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1. Introduction.

In a previous paper [AFL90], we presented a tool for the rapid prototyping of operating systems
based on an executable template operating system specification. By extending the template specification,
a designer can generate a rapid prototype of a specific operating system. The template specification con-
sists of sorts (object classes) arranged in a hierarchy of three kinds, where the design decisions made in
the template for each kind are in some sense more general than those made for its successor kind. We
used the FASE (Final Algebra Specification and Execution) system language [KJA83] as the language for
the specification.

It is our belief that the SRM template is general enough to be used as a basis for rapid prototyping
nearly any non-distributed operating system at the system call level. Naturally, it is important to test this
belief, and to show that the speed of prototype development and the execution speed of a rapid prototype
is great enough for the development of a prototype t0 be useful for testing the properties of a design. Our
recent work is aimed at answering these questions, demonstrating the usefulness of having a rapid proto-
type of an operating system, and evaluating the template methodology in general.

Specifically, we report on the following:

e  Our experience in using the template specification to produce a rapid prototype of a real operating
system — MINIX [Tanen87].

e  Our approach towards enhancing the MINIX rapid prototype (and hence the MINIX design) to pro-
duce a multilevel secure MINIX rapid prototype. Other enhancements are under consideration.

e A first step towards a comparison of our FASE template specification with such a template written
in other executable specification languages. Currently, we are studying the OBJ and EPROS (the
executable subset of VDM) languages.

2. Motivation.

As with other large systems susceptible to errors in the early phases of design, it is useful to evalu-
ate important aspects of an operating system design through rapid prototyping. This clearly holds for sys-
tems under development; we also believe it can be true for existing systems that are likely to undergo
modification.

Rapid prototyping has not previously been applied to operating systems, despite what seems to us
clear reasons to do so. Although there are surely many examples of implementation errors that have
plagued operating systems, poor design decisions exist.

Particularly important to evaluate for an operating system is the usefulness of its interface (the sys-
tem calls) for utilities, such as the shell. The implementation of an actual operating system is complex;
however, through the judicious application of abstraction, a rapid prototype of an operating system as a
specification that captures the functional behavior of the system calls is not difficult to produce. As we
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discuss below, the rapid prototype of an operating system can be significantly smaller and simpler than
the final implementation. There is a need for an incremental development methodology, through which
those parts of the operating system that bear most on performance can be carried through implementation
and evaluation, deferring the implementation of the less performance-critical parts.

The similarity among operating system functional behaviors has led us [AFL90] to the template
operating system specification which we call the SRM (Secure Resource Manager). The template
specification defines a collection of abstract resources that are accessed by requests from processes. A
scheduler coordinates the requests. An abstract interpreter translates the requests by users for operating
system services, possibly replacing a given request by finer-grained requests. A request can be denied if
it would be in violation of the security policy. The completion of the template entails providing instances
for the abstract resources and a more detailed description of the effect of operations.

Our goals in carrying out the template completion for a real operating system are to evaluate the
methodology with respect to its appropriateness and ease of use, the feasibility of using it on non-toy sys-
tems, and the usefulness of the resultant prototype as an interface for programming and evaluating operat-
ing system utilities.

There are other reasons why one might wish to prototype a real operating system. One can experi-
ment with adjustments and enhancements to the existing system more easily in the prototype than in the
system itself. A properly done rapid prototype makes it relatively easy to separate concemns regarding
properties of the system prototyped, thus facilitating experimentation with enhancements with regard to
some particular concem, such as security. In addition, debugging a prototype can be much simpler than
debugging its corresponding implementation: in particular, one can more easily set up problem situations
in the prototype that can be hard to reproduce in the implementation.

As indicated in the introduction, our template is written in the language of the FASE executable
specification system. While we have found the FASE system to be satisfactory for our purposes, we are
undertaking a comparison of FASE with other executable specification systems both as a basis for rapid
prototyping of large software systems and with regard to feasibility and usefulness of template
specifications.

3. A brief review of the SRM template and methodology.

We begin our review of the template and its methodology by briefly recalling some details concern-
ing FASE. FASE specifications are operational in style, and thus executable. At the same time, they free
a specifier (or prototyper) from concemn for the details of data representation, greatly simplifying the
details of operator definitions. FASE also supports incremental implementation: a specification can at
any time be replaced by a concrete implementation, while preserving the executability of the prototype.
Since FASE is integrated with lisp, the development process in the FASE system can be easily enhanced
by writing appropriate lisp programs to exercise specifications.

Central to understanding a FASE specification are the concepts of distinguishing set of operations
and tuple representation of elements of the sort being defined (the TOI, or type of interest) in the
specification. The elements of the tuple are in one-to-one correspondence with the distinguishing set
operations, which serve to distinguish one TOI element from another. Holding a particular TOI element
fixed while a distinguishing set operation is applied to it (and possible other arguments) allows one to
determine the constant (or function) that is the corresponding tuple entry for that element. The cross pro-
duct of the sorts of these constants (or arities of these functions) then can be taken as the domain of
abstract representations of the TOI elements, or for short, the representation of the TOIL Explicit tuple
representations of elements of a given sort can only be used in the specification where that sort is the TOI.
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The SRM template sorts and their representations are given in Figure 1.

Figure 1 also indicates the ‘‘kind’’ of each sort in the template. These are defined as follows: Sorts
of kind 1 are completely defined, in the sense that the only operators that may involve tuples in their
definitions are those already defined in the template (these operations are known as the ‘‘constructors’’).
Additional, derived operators may be added for convenience. Sorts of kind 2 have a fixed distinguishing
set of operations, and hence a fixed tuple representation in every elaboration of the template. Sorts of
kind 3 have some fixed part, perhaps only their name, but usually, fixed operator declarations (usually,
not fixed operator definitions). This hierarchy of kinds has implications both for the kinds of changes one
makes in them when specifying a system starting from the template, and for the nature of the general pro-
perties one can prove about these data types from the template specification alone.

The hierarchy is also the guide to the most efficient way to instantiate the template for a given sys-
tem design: namely, first define the elements of the kind 2 specifications needed for a specific application
(in particular, the SRMops, the Interp, and the SecPol), and use the needs of these elements to determine
the representations of the elements in the kind 3 specifications (such as Objects, Processes, and Args).
We refer to this procedure as the template methodology.

More details conceming the template, its methodology, and the FASE system can be found in
[AFL90] and [KJA83].

SORT KIND REPRESENTATION

SRM 1 SRMopSet x State X Scheduler x Interp X SecPol
SRMopSet 1 SRMop — Bool

State 1 ObjectSet x ProcessSet X RequestList X History
Scheduler 2 (State — Request) x (State — RequestList)
Interp 2 Request — Request

SecPol 2 (State x Request — Bool) X (State X Request — Request)
SRMop 2 Symbol X (State X ArgList — State)

ObjectSet 1 Object — Bool

ObjectPred 2 Object — Bool

Object 3 Objectld x - - -

ProcessSet 1 Process — Bool

ProcessPred 2 Process — Bool

Process 3 Processld X - - -

RequestList 1 Request X RequestList

Request 1 SRMop x ArgList X ProcessId

History 3 cee

ArgList 1 Arg x ArgList

Arg 3 Objectld x ProcessId x - - - [really Objectld + Processld + - - - ]
Objectld 3 s

ProcesslId 3

Figure 1. Template sorts and their representations.
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4. Results of the MINIX prototype exercise.

As indicated in the introduction, we have been developing a prototype of MINIX [Tanen87], an
operating system with essentially the same interface (system calls) as UNIX System V. In this section,
we discuss what we have leamed in the process about the usefulness of our SRM template and its associ-
ated methodology, and about the benefits of rapid prototyping an operating system. The MINIX proto-
type specification itself can be found in [ABFL91].

While having a rapid prototype of MINIX yields the benefits with respect to testing, debugging, and
improving the MINIX design that we have mentioned above, the principal benefit we have obtained so far
from developing a MINIX prototype from the FASE template has been to subject the methodology of
[AFL90] to a more rigorous testing. In particular, we hoped to determine whether our template was in
fact an appropriate foundation for a real operating system prototype, whether starting from a template did
in fact significantly reduce a prototyper’s effort, and whether the resulting prototype was in fact efficient
enough for testing purposes. Our results so far confirm that the answer to all these questions is yes.

We have found the template methodology we outlined in [AFL90] and reviewed in the previous
section to be appropriate for constructing the MINIX prototype. We began with expanding the
specifications of kind 2. For the initial subset of MINIX that we prototyped, the Interp (instruction inter-
preter) and SecPol (access policy) components of the MINIX SRM could be the trivial ones. While it was
clear from the informal description of MINIX in [Tanen87] that there should be (at least) two kinds of
objects: files and directories, most of the information needed to determine the appropriate representations
of (kind 3) Objects, Processes, and Args came from the definitions of the operators of sort SRMop (a kind
2 data type). We added a small number of kind 4 (special purpose) specifications to handle the details of
these representations: Objectkind (to indicate the kind of an Object), SymbolList (for the content of a file
Object and the buffer content of a Process), Pathname (to support Objectlds and represent the content of a
link Object), PathnameList (for the content of a directory Object), and Cursortab (to keep track of file cur-
sor positions for a Process). The only changes we made to kind 1 (fixed) specifications were the (permis-
sible) addition of derived operators for convenience: for example, we added an operation initMINIX to
SRM.

To sum up, for the MINIX example, we have found our template and its associated methodology to
be both sufficient and appropriate. We are also further convinced that it reduces the effort needed to pro-
duce an operating system prototype. While the effort involved in constructing the MINIX prototype was
not trivial, we had only to make the decisions we have outlined above. We estimate that the time taken to
elaborate the kind 3 specifications (in particular, Object and Process) is about one man-week each, while
each SRMop took about half a day per operation.

The number of lines of code for some of our SRMops (e.g., LSEEK) is not much less than the
number of lines of C code for the actual MINIX version; in other cases, because we have abstracted away
more implementation details (as in the case of READ and WRITE), our code is significantly shorter. For
all the operations, we have found that our code for system operations is generally much easier both to
write and understand, since one can forget low-level details of data representation. As an example, we
give the definitions related to READ in Appendix A, which also lists the operations we have so far
defined. The definitions related to the READ system call in [Tanen87], by contrast, take a few pages, and
are considerably more opaque.

Our template also has proved, if used correctly, to be an appropriate framework on which to do
incremental development of a prototype. Incrementing our prototype to include more features of MINIX
required only localized changes. For example, the initial subset of MINIX prototyped only the file
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system, and assumes a single process, the system Process. The addition of user processes required adding
some new SRMops and replacing the trivial Interp component by a more complex one (which still has the
same behavior with respect to the system Process). For example, the original READ SRMop, which can
only be executed by the system Process, must be supplemented by an operation uREAD, which can be
executed by a user Process; an appropriate Interp is defined which interprets a uREAD request by a user
Process as a READ request by the system Process that has the user Processld as an extra argument. When
access permissions are modelled, the trivial SecPol will similarly have to be replaced by a more complex
one.

It must be noted, however, that to ensure that only localized changes are necessary, one must take
the complete top-level system description into account — what all the operations and their arguments will
be. Otherwise, additional components may be needed in the tuple representations of kind 3 data types
when a new SRMop is added. This would require modification to all definitions involving tuples in those
kind 3 data types. This inconvenience could in some cases be mitigated by an appropriate interface that
locates tuples in a specification and prompts a specifier for the entries for missing components.

With regard to the efficiency of the MINIX prototype we have built from our template, we have not
done any explicit timings. However, we produced a simple driver that updates and displays the MINIX
state. We have observed a delay of perhaps one or two seconds in producing the display of updated states
when all data type specifications are compiled (as opposed to interpreted), and have found our prototype
to be a quite reasonable interactive testing tool.

The FASE system provides for mixing of (executably) specified data types with implemented data
types. This feature makes it possible to further speed up a rapid prototype, once certain implementation
decisions have been made.

To illustrate the convenience with which we can exercise and visualize our prototype by taking
advantage of user-defined grammars and the ability to exercise FASE specifications using lisp programs,
we show an abbreviated session using our driver in Appendix B.

In constructing the MINIX prototype, we consistently attempted to derive the MINIX design in as
abstract a form as possible. We took our design information from the (relatively) informal descriptions
and our understanding of the code in [Tanen87], and when doubit still existed, from testing. Thus we can-
not guarantee that our prototype specification behaves identically to the corresponding subset of MINIX.
Since a major part of our goal was to test the template methodology on a reasonably nontrivial system,
this is not of too great concerm. However, we believe the exercise of attempting to define as abstractly as
possible the design of an operating system such as MINIX can itself be valuable. For example, determin-
ing the correct abstract definition of an Objectld — when linked directories are allowed, it appears to be a
reduced finite automaton on the alphabet of all Symbols, that represents all possible Pathnames for an
Object — gives certain insights into the expected observable behavior related to links. Studying the
observable changes when the last link to an Object is removed leads to the question of what happens to a
Process that had that Object open for reading or writing at the time: this is not immediately clear from the
code in [Tanen87]. In our prototype, the question arises naturally, because the entries in the Cursortab of
the Process connected with the former Objectld must be updated. The answer to this question has certain
implications for the ultimate implementation of memory manangement. If it is answered wrongly, there
can be problems with enforcing the usual file protection policy. Thus, attempting to define the system
abstractly can also lead one to considering aspects of the design that may have been overlooked in the
implementation.
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5. Retrofitting multilevel security to the MINIX rapid prototype.

As pointed out in section 2, one of the uses of a rapid prototype of an existing system is to provide a
basis for testing experimental modifications or enhancements to the system. One of our particular
interests is retrofitting data security to existing operating systems. We note that the SecPol component of
our template provides the natural place to do this. We have developed what we believe is a general
design for supporting multilevel securty in MINIX.

There is interest in operating systems that satisfy some security policy (see, e.g., [Gligor871). Mul-
tilevel security (see, €.g., [FLR77]), wherein information does not flow from a user at security level [to a
user whose security level I; is not at least that of /, is one particular such policy. As we will show below,
our MINIX rapid prototype can be easily retrofitted to be multilevel secure by associating appropriate
“*security levels’* with the objects and users, and by returning errors upon an access to any object that is
outside the policy. In fact, we can define a ‘‘security template’’ general enough that specific instances
can correspond to the standard MINIX data protection scheme as well as a much more stringent multi-
level protection policy.

Our security template involves adding the concept of a User to the SRM template: Objects and
Processes will all be owned by a User. A User (kind 1) will be a name (Symbol, primitive) coupled with
an element of some partially ordered set (Poset, kind 3) describing the multi-level hierarchy. A ¢ ‘security
level”” for an Object will be an access control list (ACList, kind 1); that for a Process will be the Poset
component of its owner. Access control lists list Users together with information on whether they have
read, write, or permission-change permission to an Object. An element of the SecPol can be defined for
each SRMop that ensures that no Request calling that SRMop can either violate the access control list of
an Object, or change it so that it is inconsistent with the multi-level hierarchy. While the exact form of
these definitions depends on the individual SRMops, they can all be based on a generic formulation of the
restriction they must enforce that can be included in the template.

The standard MINIX data protection scheme can be fit into this template by using a one-element
Poset, since MINIX has no multi-level security: any user can share contents of his objects at will with any
other user. Superusers are distinguished by means of being especially known to the SecPol, which will,
for example, make sure that no Request that would deny them any type of access to any Object will be
granted. It is clear that the usual concept of superuser is inconsistent with any nontrivial multilevel secu-
rity policy.

Thus, we can define an appropriate SecPol for any multi-level security policy. However, it must be
noted that perfect enforcement of a security policy is nearly impossible. For example, there is usually
information flow in violation of the security policy through the error returns mentioned above. A user
could receive an error upon attempting to write to an object that no longer exists. A one-bit channel is
thus present between two users not permitted by the security policy to communicate with each other,
information being transmitted by a user who deletes an object if he wants to send a 1 and does not delete
the object if he wants to send a 0; this channel is called a covert channel.

Potentially, a rapid prototype can be helpful in the discovery (and, to some extent, mitigation via
design for bandwidth reduction) of such covert channels. These channels are present in the rapid proto-
type and can be discovered and their bandwidth determined (experimentally) through testing the rapid
prototype. Additional covert channels can be introduced in the implementation, and discovered by testing
incremental implementations of the prototype.
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6. Templates in other executable specification systems.

We have so far found the FASE system to fill our rapid prototyping needs well. However, we wish
to examine in detail whether the template notion combined with other specification systems might have
advantages. Accordingly, we are also developing an operating system template in VDM [HI88], and also
testing the template methodology (as applied to user interface managers) in OBJ3 [GM82, FFAL91].

It is clear that the template methodology can be used in some form in conjunction with either VDM
or OBJ3. In any specification system, the obvious advantage of starting from a template is that the
overall organization of the design is already thought out. In the FASE system, one is relieved of certain
other decisions for a particular data types in the design depending on the kind of that data type: 1, 2, or 3.
The distinction between kind 1 and kind 2 appears to be less important for VDM or OBJ3; however,
being of at worst kind 2 assures that the data representation is fixed, which is very useful in VDM. The
analog in OBJ3 appears to be that there is a “‘theory’’ that need not be redefined.

It appears that FASE has advantages over OBJ3 with respect o execution speed. We have not yet
been able to compare EPROS (the executable subset of VDM) with respect to speed, but intend to do so.

Specification systems can also be compared on the basis of ease of proof of properties of specified
data types; this is something we hope to do for the three systems in the future.

7. Future work.

As we have indicated already, we intend to complete our comparison of executable specification
methods, both with respect to suitability for rapid prototyping of operating systems and other software
systems such as an interface manager [FFAL91], and with respect to the details of a template
specification methodology.

When studying properties of a system design, it is useful to be able to prove certain assertions about
the system. For example, one may wish to prove that the system can never be in an undesirable state, by
some definition (such as never having two distinct Objects which pass the *“‘eqObject’’ test). It is of
interest to be able to prove such an assertion from certain assertions about the SRMops, the Interp, and
the SecPol. We will experiment with proving such assertions for specifications in the different
specification languages, using the proof methods appropriate to each language.

We intend to complete of our multilevel secure prototype of MINIX, and experiment with using the
prototype to study covert information channels. We also intend to experiment with other enhancements
to an operating system that can be realized through a rapid prototype. Among those to be considered
include fault tolerance, recovery and converting a single-host operating system to a distributed system.

When enhancements or modifications to an existing system have been designed through its proto-
type, the question remains how to translate these changes to the implementation. We will study this ques-
tion with MINIX as our example.

References.

[ABFLI1] M. Archer, J. Bock, D. A. Frincke, and K. Levitt, Elaboration of the SRM operating sys-
tem template into a MINIX rapid prototype, Technical Report, Division of Computer Sci-
ence, University of California, Davis (1991).

[AFL90] M. Archer, D. A. Frincke, and K. Levitt, A template for rapid prototyping of operating sys-
tems, International Workshop on Rapid System Prototyping, June 4-7, 1990.

61



[FFAL91]

[FLR77]

[GMB82]

[Gligor87]

[HI88]

[KJAS83]

[Tanen87]

D. A. Frincke, G. Fisher, M. Archer, and K. Levitt, A new application of template metho-
dology: rapid prototyping of user interface management systems, Second International
Workshop on Rapid System Prototyping (Research Triangle Park, NC, June 11-13, 1991).

R. J. Fiertag, K. Levitt, and L. Robinson, Proving multilevel security of a system design,
Proceedings of the Symposium on Operating System Principles (1977), 57-95.

J. A. Goguen and J. Meseguer, Rapid prototyping in the OBJ executable specification
language, ACM SIGSOFT Software Engineering Notes, 7(5) (December, 1982), 75-84.

V. D. Gligor et al.,, Design and implementation of secure xenix, IEEE Transactions on
Software Engineering SE-13, No. 2 (February, 1987), 208-221.

S. Hekmatpour and D. Ince, Software Prototyping, Formal Methods and VDM, (Addison-
Wesley, 1988).

S. Kamin, S. Jefferson, and M. Archer, The role of executable specifications: the FASE
system, Proc. IEEE Symposium on Application and Assessment of Automated Tools for
Software Development (November, 1983), 105-114.

Andrew S. Tanenbaum, Operating Systems: Design and Implementation, Prentice-Hall
(1987).



Appendix A: Definitions relevant to READ in MINIX prototype.

SRMop

nameSRMop : SRMop -> Symbol
apSRMop : SRMop State ArgList -> State
eqSRMop : SRMop SRMop -> Bool
NOop : -> SRMop

LOGIN : -> SRMop

uLOGIN : -> SRMop

CR: -> SRMop

uCR : -> SRMop

OPEN : -> SRMop

uOPEN : -> SRMop

CLOSE : -> SRMop

uCLOSE : -> SRMop

WRITE : -> SRMop

uWRITE : -> SRMop

READ : -> SRMop

uREAD : -> SRMop

LSEEK : -> SRMop

uLSEEK : -> SRMop

LINK : -> SRMop

UNLINK : -> SRMop

FORK : -> SRMop

uFORK : -> SRMop

KILL : -> SRMop

WAIT : -> SRMop

DISTINGUISHING SET nameSRMop apSRMop;

READ => 'READSRMop, /* READ(fd,len,pid) from uREAD(fd,len) */
<S,A> |->
let pid be getpidArg(3, A) in
let proc be findinProcessSet(isidProcessPred(pid), procsofState(S)) in
let fd be getsymArg (1, A) in
let curtab be ctofProcess(proc) in
let place be lookupCursortab(fd, curtab) in
if place = errInt then errState else
let objid be getidCursortab(curtab, fd) in
let O be objsofState(S) in
let obj be findinObjectSet(isidObjectPred(objid),0) in
let len be getintArg (2, A) in
let end be lengthSymbolList(filecontObject(obj)) in
if place+len > end then errState else
let newcurtab be updateposCursortab(curtab, fd, place+len) in
let buf be extractSymbolList(filecontObject(obj),place+1,len) in
let newp1 be updatectProcess(proc, newcurtab) in
let newp2 be updatebufProcess(newp1,buf) in
updateprocState(proc, newp2, S)1;

uREAD => ['uREADSRMop, <S,A> |-> S];
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Interp

getreqInterp : State Request Interp -> Request
trivinterp : -> Interp

NOoplInterp : -> Interp

MINIXInterp : -> Interp

uREADInterp : -> Interp
READInterp : -> Interp

DISTINGUISHING SET getreqlnterp;
trivinterp => [<S,r> |-> 1];

NOoplnterp => [<S,r> |-> 1];

UREADInterp => [<S,r> |-> mkRequest( READ,
let pid be procidofRequest(r) in
let A be argsofRequest(r) in
appendArgList(pidtoArg(pid), A), sysProcessld)];

READInterp => [<S,r> |-> 1];
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Appendix B: An abbreviated MINIX prototype demo.

-> (runsafeMINIX)
Objects:

Directory (/ ) contains:
System process:

Buffer contains: [ ]
Requests Queued:

MINIX> !system: uLOGIN(jim) in MINIX!
Objects:
Directory (/ ) contains:
System process:
Buffer contains: [ ]
Requests Queued:
uLOGIN (jim) <System process>

MINIX> !system: uLOGIN(karl) in MINIX!
Objects:
Directory (/ ) contains:
System process:
Buffer contains: [ ]
Requests Queued:
uLOGIN (jim) <System process>
uLOGIN (karl) <System process>

MINIX> !Istep step MINIX!
Objects:

Directory (/) contains:
System process:

Buffer contains: [ ]
User process 0:

Status: active

Parent: System process

Working Dir: /

User: jim

Buffer contains: [ ]

CurTab contains: {})
User process 1:

Status: active

Parent: System process

Working Dir: /

User: karl

Buffer contains: [ ]

CurTab contains: {}
Requests Queued:

MINIX> ...

MINIX> !0: uFORK() in MINIX!
Objects:

Directory (/ ) contains:
System process:

Buffer contains: [ ] 65



User process 0
Status: active
Parent: System process
Working Dir: /
User: jim
Buffer contains: [ ]
CurTab contains: {}
User process 1:
Status: active
Parent: System process
Working Dir: /
User: karl
Buffer contains: [ ]
CurTab contains: {}
Requests Queued:
uCR (fd1, oho, (Objectkind: file)) <User process 0>
uwOPEN (fd2, foho, rd) <User process 1>
UWRITE (fd1, [ hello world ]) <User process 0>
uREAD (fd2, 1) <User process 1>
uFORK () <User process 0>

MINIX> !step step step Step Step MINIX!
Objects:

Directory (/) contains: ocho

File (foho ) contains: [ hello world ]
System process:

Buffer contains: [ ]
User process 0:

Status: active

Parent: System process

Working Dir: /

User: jim

Buffer contains: [ ]

CurTab contains: {fd1 wr (foho)->2]}
User process 1:

Status: active

Parent: System process

Working Dir: /

User: karl

Buffer contains: [ hello ]

CurTab contains: {fd2 rd (foho) > 1}
User process 2:

Status: active

Parent: User process 0

Working Dir: /

User: jim

Buffer contains: [ ]

CurTab contains: {fdl wr (foho)->2]}
Requests Queued:
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