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1 Introduction

Probably the most important characteristic of a user interface is its ‘look and feel.” Software consumers often select
the programs they purchase based upon the program’s ease of use (i.e., quality of the user interface), rather than
just the relative number of features each provides. Clearly, it is important to determine the appropriateness of a
program’s interface early in the design phase. Unfortunately, textual descriptions do not fully capture ‘look and feel’,
since this quality is a function of the way that users interact with the interface. We can model the ‘look and feel’
of user interfaces via rapid prototyping. However, the behavior of a particular user interface is greatly influenced by
the particular user interface management system (UIMS) upon which it is built, so it is necessary to prototype an
interface with regard to a particular user interface management system. Moving an application and its user interface
to a different UIMS may result in a user interface that behaves in a substantially different manner. In this paper, we
describe a methodology that may be used to develop a UiMS prototype using a template. This template will assist
developers not only in developing new UIMSs, but in evaluating the behavior of user interfaces when the underlying
UIMS changes.

In [AFL90], we developed a general tool for the rapid prototyping of operating systems, based on an executable
template operating system specification (Secure Resource Manager, or SRM). In that work, we found that a prototype
of a specific operating system could be generated by extending a template operating system specification defining such
features as a scheduler, processes, objects, and requests. In this paper, we have taken advantage of the similarities
of operating systems and UIMSs to produce an abstract model of event-driven (secure) graphical user interface
management systems, called the SGUIM (Secure Graphical User Interface Manager) template.

Originally, programmers developed user interfaces by writing code that directly manipulated computer screens
and input devices. However, the current trend in graphical computer systems is to provide an underlying UIMS
to handle common tasks. A UIMS may be thought of as the manager of the graphical system components that
comprise a collection of user interfaces. In many ways, a UIMS is similar to an operating system: it must keep
track of graphical devices, schedule responses to user interactions, and maintain a collection of graphical objects on a
screen. Similarly, the user interface of an application corresponds to a user process within an operating system,; like
processes, they manipulate existing (graphical) objects according to an underlying program or dynamic user inputs.
Different UIMS systems vary in the type of services and graphical objects that they provide to a user. For example,
some UIMS systems provide functions that permit graphical objects belonging to one application to overlap those
belonging to another; other UIMSs provide ‘beautification’ services that rearrange graphical objects according to
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predetermined constraints. Our model provides a template that may be used to easily create rapid prototypes of
these different types of UIMS.

Although there is a proliferation of tools permitting prototyping of interfaces for individual programs (for
example, Prototyper[Cos90]), this is not the case for UIMS design. Further, prototyping tools for user interfaces
generally emit code; thus, they are more appropriate for use during the coding phase rather than the specification
phase of an application. We have provided a collection of independent ‘building blocks’ that may be used to design
individual user interface components. These building blocks permit the user to experiment with different interfaces
without resorting to low level graphical display code. Using the SGUIM template and the ‘building blocks,” we can
simulate both user interfaces and their management systems.

As in the case of our previous approach, the user interface management prototype permits us to answer several
important questions about its design:

o Do the graphical displays exhibit the behavior and appearance expected by the user?
¢ Does the UIMS handle user interactions as intended?

¢ Are the services provided by the UIMS sufficient to permit the designer of individual user interfaces to develop
the desired applications?

¢ Can a particular UIMS be in any sense secure?

o What difficulties will result if a particular user interface is transported from one UIMS to another? In other
words, when an application having a particular user interface is transported, what changes will have to be
made, and will the interface behave (with respect to both visual operations and security) as it did previously
under the new UIMS? Will the UIMS behave the same when a new user interface is added?

To illustrate our approach, we have instantiated the template to produce prototypes of the high level portions
of two user interface management systems: the X Window System[SG86], and the Blend UIMS[FF91].

At present, our experience indicates that the SGUIM prototype provides several significant advantages:

o Use of the SGUIM makes it is possible to separate specific concerns about a UIMS fairly easily. For example,
one can easily isolate the portion of a UIMS that deals with the order in which user interactions are handled,
and modify just that part without significantly changing the entire system.

¢ Use of the SGUIM permits a system designer to determine how portable a given interface will be. The
individual user interfaces are all written in terms of Primitive Graphics (our basic graphical operations), and
their appearance is determined partially by their individual definitions, and partially how those definitions are
handled by the SGUIM prototype. Thus, a system designer can design an interface to work with one SGUIM
prototype, and then substitute a second SGUIM prototype and see what changes will need to be made to the
interface. This feature is particularly important for application designers, since many graphical applications
must be designed to run under several different UIMS systems.

¢ Use of the SGUIM permits a system designer to perform a quick preliminary check of the suitability of a
particular UIMS for a particular set of applications. By observing the functions provided by a particular SGUIM
prototype, the system designer can decide whether or not that UIMS provides the functionality required to
conveniently implement the applications.

o Use of the SGUIM model will help guide the system designer in harmoniously adding new features. For example,
if a designer wants to add the ability to manage the arrangement of graphical views on a display, or change
the order in which user interactions are handled, the SGUIM model will help localize the area that should be
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changed in addition to permitting the designer to quickly observe the results of that change. The presence of
the prototype will also permit the designer to check old programs to see whether they are adversely affected
by the proposed changes without waiting until they are implemented.

¢ SGUIM permits certain ‘look and feel’ attributes of a user interface to be evaluated early in the development
cycle. For example, one can use the prototype to see how difficult it is to perform certain functions; with a
sufficiently detailed specification, one can determine whether or not a graphical view conveys the information
desired.

¢ As with the SRM, SGUIM promotes incremental development of UIMS by permitting both detailed and high-
level specifications to be mixed. The user need only elaborate template specifications for areas that are of
interest at a particular time.

Our current experience with SGUIM leads us to believe that the high-level specification of substantial portions
of existing UIMS systems is surprisingly easy, taking only a few weeks. The SGUIM template itself took only a short
time to derive from the original SRM system. Further, SGUIM prototype specifications are far shorter than the
completed UIMS to which they correspond, since the SGUIM prototype contains only the abstract requirements of
the system, rather than all of the implementation details.

2 Methodology

As indicated in the introduction, we propose to do early testing of user interface management systems by rapid
prototyping from a template. This decision was made for three reasons. First, there is significant commonality
among different user interface management systems. As shown in Figure 2, many UIMS may be considered resource
managers, where user interactions and program operations generate requests to use graphical resources. Such resource
types as processes, graphical pictures and widgets!, events?, and event handlers are common to a great many user
interface management systems. Second, it has been our experience throughout the development of sample user
interface management systems that it is easy for the designer to get caught up in the details of implementation
rather than focusing on the design issues. By introducing a formal definition of the UIMS and abstracting out the
actual screen and device implementation details, the developer can concentrate on the interesting design issues rather
than clever programming techniques. Third, the template design methodology gives designers an easy way to directly
compare UIMS features.

A template in general serves several purposes. First, it organizes one’s thinking about the workings of an
(almost) arbitrary system by factoring the system into its components that play conceptually different roles, and
relieving one of having to specify certain high-level operations. Second, when completed (and in many cases, only
partially completed) for a specific application system, it can be used as a rapid prototype of that system (or part
of it). Third, it supports incremental development of systems, by permitting the developer to elaborate areas of
interest in exactly the amount of detail desired, rather than fully developing all areas at once. Finally, it can be used
to organize proofs of properties of any application system, by helping to isolate for each property just those aspects
of the system that are relevant, and thus potentially simplifying actual proof obligations.

As mentioned earlier, this paper describes a template for the rapid prototyping of user interface management
systems known as SGUIM. SGUIM is composed of the components shown in Figure 2. This model has been specialized
to correspond to event-based user interface management systems. SGUIMs are made up of the following components:

1Within this paper, widgets may be considered to be “executing pictures”, just as processes within operating systems may be considered
“executing programs”
ex: mouse clicks, keyboard operations
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Figure 1: Prototyping system for user interface managers
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Figure 2: What is a UIMS?
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¢ The State of a SGUIM is composed of five parts:

— ApplicationSet, which contains all of the applications that are communicating with the SGUIM Even-
tHandler. An application consists of the underlying user program along with its interface.

— ObjectSet, which contains all of the objects that are potentially viewable within an application. Note that
some of these objects may be created or destroyed dynamically as a result of operations performed by the
user program or interface.

— ViewSet, which contains all of the views that exist within the SGUIM. In the simplest case, each view
will correspond to an object within an application. Views may be visible, invisible, or iconified; they may
contain information beyond that found within a corresponding object. It is possible for a view to become
disconnected from an object, or to correspond to more than one object. Among other components, Views
inform the EventHandler of the operations which they can handle. Views are themselves hierarchical,
since they may be made up of many view components.

~ EventList, which contains all of the events that occur within a system. Events may be generated by a
user (e.g., mouse click) or by an application. Events are added to the list based on the EventHandler’s
polling of devices within the DeviceSet.

— History, which contains a list of all the events that have been generated within the system.

— DeuviceSet, all of the physical devices within the state. For example, the mouse, the keyboard, the screen,
etc.

¢ SGUIMopSet, operations that are performed within an SGUIM. SGUIM operations, unlike the SRM operations,
can be added or modified dynamically as views are added to the state view state. SGUIM operations are
associated with Views.

e EventHgndler, a mechanism whereby events are translated into actions. The EventHandler corresponds to the
SRM scheduler and is responsible for selecting the next event to be handled and ensuring that the appropriate
SGUIMop/View handles it.

o Interp, which may be used to modify events on the event handler list. Among other uses, Interp determines
when an event is ’stolen’—applications/views can ’grab’ events even when they appear to be within the area
that ’belongs’ to another application/view.

¢ SecPoldefines the security policy of the system; for example, which applications/users can manipulate particular
views or devices.

2.1 Details of the SGUIM template
2.1.1 OBJ3

The prototype system developed to investigate the ideas presented in this work was implemented using Goguen'’s
equational programming environment, OBJ3 [GM82]. OBJ3 is based upon order sorted equational logic, and provides
executability via rewrite rules. As in other algebraic specification systems, OBJ3 objects are defined by providing a
type signature for their operations and a collection of equations describing their behavior. These equations serve as
rewrite rules, thus providing executability>. Objects are generic, in the sense that they may be parameterized.

Besides parameterized objects, OBJ3 includes the concept of theories. OBJ3 theories define properties of objects.
For example, a theory may require that an object provide a particular operator. Theories are most often used to

3Reyvrit.e rules are equations where the expression on the left hand side may be replaced by the expression on the right hand side.
Execution proceeds until such replacements are impossible.
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Figure 3: Overview of the SGUIM template specification
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OBJ> red drawltemList(’a °b ’c nilElementList)

reduce in DISPLAY-LIST-ELT :
drawItemList(’a (°b (’c nilElementList)))

rewrites: 135

result GraphicsObjectList:
(drawBox(Point (50,30) ,Point(55,20))
(drawText (Point (52,20},
cellDisplay(’c)) ))

((drawBox( Point (50,40 ) ,Point(55,30))
(drawText (Point (52,35 ),
cellDisplay(°b)) ))

((drawBox(Point (50,50) ,Point (55, 40))
(drawText (Point (52,45 ),
cellDisplay(’a)) ))

)

50 55

< >
50

| a |
40

| b |
30

| < |
20

Figure 4: Primitive graphics commands used for displaying an item list.
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place requirements on an object’s parameters. Views are used to bind objects to object parameters. This is done
via the view?, which specifies the correspondence between the parameter theory and the actual object’s components.
This ensures that instantiated parameters satisfy assertions about the generic parameters. For example, consider
a generic ordered list object that is parameterized by the type of object to be contained in the list. In order to
maintain “orderedness”, it is necessary to ensure that the items in the list have some sort of ordering operator, such
as <=. This is done by declaring that the item parameter of the generic ordered list object has a <= operation. To
create a particular type of ordered list, it is necessary to include an ordering operation within the definition of the
object to be kept in the list. A view is then used to map that ordering operation to the <= operation required by
the parameter theory.

As in the SRM, we develop the template by searching for the most natural decomposition of a UIMS. Rather
than Requests, Files/Objects, and Processes, we observe Events, Views, and Applications. Each of these may be
described as a data type, or OBJ3 object (Appendix A contains several sample specifications).

As for SRM, there are four kinds of data types within SGUIM. These are Kind 1 (invariant across all applications),
Kind 2 (special tailored member), Kind 3 (system-specific representation) and Kind 4 (only for specific applications).
These kinds serve as a guide for the designer when extending the SGUIM template to create a prototype of a specific
system. For example, a SGUIM state is required to contain a set of devices. These devices are Kind 3; though they
are required to contain a unique identifier and operations to initialize and reset themselves, the actual configuration
of the device and the form of the operations is left to the designer. The DeviceSet itself is Kind 2; the designer may
add members and operations, but the majority of the specification is invariant.

2.2 Primitive Graphics

Graphical views of application objects are represented by primitive graphics functions, and can build up small
prototypes without further implementation. Primitive graphical objects are the basic graphical building blocks
provided by the system. They include object (box, text, circle, ellipse, line, scroc®) and operations (move, rotate,
flip, scale).

An example of the primitive graphics commands produced by the prototype to display an object is shown in
Figure 4. In this Figure, an item list is displayed as a downgrowing list with origin(50, 55). The stream of commands
is passed on to the Display Model, which generates the actual graphics calls used to update the system.

2.3 Display Model

The Display Model is used to manage the physical computer system. Without the Display Model, it would not
be possible to actually view the results of user interactions; one would be forced to examine textual specifications
instead. The Display Model is implemented in using the C++ and InterViews [LVC89]. Essentially, the Display
Model waits for the user to interact with the physical system in some way (for example, by moving the mouse). These
interactions are then transformed into their corresponding event descriptions and passed on to the SGUIM prototype.
The SGUIM prototype determines how the display should change, and updates its internal state. These changes
are then passed on to the primitive graphics interpreter, which translates them into low level graphical commands.
These graphical commands are received by the Display Model, which updates the physical screen to correspond.

*The OBJ3 use of the term view is different from the term as used in referring to graphical views.
S A scroc is a simple, convex, rectifiable, open curve
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3 Comparing UIMS and Adding New Features

When comparing UIMS, there are many questions that a developer may ask. It is difficult to answer these questions
when the user is comparing actual system, since the design is obscured by the details. For example, one might want
to determine whether a UIMS will always handle a particular set of user interactions sequentially. This is extremely
difficult to answer for most UIMS, since there may be literally thousands of lines of code interspersed within the
full UIMS system that can affect the order in which user interactions are interpreted. The question is easier within
SGUIM, since one can first prove that only certain segments of the specification can potentially affect observation
and handling of user interactions, and then examine these sections (possibly using a verification system) to see how
the interactions are handled.

Use of the SGUIM template makes it easy to add or modify UIMS features, both by making the portion of
SGUIM that is modified easy to determine, and by permitting the developer to see the result of the changes without
writing a great deal of low-level code. Suppose that it was desirable to add layout rules to a UIMS, where the layout
rules defined ways in which graphical objects could appear on the screen. For example, one might want to add a grid,
and force windows and other objects to be aligned upon the grid. Figure 5 shows two ways in which the SGUIM
template could be modified to add such a feature.

o Modify SGUIM so that operations are modified to comply with the layout rules when they are schedule For
example, a user might request that a particular window be moved to a new location. When the SGUIM
scheduler selects that request, it is modified so that the new location complies with the layout rules before it
is executed.

o Modify SGUIM so that the display is modified to comply with layout rules after each change. For example,
the window movement operation is performed as specified, and then SGUIM checks the display as a whole and
modifies it as necessary.

Clearly, these two ways of handling layout control will result in interfaces that respond to user interactions in different
ways.

4 Results and Future Directions

In developing the Blend and X prototypes within SGUIM, we had several encouraging results. As mentioned in the
introduction, development of new UIMS systems was relatively quick, and modifications were easy to make. The
template style does appear to be flexible enough to handle a large class of UIMS systems. However, development at
present is limited by the host machine’s memory size and CPU speed.

Sparc I, 16 Meg
X11 Blend
length 60 pgs 92 pgs
memory 18M (8-11 resident) | 20M (8-12 resident)
load time (cpu) 28 min 55 min
1st op (cpu) 43sec
2nd op 19sec

There are several projects currently underway that are intended to improve SGUIM’s effectiveness. First, writing
specifications of graphical objects is nearly as difficult as writing code that implements these objects (though more
portable). To reduce the difficulty of this task, we are presently investigating the possibility of using a graphical
programming tool (DEMO [WF91]) to generate the bulk of these graphical specifications. Second, SGUIM’s execution
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Change operations that modify view appearance or location
so that they obey the layout rules:

 Scheduler

schedule
eperation (__Operation )
Modify operation

Execute and
update —>
SGUIM

Operation |

Perform the operation as specified, then rearrange entire
set of views to conform to layout rules

schedule
( " Operation ) operation
Execute and l

update
SGUIM

Generate operations l

to rearrange all views

, Operatlon Llst -

Figure 5: Adding a beautifier by modifying the request
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For each operation:

(1) Execute if it doesn't violate constraints
(2) Propagate new operations, if needed

 Scheduler

T

_View Operation

schedule
operation

Execute and
update
SGUIM

Generate operations
to ensure all
constraints ' e
....... e o Conﬂict
 Resolution

Operation List

Figure 6: Adding Constraints
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speed can be greatly improved by re-implementing OBJ structures directly in Lisp for efficiency. Third, describing
true distributed systems via SGUIM is difficult, due to the “left to right” nature of OBJ’s execution. The possibility
of using a version of OBJ that has been developed with the idea of handling concurrent systems (OBJC [Buf90]) is
being examined. Finally, SGUIM has only been used to describe event-based UIMS systems. To further evaluate
SGUIM’s generality, we intend to develop prototypes for other types of UIMS systems, particular constraint-based
systems. Figure 6 shows a high-level design of such a system.
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A Portions of the SGUIM specification as instantiated for Blend

This section of the appendix contains a representative sample of the SGUIM specification as instantiated for Blend.
Figure 7 defines the graphical views of the system. Figure 8 describes one of the physical devices attached to the
system. Figure 9 describes the top level of the Blend instantiation.

A.1 Views

Within SGUIM, the VIEW specification defines the graphical objects displayed by the system. As shown in Figure 7,
views have among other attributes unique identifier, a location, a corresponding application object, a type, and a list
of handles. Handles define the “hot spot” of the view, permitting user actions to be handled differently depending
upon the location of devices (such as mouse location) when the action takes place.

There are many operations that may be performed upon Blend views. As one might expect, views may be resized
and moved (scaleView, moveView). In addition, actions that take place within the physical area corresponding the
a view can be matched against the view’s list of appropriate reponses.

A.2 DMouse

The MOUSE specification is included to illustrate the portion of the SGUIM template that deals with devices. As
shown in Figure 8, defining a device requires that (1) the basic type specification be created (here, obj MOUSE),
and (2) the operations that return the device’s status, reset/initialize the devices, etc. must be defined.

A3 SGUIM

The SGUIM specification is used to define the way that SGUIM handles Blend’s state components. For example,
the stepSguim operation is defined so that the following sequence of operations occurs:

¢ Select an event from the Blend state’s event list getNextEvent

¢ Determine the event that will handle the event, and the operation it uses in so doing handleEvent

o Check to see that this operation does not violate the system security policy

¢ Expand the operation to form a list of suboperations, if necessary

o Perform the event and update the State

¢ Add the operation to the SGUIM history set.
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obj VIEW is
protecting BANDLELIST .

using RECORD-9PART *(

sort Record to View
' eq matchSingleEvent(Hl, E, P ) =

op _ GFIELD1 to _ @ViewId, domatchSingleEvent(Hl, E, O, P)
op . @FIELD2 to _ @0bjectld,

op _ CFIELD3 to _ @UpperLeft, e . . .
op . CFIELD4 to _ @LowerRight, #** View manipulation o.peratmns
op _ OFIELD5 to _ @HandleList, L dd Bote that moveView may actually be used .
op _ GFIELD6 to _ @ViewType, Ladd to remove one of the views altogether from the visil
op . @FIELD7 to _ @Data, b screen.
op _ @FIELD8 to _ €OpMaps, o .
op . GFIELD9 to _ @Applicationld, eq moveView(V, X, Y) =
(V @UpperLeft equals
) . (V eUpperLeft offset by Point(X, )))
@LowerRight equals
op makeView : Int Id Id Arg OpMapSet Id -> View . (V eLowerRight offset by Point(X, Y)) .

op pointIsWithinView : View Point -> Bool . .
eq scaleView(V, X, Y) =

if ((V @UpperLeft @X < X) and (V €UpperLeft €Y < )

op matchSingleEvent : HandleList Event Point -> Int . " .
op matchMultipleEvent : HandleList EventList Point -> Int . then V @LowerRight equals Point(X, Y)
op domatchSingleEvent : HandleList Event Int Point -> Int . ;}se v
i.
+++ Modification of existing view e
op scaleView : View Int Int -> View . endo
op moveView : View Int Int -> View . .
op plusIntView : View Int -> View . view VIEWV from ELEMENT to NEWOBJ[VIEW] is
sort Eiement to View .
P op undefined to undefined .
#++ Make a template given the view’s id, endv
+++ the corresponding object name, and the .
ss¢ view’s type. Add in the standard handles. make VIEWS is LISTIVIEWV]s(
P sort List to ViewSet,sort Element to View ) endm

eq makeView(Vi, 0i, Ti, Data, Omapset, i) =

View(Vi, 0i, initPoint, initPoint, standardHandleList, obj VIEWSET is

Ti, Data nilList, Omapset, Ai) . protecting VIEWS .
op closestView : ViewSet Point -> View .
ey op selectView : ViewSet Int -> View .
+ss Note that (0,0) is upper left cormer of screen, and op doupdateView : ViewSet View -> ViewSet .
#+¢ (MaxX, MaxY) is lover right corner.
TS vars Vset : ViewSet .
eq pointIsWithinView(V, P) = vars V : View .
( V eUpperLeft €X <= P €X ) and vars P : Point .
( V QUpperLeft @Y <= P @Y ) and vars Name : Int
( ¥V @LowerRight @X >= P €X ) and
( V @LowerRight @Y >= P @Y ) . eq closestView(Vset, P) =
if Vset == nillList then nullView
#++ P indicates the true loc of the View-object. else if pointIsWithinView(car(Vset), P)
ss* Two events are equiv if the loc of one event then car(Vset)
s++ occurs ’within’ the specified hotbox of the other. ;Z!.so closestView(cdr(Vset), P)
1
eq domatchSingleEvent(Hl, E, ¥, P) = fi .
if Hl == nilList then -1
else
if equivEvent(car(car(Hl) €EventList), E,
(car(Hl) @HotBoxUleft) offset by P, endo
(car(H1) @HotBoxLright) offset by P)
then X
else domatchSingleEvent( cdr(Hl), E, ¥ + 1, P)
fi
fi .

Figure 7: High level definition of a View
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obj MOUSE is

protecting INT .
protecting QIDL .
protecting POINT .

using RECORD-

SPART *(

sort Record to Mouse,
op Record to Mouse,

op _
op -
op .
op .
op

op initMouse :
op resetMouse :

QFIELD1 to _

QFIELD2 to
@FIELD3 to

@Mouseld,
@Loc,

. @Button,

QFIELD4 to _

vars Mce : Mouse .

eq initMouse

. OFIELDS to _

-> Mouse .
Mouse -> Mouse .

@Double,
€eChanged,

Mouse(1, initPoint, -1,

eq resetMouse(Mce) =
Mouse( Mce €MouseId, Mce €Loc, -1,
false, false ) .

endo

obj DEVICESTATUS is
sort DeviceStatus .

protecting QIDL .
protecting MOUSE .
protecting KEYBOARD .

op deviceStatus :
op deviceStatus :
op deviceFromStatus
op deviceFromStatus

endo

obj DEVICE is
protecting QIDL .

false, false )

protecting DEVICESTATUS .

using RECORD-4PART *(
sort Record to Device,
op Record to Device,

op _
op .
op -
op .

)

@FIELD1 to
@FIELD2 to
@FIELD3 to
QFIELD4 to

Mouse -> DeviceStatus .
Keyboard -> DeviceStatus .

@Deviceld,
@DeviceType,
@DeviceStatus,
@ictiveUser,

op initDevice : —-> Device .
op resetDevice : Device —> Device .

vars D : Device .

eq resetDevice(D) =
if D @DeviceType == ’keyboard then
(D @ActiveUser equals ’none
@DeviceStatus equals
deviceStatus(resetKeyboard(
deviceFromStatus(D @DeviceStatus))))
else if D @DeviceType == ’mouse then
(D @ActiveUser equals ’none
@DeviceStatus equals
deviceStatus(resetMouse(
deviceFromStatus(D @DeviceStatus))))
else initDevice fi fi .

endo

view DEVICEV from ELEMENT to NEWOBJ[DEVICE] is
sort Element to Device .
op undefined to undefined .

endv

make DEVICES is LIST[DEVICEV]#( sort List to DeviceSet ) endm

obj DEVICESET is
protecting DEVICES .

op resetDeviceSet : DeviceSet -> DeviceSet

op doreset : DeviceSet DeviceSet -> DeviceSet .

op doupdateDevice : DeviceSet Device -> DeviceSet .
op initDeviceSet : -> DeviceSet

vars DS1 DS2 : DeviceSet .
vars D : Device .

eq initDeviceSet =

: DeviceStatus -> Mouse . Device(’a, ’mouse, deviceStatus(initMouse), ’none)
: DeviceStatus -> Keyboard . Device(’b, ’keyboard, deviceStatus(initKeyboard), ’none)
nilList .

eq resetDeviceSet(DS1) = doreset(DS1, nilList)

eq doreset(DS1, DS2) =
if DS1 == nilList then DS2
else
doreset (cdr(DS1), prepend(DS2, resetDevice(car(Ds1))))
£fi .

eq doupdateDevice(DS1, D) =
if DS1 == nilList then DS1
else
if car(DS1) @Deviceld == D @Deviceld
then D cdr(DS1)
else car(DS1) doupdateDevice(cdr(Ds1), D)
fi

endo

Figure 8: High level definition of a Mouse
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obj SGUIK is
protecting QIDL .

protecting EVENTHANDLER .
protecting APPLY .
protecting SECPOL .
protecting HISTORYSET .
protecting SCHEDULER .

using RECORD-7PART #(

@FIELD1

op - to _ @SguimId,

op . @FIELD2 to _ @State,

op . @FIELD3 to _ @EventHandler,
op . @FIELD4 to _ @SguimOpSet,
op . @FIELDS to _ @Interp,

op . @FIELD6 to _ @SecPol,

op . @FIELD7 to _ @History,

)

**x injtialization

op initSguim : -> Sguim .

s*¢ translate one event to op

op stepSguim : Sguim -> Sguim [memo]

#*+ translate device changes

op stepSguimDevices : Sguim -> Sguim [memo]
**+ add one device change

op updateDevice : Sguim Device -> Sguim [memo]
*++ if an op, exec it

op execSguim : Sguim -> Sguim [memo]

**% add user appl. prog

op addApplication : Sguim Application -> Sguim .

vars Sg : Sguim .
vars D : Device .
vars Ap : Application .

eoq stepSguim(Sg) =
(Sg @State equals
stepEventList(
Sg @State @OpListPair equals

interpOp( stepEventList(Sg @State),

checkOperationSecurity( Sg €State,
handleEvent (stepEventList (Sg @State),
getNextEvent(Sg @State))),

Iview)))

@History equals
append( Sg @History

LT
#+* * Simulate a device state change, such as mouse click or ke
+++ + (doesn’t update the event queue)
e x
eq updateDevice(Sg, D) =

Sg @State equals

((Sg @State) @DeviceSet equals

doupdateDevice( Sg @State @DeviceSet, D))

*
+s% ¢ Translate all device state changes to events, and
* reset the devices to their null state.
s
eq stepSguimDevices(Sg) =
Sg @State equals pollDevice(Sg @State @DeviceSet,
nillList,
Sg @State)

% %

*++ + Add an application to the SGUIM, including the mappings t
*%% & objects and their pictorial representation

%% &

eq addApplication(Sg, Ap) =
Sg @State equals
(addViewObjsToState( Sg @State @ApplicationSet
append (Sg @State @Application
Ap))

%% *
*s% » execOp executes an operation, and updates the oplist.
s++ » Note that execUp is now actually executing a pair of

##+ * corresponding operations (both _view_ and object), and
s#* * schedule returns an OpListPair.

LI LI (generally performed right after a stepSguim)

e x (see STATE)

%% »

eq execSguim(Sg) = Sg @State equals
(execOp(Sg @State,
schedule(Sg @State, Sg @State ¢

endo

History(’h, handleEvent(stepEventList(Sg @State),

getNextEvent (Sg @State))

)

Figure 9: Top Level SGUIM
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