacy environment can
be leveraged. Second, programmers don’t require re-
training; most are familiar with the WWW infrastruc-
ture used in chime, and the rest of their environment
is undisturbed. Finally, the constant stream of new
WWW technologies for collaboration, notification, etc.,
can be leveraged in context with chime in legacy envi-
ronments.

chime has several limitations. On the language and
link-insertion side, it is a “pure browser”. No facili-
ties have been added as yet to integrate it with other
elements of the environment, such as editors and de-
buggers. We are examining this issue carefully; such an
integration would introduce a major new paradigm into
legacy environments, which is not our original inten-
tion. On the database interface side, chime is strongly
biased towards a relational model. Other models could
be accommodated by appropriate implementation of the
adapter interface; however, this will be harder for non-
relational databases. chime-based link insertion en-
gines currently maintain all context information (e.g.,
the current default view) in the links. This wastes band-
width. It would not be difficult to change the engines to
use client-side persistent data (cookies) to keep this in-
formation. Another problem endemic to languages like
C which have a pre-processor is that occasionally se-
mantic cross-referencing information can be masked by
a macro call. In this case, difficulties may occur dur-
ing link insertion. Some XRDB’s may provide enough
information that can be used to handle the situation—
but chime currently passes over such difficulties and
keeps proceeding with link insertion. Finally, the cur-
rent implementation of chime assumes a single location
(URL) for the link insertion engine. This may not be
well-suited for situations where the XRDB and the doc-
ument repository are distributed. We are working on

approaches to address this problem.

For the immediate future, we are developing an HTML-
based front end to the chime specification language that
can hide some of the syntax from a user, and provide a
more friendly user interface. Further on, we are inter-
ested in extending chime beyond software documents.
The main difficulty is inserting links into “cooked” doc-
uments, based on information derived by the analysis of
“raw” documents. We are exploring approaches based
on the plug-in interfaces published for popular HTTP
clients.

Acknowledgements: We would like to thank Tom
Ball, Naser Barghouti, Alex Borgida, Henry Kautz, De-
wayne Perry, and David Rosenblum for their helpful
comments and suggestions.

REFERENCES

[1] E. Z. Ayers and J. T. Stasko. Using graphic
history in browsing the world wide web, fourth
international world wide web. World Wide
Web, 1995. http://www.w3.org/pub/WWW/Journal/-
1/ayers.270/paper/270.html.

[2] Leslie Carr, David De Roure, Wendy Hall, and
Gary Hill. The distributed link service: A tool
for publishers, authors, and readers. In Proc.
Fourth International World Wide Web Conference.
O’Reilly Associates, 1995.

[3] Yih-Farn Chen. Reverse engineering. In Balachan-
der Krishnamurthy, editor, Practical Reusable
UNIX Software, chapter 6. John Wiley & Sons,
1995.

[4] Yih-Farn Chen, Glenn S. Fowler, Eleftherios Kout-
sofios, and Ryan S. Wallach. Ciao: A Graphi-
cal Navigator for Software and Document Repos-
itories. In International Conference on Software
Maintenance, 1995.

[5] Yih-Farn Chen, Emden Gansner, and Eleftherios
Koutsofios. A C++ Data Model Supporting Reach-
ability Analysis and Dead Code Detection. In
Proc. Sixth European Software Engineering Confer-
ence and Fifth ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 414–
431, 1997.

[6] Yih-Farn Chen, Michael Nishimoto, and C. V. Ra-
mamoorthy. The C Information Abstraction Sys-
tem. IEEE Transactions on Software Engineering,
16(3):325–334, March 1990.

[7] T. A. Corbi. Program understanding: A challenge
for the 1990’s. IBM Systems Journal, 28(2), 1989.

9

[8] P. Devanbu. Genoa—a language and front-end in-
dependent source code analyzer generator. In Proc.
Fourteenth International Conference on Software
Engineering, 1992.

[9] P. Devanbu. The gen++ page. http://seclab.cs.-
ucdavis.edu/~devanbu/genp, 1998.

[10] Fred Douglis, Thomas Ball, Yih-Farn Chen, and
Eleftherios Koutsofios. The at&t internet differ-
ence engine: Tracking and viewing changes on the
web. World Wide Web, January 1998.

[11] Frank Kappe et al. The hyper-g sys-
tem. http://www.iicm.tu-graz.ac.at/chyperg,
1995.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1994.

[13] Judith Grass and Y. F. Chen. The C++ Infor-
mation Abstractor. In The Second USENIX C++
Conference, April 1990.

[14] Gail E. Kaiser and Stephen E. Dossick. Xanth: An
architecture for effective utilization of distributed
heterogeneous information resources. Technical Re-
port CUCS-003-98, Columbia University Depart-
ment of Computer Science, March 1998.

[15] Gail E. Kaiser, Stephen E. Dossick, Wenyu Jiang,
and Jack Jingshuang Yang. An architecture for
www-based hypercode environments. In Proc. 1997
International Conference on Software Engineering,
1997.

[16] D. A. Ladd and J. C. Ramming. Programming the
web: An application-oriented language for hyper-
media. In Proc. 4th Intl. World Wide Web Confer-
ence, June 1995.

[17] S. Letovsky. Cognitive processes in program com-
prehension. In Proc. Second Workshop on Em-
pirical Studies of Programmers, Washington, DC,
1986. Ablex Publishers, Norwood, NJ.

[18] S. Letovsky. Genera: A specification driven
web/database gateway tool. http://gdbdoc.-
gdb.org/letovsky/wgen.html, 1995.

[19] S. Letovsky, J. Pinto, R. Lampert, and E. Soloway.
A cognitive analysis of a code inspection. In Proc.
Second Workshop on Empirical Studies of Pro-
grammers, Washington, DC, 1986. Ablex Publish-
ers, Norwood, NJ.

[20] W. S. Meeks, C. Brooks, and F. J. Hirsch. Stay-
ing in the loop: Multicast asynchronous notifica-
tion for intranet webs. Technical report, The Open

Group, 1997. http://www.osf.org/www/waiba/-
papers/aw3tc/notif.html.

[21] D. R. Musser and A. Saini. STL Tutorial and
Referene Guide. Addison Wesley, 1996.

[22] Netmind, Inc. Url minder service.
http://www.netmind.com.

[23] J. Perpich, D.E. Perry, A. Porter, L.G. Votta, and
M.W. Wade. Anywhere, anytime code inspections:
Using the web to remove inspection bottlenecks in
large-scale software development. In 19th Interna-
tional Conference on Software Engineering, 1997.

[24] Dewayne E. Perry and Alexander L. Wolf. Founda-
tions for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, October
1992.

[25] Symantec Personnel. http://www.symantec.com,
1995.

[26] J. Christopher Ramming. Proc. First Usenix Con-
ference on Domain-Specific Languages. The Usenix
Association, October 1997. (Edited).

[27] Mary Shaw and David Garlan. Software Archi-
tecture: Perspectives on an Emerging Discipline.
Prentice-Hall, 1996.

[28] R. Stallman. Gnu emacs manual. http://www.cs.-
utah.edu/csinfo/texinfo/emacs19, 1994.

[29] Margaret-Anne Storey, Kenny Wong, and Hausi A.
Muller. Rigi: A visualization environment for re-
verse engineering. In Proc. 1997 International Con-
ference on Software Engineering, 1997.

[30] Nino Vidovic and Dado Vrsalovic. Constellation:
A web-based design framework for developing net-
work applications. In Proc. Fourth International
World Wide Web Conference. O’Reilly Associates,
1995.

[31] S. Zeigler. Comparing development costs of c and
ada. http://sw-eng-falls-church.va.us/AdaIC-
/docs/reports/cada/cada art.html.

10

