A Model of Security Monitoring

Matt Bishop

Department of Mathematics and Computer Science
Dartmouth College
Hanover, NH 03755

Abstract

We present a formal model of security monitoring that distin-
guishes two different methods of recording information (log-
ging) and two different methods of analyzing information
(auditing). From this model we draw implications for the
design and use of security monitoring mechanisms. We then
apply the model to security mechanisms for statistical data-
bases, monitoring mechanisms for computer systems, and
backups, to demonstrate the model’s usefulness.

Introduction

Although often used interchangeably, auditing and log-
ging describe two distinct actions; logging is simply making
a record, and auditing is analyzing that record {8]. Computer
systems use logging to provide information used to restore
file systems and databases to consistent states after crashes
{9,10,14,16]; they also require logging for security purposes,
for example in computer systems ranging from those meeting
the Department of Defense trusted computer guidelines for
class C2 or higher [17], in electronic fund transfer systems
[12], and other types of data processing [2]. The computers
log information relevant to the security of the system; in
most cases, they audit this log (often called an audit trail or
activity log) and take action consistent with the state of the
system as recorded in the log. This audit has three steps.
First, information in the log is reduced to eliminate data.
The remaining information is analyzed either to format the
data in the log or to determine whether or not a compromise
has occurred or would occur if a specific action were taken;
and finally, the audit mechanism notifies a program or an
auditor of the results.

The entry and exit of people from a secured building
provides an analogy. At the door is a security guard who
signs people in and out. This record is a log, and the guard
is performing the logging function. At the end of the day,
the main office obtains the logs. To determine if there is a
potential security problem, a clerk first eliminates all names
showing both entry and exit; this is the reduction step. The
clerk then determines if the people still in the building are
authorized to be there at night; this is the analysis step. If

The suppox:t 'of grant NAG 2480 from the National Aeronautics and
Space Administration to Dartmouth College is gratefully acknowledged.

TH0287-3/90/0000/0046$01.00 © 1990 IEEE

someone who should not be there is still in the building, the
clerk calls the security office and directs them to locate and
to escort the person out of the building; this is the notifica-
tion step.

To show that the terms ‘‘logging”’ and ‘‘auditing”
apply to diverse situations, consider the same building with a
new rule: employees must escort visitors within the building.
When a visitor arrives, the guard records personal informa-
tion and who the visitor is to see (the logging step.) The
guard then determines how to contact that employee, which
may entail calls to numerous people (the reduction step).
When the guard reaches that person, the guard asks whether
the employee will escort the visitor (the analysis step).
Finally, the guard informs the visitor of the result (the notifi-
cation step.) While these are not the conventional uses of the
words “‘logging”’ and ‘‘auditing,” they certainly fall under
the purview of the definitions above.

We should at this point distinguish our notion of ‘‘log-
ging’’ and “‘auditing” from the orthogonal concepts of ‘‘pas-
sive auditing” and ‘‘active auditing’’ as defined in [1].
“‘Passive auditing” is essentially logging with the expecta-
tion that the log will be available for analysis; whether or not
the log is analyzed is irrelevant to our notion of ‘‘logging,”
since we are separating logging from the auditing process
entirely. “‘Active auditing” is the complement of ‘‘passive
auditing,”” and determines if the information in the log con-
stitutes one (or more) of a set of exceptional conditions and
if so, takes action. Qur use of ‘‘auditing’’ simply refers to
the analysis and taking of action. Note that action may be
taken even if no exceptional condition has occurred; this may
be done to reassure systems administrators that the system is
still functioning.

This paper provides a formal model of logging and
auditing based on the effects of the implementation of each.
The third section discusses some practical implications of
this model, and the fourth applies this model to varying
situations and analyzes properties to demonstrate the model’s
robustness.

The Model
Logging and auditing involve recording and analyzing
the state of a system. Following [4], we assume that the set
of entities £ and a set of well-formed commands C can
characterize the computer system completely. Intuitively, £
is what the system is composed of and C is the set of events
that can cause it to change. For all e € E, val(e) is the set

of values associated with the entity, val(E) is the set of all
values of all e € E, and VAL(E) is the set of values that all
entities in £ may assume. The set Ng of strings names the
entities in E, and the function hg:E — Ng maps each entity
to a name. The set Ny of strings names the possible values
of the entities in E, and the function hy:E — VAL (E) maps
each value into a string. Similarly, the set Nc of strings
names the commands in C, and the function hc:C —Nc
maps each command to a name. To simplify some defini-
tions, we require that the null command be in C.

Definition. A system state s is a 1-tuple (E). The collec-
tion S of all possible states is the state space. The relevant
part of the system state 6Cs is the subset of (E) under con-
sideration. The collection I of the relevant parts of all possi-
ble system states is the relevant state space.

As an example, consider the protection state of a system
described by the triple (S,0,4), where S is the set of sub-
jects, O the set of objects, and A the matrix of rights, within
the system [11]. Here the entities E corresponds to the pairs
of subjects and objects, and the values val(E) of each entity
is the corresponding access right in the access matrix. In this
case, the relevant part of the system is the entire protection
state, so o=(E). Note that this ignores entities not relevant
to the protection state, so it does not describe the state of the
system.

Definition. A system is a 4-tuple (C,S,50,T) where 5o the
initial state, and T:C xS — S is the system transform.
Informally, T the set of mappings that reflect the change of
state. During the life of the system, a series of these func-
tions will execute; the next definition captures this notion.
Definition. Let N be the set of nonnegative integers. A sys-
tem history is a function IEN—C xS such that the second
element of T1(0) is so, and

vne N[[TI(n)=(c,s) and [T(n+1)=(c*,s*)]
—s5*eT(,s)]

A relevant state history is a function 7: N — Czx X such that
¥neN[@n)=(,s)—=2xnr)=(.0]

If TIG)=(c,s) and II(E+1)=(c*,s*), we write T; for
that member of T corresponding to ¢* and mapping the sys-
tem state from s to s* (that is, T;:S — S is the same as
T:c xS =S where ¢ is the first element of II(i+1)). Also,
we shall abbreviate I(i)=(c,s) by writing ¢ as ¢; and s as
si. Similarly, o; corresponds to the relevant parts of s;.

Consider now the effect of a projection T:CxxZ—X of
T on G;-;. Even though Ti(s;-1)=s;, it need not be true that
1;(0;-1)=0; because G;-), and hence 7;, may lack informa-
tion necessary to produce ©;. Intuitively, consider the
relevant part of the state of a system to be the protection
state of a file f. Here,

o={ f, all subjects }

and
val((s f))={ s’s set of rights over f }.

47

The system transform function T must capture all changes to
o. Note that the state includes information about only one
passive object, f, but does not include such rights as the
ability of a subject to write directly to the disk. By writing
directly to the disk directory, which contains the controlling
representation of permissions for all files on the disk, a sub-
ject can change its access rights to the file, and hence o; but
since ¢ does not include access rights to the disk, there is no
¢ for which 7;(G;-1)=0;. But since 5;—; does include those
permissions, given s;-1, T; will produce the next state s;.

We define the term inclusive to capture this notion.

Definition. The relevant state space X is inclusive if
Vi [TiSi)=8 »3u [u(oi-)=0;]]

In English, this says that if cach element of o captures
enough information about the state of the system so that
some projection of T; can map G;- into o;, then at any time
i, the (relevant parts of the) next state can be determined
simply by looking at o;. Thus only those parts of 6; ¢ 5; are
relevant. Of course, T; is just the projection of T; into the
space E. If S;_1#S: and oi-1=0;, then T is the identity
function even though T; is not. Note that T; will never be
the identity function, because in that case no change of state
has occurred.

From here on, we shall simply deal with relevant parts
of the state and assume that they are inclusive.

A logging function abstracts relevant parts of the state
and turns them into output.
Definition. Let Agae: £— NE XNv; then Agare is a state log-
ging function. Let Acpanget CzxZ—Nc xNg xNy; then
Achange 1is a state logging function. Collectively,
call A=RAchange IAswe ~ Where ACXE—0 and
O =Ng xNy UNc xNy xNg is the output of the logging
function.
Intuitively, the state logging function records the relevant
components of the state of the system, and the change log-
ging function records the specific event or action that causes
the system to alter relevant components of the state as well
as the new values of those components. The output of the
logging function is some data recording the state or transi-
tion. For example, return to the instrumented kernel, except
this time assume all system calls print a log message when-
ever they change rights a user has over a file, or write to
either the disk directory or in-core copies of that directory; in
the latter two cases they record the altered directory entry.
Using the system call method, Nc are the names of the sys-
tem calls, Ng the names of the files and users, and Ny the
new settings of the protection modes; as each output log
message prints the system call name, the name of the entity
altered and the entity altering it, and the new protection
mode, O =Nc¢ xNg xNy, so this is change logging. If the
protection modes of all files were recorded periodically, Ng
would be the names of the files and users, and Ny the set-
tings of the protection modes; as each output log message
contains the name of the entity scanned and the associated
protection mode, O =Ng xNy, so this is state logging. Note

that both types of logging functions may make entries in a
log.
Definition. An output o =(nc,n.,n,) (Or (neny)) is inverti-
ble if there is a unique command c, entity e, and value
val (e) for which hc(c)=nc, he(e)=n., and hy(val(e))=ny
(or if there is a unique entity e, and value val(e) for which
hg(e)=n, and hy(val(e))=n).

Intuitively, an output being invertible means that the
value of the entity before the logging can be determined from
the log.

Definition. A log L of a system is a sequence of outputs
00,01, * - such that ¥iTj [Mn(i))=o; 1 The log is
unique if each o; is invertible. The log is complete if it is
unique and the sequence of relevant parts of the state gen-
erating the output o;, i 20, is the relevant state history of the
system.

Uniqueness means simply that there is only one sequence of
states that could have produced the particular log. Note that
this does not mean there could only be one state history,
because the log may consist of outputs of states scattered
throughout the state history; to obtain a unique state history,
the log must be complete as well.

Proposition. Let 60,01, * - - be the relevant state history of
a system. A log L={ 00,01,....,0m } is complete if and
only if the following conditions hold:

(1) each o; is invertible;

(2) 00=Asae(C0), and

(3) for all i 21, 0; =A(r(i)).
Proof. (only if) Assume conditions (1)-(3) hold. Then by),
the log is unique; by (2), inverting the first element of the
log gives the first element in the state history; and by (3), the
sequence of relevant parts of the states o; is generated by a
logging function being applied to the ith element in the
relevant state history.

(i) Assume the log is complete. Then by definition (1)
holds. As there is no transformation To, there can be no
corresponding command, so 00=Asae(C0), and (2) holds.
Finally, by assumption relevant parts of the states in the
relevant state history are inclusive, so for each pair of such
states (0;-1, ©;) there is a function %;(0i-1)=0i and therefore
a comresponding command ¢; € Cx for which ®(i)=(ci Ci+1);
hence A(r(i))=o0;. This proves (3), and hence the proposi-
tion.

This means that a change log is not sufficient to generate a
complete log; a state logging function must also gencrate
output corresponding to the initial state of the system.

This proposition says that to track a system accurately,
the part of the state being logged must be inclusive, enough
information must be logged to reconstruct the state, some ini-
tial state must be logged, and then after every transition
either the new state or the action causing the transition must
be recorded.

Auditing consists of the reduction of the log, the
analysis of the result, and the notification of a user or pro-

gram. The function 7:0 —O reduces the messages from A
irrelevant outputs from the log; the function a:0 —Q
analyzes the reduced output of the log into a sequence of
audit messages o; € ; and finally the function n:Q-H>IxXQ
notifies the appropriate people of the results, and possibly
causes the system to alter the relevant parts of the state. For
convenience, we collapse these into a single function o
0> EQ). Let 0;={ op | ksi }. K o(0i)=(01,0%), then
the auditing function does not alter the state of the system
and is said to be informative. If o(0;)=(0;,0) where j #i,
then the auditing function feeds a response back into the sys-
tem, altering its state; it is said to be responsive.

This captures the notion of an auditing mechanism
being able to alter the state of the system in response to a
problem. As an example, consider a backoff scheme for
login attempts with delay x seconds. This mechanism allows
the user to log in over a telephone line. After the nth
failure, the system waits x» seconds before allowing the next
attempt. In this case, the auditing function would take the
log output and on failure modify the state to wait for x*
seconds before allowing another attempt. This is an example
of responsive auditing. If, however, the auditing mechanism
simply kept statistics and did not modify the system state
(for example, no backoff was done), it would be informative
auditing.

The Practise

This model suggests many practical considerations, the
most basic lying in the concept of ‘‘relevant state.’” The state
to be logged must be inclusive, for if not, some information
affecting the state of the system may not alter that state
immediately; the resulting unexplainable change would
diminish the value of the log. State logging mechanisms
must record all parts of the relevant state, and change log-
ging mechanisms must record all actions that affect the
relevant state, or else it will not be possible to derive any
state accurately from the log, and the log may not reflect
even changes indicating an attack on the system. This
implies that logging mechanisms should always be designed
in synchrony with the computer system soO they are an
integral part of both the structure and the components of the
system, as [1] pointed out.

The need to record transitions or states accurately raises
the question of cost. Logging a state G;-1 may require scan-
ning a substantial portion of the system; if so, as computer
systems usually change state very rapidly, recording Gi-1
every millisecond would make the system unusable. So,
state logging mechanisms make entries periodically, resulting
in an incomplete state log because the mechanism does not
record a complete state history. Suppose at time i the sys-
tem is in state o;, and the state log has outputs corresponding
to states OyuOr, - - . If t;#i, some states will have no
corresponding output in the log, and if 5>, the logging
mechanism will not record many states, leaving a very large
window of vulnerability when an attacker can make changes
to ©;, obtain whatever is desired, and then restore the origi-
nal 6;. On the other hand, obtaining the relevant information
about the transition T; requires instrumenting only the system

call or the external event handler causing the change, which
impacts the users much less because the transitions 1; from
0;-1 to ©; are recorded as they occur. If all events (includ-
ing external exceptions) are instrumented and logged, and the
initial state is known, then by the proposition, the state log
derived from the change log would be complete. But most
implementations of a change logging mechanism focus on
tracking events that indicate an attack, and for that reason
their implementation either makes no record of the initial
state Go or assumes ©Op is secure. Since this assumption
means the log is not complete, the system may initially be in
a nonsecure state, and an attacker could gain control of the
computer. While the steps the attacker takes would show in
the log, unless additional precautions are taken, the attacker
could simply erase the appropriate entries in the log.

The composition of the log entries o; affects the robust-
ness of the log. By the proposition, a complete log records a
state history. In a change log, each state o in that history
depends on the initial output and all previous outputs o; =1;,
i <k; whereas for a state log, each state o depends only on
0 =0Ok. An attacker therefore need alter only one output in
a change log to conceal some change to the state of the sys-
tem, but in a state log must alter each output subsequent to
the change which he is concealing. So the attacker must
modify more messages to conceal changes of state with state
logging than with change logging.

Some monitoring systems attempt to abstract intent
from a sequence of actions or changes of state. Since state
logging does not indicate how a change of state occurred, in
practise the state logging mechanism does not indicate why

the state changed, but merely the new state oy of the system.
A change log, on the other hand, indicates the action T; caus-
ing the system state to change and preserves enough informa-
tion to determine the new state. For example, a computer
system logged changes to the protection modes of a file. If a
user’s rights over a file were altered, a change logging
mechanism recording system calls would indicate if the cause
was a system call to change that user’s rights, or a direct
write to the protection information in the disk directory. A
state logging mechanism would simply indicate that the
rights had changed without indicating how. The change log
therefore provides information that a system security officer
can use to determine if the sequence of events was an
attempted attack, an error, or indicates that a user bears
further monitoring. So in addition to monitoring the state,
change logging may also be used to monitor users’ actions
which, in turn, may be used to detect attempts to thwart
security [7,13].

The central theme of the auditing portion of the model
is that the auditing function takes output from the logging
function and translates it into two components: a state (which
may be new, involving a transition) and an output. Three
components then are relevant: first, getting the output from
the logging mechanism to the auditing mechanism uncor-
rupted; second, getting the auditing output from the auditing
mechanism to its destination uncorrupted; and third, prevent-
ing interference with the transition from the old to the new
state when the auditing mechanism so requires.

49

In the simplest types of computer systems, both infor-
mative and responsive auditing mechanisms lic on the host
being audited. Unless this host has a trusted computing base,
there is little if any guarantee that a determined attacker can-
not interfere with the logging orauditing mechanisms. The
quick response is to move the audit mechanism to another
machine, which introduces a new angle of attack, namely via
the transmission software and hardware; and here the differ-
ence between informative and responsive auditing becomes
quite important.

Assume the auditing mechanisms lie on a remote, physi-
cally secure computer called the audit machine (which may
be a personal computer or a workstation.) The logs are also
maintained on the audit machine, and the logging mechanism
on the other machines write to the audit machine over a
secure communication channel. The auditing mechanism
does all reductions and analyses on the audit machine.

Consider first the security of the transmissions from the
main computer to the audit machine. As the audit machine
is physically secure, the attacker (presumably) cannot
penetrate the facility and erase or alter the log. Since the
communications channel into the audit machine does not
allow previously sent messages to be erased, the attacker can-
not erase the log. If a trusted authentication mechanism
ensures that messages sent to the audit machine are genuine
log messages, the attacker cannot even forge log entries or
other messages. As the auditing software is not resident on
the main computer, the attacker cannot tamper with it. This
leaves two vulnerable areas: the logging software (which is
resident on the main machine) and the notification mechan-
ism.

The logging software may be attacked in one of several
ways, the result being that logging is disabled (which the
audit machine can detect easily), many genuine but spurious
messages are produced (and these messages will be elim-
inated during the reduction phase) or the messages produced
will be incomrect and misleading. To prevent this requires
protecting the logging software.

The importance in the distinction between responsive
and informative auditing lies in the interaction of the com-
puting system with the auditing subsystem. There are two
aspects to this. First, the computer system must send infor-
mation to the auditing subsystem when an informative audit-
ing mechanism is in place; but with a responsive auditing
mechanism, the auditing subsystem must send information
back to the (relevant component of the) computer system to
enable the transition to the new state. Thus, the notification
phase of an informative auditing mechanism can proceed
through the audit machine and not involve the monitored host
at all. Then the attacker cannot alter the results of the audit
by tampering with a message from the auditing system to the
auditor except by physically intercepting it because the mes-
sage is never on the audited computer; it is composed and
printed on the audit machine. If the responsible person has a
computer available, the auditing software can write the infor-
mation, encrypted using a public-key cryptosystem, onto a
floppy disk or to tape. The auditor obtains the medium,
loads the data onto his computer, decrypts the message, and

acts accordingly. Since public key cryptosystems can be
used to ensure both privacy and authenticity, the auditor
would have a firm basis for accepting the results of the audit.
The attacker could not tamper with the results without the
auditor learning about it.

However, responsive auditing requires the results of the
audit to be transmitted back to the audited computer so that
it may act upon the result. This means that the communica-
tions channel between the audited computer and the audit
machine is two-way, and an attacker may attack two pieces
of software: the logging routine (as noted) and the routines
that act upon the results of the audit. So, responsive auditing
schemes have a greater window of vulnerability than infor-
mative auditing schemes.

The second aspect of the interaction of the computing
system with the auditing subsystem that affects security
belongs to the realm of human factors. If the auditing pro-
cess is informative, a human must sift through the results to
determine what is and is not significant. Experience has
shown that if the ratio of what is significant to what is not
significant is low, humans may very well miss important
results. Further, if the output is not clear, succinct, and easy
to understand, the administrators may overlook something.
This often leads to the inclusion of mechanisms which
suppress irrelevant information, since human beings will tend
to miss important information present among a mass of
irrelevant information. Yet such mechanisms usually
suppress important information unintentionally, and so
present a danger that the mechanism’s design must deal with.
However, with responsive auditing an automatic mechanism
does the winnowing, so no ignore mechanism is necessary,
and the program or subsystem that receives the output of the
audit prescribes the format.

Performance considerations touch on both these aspects.
Since informative auditing involves no change of state, the
mechanism can run when the system is lightly loaded or not
available to regular users, so its impact on the system from
the users’ perspective is minimal. Responsive auditing, how-
ever, controls whether the system changes from one state to
another and so must occur after a query or command makes
an entry (or set of entries) in a log but before the system can
respond. The auditing mechanism must be able to run at any
time, even when users are on the system, and will therefore
impact the performance much more than an informative
auditing system will. Worse, since the audit takes place
whenever the command or query is issued, the impact may
be very consistent rather than infrequent. Preserving the
audit trail in reduced form may ameliorate this impact by
allowing the auditing mechanism to reduce only the entries
made since the last audit, and to combine the result with pre-
viously reduced data.

A major problem of both types of auditing systems is to
preplan precisely what characteristics are to be audited. As
observed in [1], people designing audit systems *‘...tend,
from time to time, to create their own special purpose [audit-
ing systems] designed only to satisfy their own initial
requirements.”” An auditing package may satisfy all needs for
a time, but when applied to a new situation, fail miserably.

As an example, consider a responsive audit mechanism for a
small statistical database that works by creating a matrix for
queries, and applying linear analysis to the matrix to deter-
mine if answering a query will allow the questioner to
deduce an individual record [3]. Such an audit tool can
determine if the database will be compromised in time
O (n2), which for a small n is acceptable. But as the number
of entries grows, the time needed for the audit mechanism to
analyze the rows of the matrix for linear independence
becomes unacceptably high. Notice that this problem is less
serious with informative audit mechanisms, because they do
not take action to block commands or queries; the only peo-
ple impacted are the recipients of the audit results.

Finally, adding a security monitoring system as an aft-
erthought frequently produces serious problem. Such sys-
tems can in general be evaded far more easily than can secu-
rity monitoring mechanisms designed into the system. As an
example, consider a file monitoring program which logs
changes to files on the system. If the program is not built
into the kernel, then it must use a special library to make
entries in the log, and a clever attacker can avoid linking that
library (by creating one of his or her own, which issues the
appropriate supervisor call without making an entry in the
log, for example.) If the program is built into the kernel of
the system, though, it cannot be (easily) subverted, because
an attacker must replace the kernel with one that does not
monitor — a decidedly nontrivial task!

Exampl i ion of Model

Some examples will make the ideas in the model more
concrete. So, in this section we shall consider some logging
and auditing schemes, place them within the above model,
and discuss some security problems with each.

tatisti ntrol: m- le- i

This method, introduced in [6], takes a query g con-
cerning some class C of records in the database and applies
to each record r € C a selection function f(C,r) to deter-
mine whether or not r is to be used to compute the response
to g. The selection function may either choose records ran-
domly, in which case the same query may produce answers
based on two different sample sets, or consistently, in which
case the same query would produce the same answer, com-
puted over the same sample set each time it is asked.

Here the relevant part of the state is

oi={rlreC})
the logging function is

AMc,0:)=R(0})
where ¢ is the query and R(0;)={ (n.,nv) } a set of pairs of
names and values of the records to be used. So the log is
simply the names and values of records to be used. The
input to the audit function is O;={ R(o;) }, and the audit
function is

0 =(oi—{r 1 f(r,C)=1 },0)

(where @; is any written record made). Note that the audit
function alters the state to conceal those records not selected

for the sampling, so the auditing is responsive; since the log-
ging function operates on the state of the system, it is state
logging.

D ntrol: - il
This control records all sets D;, i=1,...,n about
which queries have been answered, and answers a new query
about a set C if and only if the number of records in C ND;
is less than some parameter (for all i =1, ... ,n).
The relevant part of the state is the queries answered so
far, so

O;={Di | 1<k<i)

Notice the querying of C changes the state, so the transition
function t; is simply C. Hence
e x6;)=(C,v,v)
where v is the empty entity and its associated value. If the
query C can be answered, it must be added to the set, so thg
input to the audit function is O;=0; U{ C }, and the audit
function is
_ 1(0i41,Q) if C can be answered
a0:) =1(g;,) if not
As the auditing mechanism may change the state of the
system, the auditing is responsive, and as the transition func-
tions (queries) are logged, the logging is change logging.
mputer Monitoring; Fil m ner

A set of programs (for example see [18]) scans file sys-
tems every night, recording users’ rights over files and
transmitting the list to another computer, where they are
compared to a master list. If there is a discrepancy, the audit
system notifies administrators of any problems via electronic
mail on the machine on which the audit takes place.

Here, the state

o; ={ users’ rights over the files named in the master list }
The logging function is
Ac,0:)=R(0i)

where ¢ is the null command and R (0;)={ (ne,ny) } is a set
of pairs of subject and object names and the set of rights the
subject has over the object. The logging function just out-
puts a representation of the relevant set of rights to the audit
machine. The input to the audit function is O;={ R(0;) },
and the audit function is

o(0;) = (0i,0;)

The logging done here is state logging because it captures
parts of the state of the relevant files, and the auditing is
informative because the state of the system is not altered.
Here, ©; is the letter mailed to the system administrators.

m Monitoring; Auditi m
An auditing subsystem [15] instruments the kernel of a
workstation to record specific system calls, and from that log

produce an audit trail to enable reconstruction of events lead-
ing to a breach of security.

Here the state of the system
o; ={ the values of monitored characteristics }
(see [15] for a description). The logging function
Aci i) =(nci,v,v)

is the function which maps the instrumented events into out-
put (and v is the empty entity and its value). The input to
the audit function is O;={ (ncx) | 1<k <i }, and the audit
function is

o(0;)=(0; ;)

where @; is the output that another program can prettyprint.
This clearly is change logging, and since its primary purpose
is to allow reconstruction of events culminating in a breach
of system security, the auditing is informative only.

Backin, mputer System

The data on computer systems is often backed up by
copying the data from the computer system to some backup
medium such as tapes. Assume the entire file system is
dumped (an ‘‘epoch dump’’). Here the state of the system is

o; = { the contents of all files on the system }
and the logging function
A(c,0:)={ those contents dumped in a usable format)

Since the logging function is recording the system state, it is
a state logging function.

Discussion of the Examples

Both query-set-overlap controls and the auditing subsys-
tem assume that the change log is accurate; if an attacker is
able to subvert ecither system’s log, reconstructing a success-
ful attack on either system might be impossible. For this
reason, the logging mechanism must be an integral part of
the system. The auditing subsystem in fact recognizes this
and requires that only authorized users be able to access the
log if it is stored locally; since the subsystem is implemented
on a workstation with enhanced security features [5], the
designers believe the underlying computing base provides
sufficient security. Similarly, if query-set-overlap is used*,
the log must be kept in a protected area (either locally or
remotely.) This would require some trusted communication
path or trusted computing base. On the other hand, to defeat
random sample query controls and the file system scanner, an
attacker would have to tamper with every invocation of the
state function f for a particular record r, or with every mes-
sage involving a set of files, to prevent a change from being
entered into the log; this is certainly possible, but can prob-
ably be more easily detected than a change to just one log
message.

* Since the auditing system for a query-set-overlap control would have to
compare the current query with every past query, it should be noted
that this technique is infeasible under most practical conditions.

51

Both statistical database controls require that the audit-
ing mechanism respond promptly to entries in the log,
because the requested statistic cannot be released (or denied)
until the auditing mechanism answers. If thé system has
been successfully penetrated, the attacker can alter this
response to whatever is desired; this would allow him to
obtain records which should be concealed. (The records
might be on a remote host, and so the attacker may not be
able to get access to them directly even if the machines on
which the auditing mechanism and the statistical database
manager reside is penetrated) The file system auditing
mechanisms do not suffer from this vulnerability if the audit
is performed on a machine other than the one being audited
and the results are transmitted to the relevant people using.a
physically secure printer that cannot be tampered with. In
this sense, informative audits are less susceptible to
compromise because the window in which an attacker can
alter logs or results is smaller.

Conclusion

The model of logging and auditing that we have
described is comprehensive enough to encompass very dif-
ferent schemes used in a variety of contexts; for example,
statistical database query control and file access monitoring
systems do not seem to be related and yet they create closely
related security problems, and the mechanisms designed to
improve the security of one will also improve the security of
another. It also identifies many practical problems in secu-
rity monitoring. By using this model to classify different
auditing schemes, their usefulness for a given situation may
be more readily apparent since much of the analysis stems
from the particular classification. This will assist designers
and system managers in their analysis of security monitoring
products and schemes.

References

1. Bonyun, D., *The Role of a Well Defined Auditing
Process in the Enforcement of Privacy Policy and Data
Security’’, Proceedings of the 1981 Symposium on
Security and Privacy, 19-25 (April 1981).

2. Bowman, R. and Kendall, P., “‘Security and Auditability
— Mutually Compatible Objectives in the EDP
Environment”’, Security Audit and Control Review, vol.
1, no. 3, 35-47, Summer 1982.

3, Chin, F. and Ozsoyoglu, G., Auditing and Inference
Control in Statistical Databases, University of
California, San Diego, CA, December 1980.

4. Cornwell, M. R., “‘A Software Engineering Approach to
Designing Trustworthy Software’’, Proceedings of the
1989 Symposium on Security and Privacy, 148-156
(May 1989).

5. Cummings, P. T., Fullam, D. A., Goldstein, M. I,
Gosselin, M. J., Picciotto, J., Woodward, J. P. L. and
Wynn, J., *‘Compartmented Mode Workstation: Results
Through Prototyping’’, Proceedings of the 1987
Symposium on Security and Privacy, 2-12 (April 1987).

52

10.

11.

12

13.

14.

15.

16.

17.

18.

. Denning, D.,

. Denning,

““Secure Statistical Databases Under
Random Sample Queries”’, ACM Transactions on
Database Systems, vol. 5, no. 3, 291-315, September
1980.

D., ‘““An Intrusion-Detection Model’’,
Proceedings of the 1986 IEEE Symposium on Privacy
and Security, 118-131 (April 1985).

. Webster's Third New International Dictionary of the

English Language, G. & C. Merriam Company,
Springfield, MA, 1981.

. Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie,

R., Price, T., Putzolu, F. and Traiger, L, ‘‘The Recovery
Manager of the System R Database Manager”, ACM
Computing Surveys, vol. 13, no. 2, 223-242, June 1981.
Haerder, T. and Reuter, A., *‘Principles of Transaction-
Oriented Database Recovery’’, ACM Computing Surveys,
vol. 15, no. 4, 287-318, December 1983.

Harrison, M. A., Ruzzo, W. L. and Ullman, J. D.,
““Protection in Operating Systems’’, Communications of
the ACM, vol. 19, no. 8, 461-471, August 1976.

Kinnon, A. and Davis, R. H., ‘“‘Audit and Security
Implications of Electronic Fund Transfer”’, Computers
and Security, vol. 5, no. 1, 17-23, March 1986.

Lunt, T. F. and Jagannathan, R., ‘A Prototype Real-
Time Intrusion-Detection Expert System’’, Proceedings
of the 1988 IEEE Symposium on Privacy and Security,
59-66 (April 1988).

Mitchell, J. G. and Dion, J., ‘A Comparison of Two
Network-Based File Servers’, Communications of the
ACM, vol. 25, no. 4, 233-245, April 1982.

Picciotto, J., “The Design of an Effective Auditing
Subsystem”’, Proceedings of the 1987 Symposium on
Security and Privacy, 13-22 (April 1987).

Sturgis, H., Mitchell, J. and Israel, J., *‘Issues in the
Design and Use of a Distributed File System’,
Operating Systems Review, vol. 14, no. 3, 55-69, July
1980.

US. Department of Defense, ““Trusted Computer
System Evaluation Criteria”, DOD 5200.28-STD,
National Computer Security Center, Fort Meade, MD,
December 1985.

Wood, P. and Kochan, S., UNIX System Security,
Hayden Books, Indianapolis, IN, 1985.

