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Abstract

We study notions and schemes for symmetric (ie. private
key) encryption in a concrete security framework.

We give four different notions of security against cho-
sen plaintext attack and analyze the concrete complexity
of reductions among them, providing both upper and lower
bounds, and obtaining tight relations. In this way we clas-
sify notions (even though polynomially reducible to each
other) as stronger or weaker in terms of concrete security.

Next we provide concrete security analyses of methods
to encrypt using a block cipher, including the most popular
encryption method, CBC. We establish tight bounds (mean-
ing matching upper bounds and attacks) on the success of
adversaries as a function of their resources.

1 Introduction

An encryption scheme enables Alice to send a message to
Bob in such a way that an adversary Eve does not gain sig-
nificant information about the message content. This is
the classical problem of cryptography. It is usually con-
sidered in one of two settings. In the symmetric (private-
key) one, encryption and decryption are performed under
a key shared by the sender and receiver. In the asymmetric
(public-key) setting the sender has some public information
and the receiver holds some corresponding secret informa-
tion.

In this paper we have two goals, The first is to study no-
tions of symmetric encryption in the framework of concrete
security. This means we will look at the concrete complex-
ity of reductions between different notions. We want to
prove both upper and lower bounds. In this way we can es-
tablish tight relations between the notions and can compare
notions (even though polynomially reducible to each other)
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as stronger or weaker.

The second goal is to provide a concrete security analysis
of some specific symmetric encryption schemes. One of the
schemes we consider (CBC encryption) is in pervasive use,
and yet has never received any formal analysis (concrete or
otherwise) in the tradition of provable security. We want
to remedy this. Once again the goal is to find tight bounds
on the success probability of an adversary as a function of
the resources she expends. This involves proving both an
upper bound and a matching lower bound.

1.1 Background and Motivation

The pioneering work of Goldwasser and Micali [11] was
the first to introduce formal notions of security for en-
cryption. Specifically, they presented two notions of se-
curity for asymmetric encryption, “semantic security” and
“polynomial security,” and proved them equivalent with re-
spect to polynomial-time reductions. Micali, Rackoff and
Sloan [17] showed that (appropriate versions of) these no-
tions were also equivalent to another notion, suggested by
Yao [20]. A uniform complexity treatment of notions of
asymmetric encryption is given by Goldreich [8]. Some
adaptations of these notions to the symmetric setting are
presented by Luby in [15, Chapters 11-12].

Goldwasser and Micali {11] also specified an asymmet-
ric encryption scheme whose security (in the senses above)
is polynomial-time reducible from quadratic residuosity.
Subsequently many other schemes have emerged, based on
various hard problems.

CONCRETE SECURITY. The viewpoint in all the works
above is that two notions of security are equivalent if
there is a polynomial-time reduction between them; and
a scheme is declared provably secure if there is some
polynomial-time reduction from a hard problem to it.
These are certainly basic questions, but we believe that,
once the answers are known, it is important to classify no-
tions and schemes in a more precise way.

To make an analogy, caring only about polynomial-
time reducibility in cryptography is a bit like caring only
whether a computational problem is or is not in P. Yet
we know there are a lot of interesting questions (including
most of the field of algorithms, and much of complexity
theory) centered around getting further information about
problems already known to be in P. Such information helps



to better understand the problem and is also essential for
practical applications.

Paying attention to the concrete complexity of
polynomially-equivalent notions in- cryptography has
similar payoffs. In particular, when reductions are not
security-preserving it means that one must use a larger
security parameter to be safe, reducing efficiency. Thus,
in the end, one pays for inefficient reductions in either
assurance or running time. ;

Our approach for doing concrete security is that of [5, 6],
wherein one parameterizes the resources involved and mea-
sures adversarial success by an explicit function on them.
The approach is non-asymptotic and applicable to func-
tions with a finite domain.

We will be concerned not only with proving security
by exhibiting concrete bounds, but also with showing that
these bounds are the best possible, which is done by ex-
hibiting matching attacks. Again we follow works like
[3, 5], who did this for certain message authentication
schemes.

Though this paper is concerned with concrete security
for symmetric encryption we believe that, in general, con-
crete security is one of the major emerging avenues for pro-
ductive research in theoretical cryptography.

1.2 Notions of Security

We will consider four notions of security for symmetric
encryption and examine the complexity of reductions be-
tween them. The first notion, which we call “real-or-
random indistinguishability” is new, and the second, “left-
or-right indistinguishability” is a variant of it. The next
two notions, “find-then-guess security” and “semantic se-
curity” are adaptations of the notions of [11] to the sym-
metric setting.! Our goal, in all the notions, is to model
chosen-plaintext attacks.

As indicated above, our approach to concrete security
is via parameterization of the resources of the adversary A.
We distinguish between A's running time, ¢ (by convention,
we include in this the space for A's program); the amount
of ciphertext A sees, u; and the number of queries, g, made
by A to an encryption oracle. (To model a chosen-plaintext
attack we must give the adversary the ability to see cipher-
texts. In the public key setting she can create them her-
self given the public key, but in the symmetric key set-
ting the encryption key is secret so we must modify the
model and provide the adversary with an oracle for the en-
cryption function. The presence of the encryption oracle
is one reason it would be untrue to regard the notion of
symmetric encryption as a special case of asymmetric en-
cryption.) With an eye towards practical applications, it is

1 in [11] the term “polynomial security” is used for the notion analo-
gous to what we call “find-then-guess security.”
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Figure 1: Relating the notions. A solid line from notion A
to notion B means that there is a security-preserving reduc-
tion from A to B A broken line indicates that the reduction
1s not security-preserving.

important to treat all of these resources separately. (Previ-
ous works would neglect g and p, since they are bounded
by t. But as resources they are very different, because, typ-
ically, obtaining legitimate ciphertexts is more problematic
than performing local computation.) We thus get a notion
of (t, g, u; €)-security, meaning the success probability of
an adversary is at most € when its resources are as indi-
cated. Of course how the success probability is measured
varies across the four different notions.

1.3 Reductions Among the Notions

We show that real-or-random indistinguishability and Ieft-
or-right indistinguishability are equivalent, up to a small
constant factor in the reduction. (That is, we have security-
preserving reductions between them.) We also show a
security-preserving reduction from these notions to find-
then-guess security. However, the reduction from find-
then-guess security to left-or-right (or real-or-random) in-
distinguishability is not security-preserving. However, we
show that the reduction we give is tight; one cannot hope
to do better.

We show a security-preserving reduction from seman-
tic security to find-then-guess. In the other direction the
complexity of our reduction depends on the time com-
plexity of the “information function,” f (representing the
property of the plaintext semantic security is talking about)
and “message-space sampling algorithm.” The reduction is
good if these complexities are low.

From the above results it is clear that when one wants to

prove the security of some encryption scheme Il it is best to

give a tight reduction from real-or-random indistinguisha-
bility or left-or-right indistinguishability, since that implies
good reductions to the rest. A summary of the reductions
is given in Figure 1.

Although concrete security has been considered before
in the context of scheme analysis this is the first work that



considers it also for the purpose of relating different notions
of security. That is, this is the first time notions are classi-
fied as weaker or stronger according to the complexity of
the reductions between them.

Actually these results extend easily to the asymmetric
setting. We focus on the symmetric mainly because that's
the domain in which lie the schemes we want to analyze.

1.4 Security of Encryption Schemes

We analyze the security of some classic symmetric encryp-
tion schemes. Specifically, we look at two different modes
of encryption with a block cipher (eg., DES): CBC (Ci-
pher Block Chaining mode); and XOR (sometimes called
counter mode). For the latter we look at both a probabilistic
and a stateful version.

In these schemes the underlying primitive is a pseu-
dorandom function (PRF) or pseudorandom permutation
(PRP) family F in which a particular function F,, specified
by akey a, maps [-bits to L-bits for fixed I, L. (For permu-
tations, = L.) To encrypt a message the applications of
F, are iterated in some scheme-dependent way. We wish
to see how the security of the encryption scheme depends
on the assumed security of the PRF family, We define the
concrete security of PRF and PRP families as in [6], via
parameterization of the time ¢/, number of oracle queries
¢’, and maximum advantage €' of the distinguisher. The
question then is: assuming F' is (¢, ¢'; €')-secure as a PRF
family, what are values of ¢, g, i, € such that the encryp-
tion scheme is (¢, g, i; €)-secure? We seek upper and lower
bounds. (The latter represent the best known attacks.)

For the stateful XOR scheme we show that the scheme
is (t,q, pw; €) secure for ¢ = 2¢/, u = ¢'l, and ¢ differing
from ¢’ by only an additive amount, meaning this scheme
is about as good a scheme as one can possibly hope to get.
For the probabilistic XOR scheme we show that the scheme
is (¢, q, u; €) secure for € = 2¢’ + p(g — 1)/(L2") and p =
¢'L and t as before. For CBC, the parameter values are
e = 2¢ + (p? — pl)/(1?2") and p = ¢'l. In all cases,
we show that these results are tight, up to a constant. We
conclude that stateful XOR, based on a finite PRF, has the
best security.

In all the above the security is in the sense of left-or-
right indistinguishability. From what we said before this
gives the other three notions with comparable bounds.

1.5 More history

We have already mentioned the most important related
work, namely [11]. Here we provide some more detailed
comparisons and histories and also discuss other work.

Since our results imply that the notions we consider are
equivalent under polynomial time reductions, they can be
viewed, at one level, as providing the analogue of [11] for
the symmetric case.
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In treating the asymmetric setting, [8] says that the sym-
metric case can be dealt with similarly. One ingredient
missing in this view is that to model chosen-plaintext at-
tack one must, in the symmetric setting, supply the adver-
sary with some means to encrypt. We extend polynomial
and semantic security by providing the adversary with an
encryption oracle.

Stronger notions of asymmetric encryption than those of
[11, 17] have also appeared, including [19, 7], but our con-
cern here is restricted to preserving privacy under chosen-
plaintext attack.

Luby [15] defines what is essentially find-then-guess se-
curity for symmetric encryption, and he mentions encryp-
tion using a pseudorandom function family whose output
length is the number of bits you wish to encrypt. His treat-
ment pays some attention to the efficiency of reductions
(though he does not concern himself with concrete security
to the same extent that we do).

Curiously, some early works had a more concrete treat-
ment: in the asymmetric encryption arena, Alexi et. al. [1]
were careful to specify the complexity of their reductions,
a habit many later works unfortunately dropped.

The construction of a pseudorandom generator from a
one-way function [13] provides a solution for symmetric
encryption starting from a one-way function. In the current
work existence is not the issue; we are interested in con-
crete security and the analysis of some particular schemes.

A concrete security analysis of the CBC MAC is pro-
vided in [6]. (The CBC MAC should not be confused with
CBC encryption: The former is a message authentication
code.) We build on their techniques, but those techniques
don't directly solve the problems here. CBC mode encryp-
tion is standardized in [2, 14, 18].

1.6 This abstract

This is an extended abstract that contains only definitions,
scheme descriptions and result statements. Proofs have
been omitted due to page limits. A full version of our paper,
containing all proofs, can be found as [4].

2 Notions of Encryption

For all complexity measures fix some probabilistic RAM
model. We adopt the convention that “time” refers to the
actual running time plus the size of the code (relative to
some fixed programming language). Oracle queries are an-
swered in unit time.

If A(.,-,...) is any probabilistic algorithm then ¢ «
A(zy,T2,...) denotes the experiment of running A on in-
puts xy, Tz, ... and letting a be the outcome, the probabil-
ity being over the coins of A. Similarly, if A is a set then
a < A denotes the experiment of selecting a point uni-
formly from A and assigning a this value.



2.1 Syntax of Encryption Schemes

Let Coins be a synonym for {0,1}°° (the set of infinite
strings). Let MsgSp C {0, 1}* be aset, the message space,
for which x € MsgSp implies ' € MsgSp for every z’
of the same length as z. Let KeySp C {0,1}* be set,
denoting the key space. Let CipherSp = {0, 1}*.

STATELESS ENCRYPTION. A (probabilistic, stateless,
symmetric) encryption scheme, II = (£,D,K) is a
three-tuple of algorithms:

£ : KeySp x MsgSp x Coins — CipherSp
D KeySp x CipherSp — MsgSp U {1}
K Coins — KeySp

Algorithm £ is called the encryption algorithm; D is the
decryption algorithm; and K is the key generator. We re-
quire that for all a € KeySp, z € MsgSp, and r € Coins,
D(a,&(a,z,7)) = z. We usually write the first argument
to £ and D, the key, as a subscript. We call £,(z,r) the
encryption of plaintext x under key a and coins r, or more
succinctly, the ciphertext. We call D, (y) the decryption of
ciphertext y under key a. Usually we omit mention of the
argument to X, thinking of X as a probabilistic algorithm,
or else the induced probability space. Similarly, we often
omit mention of the final argument to £, thinking of £, as a
probabilistic algorithm, or thinking of £,(z) as the induced
probability space. We intend D, (y) = L to be used in the
case that y is not the encryption of any string z under key a.

For an encryption scheme to be useful, £, D, and K
should be efficiently computable functions, but the notion
of security makes no formal demands in this regard.

STATEFUL ENCRYPTION. We also consider stateful en-
cryption schemes, in which the ciphertext is a function of
some information, such as a counter, maintained by the en-
crypting party and updated with each encryption. Formally
such a scheme has the same syntax as before except that

& : KeySp x MsgSp x St x Coins — St x CipherSp

were St C {0, 1}* is the set of possible states, containing
a distinguished state, the empty string, £, which we call the
initial state. Let £* (i = 1, 2) denote the i-th component of
£. The ciphertext is now (the output of) £2, while £! is an
updated state, stored by the sender, and used as the third ar-
gument for the next application of the encryption function.
Note that encryption becomes stateful but decryption does
not.

2.2 Four Notions of Security

We now give four notions for security, each modeling
chosen-plaintext attack. In each case, we allow the ad-
versary access to an encryption oracle in some form; this
is one feature distinguishing these definitions from previ-
ous ones. We will describe our definitions for stateless en-
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cryption schemes and later indicate how to modify them for
stateful ones.

REAL-OR-RANDOM. The idea is that an adversary cannot
distinguish the encryption of text from the encryption of an
equal-length string of garbage. (By transitivity, the adver-
sary cannot distinguish from each other the encryption of
any two equal-length strings.) The formalization consid-
ers two different games. In Game 1 we start by choosing a
random key a + K. Then the adversary is then given an
oracle which, when asked a string z € MsgSp, responds
with a (random) encryption of z under key a. In Game 2 we
start by choosing a random key a - K. Then the adversary
is given an oracle which, when asked a string z € MsgSp,
responds with a (random) encryption (under key a) of aran-
dom string of length |z|. The encryption scheme is “good”
if no “reasonable” adversary cannot obtain “significant” ad-
vantage in distinguishing Games 1 and 2.

Definition 1 [Real-or-random} Encryptionschemell =

(€,D,K) is said to be (t,q, u;€)-secure, in the real-or-

. def
random sense, if Adv} =

Pr [a —K: Af0) = 1] —-Pr [a K A%G) = 1]

is < €, for any adversary A which runs in time at most t,
makes at most g oracle queries, these totaling at most p
bits.

The notation A%=() indicates A with an oracle which, in
response to a query T, returns y + &,(r). (Meaning it
picks a random string 7 and returns £,(z,7). A new ran-
dom string is chosen for each invocation of the oracle.) The
notation A%+ (3"") indicates A with an oracle which, in re-
sponse to a query z, chooses z’' + {0, 1}/%! and then re-
turns y + E,(z').

LEFT-OR-RIGHT. We again consider two different games.
In either game a query is a pair (z1,22) of equal-length
strings from MsgSp. In either game we start by choosing
arandom key a + K and fixing this key for the duration of
the game. In Game 1, an oracle receiving (z1, z2) responds
with with a random sample from &, (z;). In Game 2 it re-
sponds with a random sample from &, (z2). Thus, Game 1
provides a “left” oracle and Game 2 provides a “right” or-
acle. We consider an encryption scheme to be “good” if
“reasonable” adversary cannot obtain “significant” advan-
tage in distinguishing Games 1 and 2.

Definition 2 [Left-or-Right] Encryption scheme II =
(£,D,K) is said to be (¢, q, u; €)-secure, in the left-or-right
sense, if for any adversary A which runs in time at most t
and asks at most q queries, these totaling at most p bits,?

AdvE % prlac . A% (Of00) _ g

2 We define the length of an oracle query (z1, x2) to be |z1] = |x2].



= Pr o« f: af(MOMC) —q)
is<e.

The notation A% (Ieﬂ("‘)) indicates A with an oracle
which, in response to query (x1,x2), returns y  E,(z1).

The notation A%=(MINC)) jndicates A with an oracle
which, in response to query (z1, Z2), returns y <+ £,(z2).

FIND-THEN-GUESS. This is an adaptation of the notion of
polynomial security as given in [11, 17]. We imagine an
adversary A that runs in two stages. During the adversary's
find stage she endeavors to come up with a pair of equal-
length messages, zo and x;, whose encryptions she wants
to try to tell apart. She also retains some state information s
that she may want to preserve to help her later. In the ad-
versary's guess stage she is given a random ciphertext y
for one of the plaintexts zg, 1, together with the state in-
formation s. The adversary “wins” if she correctly identi-
fies which plaintext goes with y. The encryption scheme is
“good” if “reasonable” adversaries can't win significantly
more than half the time.

Definition 3 [Find-then-Guess] Encryption scheme
I = (£,D,K) is said to be (,q, ps; €)-secure, in the find-

. def
then-guess sense, if Advff =

2-Pr [a + K; (z0,21,8) + AL (find); b« {0,1};
Y Ea(mp) 1 A% (guess,y,s) = b] -1

is < € for any adversary A which runs in time at most t and
asks at most q queries, these totaling at most i bits.

It is understood that, above, one demands |zo| = |z1]|. The
multiplication by 2 and subtraction by 1 are just scaling
factors, to make a numeric value of 0 correspond to no ad-
vantage and a numeric value of 1 correspond to perfect ad-
vantage.

SEMANTIC. Goldwasser and Micali [11] explain semantic
security by saying that whatever can be efficiently com-
puted about the plaintext given the ciphertext can also be
computed in the absence of the ciphertext. We adapt the
formalizations of [11, 17] to the symmetric setting. Let
f : MsgSp — {0,1}* be some function of the plain-
text . The function represents the information about z
that the adversary is trying to figure out. Endow MsgSp
with a probability distribution. More specifically, for any
integer m, an m-distribution on the message space is a
collection M = {M,},c(0,13sm of probability distri-
butions over MsgSp, indexed by strings v € {0,1}s™.
We assume each distribution is valid, meaning that for
all v, all strings in M, with non-zero probability have the
same length, and this length is at most m. Let Py, M, =
maxy«{Pr[z - M., : f(z) = y*]}. Thisis the probabil-
ity of the most likely f(-)-value.
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Our adversary will run in two stages. During the adver-
sary's select stage it endeavors to come up with an ad-
vantageous distribution M.,. In the adversary's predict
stage it is given a random ciphertext y for a plaintext z
chosen according to the distribution M., and it wants to
guess f(z). An encryption scheme is semantically secure
for function f and distributions M if no reasonable adver-
sary A can guess f(x) with probability significantly better
than p}iy M-

Previous formalizations required the condition to hold
for all functions f. In our concrete treatment both the func-
tion f and the probability distribution M become parame-
ters, so that we can measure how well particular properties
of a plaintext are protected under particular distributions.

Definition 4 [Semantic] Let f: MsgSp — {0,1}* be
a function and let M = {My},cf01}sm be an m-
distribution on MsgSp. Encryption scheme Il = (£, D, K)
is said to be (t,q, p; €)-secure in the semantic sense, for f
over M, if

AdVPR(F, M) X

E[a +— K; (y,8) + A%O)(select) :
a(a,’y,s)] < €, where

Pr [.7: — My y e Eu(x) -

A%0)(predict, y, s) = f(»’l’)] —PiM,

for any adversary A that runs in time at most t, and makes
at most q oracle queries, these totaling at most p bits.

a(a,”, s)

MODIFYING THE DEFINITIONS FOR THE STATEFUL
CASE.  Definitions of security for stateful encryption
schemes are obtained by modifying the above definitions in
the natural way, adjusting how one answers oracle queries.
For example, in Definition 1, A%+() now means A with an
oracle that maintains a state o, initially £. Upon receiving a
query & it picks coins r and sets {(¢',y) to be E,(z, 0, 7). Tt
returns ¥ as the answer to the oracle query and updates the
state via o ¢ o'. Notice that the ciphertext (meaning v) is
returned, but the updated state is not. (Thus we are abusing
notation when we write A%(); we ought to write A5:() )
Notice that the encryption oracles now have “memory’”: be-
tween invocations, the state is modified and retained. The
notation 453" can be similarly re-interpreted, and the
same approach applies to the other three definitions.

ASYMPTOTIC DEFINITIONS. Our definitions are easily ex-
tended to the standard asymptotic framework by simply
saying that a scheme is secure, in a given sense, if the ad-
vantage of any polynomial time adversary is negligible, as
a function of an underlying security parameter on which the
scheme now depends. The above formulations just enable
us to make more concrete statements.



3 Reductions Among the Notions

Here we look at the reductions among the different no-
tions of security. We look at both upper bounds and lower
bounds. The proofs of these results are in [4].

Because we are paying attention to concrete security
bounds, we can use our results to decide how strong is a no-
tion of security relative to other notions to which it is poly-
nomially equivalent. This information is useful because it
helps us identify the most desirable starting points for re-
ductions. We implicitly use this information in Section 4
when we demonstrate the security of schemes via reduc-
tions from left-or-right indistinguishability.

In the theorems below, ¢ is an absolute constant that de-
pends only on details of the underlying model of computa-
tion. The first two theorems say that our first two notions,
left-or-right indistinguishability and real-or-random indis-
tinguishability, are of essentially equivalent strength.

Theorem 1 [Real-or-random implies left-or-right] For
some constant ¢ > 0, if encryption scheme Il = (£,D,K)
is (t1,q1, 1; €1)-secure in the real-or-random sense then
it is (t2, g2, p2; €2)-secure in the left-or-right sense, where
ty =1t —c-ur and q; = q; and po = 1 and €3 = 2¢;.

Theorem 2 [Left-or-right implies real-or-random] For
some constant ¢ > 0, if encryption scheme Il = (£, D, K)
is (t2, q2, p2; €2)-secure in the left-or-right sense then it is
(1,1, pm1; €1)-secure in the real-or-random sense, where
ti=t%2—c-pandgqs =gz and yy = p and€; = €.

Left-or-right indistinguishability and real-or-random indis-
tinguishability constitute a stronger notion of security than
the traditional find-then-guess notion. Intuitively, the ad-
versary's job is harder with find-then-guess because it has
to single out a single message pair on which to perform.
This is illustrated by Theorems 3 and 4 and Proposition 5.

The first theorem says that a scheme with a certain secu-
rity in the left-or-right sense has essentially the same secu-
rity in the find-then-guess sense.

Theorem 3 [Left-or-right implies find-then-guess] For
some constant ¢ > 0, if encryption scheme Il = (£,D,K)
is (t2,4q2, po; €2)-secure in left-or-right sense then it is
(3, qs, p3; €3)-secure in the find-then-guess sense, where
ts =12 —c-puzandqs = g9 and us = ps and €3 = €.

The next theorem says that if a scheme has a certain se-
curity in the find-then-guess sense, then it is secure in the
left-or-right sense, but the security shown is quantitatively
lower.

Theorem 4 [Find-then-guess implies left-or-right] For
some constant ¢ > 0, if encryption scheme Il = (£, D, K)
is (ts, g3, u3; €3)-secure in the find-then-guess sense then
it is (t2, g2, po; €2 )-secure in the left-or-right sense, where
to =13 —c- p2 and q; = g3 and s = u3 and €3 = ga€3.
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The following proposition says that the drop in security
above is not due to any weakness in the reduction but is
intrinsic— we present a scheme having a higher security
in the find-then-guess sense than in the left-or-right sense,
with the gap being the same as in the theorem above. Obvi-
ously we can make no such statement if there are no secure
encryption schemes around at all, so the theorem assumes
there exists a secure scheme, and then constructs a different
scheme exhibiting the desired gap.

In the following think of €' as very small (essentially
zero). The constructed scheme II’ can be broken with prob-
ability e2 = 0.632, using g queries, in the left-or-right
sense, meaning it is completely insecure under this notion.
However, the probability of breaking it (with comparable
resources) in the find-then-guess sense is €3 =~ 1/q. The
probabilities obey the relation ges = ©(e2), showing that
Theorem 4 is essentially tight. Furthermore, if one allows
the scheme to be stateful, one can make €5 exactly one, so
that ges = €.

Proposition 5 [Left-or-right is stronger than find-then-
guess] There is a constant ¢ > 0 such that the following
is true. Suppose there exists a stateless encryption scheme,
over a message space containing {0, 1}, thatis (t', q, p; €')-
secure in the find-then-guess sense. Then there exists
a stateless encryption scheme II' which is (t2,q,q; €2)-
breakable in the left-or-right sense and (t3, q, u; €3)-secure
in the find-then-guess sense, where e; = 0.632 and €3
€'+1/qandty = cq andtz = t'. Furthermore there exists a
stateful encryption scheme I1" which has the same features
except thatex = 1.

Semantic security is too complex to make it a good starting
point for proving schemes secure. Still, as the next theorem
indicates, it is nice that there is a strong reduction from se-
mantic security to find-then-guess security. Notice that for
this only requires semantic security to hold for a particular
and simple function, the identity function, and a particular
and simple distribution over the message space. This theo-
rem is implicit in [11] for the asymmetric setting and their
proof is easily adapted to the symmetric setting.

Theorem 6 [Semantic implies find-then-guess] Let f be
the identity function. For any pair y = (g, 1) of equal
length strings in MsgSp let M., be the distribution assign-
ing probability 1/2 to each of zy and 1, and probability 0
to all other strings. Let M., be arbitrarily defined when vy
does not have this form. Let M = {M} 0 1}sts- Then
for some constant ¢ > 0, if 11 is (t4,qa, (t4; €4)-secure in
the semantic sense for f over M, then it is (t3, g3, pi3; €3)-
secure in the find-then-guess sense, wherety = t4 — ¢ - g
and g3 = qq and p3 = p4 and €3 = 2¢4.

Combining this with Theorem 4 yields a reduction from se-
curity in the semantic sense to security in the left-or-right



sense, but this reduction inherits the security loss of the re-
duction of Theorem 4. As before it turns out this loss is
inherent: security in the left-or-right sense is a stronger no-
tion. The example to see this is essentially the same as that
in the proof of Proposition 5 but the setup becomes more
complicated. We do not discuss it further here.

In the other direction, the time complexity of sampling
the the message space and computing the function f come
into the picture. Let Tr4(+) be a function taking |y| as in-
put and returning a bound on the time to sample from M.,
Let T¢(-) denote the time to compute f(z) given z, mea-
sured as a function of |z{. Both time functions are assumed
monotone.

Theorem 7 [Find-then-guess implies semantic] There is
a constant ¢ > 0 such that the following is true. Let f
be a function that is computable in time T¢(-) and let M
be a valid m-distribution over MsgSp sampleable in time
Tm (). If IT = (£,D,K) is (t3, g3, (13; €3 ) -secure in the
find-then-guess sense then it is (14, q4, p14; €4)-secure in the
semantic sense for f over M, wherety = t3 — 2Tp(m) —
T¢(m) — c- g and g4 = g3 and py = pg and €4 = 2e;.

Notice that the larger the functions Ta¢(-), T (:), the less
the semantic security for f over M as given by Theorem 7.
Does this reflect a reality? That is, would we expect the ad-
versary might have an easier time figuring out some com-
plex property of the plaintext than figuring out simple prop-
erties of the plaintext? Perhaps, In any case, these theorems
are most useful when the information function f is simple,
like the XOR of all the bits.

In earlier work [11, 17, 8] no restriction was made on
the complexity of f; it was even allowed to be uncom-
putable. Clearly semantic security against such very com-
plex functions does not follow from Theorem 7. However
it is seems possible to do a different reduction by using the
techniques of [8]. Here, the complexity of f would not
enter (though the complexity of sampling M., would still
matter). The dependencies on other parameters would be
increased. Thus the theorem would be useful in talking
about complex functions f, but less useful than Theorem 7
in talking about simple functions. We do not pursue this
more at the moment because, as we have indicated above,
other notions of security are more suitable targets than se-
mantic security as targets for actual schemes to meet.

Putting things together, showing an encryption scheme
left-or-right secure or real-or-random secure implies tight
reductions to all other notions (modulo the technical re-
striction on the complexity of f and M for semantic se-
curity). Showing an encryption scheme find-then-guess se-
cure or semantically secure does not. Thus, if the bounds
are equal, it is better to demonstrate security with respect
to one of the first two notions, since that immediately trans-
lates into equally-good bounds for the other notions.
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4 Analysis of Some Schemes

Next we turn to analyzing schemes for symmetric encryp-
tion. All these schemes are based on finite pseudorandom
functions, a concrete security version of the original notion
of pseudorandom functions [10] introduced by [6]. We thus
begin with some necessary definitions, following the latter
paper. Proofs of results given in this section are in [4].

4.1 Finite PRFs and PRPs

A function family is a multiset F' of functions where all
of the functions in F' have the same domain and range.
Usually the domain is {0, 1} and the range is {0, 1} for
some [, L called, respectively, the input length and the out-
put length. We assume that each key a from some set K
specifies a function F,: {0,1}' — {0,1}* from F. Usu-
ally K is the set of all strings of some fixed length k. We
write f - F to denote the operation of selecting a func-
tion at random from F' according to the distribution given
by picking a random a < K and assigning f = F,.

For a function family F to be accessible to applications
we usually want that, given a, one can easily compute Fj,.
But we make nor formal requirements in this regard, and
indeed it is useful to think about “inaccessible” function
families, as below.

We let Ry be the function family consisting of all
functions from the set of I-bit strings to the set of L-bit
strings. (The key a can be viewed as the entire description
of the function.) With [, L understood, we write R instead
of R; 1. Thus f + R is the operation of selecting a ran-
dom function from I-bits to L-bits. Similarly, we let P; be
the function family consisting of all permutations on [-bit
strings, With [ understood we write P instead of P;.

Let F, G be families of functions with the same input and
output lengths. consider an oracle algorithm, known as a
distinguisher, that attempts to distinguish between the case
where its oracle h is chosen randomly from F and the case
where h is chosen randomly from G. Let Distp (F,G) =

Pr[hf—F: Dh(')=1]~Pr[h<—G: Dh<'>=1] .

A pseudorandom function family has the property that the
input-output behavior of F, “looks random” to someone
who does not know the randomly selected key a. There are
two notions of “looking random” that are important. The
firstis looking like a random function, the second is looking
like a random permutation. Accordingly, we define

AdvE(F) = Distp(F, R) and Advi}(F) = Distp(F, P) .

Definition § [Concrete security of PRF/PRP families,
[6]] Function family F' is said to be a (¢, ¢; €)-secure PRF
(resp. PRP) family if for any distinguisher D who makes
at most ¢ oracle queries and runs in time at most ¢ it is the
case that Adv'h (F) < e (resp. AdV'2(F) < e).



Notice that unlike Luby and Rackoff [16], we measure the
quality of a PRP family by the distance to the family of ran-
dom permutations, not random functions. This is motivated
by the fact that PRPs, as we define them, are better models
for block ciphers, like DES, than PRFs. (Of course, the dis-
tinction is only in the concrete security, but that is indeed
our concern.) Nonetheless, the following relation between
the two notions is often enough:

Proposition 8 [PRPs are PRFs] Suppose F is a (¢, g; €)-
secure PRP family with input and output length l. Then F'
is a (t, q; €')-secure PRF family, where €' = ¢ — ¢®27!~1.

The estimated cryptanalytic strength of specific block ci-
phers gives us estimates for values of t, ¢, € for which a par-
ticular block cipher, eg. DES, may be viewed as a (¢, g; €)-
secure PRP family. Using the above proposition gives us
the bounds by which it can be viewed as a (t, ¢; €)-secure
PRFE.

4.2 The XOR Schemes

Fix a function family F' with input length !, output length L,
and key length k. We let a denote the key shared between
the two parties who run the encryption scheme. It will
be used to specify the function f = Fj. In fact, all the
schemes depend only only on this function, in the sense
that they can be implemented given an oracle for the func-
tion. Welet R = R; ..

There are two version of the XOR scheme— one state-
less (randomized) and the other stateful (counter based and
deterministic).

SPECIFICATIONS. The scheme XORS$(F) = (£-XORS,
D-XORS$, K-XORS$) works as follows. The key genera-
tion algorithm KC-XORS$ just outputs a random k-bit key a
for the underlying PRF family F', thereby specifying a
function f = F, of I-bits to L-bits. The message z to
be encrypted is regarded as a sequence of L-bit blocks
(padding is done first, if necessary), z = x; - - - £,,. We de-
fine £-XOR$,(z) = £-XOR$™™ () and D-XORS$,(2) =
D-XOR$™ (), where:

function £-XORS$’ ()
) 7+ {0,1}

(2) fori=1,...,ndoy; = f(r +i)dz;
(3) returnr||yiy2---Yn

function D-XORS$ (2)

(1) Parsezasr|yr - yn

(2) fori=1,...,ndoz; = f(r +1)®y;

3) returnz=z;---z,

We call r the nonce. Addition, above, is modulo 2!, and the

result is encoded as an {-bit string in the usual way.
This scheme also has a stateful variant, XORC

(£-XORC, D-XORC, K-XORC). Here the role of r is

played by a I-bit counter, denoted ctr, that is initially —1
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and increases after each encryption by the number of en-
crypted blocks. Note only the sender maintains the counter
and it is output as part of the ciphertext. A restriction placed
on the scheme is that the total number of encrypted blocks
be at most 2.

The key generation algorithm K-XORC is the same as
before, meaning just outputs a random key a for the PRF
family. With the same formatting conventions as above,
we define £-XORC,(z, ctp = £-XORCF=(z, ctr) and
D-XORC,(z2) = D-XORC"*(z), where:
function £-XORC/ (z, ctr)

(1) fori=1,...,ndoy; = f(ctr +i)dz;
(2) ctr+ctr+n
(3) return (ctr, ctr||v1y2---yn)

function D-XORS$’ (2)

(1) Parsezasctr|yi - yn

@2) fori=1,...,ndozx; = f(ctr +1)Py;
(3) returnz =z1---p

FEATURES OF THE SCHEMES. Notice that decryption does
not require the ability to invert f = F,. Thus F}, need not
be a permutation.

The XOR schemes have some computational advantages
over the more common modes of operation. Namely,
the F, computations on different blocks can be done in
parallel since the computation on a block is independent
of the other blocks. This parallelizability advantage can be
realized through either hardware or software support. De-
cryption does not have to be done in order if each block is
tagged with its index. These schemes also support off-line
processing, in the sense that the F,, computations can be
done during idle times before the messages they are to be
used with become available.

SECURITY OF XOR$. We first derive a lower bound on
the success of an adversary trying to break the XOR$(F}
scheme in the left-or-right sense. In the common crypto-
graphic terminology, this means, simply, that we are pro-
viding an attack. The attack we specify is on the *“ideal”
scheme, namely the one where the underlying function f is
truly random.

Proposition 9 [Lower bound on security of XOR$ in
random function model] There is an adversary E for
XORS$(R;, 1), in the left-or-right sense, who makes up to q
queries, totaling at most y bits, (ug/L < 2') and achieves
AdvE > 0.316 - [u - (¢ — 1)]/[L - 21].

This is a “birthday” attack. It may be easier to gauge if we
let i = p/(Lq) be the average number of blocks per query,
so that y1 = Lq - 7i. Then we see that Adv'y, = Q(¢?/2") - 7,
a typical birthday behavior exhibiting a quadratic depen-
dence on the number of queries.

Since we prove a lower bound in the random function
model, we do not discuss the time used by E. However it is



clear from the strategy that the total time used by E would
be just a little overhead besides the time for the oracle calls.
This is true for all lower bounds and we won't mention it
again.

Proposition 9 indicates that even when the underlying
block cipher F' is very good (it can't get better than truly
random) the XOR scheme leaks some information as more
and more data is encrypted. Next, we show that the above
is essentially the best attack: one can't get a better advan-
tage, up to a constant factor. The crucial point below is that
the bound holds for any adversary.

Lemma 10 [Upper bound on security of XORS in ran-
dom function model] Let E be any adversary attacking
XORS(Ry, 1) in the left-or-right sense, making at most ¢
queries, totaling at most p bits. Then Adv% < dxoRrg =

[u(g - D))/L-24.

Of course, an indication of security in the ideal model is
not an indication of security when we use a block cipher.
The “real-world” case however is easily derived from the
above:

Theorem 11 [Security of XORS using a pseudorandom
function] There is a constant ¢ > 0 such that the follow-
ing is true. Suppose F is a (t',q'; ¢')-secure PRF family
with input length | and output length L. Then for any q
the XORS(F) scheme is (i, q, u; €)-secure in the left-or-
right sense, foryp = ¢'L andt = t' — ¢ - £(l + L) and

def
€=2¢ + (5XOR$’ where 6XOR$ = [u(q - 1)]/[L . 21].

SECURITY OF XORC. The stateful version of the scheme
has better security. The adversary has no advantage in the
ideal case:

Lemma 12 [Upper bound on security of XORC in ran-
dom function model] Let £ be any adversary attacking
XORC(R, 1) in the left-or-right sense, making at most g

queries, totaling at most u < L2! bits. Then Advlé =0.

This translates into the following “real-world” security:

Theorem 13 [Security of XORC using a pseudorandom
function] There is a constant ¢ > 0 such that the follow-
ing is true. Suppose F' is a (t',q'; €')-secure PRF family
with input length I and output length L. Then for any q the
XORC(F) scheme is (t,q, u; €)-secure in the left-or-right
sense, for p = min(¢'L, L2") andt =t' —c- (u/L)(I + L)
ande = 2¢’.

4.3 The CBC Scheme

For the CBC scheme we require that | = L (the input and
output lengths of F' are the same) and that each F,, be a
permutation such that given @ we can compute not only Fj,
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but also F~ 1. As far as security goes, however, we still
view F' a pseudorandom function family. Having stated the
results for this case we will discuss what happens when F
is a PRP family.

SPECIFICATION. The scheme CBCS$(F)
(E-CBC$, D-CBC$,K-CBC$) has the same key gen-
eration algorithm as the previous schemes, mean-
ing the key for encryption is the key a specifying
f = F, The message = to be encrypted is re-
garded as a sequence of [ bit blocks, £ = z1...Zn.
We define &-CBCS,(x) £-CBC$™(z) and
D-CBC$,(z) = D-CBC$™ (2), where:

function £-CBC$/ ()

M yo + {0,1}*

2 fori=1,...,ndoy; = f(y;_1Bx;)

(3) retarnyo || y1y2 -+ Yn

function D-CBC$/ (2)

(1) Parsezasyollyi yn
2) fori=1,...,ndozx;
B) returnz=1z,...2,

I Hy)®yi

The value yo is called initial vector, or nonce. See discus-
sion below for the counter variant.

SECURITY OF CBC$. Birthday attacks remain possible
even when the underlying block cipher is ideal:

Proposition 14 [Lower bound on security of CBCS$ in
random function model] There is an adversary F for
CBCS$(Ry,), in the left-or-right sense, who makes up to
q queries, totaling at most p bits,(u < [ - 2%) and achieves

2
I (1-2.27) (k)L
Advg > 0316- (1-2-27/7) (zz 1) = -

However, these are the best possible attacks up to a constant
factor:

Lemma 15 [Upper bound on security of CBC$ in ran-
dom function model} Let E/ be any adversary attacking
CBCS$(R,,;) in the left-or-right sense, making at most q
queries, totaling at most y bits. Then

AdvE < dopos & ([u®/02] = [w/0) 27"

The “real-world” security follows:

Theorem 16 [Security of CBC$ using a pseudorandom
function] There is a constant ¢ > 0 such that the follow-
ing is true. Suppose F is a (t',¢';€')-secure PRF family
with input length | and output length L. Then for any q the
CBCS$(F) scheme is (t,q, u; €)-secure in the left-or-right
sense, for p = ¢'l andt = t' — cp and € = 2¢' + Scpes,
S (WP = /1) 27

where 6CBC$



CBC should really be analyzed assuming F' is a PRP fam-
ily, not a PRF family, because the scheme must indeed
be used with permutations, not functions. For the upper
bound, it doesn't really make a difference, because we can
apply Proposition 8 to Lemma 15 to make the translation.
For the lower bound, however, this will not help. Thus at
this point, it is conceivable that if F' is a PRP family, CBC
encryption is much more secure than the upper bound in-
dicates. Yet in fact this is not true. The following says the
same lower bound holds for permutations.

Proposition 17 [Lower bound on security of CBCS$ in
random permutation model] There is an adversary E for
CBCS$(F,,), in the left-or-right sense, who makes queries

totaling at most p bits, (u <1 - 2%) and achieves
AdvVE > 0.316- ([u?/1%] = [u/1)) - 27

Note that Proposition 14 held for any q. In contrast, in
Proposition 17, given u, we allow the adversary to choose
a convenient g. (Which turns out to be ¢ = p/1.) In this
sense Proposition 17 is weaker. We believe it should be
possible to improve Proposition 17 but have not done the
analysis at this time.

CBC WITH COUNTERS. It is tempting to make a counter
variant of CBC and hope that the security is increased (or
at least preserved). Indeed it is suggested in various books
that the initialization vector may be a counter. But this does
not work; knowing the next value of the counter, the adver-
sary can choose a message query that forces a collision in
the inputs to f, thus breaking the scheme (under any of the
definitions).

To make a proper counter version of CBC$, one can
let the initialization vector be yo = f(ctr) and increment
ctr by one following every encryption. The scheme is ca-
pable of encrypting at most 2! messages. An analog to
Theorem 16 is then possible. The resuit is easiest (follow-
ing as a corollary to Theorem 16) if the key used to deter-
mine Yo is separate from the key used for the rest of the
CBC encryption.
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