Property-based testing of privileged programs *

George Fink

Karl Levitt

Department of Computer Science, University of California, Davis
Davis, CA 95616
email contact: gfink@cs.ucdavis.edu

Abstract

We address the problem of testing security-relevant
software, especially privileged (typically setuid root)
and daemon programs in UNIX. The problem is im-
portant, since it is these programs that are the source
of most UNIX security flaws. For some programs,
such as the UNIX sendmail program, new security
flaws are still discovered, despite being in use for years.
For special-purpose systems with fewer users, flaws are
likely to remain undiscovered for even longer. Our
testing process is driven by specifications we create for
the privileged programs. These specifications simul-
taneously define the allowed behavior for these pro-
grams and identify problematic system calls, regions
where the program is vulnerable, and generic security
flaws. The specifications serve three roles in our test-
ing methodology: as criteria against which a program
1s sliced, as oracles against which it is tesied, and
as a basis for generating useful tests. Slicing is em-
ployed to significantly reduce the size of the program
to be tested. We show thal a slice of a privileged pro-
gram (rdist) witk respect o ils securily specifications
is quite small. We introduce the Tester’s Assistant, a
collection of tools to mechanize the process of testing
security-related C programs.

1 Introduction

Many of the security problems in UNIX are due to
errors in privileged! programs, in network daemons, or
in unprivileged programs run by the superuser. Exam-
ples of such flawed programs include fingerd, ftp, and
rdist. Security-related flaws in these programs have

*The work reported here is being supported in part by ARPA
under contract USNN00014-94-1-0065 and by the Lawrence
Livermore National Laboratory under work order LLNL-
IUTB234584.

1 A privileged program is defined as a program with privileges
that cross protection domains.

1063-9527/94 $4.00 ® 1994 IEEE

154

been discovered years after their release. Errors might
still lurk undetected in these and other privileged pro-
grams (or in network software) until discovered by an
attacker. Clearly, an approach to screening these pro-
grams that is more effective than the current practice
is needed; this paper considers systematic testing as
its approach to screening.

As a step towards a systematic approach to the
testing of security-relevant programs, we consider
property-based testing. Property-based testing uses
specifications of important properties to produce test-
ing criteria and procedures which focus on these prop-
erties in a systematic manner. Portions of the program
which do not deal with properties of interest can be
ignored. Analyzing only part of the program results
in significant performance gains in testing algorithms.

For this application of property-based testing, spec-
ifications are produced for security properties of priv-
ileged programs. Most uses of specifications (e.g., for
verification or for documenting design decisions) indi-
cate “what the program is supposed to do.” However,
many security properties are negative, describing what
the program should not do (i.e., don’t let a user log
on without a password). Thus, our specifications can
take different forms, such as: the objects a program is
allowed to access during execution, the identification
of system calls that if improperly invoked would cause
security problems, and characterizations of generic se-
curity flaws [1].

We use specifications for multiple purposes in our
methodology, one of which is to generate slicing crite-
ria. A slice of a program with respect to a criterion is
a sub-program which has the same behavior as the full
program with respect to the criterion. As an example
of a useful slicing criterion for security, a security flaw
in the login program might mis-assign a user id to the
shell created at login; by slicing the login program with
respect to the criterion “setuid system call,” code that
creates an erroneous user id would be identified. We
show that slicing with respect to security properties
can produce slices that are significantly smaller than

Figure 1: Overview of the Tester’s Assistant

the original program. The testing effort can then be
focussed on the slice.

This paper presents a specification model for de-
scribing security properties of programs, and transla-
tions from properties into slicing criteria. The slicer
is one component of our Tester’s Assistant (see Fig-
ure 1), which mechanizes property-based testing; it
slices C programs, and is implemented in the ELI [17]
compiler construction toolset. Still under development
are other components of the Tester’s Assistant (see
Figure 1), including:

o a coverage analyzer, which determines the effec-
tiveness of a set of tests with respect to a cov-
erage measure. For security-related programs,
data-flow coverage (the percentage of definition-
use paths executed by a test suite) appears to be
an effective measure.

e an execution monitor which analyzes audit trails
produced by the underlying operating system
(e.g. the kernel) during the execution of a priv-
ileged program. The audit trails are checked
against the program’s specification. Audit trail
analysis is augmented by automatically instru-

155

menting the slice to provide further information
on the program’s state.

e a well-behavedness checker, which uses static
analysis and testing techniques to identify pointer
or array index overflow. Ill-behaved programs
have been the source of several security problems.

In Section 2, we outline the security model used in
property specifications. In Section 3, we define slicing
and discuss the issues associated with it. In Section 4,
we apply the property-based testing methodology to
several example programs. In Section 5, we give an
overview of the Tester’s Assistant implementation and
report on current progress and design. Finally, in Sec-
tion 6, we give our conclusions and future plans.

2 Security Specifications

There are three main uses of specifications in
property-based testing:

1. as criteria for slicing.
2. as oracles for evaluating test runs.

3. to generate test data.

With respect to slicing, specifications provide de-
scriptions of the variables and locations in the pro-
gram, the variables and locations being “interesting”
with respect to security. For more details, see Sec-
tion 3. An executable specification can be used to
determine if a test run produces correct results. Spec-
ifications can also be the basis for identifying interest-
ing data values on which the program must be tested.
See Section 5 for how the Tester’s Assistant uses spec-
ifications in the latter two ways.

Specifications are most useful when written in a
formal language. This enables the use of automatic
tools to process the specification. It is also possible
to reason about the interaction of specifications for
different programs and flaws, and to form an effective
model for security specifications. In the remainder of
this section, a model for UNIX security is introduced,
and applied to specific UNIX objects and operations.

UNIX security model

In UNIX, some programs have privileges beyond
those needed to carry out their job. This happens be-
cause the granularity of UNIX’s access control mecha-
nism is not fine enough. A program which runs setuid

to root? can make any change to the file system. It is
necessary to determine that the actual changes these
programs make do not indeed exceed their intended
purpose. We provide security specifications for privi-
leged programs, and then test the programs with re-
spect to these specifications. For example, in UNIX,
the “/bin/passwd” program is a setuid root program.
Therefore, /bin/passwd can potentially do anything
(e.g., plant a trojan horse, kill any process, shut down
the system). We want to assure that the program is
written so as to restrict what the user can make it do.

Not all security properties are negative. In the case
of many authentication-related programs (such as lo-
gin), we want to assure that the authentication is car-
ried out before any privileged actions are taken.

To address these concerns, we create a security
model for UNIX programs. A motivating factor be-
hind the model is the desire to produce concise speci-
fications for privileged programs, and to reason about
the specifications.

Our model divides security specifications into three
categories: general system requirements, the oper-
ating system interface specifications, and program-
specific specifications. The basic primitives of the
specifications are users, objects, and access rights and
restrictions.

General system requirements are properties ex-
pressed as predicates which, in general, programs
should not violate. An example of a system require-
ment is that the file that stores password information
is not accessed, as this would be a breach of security®.
However, it is obvious that in some instances this re-
quirement must be violated; when a program needs to
perform an authentication of a user, a check is neces-
sary against the information in the password file. The
system requirements form a stronger barrier between
programs and the system.

The second category of specifications defines the in-
terface between programs and the operating system.
Within the context of the interface, programs are al-
lowed to violate first category specifications. Each sys-
tem call that has security implications has a security-
related specification. Some system calls have pre-
conditions: predicates that must be satisfied if the sys-

2A setuid root program runs with superuser privileges re-
gardless of which user actually initiated the program. The pro-
grams need to be setuid root in order to access and change
system objects.

3In UNIX, note that this file (/etc/passud)is in fact globally
readable; other information kept in the file needs to be gener-
ally available. This makes it more difficult to detect security
breaches related to the password file, as the default UNIX secu-
rity policy allows read access, and many programs utilize this
policy.

156

authentication(uid) before
current_user(uid);

funcall setuid(uid) if result = 0
{assert current_user(uid);}

Figure 2: Specification of the setuid system call in the
Tester’s Assistant specification language.

tem call is to be used in a secure manner. For example,
the setuid system call, which gives access permission
to a process, requires that the user be authenticated.
This assertion results in the specification in Figure 2.
This specification says that the user should be authen-
ticated before the current user is given permissions.
After the system call setuid is executed, and if no er-
ror code is returned, permissions are granted to that
user, and the corresponding assertion is made in the
security state of the system.

Library routines are also dealt with in this manner.
Although it may be possible to break down library rou-
tines into their component computations and system
calls, it is more efficient to assume that the standard
libraries operate correctly, and to specify the library
functions in the same way as system calls. The cor-
rectness of the libraries can be established in an in-
dependent test run. An important example of library
routines is the password library, a set of routines which
define a standard interface to the password file.

A program-specific specification indicates when a
program is allowed to violate the restrictions of the
first and second category of specifications. For exam-
ple, to allow users to change their passwords or for
new accounts to be created, special permission must
be given to write to the /etc/passwd file. The pro-
gram to change passwords, /bin/passwd, is given a
specification which exactly specifies the scope of the
changes it can make:

passwd(U:uid)
write(password_file.U.password)

Informally, the specification says that when a user
executes the “passwd” program, the program can
write only to the password file and only the field cor-
responding to the password of that user.

An additional category of specification describes
safety properties and other generic flaws [12] [1].
Safety properties cover common programming mis-
takes such as lack of argument checking, and include
the well-behavedness property, described in Sec-
tion 3.

Specification Language

The syntax of the specification language includes
constructs for:

o Specifying an abstract security model with asser-
tions and predicates.

o Attaching assertions and predicates of the model
to specific source code such as function calls and
variable uses.

o Indicating how specification components can be
related with constructors from temporal logic
(e.g. before, until).

The UNIX security model expressed in this lan-
guage includes the following primitives;

¢ the current user id (uid)

e special ’superuser’ user id (root, or uid = 0)
¢ id’s which have been authenticated

¢ authentication routines

o files/processes (an object in the file system)
e access permissions for files

o ownership of files

special files - /dev/kmem /etc/passwd /bin/sh

We have determined that this list is sufficient for
many programs, including £tp, login, rdist, and
ps. Other programs which contained security flaws,
including sendmail and fingerd, are not covered by
this list of specification primitives. For these pro-
grams, some flaws are caused by a potential difference
between code that is originally compiled and code that
is actually executed, as code can be changed dynam-
ically through overwriting variables on the stack and
other ill-behaved operations. Such programs must also
be tested against additional well-behavedness type
specifications.

Section 4 contains a discussion of how this security
model covers UNIX security flaws.

3 Program Slicing
Program slicing is an abstraction mechanism in

which code that might influence the value of a given
variable or set of variables at a location is extracted

157

FB int example (int x, int y)
FB {
int z;
z=0;
B if(x == 0)
z=x+y;
else
x=y;
if(y)
setuid(x);
else
return z;
F return -1;

o mww

FB

Figure 3: Ezample of forward and backward slicing
with respect to setuid. Elemenis of the forward slice
have an “F” at the beginning of the line. Elements of
the backward slice have a “B” at the beginning of the
line.

from the full source code of a program. Weiser [18]
originally implemented slicing for FORTRAN pro-
grams. Slicing is carried out with respect to a slicing
criterion. In its simplest form, a criterion is a variable
and a location in the program. There are two essential
properties of a slice:

1. the slice must be executable;

2. for the same input values, the variable must have
identical values at the corresponding locations
both in the slice and the original program.

More complex criteria can involve multiple variables,
multiple locations, and include forward slices which
capture behavior of the program dependent on a par-
ticular variable usage.

A basic backward slice of a program is produced
by first generating a combined control and data flow
graph of the program, based upon the program’s parse
tree. Nodes that correspond to the slicing criteria for
the basis of a slice. A node is added to the slice if it
is a definition of the value of a node in the slice, if it
is used in a computation of a node in the slice, or if it
is part of a control point which dominates a node in
the slice. The final slice is the subset of nodes of the
flow graph which have been identified by the above
algorithm. The slice can then be formatted in syntax
appropriate to the original programming language.

Another slicing technique works forward through
the parse tree, tracing the fan-out effect of a flow

node. Combinations of backward and forward slic-
ing (possibly with different criteria) can produce slices
which more exactly characterize a program’s behav-
ior in some circumstances. This technique is called
dicing [9]. Different ways in which forward and back-
ward slicing are applied in property-based testing are
discussed in Section 4.

The current version of our Tester’s Assistant slicer
does a data-flow breakdown of C programs, and finds
simple slices?. The primary cost in slicing is in pro-
ducing the data-flow representation. The largest ex-
ample to which the slicer has been applied is the rdist
server, which required nearly four thousand data-flow
nodes, and took between fifteen and twenty seconds
to produce on a Sparcl105.

By using slices as the basis of security testing, we
are assuming that testing a slice is equivalent to test-
ing the whole program. The equivalence of a slice and
a program with respect to some narrow criterion does
not necessarily imply the equivalence of test results. In
the Tester’s Assistant we rely on the completeness of
the model defined by the security specifications to de-
scribe the properties of interest. For example, if there
are other system calls that influence a property of in-
terest but which are not specified accordingly, there is
little the Tester’s Assistant can accomplish. For prop-
erties that have not been defined (e.g., in our model,
properties related to program correctness rather than
security), testing program slices will give very little in-
formation. A test of a (correct) slice that was created
with respect to a specification tests that specification,
but not necessarily anything else.

3.1 Well-behavedness

Difficulty arises when slicing C programs because
the C language allows virtually unlimited pointer
arithmetic as well as many forms of pointer (and
function) aliasing. This lack of well-behavedness af-
fects the correctness of slices because unexpected side-
effects make a correct data-flow graph very difficult or
impossible to calculate.

To address this, we make the often unrealistic as-
sumption that pointers are well-behaved. A pointer
is well-behaved if, once assigned to an object in mem-
ory, it does not, through pointer addition or typecast-
ing, refer to a different object in memory. A program
is well-behaved if all of its pointers are well-behaved.
Lo [11] showed that static analysis can establish the

“In our current version, pointer analysis is not complete.
5Considerable speedups are possible in the slicer, as it is
currently an unoptimized prototype.

well-behavedness property in many cases without re-
quiring a proof of correctness. The well-behavedness
property can also be tested with respect to appropriate
well-behavedness specifications. Unfortunately, much
of the power of C as a language derives from its be-
ing able to support ill-behaved operations. In many
cases, this ill-behavedness is used in very specific ways
from which it is possible to deduce an underlying well-
behavedness property. For example, the use of void
pointers and type casting to implement generic data
structures, and the use of pointer arithmetic for array
indexing are both classic ways in which what appears
to be ill-behaved code is actually well-behaved.

There are two reasons why we are able to make the
well-behavedness assumption and still be able to make
strong claims about the results of property-based test-
ing. First, as mentioned above, it is possible in some
cases to statically check the well-behavedness prop-
erty, as well as to identify the classic ways in which
ill-behavedness is used. However, if this is not the
case, and it is not possible to make the determination
whether or not the program is well-behaved, then the
fact that a determination was not able to be made is
enough to raise a certain level of suspicion as to the
security of the program.

Second, most of the code that is potentially ill-
behaved is intrinsic to the nature of C and C++ lan-
guages, i.e., in the low level interaction of the language
with the underlying system. So, while our examples
are written in C and our prototypes are written to an-
alyze C code, the general techniques of specification,
slicing, and dataflow testing are actually easier and
more technologically feasible if not applied to such a
permissive language as C.

As a final note, even though ill-behaved code causes
incorrect data-flow graphs and thus renders most of
the Tester’s Assistant analysis unusable, it remains
possible to test against well-behavedness conditions.
A running program can be considered well-behaved up
to the time in which it makes its first out-of-bounds
reference. If this reference is described in a well-
behavedness criteria, sliced, and tested, then the anal-
ysis of this reference (since it is the first ill-behaved ref-
erence) is not tainted by the lack of well-behavedness
in a program. In this way, provided that all the ways
in which well-behavedness can be violated are spec-
ified, it is possible to use the Tester’s Assistant for
well-behavedness checking.

3.2 Slicing Criteria

Anything that can be described in terms of nodes
in a dataflow graph can serve as a slicing criterion.

For example, the set of all function call nodes which
correspond to setuid system calls is a valid set on
which slicing can be performed. This assumes that
the slicing algorithm is merely a backward arc closure
algorithm, identifying all nodes which possibly influ-
ence the node(s) of interest. Slicing can also be ac-
complished with respect to two or more system calls
or with respect to temporal factors, e.g., one of the
system calls being required to be executed first (a
permissions-checking call is executed before a file is
read.)

The basic “unit” of a slicing criterion is a system
or other function call, but there are different ways in
which these units can be combined that could be of in-
terest. So, when considering a specification language,
these additional slice constructors can be used to map
a specification to a slice.

From specifications we extract the system calls
which are relevant, and slice with respect to them.
Slicing of authentication routines poses some chal-
lenge, since in UNIX, authentication is not standard-
ized in a single library or system call. It is impor-
tant to identify specifically the code that is used in
authentication and what that code does with correct
and incorrect authentications.

Classically, slicing is performed to examine the be-
havior of a set of variables at a specific point in the
program. When we slice for properties, the slicing cri-
teria become more complex. In the simpler cases this
involves the values of system call parameters at dif-
ferent points in the program in a cumulative way, i.e.,
the union of the individual slices. In other more com-
plex cases, the desired slice is the intersection of slices,
or is decided by more complex boolean formula. For
example, when attempting to slice with respect to the
setuid specification given in Section 2, the slice will
contain all data paths which traverse setuid but do
not traverse the authentication routine; in this case, a
user would gain access without having provided a cor-
rect password. The specification of setuid indicates
that paths which traverse both correct authentication
and setuid are secure, and thus do not need further
testing. Dicing methods can be used to construct this
complex slice.

It is important to note that exact (minimal) slices
for specifications often are not necessary. Aslongasa
slice sufficiently reduces the size and complexity of the
program, other static and dynamic analyses are made
more efficient.

Some different security objects (like special files and
passwords) might require forward slices. For example,
if a password is typed into the system, we might want

159

to see all the ways that the password is used within the
program. If the use is not limited to an authentication
routine, and for instance, the password is written (in
plain text) to a file, this might arouse suspicion.

4 Examples

To apply the methodology of property-based test-
ing, we take as examples UNIX privileged programs,
and consider security properties of these programs.
Security properties are easily isolatable from other
program properties. In general, that portion of the
program which deals with security-related objects
(e.g., filenames and user ids) is a significantly small
subset of the original program, so slicing is particu-
larly useful in this case. Privileged programs provide
us with a large example suite, many of which have
widely known flaws. We can both evaluate the abil-
ity of the Tester’s Assistant in detecting these known
flaws, and also determine if our system might find pre-
viously unknown flaws. Finally, these examples pro-
vide a fairly representative sample of the range of spec-
ifications and programs relevant to computer security.

rdist

Rdist is a program to update identical file systems
on distributed hosts. It is executed on a machine
which contains the master copy of the files, and it
checks the other machines for outdated copies, replac-
ing them as necessary.

Rdist was found to have a flaw that would allow a
user to alter the permissions on any file in the system.
A user can utilize a race condition in the program to
apply the chmod® operation to a different file then the
one rdist is copying the data into.

A truncated slice of rdist with respect to the chmod
system call is shown in Figure 4; the behavior of the
chmod system call, because it changes permissions in
the file system, is a focus of a property-based test. The
destination file (new) is first created, then its path is
checked for correct permissions. Data is read into the
file, and then the file is closed. Only at this point are
the files permission bits changed. The race condition
arises when some other process makes a change to the
file before the chmod system call is made.

Although rdist is a very large program, this flaw
can be detected with a simple security requirement;
no file’s permission bits can be changed unless the
user owns the file. Standard specifications of the

SChmod changes the file’s permission flags in UNIX.

recvf(cmd, type)
{
>>>calculation of the new filename
>>> and its protection mode
if ((f = creat(new, mode)) < 0) {
if (errno != ENOENT || chkparent(new) < 0 ||
(f = creat(new, mode)) < 0)
>>> Error condition
}
wrerr = 0;
for (i = 0; i < size; i += BUFSIZ) {
int amt = BUFSIZ;
cp = buf;
read(rem, cp, amt);
>>> code to handle erroneous reads
if (urerr == O &% write(f, buf, amt) != amt) {
wrerr++;
}
}
close(f);
if (wrerr) {
return;
}

chog(new, owner, group, mode);

chkparent (name)

{

}

>>>recursive 20 line function that returns 0 if path
>>>is valid and writable, ~1 otherwise

chog(file, owner, group, mode)

{

if (userid != 0)
if ((mode & 04000) && strcmp(user, owner) != 0)
mode &= “04000;
>>> calculation of group of the file
if (userid && gid >= 0) {
>>> if user not in group
mode &= ~02000;
}
chmod(file, mode);

Figure 4: Abbreviated slice of rdist with respect to chmod().

permission-checking system calls would determine
when the state predicate owns(user,file) is as-
serted; this is related to system call which changes
permission bits to form slicing criteria.

fingerd

Fingerd was the cause of several security breaches.
The flaw was caused by an overflow of the buffer which
holds some of the input data. Portions of the stack
were overwritten, which allowed the user of the pro-
gram to execute code which had been entered as part
of the input argument. Before this flaw was exten-
sively exploited by the Internet Worm [16], fingerd
was run setuid root, and so the flaw allowed sys-
tem penetration. This flaw is a violation of a well-
behavedness property, which is found by testing for
well-behavedness requirements.

ftpd

Some versions of £tpd contained a flaw which al-
lowed any user to read or write any file on the sys-
tem. The flaw was caused by an unanticipated path
through the program which could bypass the authen-
tication routines. Sufficiently sophisticated dataflow
coverage metrics would require this path to be ex-
ecuted in a complete test relative to an authentica-

160

tion/access specification, and so the flaw would have
been discovered through property-based testing.

Scope of the domain

Property-based testing is designed to effectively
test single programs for security flaws. It is important
to realize where this capability fits into a complete
picture of a secure system.

A program is tested against a given set of speci-
fications that describe security flaws. Assuming the
testing process does not reveal any flaws, a level of
assurance is gained about the software in question.
This level of assurance is dependent upon the quality
of security specifications.

There are flaws for which it is difficult to write spec-
ifications. Consider a general scenario where program
P1 provides input data for program P2. P2 is per-
mitted to perform some privileged actions in some re-
stricted way, but the input data that P1 provides is
able to cause a security breach in P2. This flaw might
have been found in a property-based test of P2, but
what if the input language for P2 is a complex pro-
gramming language in and of itself? It may not then
be feasible to test P2 (which is in effect a compiler) for
security flaws. Testing, validating, or verifying com-
pilers is a hard research problem for which there are
no easy solutions. One approach that property-based

testing could offer would be to analyze each individ-
ual “program” which is passed from P1 to P2, but this
would require building dataflow analysis tools for the
new language.

A generalized version of this problem is where a
flaw is manifest when programs are run sequentially,
each one changing the security state of the system in
some minor, harmless way. Thus, each individual step
is seen to be free of security flaws (through analysis
with property-based testing). However, if the n pro-
grams are run sequentially, a larger, harmful change
in the security state is brought about. One example
of this involving only two programs is as follows: one
program changes the password of the user running the
program to some fixed string, and the second program
sends this string to some other site on a network. In
this case the first program might be identified as inse-
cure (although in some instances password-changing
programs must be allowed); the second program in
itself seems to be quite benign.

To catch this flaw in general, some global reasoning
must be done on the whole set of security specifica-
tions for a system. This set must be analyzed for flaws
which occur only when programs are used in conjunc-
tion with each other. A model of the whole system
must be created, including the concept of secure and
insecure states. Thus, our specification model imple-
mented in the Tester’s Assistant is adequate only for
particular flaws in privileged programs.

5 Architecture of the Tester’s
Assistant

The five components of the Tester’s Assistant are
the specification language, the slicer, the dataflow cov-
erage analyzer, the execution monitor, and the test
data generator. A human tester would use the system
by selecting and creating specifications and selecting
some initial test data for the program to be tested.
The execution monitor detects when an incorrect exe-
cution occurs. If no incorrect execution occurs, slices
of the program are examined for their dataflow cover-
age information, and more test data is generated as a
result of this analysis.

All of the components coordinate through a com-
mon dataflow program representation. To gener-
ate the dataflow representation and construct the
instrumentation necessary for coverage analysis and
monitoring, the ELI [17] system is used. ELI is
a text processing and compiler construction toolkit.
In ELI, high-level specifications are converted into

161

high-performance executable translators and compil-
ers. Using ELI, we are able to quickly prototype the
Tester’s Assistant.

The dataflow representation has been implemented.
The slicer is partially implemented: it is operational
on multi-procedure programs using most of C’s oper-
ations and properties, relying in part on algorithms
from [10], [2], and [5]. Pointer anti-aliasing will be
introduced to make slices more efficient. Currently,
the slicer makes worst case assumptions about pointer
aliasing, though the well-behavedness assumption
limits the scope of the aliasing assumptions. Library
and system calls are being specified as necessary. Slic-
ing criteria are currently limited to a single variable
and/or system call. Technical tasks for the short term
are to improve the slicing algorithm and to provide
a richer language for expressing slicing criteria. A
harder problem to be addressed is to produce tem-
plates or other devices for automatically associating
complex concepts in the specification (like authentica-
tion) to source code.

Below, we describe the issues involved with the
other components of the Tester’s Assistant, and the
benefits gained from including them in the tool set.

Dataflow testing

Ad hoc testing, the repeated application of arbitrar-
ily selected test data to a program, can only confirm
negative properties about the program. The only con-
crete information that can be gained is that an error
has occurred; no positive generalities can be drawn
from a successful test. Formal coverage analysis is an
attempt to rectify this situation. Coverage analysis
based on coverage metrics codifies the portions of the
program which is used in an execution of a set of tests.

There is a wide variety of coverage metrics. The
simplest coverage metric is statement coverage. In this
measure, each program statement is executed at least
once in complete code coverage. If the coverage is
not complete, an indicator called coverage percentage
is used to calculate the ratio of tested code to total
code. Code that is not executed by such a test suite
is referred to as a “gap” in the coverage.

As Hamlet demonstrates [6], simple coverage met-
rics can easily result in flawed code going undetected.
Hamlet suggests that data-flow coverage approaches
are superior. Data-flow coverage is a term that encom-
passes a variety of coverage schemes based on mea-
suring coverage of sub-paths of a program from the
definition of a variable to its uses. Covering def-use
paths [8], allows complicated flaws to be exposed.

Computing complete dataflow coverage information
becomes inefficient as the program size increases. In-
formation needs to be kept on each individual path
through the program; the number of paths grows ex-
ponentially with the size of the program. However,
when testing for a specific security property encapsu-
lated in a specification, it is only necessary to calculate
the coverage metrics on paths which are contained in
the slice. This reduction in the space of paths makes
dataflow testing feasible in the Tester’s Assistant.

Execution Monitoring

A test run of a program needs an oracle that in-
dicates whether or not the execution produced the
correct results. Manual inspection of the output of
an execution is infeasible in many situations, and
at best error-prone, especially if correct behavior
must satisfy numerous security requirements. We
create executable oracles derived from the security
requirements.”.

The use of specifications as oracles to test programs
is not new: Richardson [13] and Sankar [15] [14] used
specifications to generate assertion-checking functions.
What is unique about our approach is the relative
(small) size of the specifications, and the ability to as-
sociate them with a slice of the program. For certain
programs, in addition to adding predicate assertions,
we track an abstract “state” of the program (for in-
stance, the current uid).

Testing programs with respect to security specifica-
tions has a distinctive characteristic as compared with
the testing with respect to general properties. Most se-
curity specifications capture “safety” properties - i.e.,
bad things should not happen. In current operating
systeins, the state can be changed only through invo-
cation of system calls to the kernel, so state checking
only need be done at these points in the program.

One method being explored to accomplish security-
based execution monitoring is through system call au-
dit trail analysis [7]; traces of system calls are collected
by the operating system and analyzed in real time. For
many security flaws, this form of execution monitoring
is both effective and efficient.

But, using auditing as a basis for testing programs
has limitations. Most current auditing systems do not
record all parameters of system calls; hence, not all the
information about an event is recorded. For instance,
how a program modifies a file and a password which is
typed in cannot be inferred from the audit trails. In

"In the case of oracle specifications, a precise specification is
needed; this is in contrast to the use of specifications in slicing,
in which case only vague specifications are sufficient.

162

addition, some specifications, like authentications, are
hard to check in this manner.

To produce a more effective execution monitor, we
add code to the program for the purpose of monitoring
the adherence to specifications. Information from the
slice can be used to insert monitoring code at exactly
those locations which can influence the specification
assertion.

Test data generation

So far, our discussion of property-based testing has
assumed that a human generates test data. But, in
part, the process for test data generation can be au-
tomated. Using a slice as an intermediary between a
specification and test data generation is the key.

In symbolic evaluation [3], input data is represented
by variables, and execution is controlled by a meta-
interpreter for the language. As computations are
made, and the path of execution traverses conditional
expressions and loops, the current values of program
variables are kept as a set of constraint equations char-
acterizing the relative values of the variables. These
constraint equations can be solved, and some attempt
made to provide closed form representations of out-
put variables in terms of input variables; input data
can then be selected which produces “interesting” out-
put values. Often interval arithmetic is used in these
computations. One limitation is that the constraint
equations can easily become too difficult to solve au-
tomatically, requiring assistance from either a human
or a mechanical theorem prover. Additionally, loop
invariants and assertions often need to be provided in
order to make simplifying inferences about the behav-
ior of loops.

However, symbolic evaluation becomes feasible
when conditional expressions and loops are elimi-
nated [4]. If the results of the coverage analysis re-
veal unexecuted paths, each path can be given to the
symbolic evaluator for test data generation. Since for
a path through the program, the results of all condi-
tional expressions and loop predicates are fixed, many
of the computational difficulties are eliminated.

6 Discussion

We are investigating the technique of property-
based testing as a way to address security testing of
software. In property-based testing, specifications are
used to slice a program to an executable subset rel-
evant to the specification. Manual methods are used
to derive test data for the slice. The specifications

are also used as an oracle, when the data is applied
to the slice. Dataflow coverage metrics measure the
effectiveness of testing, in addition to focussing at-
tention on suspicious sections of code that deserve a
closer look. A testing environment, the Tester’s Assis-
tant, is being developed to evaluate the effectiveness
of property-based testing for C programs.

Property-based testing is being applied to UNIX
utility programs, which are the major source of secu-
rity problems in UNIX. Although we have not cap-
tured all security-relevant behavior of UNIX in our
specifications, the specifications we have written to
represent integrity requirements have been surpris-
ingly easy to produce and are very concise — typically
just a few lines of predicate logic. Furthermore, the
reduction in program size due to slicing is substantial.
In some instances, analysis of system audit trails can
be used in execution monitoring, reducing the amount
of program instrumentation necessary to test.

Work is continuing on the development of the
Tester’s Assistant. We are extending the set of ex-
amples the Tester’s Assistant can be applied to, in-
cluding, extending the slicer to handle concurrent pro-
grams. We are also studying other applications (e.g.,
safety properties) where the specifications might be
easy to write and the benefits of slicing are substan-
tial.

References

1] R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L.
Konigsford, S. Tokubo, and D. A. Webb. Security
analysis and enhancements of computer operating
systems. Technical report, Lawrence Livermore Lab-
oratory, April 1976. available as NBSIR 76-1041 from
National Technical Information Service.

Thomas Ball and Susan Horwitz. Slicing pro-
grams with arbitrary control flow. Technical Report
1128, Department of Computer Science, University of
Wisconsin-Madison, December 1992.

Robert S. Boyer, Bernard Elspas, and Karl N. Levitt.
Select — a formal system for testing and debugging
programs by symbolic execution. In Proceedings of the
International Conference on Reliable Software, pages
234-245, 1975.

Richard A. DeMillo and A. Jefferson Offutt. Con-
straint based automatic test data generation. IEEE
Transactions on Software Engineering, 17(9):900-910,
September 1991.

Michael Ernst. Program slicing using the value de-
pendance graph. To appear in the Proceedings of the
22nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1994.

{2

—

—_—

3

[4]

[5

—_—

163

[6] Richard Hamlet. Testing programs to detect malicious
faults. In Proceedings of the IFIP Working Conference
on Dependable Computing, pages 162~169, February
1991.

Calvin Ko, Karl Levitt, and George Fink. Automated
detection of vulnerabilities in privileged programs by
execution monitoring. In Proceedings of the Tenth
Annual Computer Security Applications Conference,
December 1994.

Bogdan Korel and Janusz Laski. STAD - a system
for testing and debugging: User perspective. In Sec-
ond Workshop on Software Testing, Verification, and
Analysis, 1888,

Panas E. Livadas and Stephen Croll. The C-Ghinsu
tool. Technical Report SERC-TR-55-F, University of
Florida, December 1991.

[10] Panas E. Livadas and Stephen Croll. Program slic-
ing. Technical Report SERC-TR-61-F, University of
Florida, October 1992.

Raymond Waiman Lo. Static Analysis of Programs
with Application to Malicious Code Detection. PhD
thesis, University of California, Davis, 1992.

Robin R. Lutz. Targeting safety-related errors dur-
ing software requirements analysis. In Proceedings of
the First ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, pages 99-105, Decem-
ber 1993.

Debra J. Richardson Owen O’Malley and Cindy Tit-
tle. Approaches to specification-based testing. In Pro-
ceedings of the First ACM SIGSOFT ’89 Third Sym-
posium on Testing, Analysis, and Verification(TAVS),
pages 86-96, December 1989.

S. Sankar. Automatic Runtime Consistency Check-
ing and Debugging of Formally Specified Programs.
PhD thesis, Stanford University, August 1989. Also
Stanford University Department of Computer Sci-
ence Technical Report No. STAN-CS-89-1282, and
Computer Systems Laboratory Technical Report
No. CSL-TR-89-391.

S. Sankar and R. Hayes. Adl — an interface definition
language for specifying and testing software. Tech-
nical Report CMU-CS-94-WIDL-1, Carnegie-Mellon
University, January 1994.

iy

8]

19

(1]

(12

(13]

(14]

(15]

[16] Eugene H. Spafford. Crisis and aftermath. Commu-

nications of the ACM, 32(6):678-687, 1989.

[17] William Waite et al. Eli system manuals. Unpublished
Manuals, 1993.

[18) Mark Weiser. Program slicing. JEEE Transactions on
Software Engineering, SE-10(4):352-375, July 1984.

