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Abstract

This paper presents a technique for the verification
of “full” distributed computing systems, building on
the CLI stack which addresses verification of a lay-
ered sequential system. This paper also presents the
application of our technigque to the verification of a
distributed system of three layers: a small high-level
distributed programming language (microSR); a mul-
tiple processor architecture consisting of an instruc-
tion set and system calls; and a network interface.
MicroSR programs are implemented by a compiler
from microSR to the multiprocessor layer. System
calls (for interprocess message passing) are imple-
mented by network services. This work demonstrates
that the correctness of a distributed program, most
notably its interprocess communication, is verificble
through layers that guarantee the correctness of the
compiled code that makes reference to operating sys-
tem calls, of the operating system calls in terms of
network calls, and of the network calls in terms of
network transmission steps. The Cambridge HOL
system 1s used for the specification and the proofs.

1 Introduction

System verification is very important for safety crit-
ical software development. This paper presents a
technique for the verification of “full” distributed
computing systems. The technique has been applied
to the verification of a three layer system: (1) a high-
level distributed programming language (microSR, a
derivative of the SR language[2]); (2) a multiple pro-
cessor architecture (MP machine) consisting of an
instruction set and OS system calls; and (3) a net-
work interface. MicroSR programs are implemented
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by a compiler that translates from microSR to MP
machine code. System calls (for interprocess mes-
sage passing) of the MP machine are implemented
by network services. Through layered verification, it
is guaranteed that a microSR program is correctly
implemented by the assembly code that runs on the
MP machine and that makes calls to network in sup-
port of interprocess message passing.

To formally specify a distributed language imple-
mentation, one must have a formal specification of
the semantics of both the source and target lan-
guages. The challenge in the verification of dis-
tributed programming language implementations is
dealing with this pair of specifications, each of which
has its own model of concurrency, nondeterminism,
and granularity of atomicity. Furthermore, to for-
mally verify that high-level statements, especially
message passing statements, can be ultimately im-
plemented correctly by the network transmission
steps, one must deal with multiple semantic spec-
ifications and multiple implementation proofs. To
reduce the proof complexity of verifying the dis-
tributed language implementation, we believe that it
is important to structure the semantic specification
of each layer and the proof obligations that define
the correctness conditions for the implementation.

Research on the verification of sequential language
implementations has sharpened this belief. CLI has
developed a layered approach and has shown its fea-
sibility for a “full” sequential computing system ver-
ification: a compiler for a sequential language, an as-
sembler and loader, and a microprocessor([3]. Wind-
ley has developed a method to specify instruction
set architectures and a generic interpreter model
for the layered proof of microprocessors{9]. Joyce
has developed a HOL-based method to verify a
compiler for a sequential programming language(7].
Curzon has developed a method to combine a de-
rived programming logic with a verified compiler
for an assembly language[5]. Research on the ver-
ification of distributed systems and programs has

252



Higher level

Specification of iti
Start State pecification of State Transition Final State
Py N

1

1 0 ]

1 MapUpState MapUpState 1

1 . R '

1 i : !

: MapUpState MapbpState

MapDownActor’,
Maj vDow',nAction

i . Y
Start State Fina! State
Si’ S§’

Lower level Specification of State Transition

—~——-2> Equivalent effect on process local state
-«-+--2> Equivalent effect on the shared state (e.g. the message pool)

Figure 1: The correct implementation relationship
between two adjacent layers.

shown that the traditional state transition model
is extendible to address atomicity, concurrency, and
nondeterminism(1, 4, 8].

As described in Section 2, our technique is based
on the state transition model. We show that dis-
tributed “languages”, whether actual higher-level
programming languages, lower-level instruction sets
for multi-computer systems, or a network inter-
face wherein processes communicate through the ex-
change of packets, can be formalized under our state
transition model. We use this model to account
for the issues of atomicity, concurrency, and non-
determinism at all layers in a distributed computing
system. We provide a framework, in terms of re-
lations, for specifying the operational semantics of
distributed programming languages (a very general
view of languages as interfaces), so that semantic
specifications at all layers have a similar structure.
Moreover, a correctness definition is given which, for
each pair of adjacent language semantics and map-
pings between them (i.e., the specification of lan-
guage implementation), produces proof obligations
corresponding to the correctness of the implemen-
tation. Figure 1 shows a schematic of the correct
implementation relationship between two adjacent
distributed language layers. Our technique not only
makes the specification of distributed languages a
step-by-step task, but also eases the verification ef-
fort for the distributed language implementation.

In addition to constructs basic to sequential lan-
guages, our microSR includes: (1) the asynchronous
Send statement; (2) the synchronous Receive state-
ment; and (3) the Co (co-begin) statement for spec-
ifying the concurrent execution of processes that

communicate via message passing. The MP ma-
chine is an abstraction of an interface of multiple
processors. In addition to conventional sequential in-
structions, two instructions for communication (sys-
tem calls) are provided by the MP machine: asyn-
chronous SEND and synchronous RCV. The network
consists of a collection of network units accomplish-
ing network operations, wherein processes communi-
cate through the exchange of packets. Our current
system is small, but non-trivial, resulting in non-
trivial layered proofs. We believe that our technique
has general applicability to the formal verification of
larger layered distributed computing systems.

Our work is performed in HOL[6]. Section 2 de-
scribes our technique. Section 3 presents our proof
of the microSR implementation by a compiler. Sec-
tion 4 presents our proof of the implementation of
MP machine system calls by the network services.
Section 5 concludes the paper.

2 The Technique

2.1 The State Transition Model

All primitive statements at any given layer are
atomic. Once a process starts executing a primi-
tive statement, whether an intra-process statement
or a communication primitive, no other process can
influence that statement’s execution or observe inter-
mediate points of its execution. Thus, if two prim-
itive statements, say Cl and C2, are executed con-
currently in processes P1 and P2, the net effect is
either that of C1 followed by C2, or of C2 followed
by Cl. Although we model the concurrent execution
of two statements by two processes as a linearly or-
dered sequence of state transitions, the actual order
in which selectable (i.e., eligible to execute) state-
ments are executed is nondeterministic. With this
view of atomicity, the behavior of a distributed pro-
gram is modeled as a sequence of state transitions,
each of which is accomplished by an atomic step.
By structural induction, the execution of a compos-
ite statement (e.g., if-then-else statement) is actually
an interleaving of the execution of its atomic com-
ponents and the execution of atomic primitives of
other processes.

Since the actual order in which eligible statements
of different processes are executed is nondetermin-
istic, multiple interleavings of the state transitions
are possible. Thus, the model reflects concurrency
in the semantics and the nondeterministic execution
order of instructions. For the simple program below,
the execution of synchronous “Receive mq2(v)” in

253



process P2 cannot be selectable until at least one
message has been sent to the message queue mq2;
this is true in all interleavings. The execution of
“Send mql(msg31)” in process P3 can occur either
ecarlier or later than the execution of statements in
other processes. This is because, by the language se-
mantics, messages from the same sender to the same
message queue have to be well ordered, but the order
of messages from different senders is indeterminate.

A sample program:
(Process P1) ...Send mq2(msgll); Send mq2(msgl2)...
(Process P2) .. Receive mq2(v)...
(Process P3) ...Send mql(msg31)...

Some possible interleavings:

.. Send mq2(msgll) Receive mq2(v)
Send mq2(msgl2) Send mql(msg31) ...

.. Send mq2(msgll) Send mql(msg31)
Receive mq2(v) Send mq2(msgl2) ...

.. Send mql(msg31) Send mq2(msgll)
Send mq2(msgl2) Receive mq2(v) ...

Our work has given careful attention to what
will happen between the adjacent language systems
when the higher-level language is implemented by
the lower-level language. Because the atomicities of
the two different layers have different granularities, a
single atomic state transition at the higher language
layer corresponds to multiple state transitions at the
lower language layer. Among them, only those in-
terleavings which exhibit equivalent effects will be
allowed by a correct implementation of the higher-
level language in terms of the lower-level language.

For the simple program above, the execution of
“Receive mq2(v)” cannot be selectable until at
least one message has been sent to the message queue
mq2. However, when a microSR program is compiled
to MP code, the MP code for “Receive mq2(v)”
may begin its execution before the code for a mi-
croSR. Send finishes execution, thus permitting con-
currency in the implementation that is not apparent
in the specification. For illustrative purpose, Fig-
ure 2 shows the implementation of a sequence of mi-
croSR Sends and Receives, each requiring three MP
instructions. The first stands for the preparation,
the second is a SEND labeled S (or a RCV labeled
R) to access a message queue, and the third one is
for the clean-up. The execution of MP instruction
“21”, which corresponds to the “preparation” for the
instruction R, begins before the execution of instruc-
tion “13”, which corresponds to the “clean-up” after
the instruction S. We allow this overlapping because
of the finer atomicity and interleavings at the MP
layer. However, the instruction R can be selectable
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Figure 2: Interleavings at microSR and MP layers.

only when at least one message has been sent to the
message queue by the instruction S.

Therefore, the following issues must be addressed
in the semantic specification for a distributed lan-
guage:

(1) the intra-process continuation which defines
the decomposition of a composite statement into
atomic transition steps;

(2) the intra-process sequencing of statements
which defines the state transitions of two adjacent
intra-process statements with potential interleaving
of steps of other processes;

(8) the execution eligibility for the system-wide
sequencing which defines the allowable interleavings,
i.e., the synchronization of concurrent execution of
multiple processes.

Furthermore, in order to verify the language im-
plementation, the following issues must be addressed
in the formalization of the language implementation:

(1) mappings of states, instructions, and pro-
cesses, between a given pair of semantic specifica-
tions;

(2) the equivalence of interleavings at two layers;

(3) the proof obligation of the implementation cor-
rectness.

2.2 The Specification Framework for
Distributed Languages

Since all possible interleavings are taken into ac-
count and since nondeterminism is permitted, the
semantic specification for distributed languages is
very different from its counterpart for sequential
languages. Our specification aggregates definitions
for Syntaz, State, Continuation, Selection, Mean-
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ing, and Co_Meaning. Our specification of the mi-
croSR language provides an example for describing
how these definition should be made. The specifica-
tions of all three layers have a similar structure.

The abstract Syntaz is recursively defined as a
HOL type called Stmt. The semantic domain State
is a configuration that combines (1) a collection of
Proc_local_states, each of which is a process’ local
variable bindings; (2) a shared Pool_state, i.e., map-
pings from the name of a message queue to its mes-
sage queue; and (3) a collection of Threads, each of
which is a process’ syntactic continuation. Continu-
ation is the relation that formalizes the intra-process
syntactic continuation, representing the “rest” of the
computation that still has to be executed by the pro-
cess in a given state. Selection is the relation that
formalizes the execution eligibility of statements in a
state, which actually defines the synchronization of
concurrent execution of multiple processes formal-
ized by the system-wide sequencing of valid inter-
leavings. Meaning is a relation that specifies what
change can happen to the state due to the execution
of a selectable statement. The relation Co_Meaning
specifies the meaning of a program in our language,
i.e., the effect on the state of executing a set of con-
current processes.

2.2.1 The Continuation Relation

The relation Continuation has the signature Thread
— Thread — Stmt — Proc.local_state — Bool.
Primitive statements correspond to atomic state
transition steps, while composite statements have to
be decomposed to an intra-process sequence of prim-
itive transitions, possibly interleaved with primitive
transitions of other processes. The definition is op-
erational, as it indicates how a primitive is “popped
off” from the thread and how to decompose the
composite statement recursively to generate a new
thread that represents the syntactic continuation.
The Mbezp is the meaning function for boolean ex-
pressions.

b def Continuation oldthread newthread

(Send mgq(iexp))(ls:Proc local _state)=

(newthread = (TL oldthread))
Continuation oldthread newthread (stmtl; stmt2) Is =
(3!s’. (Continuation (APPEND [stmt1;stmt2]
(TL oldthread))
(APPEND[stmt2](TL oldthread)
stmtl Is) A
Continuation (APPEND[stmt2](TL oldthread))
newthread stmt2 Is’))

2.2.2 The Selection Relation

In any given state, some statements are always se-
lectable (such as Assign, and Send). Some are only
conditionally selectable. For example, “Receive
mgq(v)” is selectable only when there is at least one
unreceived message in the given message queue mgq.
As shown below, the relation Selection, which is of
signature State — Stmt — Proc_id — Bool, is also
recursively defined. Through Selection, we define the
synchronization of concurrent execution, the system-
wide sequencing of valid interleavings.

F def
Selection (s:State) (Send mq(iexp)) (p:Proc.id) = True
Selection s (Receive mq(var)) p =

(unreceived-msg mq (get_pool.state s) > 1)
Selection s (stmtl ; stmt2) p = Selection s stmtl p

2.2.3 The Meaning Relation for Statements

The relation Meaning, which has the signature of
Stmt— State— State— Proc_id— Bool , specifies the
complete effect on any state by executing a selectable
statement in a process. Thus, Meaning statement
statel state? p is true if state2 can be reached from
statel by executing statement in process p.

An atomic state transition by a process is allowed
only if its current statement satisfies relations on
valid interleavings and continuation, i.e., Selection
and Continuation. In the definition below, m_Assign
indicates an effect on a process’ local state by an
assignment statement. m.Send only has an effect
on the shared pool state, namely adding a single
message to the appropriate message queue. Mi-
ezp is the meaning function for integer expressions.
mgq.add_msg characterizes the effect of inserting a
new message into a given message queue, asserting
that messages from the same sender are well ordered
but the order of the messages from different senders
is indeterminate.

F def
m_.atomic.stmt (v := iexp)(s1:State)
(s2:State)(p:Proc_id) = .
Continuation (get_thread sl p) (get-thread s2 p)
(v := iexp)(get local_state sl p) A
Selection sl (v := iexp) p A m_Assign v iexp sl s2 p
m_atomic_stmt (Send mq(iexp)) s1s2 p =
Continuation (get_thread sl p)(get-thread s2 p)
(Send mq(iexp))(get_local_state s1 p)A
Selection sl (Send mq(iexp)) p A
m.Send mgq iexp sl s2 p

F def
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m_Assign (v:Var)(e:IExp)(sl:State)(s2:State)(p:Proc.id)=
((get_pool_state s1) = (get.pool_state s2}) A
({(getdocal_state s2 p) =
(change._proc_state v (Miexp e (getJocal state si p))
(get.local state sl p)))
F def
change.proc_state(v:Var)(data: Value)
(Is:Proclocal_state)(x:Var) =
IF (x = v) THEN data ELSE (Is x)
b def
m.Send (mg:msg_queue) (e:IExp)
(sl:State) (s2:State) (p:Procid) =
LET pooll = (get_pool_state s1) IN
((getdocal state sl p) = (getlocalstate s2 p)) A
((get-pool_state s2) =
(change_pool_state mq
(mg.add.msg mq (mk.msg e s p) pooll)
pooll))
 def
change_pool state (mq:msg_queue)
(new.mqvalue:mqvalue)
(pool:Pool_state) (mq’:msg.queue) =
IF (mq’ = mq) THEN new_mqvalue ELSE (pool mq’)

The effect on a state by an intra-process se-
quence of state transitions, possibly interleaved
with system-wide valid state transitions associated
with other processes, is defined by the relation
m.proc_Seq. The existence of possible interleavings is
specified by relations m_sys_interleaving and n_steps.
atomic-of program {(HD SL) asserts that each step in
the interleaving corresponds to an atomic statement
of the given program. The m_atomic_stmt (HD SL)
(HD sl) (HD(TL sl)) (HD pl) guarantees that each
step in the interleaving satisfies system-wide execu-
tion eligibility and the continuation relation in its
own process. m_proc_Seq also asserts that other pro-
cesses’ effects on the state will not change this given
process’ local state and its effect on the shared mes-
sage pool. FL is a list element selector.

b def

m.proc_Seq(transl,trans2: State—>State—Proc.id—+Bool)
(s1,52:State)(p:Procid)=

3(s3:State)(s4:State) (program:(Stmt)list) .

m.sys-interleaving s3 s4 program A

((get Jocal state s3 p)=(get_local _state s4 p)) A

((proc_effect_on_pool s3 p)=(proc_effect.on_pool s4 p))A
transl sl s3 p A trans2 s4 s2 p

F def

m_sys_interleaving (sl:State) (s2:State)

(program:(Stmt)list) =

3 (n:num)(SL:(Stmt)list) (sl: (State)list) (pl:(Procid)list).

((HD sl) = s1) A ((EL (LENGTH sl) sl) = s2) A

((LENGTH SL) = n) A ((LENGTH pl) = n) A

((LENGTH sl) = n+1)An.steps n SL sl pl program sl s2

F def

nsteps 0 SL sl pl program sl s2 = (s1 = s2)
nsteps (SUC n) SL sl pl program sl s2 =

((HD sl) = s1) A ((EL (LENGTH sl) sl) = s2) A

atomic_of program (HD SL) A

m_atomic_stmt (HD SL) (HD sl)

(HD(TL sl)) (HD pl) A
nsteps n (TL SL) (TL sl) (TL pl)
program (HD(TL sl)) s2

The definition of the meaning relation for compos-
ite statements depends on the meaning relations of
their component statements. This means that the
state transition accomplished by a composite state-
ment is reduced recursively to state transitions ac-
complished by its component statements which must
all satisfy relations on valid interleavings as well.
Note that, because of this reduction, the arguments
transl and trans2 in the definition of m_proc_Seq are
of the signature State — State — Proc_id — Bool,
rather than simply of the type Stmt for statements.
The definition of the Meaning relation shows what
these trans! and trans2 really represent and how re-
lations like m_proc.Seq are used. In this way, the con-
currency and nondeterminism are completely speci-
fied.

- def
Meaning (Send mq(e)) sl s2 p =
m_atomic_stmt (Send mqg(e)) sl s2 p
Meaning (stmtl ; stmt2) s1s2 p =
Continuation (get_thread sl p)(get_thread s2 p)
(stmtl;stmt2)(get local state sl p)A
Selection s1 (stmtl ; stmt2) p A
m_procSeq (Meaning stmtl)
(Meaning stmt2) s1 s2 p

2.2.4 The Co_Meaning Relation

A program in our language is represented by a Co
statement which consists of a set of concurrently exe-
cuted processes, each of which is defined by a process
id and a statement with the recursive structure of
statement sequence. The meaning of a Co statement
is specified by the relation called Co_Meaning. This
relation has the signature (Stmt)list — (Proc_id)list
— State — State — Bool. This relation is satis-
fied if the final state s2 can be reached by beginning
the concurrent execution of the program in state si,
where the ith process executes the ith branch of the
Co statement. Because the concurrent execution of
atomic statements is modeled as a linearly ordered
sequence of state transitions, and the execution of
a composite statement is modeled as the sequential
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state transitions of its own atomic components in-
terleaved with other process’ atomic transitions, re-
lation Co_Meaning specifies completely “what can
happen” in the state by the concurrent execution of
a distributed program.

b def

Co_Meaning (program:(Stmt)list) (pl:(Proc.id)list)
(s1:State) (s2:State) =

V (i:mum) . 3 (s1’:state) (s2’:state) .

Meaning (EL i program) s1’ s2’ (EL i pl) A

m_sys_interleaving sl s1’ program A

m._sys-interleaving s2’ s2 program A

(getJocal state s1 (ELipl) =

getlocal_state s1’ (EL i pl)) A

(getJocal state s2’ (EL i pl) =

getdocal state s2 (EL i pl)) A

(proc_effect_on_pool s1 (EL i pl) =

proc_effect.on_pool s1’ (EL i pl)) A

{proc_effect_on_pool s2’ (EL i pl) =

proc_effect_on_pool 52 (EL i pl))

2.3 The Proof Obligation for Lan-
guage Implementation

To prove the correctness of an implementation of a
higher-level distributed language in terms of a lower-
level distributed language, we have formalized the
concept of the correct implementation relationship
of two adjacent language layers. As shown in Fig-
ure 1, it is necessary to specify three mappings be-
tween two adjacent language layers to represent fully
the language implementation. Its correctness has to
be verified with respect to the pair of operational se-
mantics. The “execution” of the “generated” lower-
level instructions has to be proved to correctly im-
plement the meaning of the corresponding higher-
level instruction with respect to the correspond-
ing start and final states at the higher layer. The
proof obligation Stmt_implemented_correct for the
implementation correctness and the relation Fquiva-
lent_interleaving for the equivalence of interleavings
at two adjacent layers are specified below. Notice
that, in the implementation correctness proof, the
premise of the obligation has to be proved as a the-
orem first.

Because of the nondeterminism at two layers and
the finer atomicity and interleavings at the lower
layer, the correspondence of start states and final
states at two layers are not unique. The “coinci-
dence” of these states has been taken into account
in the definitions below. As shown in Figure 1, the
equivalence of interleavings at two layers is speci-
fied with respect to their equivalent effects on states.
The equivalence of effects on the local states of pro-
cesses is defined with respect to start and final states

at both layers, while the equivalence of effects on
the shared states (e.g., message pool states) is de-
fined with respect to start and final states at the
higher layer and two intermediate states at the lower
layer. The two intermediate states indicate the crit-
ical state transition step at the lower layer where
a change to the shared pool takes place. Since the
lower layer allows finer atomicity and interleavings,
this pair of intermediate states is also actually not
unique. In the correctness proof, the existence of
such a pair of intermediate states has to be shown
for the implementation of each given statement.

MapDownAction: high.Stmt — low._Stmt
MapUpState: Low_State — high_State
MapDownActor: high_Proc_id — low_Proc.id

- def
Stmt_implemented_correct (stmt:high Stmt)
(si, sj: high_State) (si’, sj’: low_State)
(p:high Proc.d) =
(low_m_proc_Seq (MapDownAction stmt)
si’ sj’ (MapDownActor p)
= 3 (sm, sn: low_State).
Equivalent_interleaving stmt
si sj si’ sj’ sm sn p)
=
high _Meaning stmt si sj p

t def

Equivalent_interleaving stmt si sj si’ sj’ sm sn p =

ordered si’ sm sn sj’ A

(high_get-local state si p =

high_get.local_state(MapUpState si’)p) A

(high_get local.state sj p =

high_get local state(MapUpState sj’)p) A

(high_get_pool si = high_get_pool (MapUpState sm)) A

(high_get_pool sj = high.get_pool (MapUpState sn))

=

high_effect_onlocal stmt (high_get local_state si p)
(high_get.local state sj p) p A

high effect_on_pool stmt (high_get_pool si)
(high_get_pool sj) p

3 Verification of microSR Lan-
guage Implementation

As mentioned in Section 1, a microSR program is
compiled into MP machine code, where the MP ma-
chine is a specification of a basic multi-processor ma-
chine. Architecturally, the MP machine is viewed
as a collection of simple RISC-based microproces-
sors (called VMachines) linked by a fully-connected
point-to-point network.
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3.1 MP Machine Specification

In accordance with our overall semantic specification
framework, we formalize the semantics of instruction
execution at the MP layer by generating the defini-
tions of Section 2.2. Following the framework we
have devised, the MP machine specification defines
the Syntaz, the State, and the accompanying rela-
tions. These are structurally very similar to those
used by the microSR specification, differing only in
the definition details reflecting the concurrency and
nondeterminism at the MP layer.

The Syntaz of the language at the MP layer is sim-
ply the instruction set defined by the VMachines—
which consists of a small (14) set of basic instructions
like ADD, JMP, LD, and STO—augmented to in-
clude two system calls which provide inter-processor
communication. These two system calls are SEND,
which asynchronously sends a message from a pro-
cessor to a specific message queue, and RCV, which
synchronously receives a message from a specific
queue.

The State at this layer contains the same three
major components as at the microSR layer, but with
different formats to reflect the differing needs of the
two layers. Each local state within the MP state
is represented by the register set and memory con-
tained within the corresponding VMachine. The
shared message pool consists of a collection of mes-
sage queues which are manipulated by the SEND
and RCV system calls mentioned above. Each thread
contains the code to execute on a particular VMa-
chine, and a program counter for that VMachine.

In most cases, the Continuation relation can be
satisfied with any two threads that contain the same
code and consecutive values for the PC. The JMP
and JZ instructions are the only exceptions to this
rule because they modify the program counter. All
of the VM instructions and the SEND system call
satisfy the Selection relation in any given state be-
cause none need to block. The RCV system call,
however, is only selectable if a message exists on the
desired queue.

The Meaning relation for single instructions is
made simple at the MP layer because all of the in-
structions are viewed as being atomic. However, be-
cause we have multiple processors executing code in
a nondeterministic order, we must allow for instruc-
tions from multiple processors to interleave their
execution. Thus, as explained in section 2.2, we
must specify the effects of both intra-process and
inter-process sequencing on the MP state. For this
purpose, mp_m.proc_Seq is defined to formalize the
execution of a sequence of atomic MP instructions

by one processor interleaved with allowable steps of
other processors.

3.2 Mappings Between the MP Layer
and the microSR Layer

As mentioned in Section 2.3, one of the major com-
ponents of an implementation proof is to establish
mappings between the two layers under discussion.
These mappings work to transform the code (Ac-
tion), the State, and the process (Actor).

Mapping up the State essentially involves a trans-
lation of the data stored in the MP state to the
equivalent structures used by the microSR state.
Most notable about this mapping is that the VMa-
chine memory, represented as a list, is transformed
into the variable bindings used at the microSR layer,
represented as a function. Furthermore, the pool
(and, thus, all of the messages within it) must be
manipulated into the more abstract form used by
microSR. Mapping the Actor is an function on the
process IDs.

Mapping down the code is more complicated. For
this, we have formalized a compiler for microSR,
implemented within HOL. This compiler transforms
each statement in the microSR program into the ap-
propriate sequence of instructions to be executed by
the MP machine. Furthermore, microSR statements
in different microSR processes are transformed to se-
quences of MP instructions which are to be concur-
rently executed by their corresponding processors.
Therefore, as indicated previously, the execution of
MP code can be interleaved with other code exe-
cuted by other processors. For our initial compiler,
little attempt at optimization has been attempted.

3.3 microSR Implementation Cor-
rectness Proof

Figure 3 illustrates the proof obligation of the im-
plementation of microSR. The general form of the
theorems for the correctness of the microSR imple-
mentation is given below, where the srstmt can be
any of the statements defined by microSR:

+ SR.implemented.correct (srstmt: Stmt)

(si, sj: SR.State) (si’, sj’: MP_State)

(p: SR.Procid) =
(mp.m_proc_Seq(sr.mp MapDownCode srstmt)

st’ sj° (sr.mp.MapDownPid p)
= 3 (sm:MP_State)(sn:MP _State).
MP _Equivalent Interleaving srstmt
si sj si’ 8]’ sm sn p)
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SR_Meaning srstmt si sj p

F def
MP _Equivalent_ Interleaving srstmt
sisjsi’sj’ smsnp=
mp.ordered si’ sm sn sj’ A
(SRJocal_state si p =
get_srlocal (mpsr.MapUpLocals si’) p) A
(SR.Jocal.state sj p =
get_srlocal (mp.sr_MapUpLocals sj’) p) A
(SR..get_pool state si = mp_sr_MapUpPool sm) A
(SR_get_pool_state sj = mp_sr_MapUpPool sn)
=
SR._effecton locals stmt (SRocal_state si)
(SRJocal state sj) p A
SR.effect_on_pool stmt (SR-get_pool_state si)
(SR._get_pool_state sj) p

4 Verification of MP Layer
System Calls

4.1 Network Specification

The SEND and RCV system calls of the MP layer
are implemented by the network layer. The network
layer is modeled as a collection of interconnected net-
work interface units, or NIUs, with one NIU con-
nected to each processor in the MP machine. The
current state of the network communication chan-
nels is represented by an “in-transit” structure. The
network in-transit structure is similar to an MP layer

message pool, but with network packets instead of
MP messages as the basic elemental units.

For each NIU, the in-transit structure contains a
list of network packets that have been sent to that
NIU as well as a list of packets which have been
received by that NIU and transferred to the MP
machine. The packets which have been sent to an
NIU but not transferred to the MP machine include
packets which are still being transmitted over the
network as well as packets which have been received
by an NIU, but not yet transferred to the MP ma-
chine. Each NIU has a local state which consists of
a sequence of network operations which that NIU is
scheduled to perform and a count of messages sent
from that NIU. A complete network state consists
of the shared in-transit state and the local state of
each NIU.

Similar to the microSR and MP layers, the NIU
operations are specified as a distributed program-
ming language where the statements in the language
correspond to network operations performed by a
given NIU. The network programming language con-
sists of seven atomic statements. The simplest state-
ment is the “skip” or “no-op” statement which does
not change the network state in any way. Its use is
explained in Section 4.2.

MP SEND and RCV are both implemented by a
sequence of three network statements (operations):
an initialization operation, a transfer operation, and
a termination operation which completes the system
call. In the case of the SEND system call, the trans-
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fer operation transmits a packet containing the MP
message over the network. In the RCV system call,
the transfer operation extracts a message from a re-
ceived packet and passes it to the MP machine.

The meaning of each statement in the language
is represented as a predicate over state transitions,
as described in Section 2. The meaning of a se-
quence of network operations performed by a given
NIU is an interleaving of that NIU’s operations with
operations performed by other network units. The
meaning of an interleaving of network operations is
a sequence of state transitions determined by the
corresponding operation predicates. The operation
of the entire network is determined by the predi-
cate net.m_proc_Seq which selects the set of all valid
interleavings of network operations by individual
NIUs.

As explained in Section 2, the task of specify-
ing the meaning of the system operation is aided
by the use of the Continuation and Selection predi-
cates. Since the network language has no mechanism
for looping, the Continuation of a network operation
is simply the “tail” of the list of operations that a
given NIU is executing. The Selection predicate is
identically true for all network statements except the
transfer operation which is used in the MP Receive
implementation. This network operation is only se-
lectable when there are packets which have been re-
ceived, but not transferred to the MP machine.

4.2 The Mappings between the Net-
work Layer and the MP Layer

To formalize the implementation of MP system calls,
there are three mappings between the Network Layer
and the MP Layer: a mapping from MP machine
process id’s to network NIU id’s; a mapping from
MP machine instructions to network operations; and
a mapping from a network state to an MP machine
state.

The MP SEND and RCV system calls are each
mapped into a sequence of three network operations
by the mapping function NetMapDownlnst. All
other MP instructions are mapped to network “skip”
instructions, since they have no effect on the MP
communications state. It is important to note that
the mapping between MP system calls and network
operations is dynamic. Thus, the mapping func-
tion is an interpreter rather than a compiler. This
removes the necessity for loops in the distributed
network programming language. In practice, this is
not a problem since the mapping will actually take
place dynamically by executing the appropriate sys-

tem call, rather than by static compilation.

Unlike the MP layer, which implements the entire
semantics of the next higher layer (the microSR lan-
guage), the network layer only needs to implement a
subset of the MP layer (the communications portion
of the MP specification). Thus, the entire network
state is mapped up to an MP message pool, which
is the shared portion of an MP machine state. The
local portion of the MP machine state, which con-
sists of the states of the individual microprocessors,
is not determined by the state of the network.

4.3 Proof of Network Correctness

A diagram of the proof obligation for the MP layer
implementation is shown in Figure 4. The network
proof is comprised of two top-level theorems, one
for the MP SEND implementation and one for MP
RCV. Both theorems have the form shown below:

F MP_implemented correct (mpstmt:MP.Stmt)
(si, sj: MP_State) (si’, sj’: net_State)
(p:MP_Procid) =

(net.m_proc_Seq (NetMapDownlInst mpstmt)

si’ sj’ (NetMapDownPid p)
= 3 (sm:net_State)(sn:net_State).
Net Equivalent_interleavingmpstmt
si sj si’ sj’ sm sn p)
=
MP Meaning mpstmt si sj p

F def
Net_Equivalent_interleaving stmt si sj s’ sj’ smsn p =
ordered si’ sm sn sj’ A
(MP_get_pool si = NetMapUpMsgPool sm) A
(MP_get_pool sj = NetMapUpMsgPool sn)
=
MP _effect_on_pool stmt (MP_get_pool si)
(MP _get_pool sj) p

5 Conclusions

Verifying the correctness of a multi-layered dis-
tributed computing system, from a high-level dis-
tributed programming language to a network inter-
face, is a very difficult task. Our technique makes
this task more tractable by providing a generic spec-
ification framework and a generic proof obligation.
We have applied our technique to verify the imple-
mentation of microSR through layered proofs of a
“full” distributed computing system that guarantee
the correctness of the compiled code that makes ref-
erence to operating system calls, guarantee the cor-
rectness of the operating system calls in terms of
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Figure 4: A verified MP system call implementation.

network calls, and guarantee the correctness of net-
work calls in terms of network transmission steps.

Our current system is small, but non-trivial, re-
sulting in non-trivial layered proofs. We are cur-
rently working on evolving our small layered dis-
tributed system to a larger system through addi-
tional functionality at each layer. One of these
extensions will be a more realistic operating sys-
tem providing dynamic process creation. We intend
to demonstrate that the layered system proof can
evolve in unison with the system design, and that our
technique is applicable to the verification of larger
distributed systems.
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