Applying the Composition Principle
to Verify a Hierarchy of Security Servers *

Mark R. Heckman
Department of Computer Science
University of California

One Shields Ave.
Davis, CA 95616

heckman@cs.ucdavis.edu

Abstract

This paper describes how the composition principle
of Abadi and Lamport can be applied o specify and
compose systems where access control policies are dis-
tributed among a hierarchy of agents. Framples of such
systems are layered secure operating sysiems, where
the mandatory access control policy is enforced by the
lowest system layer and discretionary and application-
specific policies are implemented by outer layers, and
microkernel operating systems, where the access control
policy may be distributed among a hierarchy of server
processes.

We specifically consider the case of a microkernel oper-
ating system type architecture, in which resource man-
agement policies are enforced by server processes out-
side of the kernel, and where the system access con-
trol policy is a composition of the distinct policies im-
plemented by the servers. As an example, we have
specified a two-server system, including both safety and
progress properties. We formally verified the composi-
tion of the two server processes using the HOL theorem
proving system.

1

Formal specification and proof are requirements for sys-
tems that must maintain the highest degree of security.
In general, however, it is difficult to formally reason
about such system due to their complexity. The dif-
ficulty of verifying a complex, secure system can be
reduced by decomposing a system into smaller subsys-
tems, independently verifying the implementation of
the subsystems, and then proving that the composi-
tion of the subsystem specifications satisfies the overall
system specification.

Introduction

In some secure system architectures, moreover, this
type of compositional proof is not only desirable, but a
necessity. For example, consider an extensible trusted
computing base built using TCB subsets [13, 11]. In
such systems the access control policy is hierarchically
distributed among agents in several logically—or even

*This work was sponsored by DARPA under contract USN
N00014-93-1-1322 with the Office of Naval Research and by the
National Security Agency’s URP Program.

1060-3425/98 $10.00 © 1998 IEEE
Proc. 31st Annual Hawaii International
Conference on System Sciences

338

Karl N. Levitt
Department of Computer Science
University of California

One Shields Ave.
Davis, CA 95616

levitt@cs.ucdavis.edu

physically—independent layers, and the overall system
access control policy 1s a composition of the policies
enforced by each layer.

In secure, micro-kernel operating systems such as
TMach [4], the mandatory access control policy is im-
plemented by a combination of the kernel and system
tasks called “servers.” The discretionary access con-
trol policy, furthermore, is completely implemented by
servers. Systems like Synergy [10] and the UC Davis
Silo [14] take this 1dea a step further by implementing
even the mandatory access control policy by servers
alone, outside of the kernel. The servers, further-
more, run concurrently, introducing an element of non-
determinism into the system specification. Reasoning
about the access control policy enforced by the system
as a whole requires reasoning about the composition of
the servers, and the reasoning method must be able to
handle concurrency.

Abadi and Lamport devised a general composition
principle and proof rule for composing modular and
concurrent specifications that consist of both safety and
progress properties [2]. Their composition method is
based on the {ransition-aziom specification method [7]
and a refinement mapping method of proving that one
specification implements another [1].

Hemenway and Fellows applied the composition prin-
ciple to the integration of a secure system from exist-
ing components [6], but used only safety properties in
their specifications. McLean argued that the compo-
sition principle cannot be applied to Noninterference
and other “possibilistic” security properties [8]. Our
work, unlike that of Hemenway and Fellows, includes
progress properties in the specifications and proof. Like
their work, however, we focus on access control poli-
cies, which are safety properties and can therefore be
addressed under the framework.

An access control policy is a type of “resource manage-
ment” policy, similar to other resource management
policies concerned with, for example, memory manage-
ment or mutual exclusion. The possibilistic properties
with which McLean’s work is concerned are information
flow control policies. Put very simply, an information
flow control policy is a policy on the flow of informa-
tion that is stored in the system, while an access control

policy is a policy on the use of the system objects that
are used to store the information.

Our work with the composition principle is a part of
our larger effort to formally verify an entire secure and
distributed system [14]. The ability to verify that a
hierarchy of security servers satisfies an access control
policy is necessary, but not sufficient, to prove the over-
all security of an operating system. That larger proof
requires us to show that the kernel and servers that
make up the operating system together satisfy an in-
formation flow control policy. The work presented in
this paper is one step toward that long-term goal.

In a previous paper we described our translation of
Abadi and Lamport’s specification, composition, and
refinement mapping methods into HOL [5]. In this pa-
per we give an overview of an example system speci-
fication and the composition proof, and describe how
the techniques used in the example are applicable to
the specification and proof of a system that consists of
a hierarchy of security servers.

Section 2 explains in more detail the notion of a hier-
archy of security servers, and discusses how Silo uses
the hierarchy to implement the system’s access control
policy. Section 3 gives an overview of our translation of
Abadi and Lamport’s specification and proof method.
Section 4 describes the example system and its speci-
fications. Section 5 describes the formal proof of the
system.

2 A Hierarchy of Security Servers

An important design goal of Silo is to keep the kernel
as small as possible. In micro-kernel operating systems
this goal is generally achieved by putting the responsi-
bility for resource management in the server processes
outside the kernel. Silo treats the access control pol-
icy on the objects that it manages (mailboxes) as a
resource management policy that 1s the proper respon-
sibility of servers.

Another Silo design goal is to support incremental ver-
ification and reuse of previously verified components.
Ideally, as modules that implement new features are
added to the operating system, the previously verified
system can be treated as a module to be composed
with the new modules. For example, servers that im-
plement additional access control policies can be added
on top of the original system access control policy—
e.g., adding discretionary access control (DAC) to an
existing mandatory access control (MAC) policy—and
the new servers can be composed with the existing, pre-
viously verified, system. Separating the access control
policy management from the kernel allows a separately
verified kernel to be composed with different access con-
trol servers, so that a new access control policy does not
require reverification of the entire system.

These design goals led to the use of a hierarchy of se-
curity servers. A hierarchy allows for layering, to allow
a secure system to be extended to include a richer set
of security properties, and the security properties can
be modularized in the form of servers to support com-
position and reuse of previously verified modules.

339

2.1 Different Hierarchies

The usual idea of a hierarchy in the context of a se-
cure operating system is that each layer serves as an
abstract machine, creating the abstraction of subjects
and objects and enforcing an access control policy for
the layer above it. A possible implementation of this
type of hierarchical system using servers would be to
have a server in each abstract layer that enforces that
layer’s access control policy, then calls the next-lower
layer. At the end of this sequential chain of calls is
a call (or calls) to the kernel. This type of sequential
hierarchy is depicted in figure 1.

Layer 1
server
Kernel :
s

e
e

Layer n
server

Layer 2..n

User process
servers

Figure 1: Sequential hierarchy of servers

The sequential hierarchy assumes that access control
decisions are made as a result of requests from higher
layers. Silo, however, is a distributed operating sys-
tem and the access control mechanism must be able to
handle accesses across a network. While the operating
system is distributed, the knowledge of object classi-
fications and subject clearances 1s not, so each access
across the network results in a “bubbling-up” of activ-
ity from the lower layers to higher layers.

As shown in figure 2, in this alternative type of hier-
archy a network server receives an access request from
the network and passes the request to a resource man-
ager. The resource manager consults the security server
for its layer, which passes a request to the next higher
layer, and so on, until a request propagates to the high-
est layer of the system. The decision (to allow access
or not) is passed back down the hierarchy.

Network
From server Resource Layer 1 Layer n
network manager server server
wmwmapsiR i w P el
4 “ P » @
z & - .ﬁ ®
w w “ 2 H
£ 3 e g
L, K s B .“'u 'A:
Kernel

Figure 2: Alternative hierarchy of servers

Each security server compares the security attributes
(classification) of the object that it manages with the
security attributes (clearance) of the subject that is
requesting access, and grants or denies the request ac-
cording to the access control policy that it implements.
If the security servers all approve, the resource manager
performs the service requested by the subject.

A security server implements a function of type
classification — clearance — boolean. The secu-
rity server can consist of a single server process or of a

hierarchy of server processes, as in the alternative hi-
erarchy. The function implemented by a hierarchy of
such servers would be the conjunction of the boolean
results of each of the component functions. For exam-
ple, the layer 1 server in the hierarchy could implement
a mandatory access control policy, while the layer 2
server could implement a discretionary access control
policy. Access would be granted only if both servers
returned “TRUE.”

Another reason for this alternative hierarchy is to facil-
itate the evaluation of a system under a trusted com-
puter system evaluation criteria, such as that of the
United States Department of Defense [9], which call for
a strict separation between security-critical and non-
security critical system components. In DTMach, for
example [12], the designers separated the non-security-
critical network protocol software from the trusted soft-
ware of the secure operating system. In the DTMach
design, the network server that is within the TCB
passes the data to be transmitted to a protocol server
that is above the TCB. The protocol server, in turn,
passes the processed data to another network server
that is within the TCB.

3 Overview of Specification and Proof
Methods

In this section we briefly and informally define some
of the main concepts and terms of the transition-
axiom, refinement mapping, and composition methods
of Abadi and Lamport, and of our adaptation of these
methods.

A state 1s an assignment of values to a set of state
variables. A system specification describes all possible
infinite sequences of atomic state transitions (finite se-
quences are represented by sequences where the state
reaches a fixpoint), which we call traces. We define
a trace as a function from natural numbers to system
state, where trace 0 represents the initial state.

State transitions are due to the actions of agents. A
specification generally includes a description of all the
allowable state transitions that may be caused by a
particular agent or set of agents.

A property is a predicate that defines a set of traces.
For example, a property could be stated as

(VY trace .
(Vi

example_property trace
. x(trace i) = 5))

which is a property that is true for all traces where the
state variable x has the value 5 at all timesg.

There are two types of properties: safety properties
and progress properties. Intuitively, safety properties
of a system define the acceptable initial states and the
allowable state transitions. Progress properties assert
that specific state transitions eventually occur.

An initial state safety property looks like this:

(V trace . initial property trace = I(trace 0))

340

which is true for all traces where the initial state sat-
isfies a predicate I.

Each state transition has this basic specification for-
mat:

(V ss : systemstate . transitionn ss =
~(precondition ss) — ss | (nextstatemn ss))

where ss is the set of state variables of type
systemstate, and next staten ss is the new state
function. This specification says that if the transi-
tion’s precondition is not satisfied then the system state
is unchanged by the transition. (Abadi and Lamport
call this a “stuttering step”), but if the precondition
is satisfied then the new system state is as defined by
next_statemn ss.

A state transition safety property is the disjunction of
all allowable state transitions, and looks something like
this:

(V trace. transitionproperty trace =
(V i. let ssl = (trace i) and ss2 = (trace(i+l))
in (ss2 = tramsitiond ssl) V ... V
(ss2 = transitionn ss1)))

A progress property for a transition asserts that the
transition will happen infinitely often, and has this
form:

(V trace . progress propertyn trace =
(Vi.3j. i<j A
(get systemstate(trace(j+1)) =
transitionn(get_systemstate(trace j)))))

This says that, for all valid traces, at any point i
in the trace there is another point j that occurs af-
ter i where the transition will happen. In temporal
logic, this statement is represented as “always eventu-
ally transitionn”, or OOtransition.n.

The specification of a system consists of the conjunc-
tion of various safety and progress properties. If, for
example, I is an imtial state safety property, T is a
state transition safety property, and L is the conjunc-
tion of progress properties for the valid state transitions
defined by T, the specification for a system that satis-
fied all these properties could be defined as the property
InNTNL.

The inputs to a system come from the system’s enwvi-
ronment. A system is specified assuming that its inputs
satisfy some definition of correctness, which is simpler
than specifying the behavior of a system for all possi-
ble conditions. In other words, the system specification
includes assumptions about the behavior of the envi-
ronment. A specification of a system M and the con-
straints on its environment F is the property £ = M,
which includes all behaviors where the system satisfies
its specification or the environment doesn’t. The spec-
ifications E and M are written to apply to disjoint sets

of agents: the set of agents that are part of the system
and those agents outside of the system —p.

Informally, this is Abadi and Lamport’s composition
proof rule: Given three specifications £ == M (the
overall system specification), £y = M; and E; —
M, (two component specifications), if

EAM, AMy; = E; A Ea,
then

E/\(E1 - Ml)/\(Ez p— Mz) — (E — M1/\M2),

where M is the smallest safety property that contains
M.

This means that, if we prove that the conjunction of the
overall system environment F and the safety properties
of the two component systems implies the environments
of the two component systems, then we can compose
the two component system specifications into the form
E = M) A M,.

A refinement mapping is a function from states in one
specification to states in another specification. Once
component specifications M; and M, have been com-
posed using the composition proof rule, the remaining
step to complete the proof that the composition of M;
and M- implements M is to find a refinement mapping
from M, A M5 to M. In other words, the composition
rule allows us to derive E = M; A M, and the refine-
ment step allows us to show that My A My =— M.

4 Specifications

The system that we formally verified consists of two
server processes, which together implement two system
calls. In this section we give an overview of our example
system specification.

Qur system specification in this example assumes the
existence of a kernel, similar to the formally verified
KIT keruel [3], that implements process separation and
process scheduling, and that provides processes with
the basic operations for sending and receiving messages
through mailboxes.

In the KIT kernel every process can write to every other
process’s mailbox. In Silo, however, mailboxes are the
objects to which access is controlled. In order to medi-
ate access to mailboxes, Silo uses descriptors: A process
can only send a message to a mailbox to which it has a
descriptor. Processes obtain a descriptor to a mailbox
through a system call to a mailbox server.

In this example we do not yet assume the extensions
to the kernel that are necessary for the Silo system to
implement an access control policy on mailboxes; our
Intention is simply to demonstrate that the specifica-
tion and proof method can be used to prove the com-
position of two servers, and of the functions that they
implement, in a message-passing system.

341

4.1 System Calls and Server Processes

In our example, each process has its own mailbox from
which it alone can read messages, but processes can
send messages to any other process’s mailbox. For sim-
plicity in the specification, mailboxes have unlimited
length.

A user process makes a system call by sending a “re-
quest” message to one of the mailboxes of the server
processes. A server process responds to a system call
by sending a “response” message to the mailbox of the
process that sent the “request” message. The value re-
turned in a response message—i.e., the value returned
by the system call—is a function of the value passed in
the corresponding request message.

The overall system specification specifies two system
calls, F and FG. System call F accepts an input value y in
a request message and returns the value f(y). System
call FG accepts an input value z in a request message
and returns the value f(g(z)). These system calls are
depicted in the top half of figure 3.

System Calls

f(y)

P AR 1

A
e

s
f(g(x))

Server Processes

Figure 3: System calls and server processes

System call F is implemented by a single server process,
also called F, that applies the function f to the input
value. System call FG is implemented by a server pro-
cess, also called FG, that accepts an input value z in
a request message and then sends the value g(z) in a
message to the F server. The F server returns the value
f(g(z)) to the FG server, which forwards the result to
the process that originally sent #. The implementation
of the system calls is depicted in the bottom half of
figure 3.

The environment for our system is all the other pro-
cesses that send messages to, and receive them from,
the two server processes.

The two server processes are a simplified example of
the alternative hierarchy of servers that was depicted
in figure 2. In this example, the FG server represents
the server in layer 1 of the system, while the F server
represents the server at layer n. The management poli-
cies for some resource are represented by the functions
calculated by each server. The overall resource man-
agement policy for the resource is the composition of
the two functions, and is specified by system call Fa.

4.2 General Form of the Specifications

Each system call, and each corresponding server pro-
cess, performs two atomic actions: transferring a single
request message from its mailbox to an internal queue,
and sending a response message for a single queuned re-
quest message, as shown in figure 4. A progress prop-
erty for each atomic action ensures that all request mes-
sages are buffered and eventually generate responses.

Request message "Read" "Respond"
transition transition
mailbox queue

Figure 4: General form of specifications for system calls
and server processes

4.2.1 The F and FG System Calls

The read and respond state transitions of the F and
FG system calls are similar. The precondition of a read
transition is that there is at least one message in the
system call’s mailbox. If so, the transition transfers the
message from the head of the mailbox to the tail of the
internal queue.

This is the specification for the F system call read tran-
sition:

(V ss . syscallF.reads ss =
let mbxs = (getmbxs ss)
and Fs = (getFs ss) in
let Fmbx = (getmbxs.mbx mbxs F_.ID) in
% If no messages then return state unchanged. ¥
(("mbx.is_unread msg Fmbx) — ss |
% Otherwise, read message... %
(let (msg, newFmbx) = (read mbxmsg Fmbx) in
put back the modified majlbox %
let newmbxs = (put.mbxs.mbx mbxs F_ID new Fmbx)
put msg in internal queue %
and new Fs = (putFqmsg Fs msg) in
(put_mbxs (putFs ss new.Fs) newaubxs))))

==

where ss is the system state, Fs is the internal state for
the F server, and Fmbx is the F server (and system call)
mailbox.

The progress property for this state transition is

(V trace . syscallF reads.progress trace =
& (G :num) . (3 (G : num) .
(i<=3j) A

(get_state(trace(j+1)) =
(syscall F_reads (get_state(trace j)))))))

The respond transitions are as simple as the read tran-
sitions. Their precondition is that there is at least one

342

message in the internal queue. If so, the transition re-
moves the message from the head of the internal queue
and puts a response message in the mailbox of the re-
quest message sender.

This is the specification for the F system call response
transition function:

(V ss . syscall_F_responds ss =
let mbxs = (getmbxs ss)
and Fs = (getFs ss) in
% If no messages then return state unchanged. %
(("(Fqpending Fs)) — ss |
% Otherwise, read message from head of queue... %
(let (rqst, new.Fs) = (Fqgetmsg Fs) in
src is the ID of the request message sender. %
let src = (getmsg.sndr rqgst)
% mdata is the request data value. %
and mdata = (getmsg.data rqst) in
Return f(mdata) in response message. %
let response = (consmsg F_ID (F_func mdata)) in
put response in destination mailbox %
let nevmbxs = (putmbxsmsg mbxs src response)
in
(putmbxs (putFs ss new.Fs) newmbxs))))

=

Fd

%

4.2.2 The F Server Process

Unlike the F system call, the F server process has only
a single-length internal buffer. For this reason, the pre-
condition of the F server read transition not only re-
quires that there be at least one message in the F mail-
box, but also that the internal buffer is empty. Other-
wise, it is the same as that for the F system call read
transition.

The precondition of the F server response transition,
as for the F system call response transition, is simply
that there is a message in the internal buffer. If so, the
F server takes the message from the internal buffer and
sends a response message.

4.2.3 The FG Server Process

The FG server process sends messages to the F server
and must wait until the F server responds before it
can send a response message. For this reason, the FG
server has an unlimited length internal queue as well
as a single-length buffer.

The read transition for the FG server, similar to that
of the F server, has the precondition that there is a
message in the FG mailbox and that the single-length
internal buffer is empty.

The respond transition for the FG server, however, is
more complicated than that of the F server. Because
processes have only a single mailbox, response messages
from the F server arrive in the FG mailbox along with
new request messages from other processes. The re-
spond transition must determine the origin of the mes-
sage and take different actions depending on whether
the message came from the F server or not.

(V ss . server_FG_responds ss =

let mbxs = (get.mbxs ss)

and FGs = (get FGs ss) in
% If no message in buffer then no state change. %

(("(FGmsg_in buf FGs)) — ss |
% Otherwise, check who sent the message %
(let bufmsg = (FG_read buf FGs) in
let bufsrc = (getmsgsndr bufmsg) in
If sender is not F then put request message ¥%
in the queue and send a message to F %

(¢~ (bufsrc = F_ID)) — (FG_push_request ss) |
Otherwise, remove rgst message from queue Y%
and send response. Y%

(FG_send.response ss8)))))

e

E

If the message is not from the F server—i.e., the mes-
sage is a new request message—the message 1s added to
the end of the internal queue and the FG server sends
a request message to the F server.

(Vv ss . FG_pushrequest ss =
let mbxs = (get.mbxs ss)
and FGs = (get FGs ss) in

let (buf, FGs1l) = (FG_get.buf FGs) in

% (FGsl has cleared buffer) Y%

% put request message on queue %

let new FGs = (FG_put_queuemsg FGsl buf) in

% create message to send to F %

let bufmdata = (get msg.data buf) in

let msg = (consmsg FG_.ID (G_func bufmdata)) in

% send message to F ¥

let newmbxs = (put.mbxsmsg mbxs F_ID msg) in
(put.mbxs (put FGs ss new FGs) new.mbxs))

For some request message containing the data value x,
the corresponding request message sent to the F server
will contain the value g(x).

When a message is from the F server, it is a response
message to a previous request message from the FG
server. The message from the F server corresponds to
the request message at the head of the internal queue
(we proved this correspondence as an invariant). For a
message at the head of the internal queue that contains
the data value x, the corresponding response message
from the F server will contain the value £(g(x)). The
FG server uses the value from the F server in its re-
sponse message to the sender of the original request
message.

343

(V ss . FG.send response ss =
let mbxs = (get.mbxs ss)
and FGs = (get FGs ss) in

let (buf, FGs1) = (FG.get buf FGs) in

% (FGs1 has cleared buffer) %

let bufmdata = (getmsg_data bufmsg) in

% Get request message from head of queue. %

let (rgst, newFGs) = (FG_get_queuemsg FGsl) in

% rsrc is ID of the request message sender. %

let rsrc = (getmsgsndr rqst) in

% Create response message; use data from F server. %

let response = (cons.msg FG_ID bufmdata) in

% send response message %

let newmbxs = (putmbxsmsg mbxs rsrc response) in
(put_.mbxs (put_FGs ss new FGs) newmbxs))

The data path between the F and FG server processes
is shown in figure 5, where the solid arrows show the
path up until the response message from the F server,
and the dashed lines after that point.

FG mailbox FG buffer é f(g(x))
R s "’o,,,.
onvean %, H
\ H e
: queue
F buffer F mailbox

”"*z,"‘ y g s
D . -

Figure 5: Data path for FG responses

5 Proof

The compositional proof of the two-server system con-
sisted of two steps: the composition step and the re-
finement step.

5.1 Proof Effort

We found during the course of the proof that the com-
position proof step was a relatively small part of the
overall proof effort. Using “lines of HOL text” as a
rough gauge of proof effort, the composition proof step,
at roughly 1600 lines, was only about 7% of the to-
tal proof (about 23,000 lines). Of the remaining 93%,
refinement of the liveness properties took three times
more work than the refinement of the safety properties.

5.2 Composition

The antecedent of the compositional proof rule for our
example system becomes the following HOL goal:

(V trace .

({env_init trace) A (env_transitiomns trace) A
(F_init trace) A (F.transitions trace) A
(FG_init trace) A (FG_transitions trace)) —»

((F_env.init trace) A (F_env_transitions trace) N
(FG.env_init trace) A

(FG_env_transitions trace)))

where env_init and env_transitions are the overall en-
vironment initial state and state transition properties
and F_init and F_transitions are the initial internal
state and state transition safety properties for the F
server (similarly for the F'G server).

This proof goal can be broken down into three subgoals,
which makes the proof simpler than it might first ap-
pear:

1. That the initial state properties on the left side of
the implication imply the initial state properties
on the right side. The state transitions cannot
affect the initial state properties, and so play no
part is this subgoal.

That the environment and FG state transitions im-
plement the F environment state transitions. The
agent set in the F specification is disjoint from the
agent set in the environment for the F' specifica-
tion, and so the F state transitions play no part in
this subgoal.

That the environment and F state transitions im-
plement the FG environment state transitions.

5.3 Refinement

A refinement mapping is a function from states in one
specification to states in another. Because we are map-
ping states that are in traces, not just states in general,
we must show that the state transitions of the first spec-
ification map to state transitions or stuttering steps in
the second, and that all progress properties are satis-
fied.

In this section we describe our refinement mapping
from the composed server process specification to the
system call specification.

5.3.1 Mapping the States
The mapping between the composed server processes
and the system call specifications has three parts:

1. Mapping the mailboxes.

2. Mapping the F server internal buffer to the F sys-

tem call internal queue.

Mapping the FG server internal buffer and queue
to the FG system call internal queue.

In the composed server process specification the FG
server sends messages to, and receives them from, the
F server. These messages appear in the F and FG mail-
boxes and in the servers’ internal buffers. In the sys-
tem call specification, however, there are no server pro-
cesses, only the F and FG system calls, and there are no
state transitions that could account for the appearance
in the system call mailboxes of the messages passed
between the server processes. For this reason, our re-
finement mapping hides the messages that are passed
between the two servers, leaving all other messages and
their ordering alone.

344

Mapping the F server internal buffer to the the F system
call internal queue is just as straightforward; any mes-
sage from the FG server is hidden, which means that the
single-length buffer either maps to an empty F system
call internal queue or to a queue with only one message
in it.

The mapping of the Fa server internal buffer and queue
to the F@ system call internal queue is only slightly
more complicated. Recall that the FG server saves each
message in a queue until it receives a response message
from the F server. The concatenation of the FG server
buffer (the messages from the F server are hidden) with
the queue contains the same messages in the same order
as in the FG system call internal queue.

5.3.2 Mapping the F State Transitions

To prove the refinement of the two atomic state transi-
tions of the F server requires us to show that the tran-
sitions always map to either a valid transition of the
system call specification or to a stuttering step, for all
possible cases.

The F_reads transition has three cases:

1. When the mailbox is empty or there is already
something in the buffer. In this case the F'_reads
transition leaves the state unchanged, which maps
to a stuttering step.

. When the buffer is empty and the message at the
head of the mailbox is from the FG server. The
message from the FG server is filtered by the map-
ping function, so this transition also maps to a
stuttering step.

When the buffer is empty and the message at the
head of the mailbox is not from the FG server. This
case is the only one where the F server read transi-
tion maps to an F system call read transition that
does not stutter.

The F_responds transition has three cases:

1. When the buffer is empty. In this case the
F _responds transition leaves the state unchanged,
which maps to a stuttering step.

. When the message in the buffer is from the FG
server. The message from the FG server is filtered
by the mapping function, so this transition also
maps to a stuttering step.

. When the message in the buffer is not from the
FG server. This case i1s the only one where a
F_responds transition maps to a non-stuttering
step.

5.3.3 Mapping the FG State Transitions

The two atomic state transitions of the FG server spec-
ification correspond to the two transitions of the Fg
system call or to stuttering steps.

The cases of the F(G_reads transition are the same as
that of the F'_reads transition, described above.

The F'GG_responds transition has three cases:

1. When the buffer is empty. In this case the transi-
tion leaves the state unchanged, which maps to a
stuttering step.

. When the message in the buffer is not from the
F server. As shown in figure 5, only messages
from the F server result in a response message be-
ing sent. All other messages are request messages
and are transferred to the internal queue. The
mapping function concatenates the queue and the
buffer, so no change to the mapped state occurs.

3. When the message in the buffer is not from the
F server. This case is the only one where a
FG_responds transition maps to a non-stuttering
step.

5.3.4 Mapping the Progress Properties

The proof that the mapping satisfies the progress prop-
erties requires a much more complex proof than that
of the state transitions.

Our specifications have simple progress properties that
guarantee the eventual occurrence of each transition.
The eventual occurrence of a server transition, however,
does not always guarantee the eventual occurrence of a
system call transition under the refinement mapping.

For example, if there is at least one message in the F
server mailbox that is not from the FG server, but there
is also a message in the F server buffer, the server spec-
fication’s F'_reads transition will implement a stutter-
ing step because the precondition for the transition
requires the buffer to be empty. The corresponding
transition in the system call specification, on the other
hand, is enabled because there is a message in the mail-
box. This is shown in figure 6.

Message in mailbox
.+ enables transition

mailbox %g queue
- Y = = s1X] system call state
.. 2 B 3 server state
ae/o"a-
Full buffer e UREF

disables transition

Figure 6: Non-mapping of F_reads Transition, Case 1

If, on the other hand, the F server buffer is empty, but
the only messages in the mailbox are from the FG server,
then the server transition is enabled but the system call
transition is not, as shown in figure 7.

345

mailbox queue
e b 8 IR system call state
. e fg s :] server state
buffer

Figure 7: Non-mapping of F_reads Transition, Case 2

In a third case, where the F server buffer is empty, but
there is at least one message in the F mailbox that is
not from the FG server and the message at the head of
the mailbox is from the FG server, then the precondi-
tions are satisfied for both the server transition and the
system call transition, but the server transition, nev-
ertheless, does not map to the system state transition.
This is because the refinement mapping filters out the
messages from the FG server so the message at the head
of the mailbox in the system call state is not the same
message as at the head of the mailbox in the server
state. This situation is depicted in figure 8.

mailbox gqueue
. 2 B I8 system call state
. Yifg g] server state
buffer

Figure 8: Non-mapping of F_reads Transition, Case 3

The only conditions where the server’s F_reads transi-
tion maps to the corresponding system call transition
are when both the transitions are disabled (viz., when
the mailbox is empty) or when both are enabled and
the message at the head of the mailbox in the server
state is not from the FG server. If we call these con-
ditions p and denote the server transition and system
call transition as t;, and tg, respectively, then to prove
OOty we need to prove OO(p Atyp).

The progress properties on each transition guarantee
that the transttions will occur, but not that the pre-
conditions will ever be true. It is possible that the
preconditions could be true infinitely often, but never
true when the transition occurs. Ounly if the precondi-
tions become true and remain true until the transition
occurs can we show that a transition will ever imple-
ment anything other than a stuttering step. In order
to obtain OC(p Atr), therefore, we need the following
three conditions:

1. That t; occurs infinitely often, i.e., OOtr. This is
precisely the progress property on {r.

2. That p always eventually holds, i.e., OCp.

3. That p, once true, remains true unless the server
transition occurs, i.e., O(p Wir).

To show that p, once true, remains true until the next
server F'_reads transition, we prove that each of the
other transitions leaves the F server buffer and head of
the F mailbox unchanged.

To show that p always eventually holds we first find a
termination condition and prove that it is reached. In
this case, —p implies that there is an unread message
in the mailbox that is not from the FG server. We prove
that any message in the F mailbox eventually advances
to the head of the mailbox, which is the termination
condition. We also prove that, if the F server buffer
is non-empty, then it will eventually be emptied. To-
gether, these intermediate results lead to the desired
result that, at any point in the trace, either p holds
or else it eventually holds at some future point in the
trace.

We used the same method described above for the
F _reads transition to prove that the progress property
for the FG_reads transition is satisfied. The FG_reads
transition reads from the FG mailbox and receives mes-
sages from the F server, but otherwise is the same as
the F_reads transition.

5.3.5 Mapping the F_responds Transition

Progress Property

The F_responds transition is unique among the four
transitions in our specifications in that its mapping
condition is always true. There are three possible cases:

1. The F server buffer is empty, which maps to an
empty F system call queue. In this case both tran-
sitions are disabled.

. The F server buffer contains a message from the
FG server, which maps to an empty F system
call queue. Because the result of the server
F _responds transition is an empty buffer that
maps to an empty system call queue, at the sys-
tem call level the transition is disabled and it im-
plements a stuttering step.

. The F server buffer contains a message that is not
from the FG server, which maps to a F system call
queue that contains a single message. The empty
buffer after the server transition maps to an empty
queue, which is the result of the system call re-
sponding to the message.

5.3.6 Mapping the FG_responds
Progress Property

Transition

The termination condition for the F'G_responds transi-
tion progress property is somewhat more complex than
that of the F_reads and FG_reads transitions. As
shown in figure b, a response message is generated only
after the FG server sends a message to the F server,
and the F server sends a message back to the FG server.

346

The termination condition is that a message from the
F server must eventually arrive in the FG buffer. Fur-
thermore, if the data value in the message at the head
of the internal FG queue is z, then the data value in the
message from the F server must have the value f(g(z)).

To prove that this termination condition is achieved, we
abstractly define a queue of messages from the F and
FG servers that is parallel to the internal FG queue. The
abstract queue is constructed from the concatenation
of the following components, beginning from the head
of the abstract queue and working toward the tail:

1. The message in the FG buffer, if it exists and if it
is from the F server.

. All messages in the FG mailbox from the F server,
in order.

. The message in the F buffer, if it exists and if it is
from the FG server.

. All messages in the F mailbox from the FG server,
in order.

As an invariant, we prove that the abstract queue is the
same length as the FG queue. Furthermore, the invari-
ant shows a correspondence between the data values
in the abstract queue and the FG queue. For all data
values z in the FG queue, the corresponding data values
in the messages in the abstract queue for components
1 and 2 are f(g(z)). The corresponding data values in
the messages in the abstract queue for components 3
and 4 are g(z).

The refinement mapping between the FG server state
and the FG system call state appends any message in
the FG buffer that is not from the F server to the con-
tents of the server queue, in order to form the sys-
tem call message queue. Such messages are not in the
abstract queue, but always enter the abstract and Fg
server queue upon the next server I'G_responds transi-
tion. We must prove that a message in any component
of the abstract queue, or a message in the FG buffer
that is not from the F server, will eventually advance
through the abstract queue and arrive back in the Fg
buffer with the correct value.

To do this, we use the other server transition progress
properties to prove that any message in one of the com-
ponents will advance to the next component. For ex-
ample, the progress property on the F'GG_responds tran-
sition guarantees that a non-F message in the Fg buffer
that contains the data value @ will eventually cause
the FG server to send a message to the F mailbox that
contains the data value g(z). We can use the result
proved for the server F'_reads transition, that any mes-
sage in the F mailbox eventually advances to the head
of the mailbox, and the progress property on the server
F_reads transition to prove that any message from the
FG server in the F mailbox eventually advances to the F
buffer. We use the other progress properties in a simi-
lar manner to show that eventually there is a message
from the F server, containing the value f(g(z)), in the
FG buffer. This gives us OCp for the FG_responds tran-
sition. It is a comparatively simpler task to show that

p persists until the next server F(G_responds transi-
tion. Together with the progress property on the server
F(G _responds transition, we use these results to prove
that the composition of the servers satisfies the system
call FG_responds progress property.

6 Conclusion

In this paper we’ve presented an overview of the spec-
ification and proof of the composition of two server
processes, using the composition method of Abadi and
Lamport. Our example system includes both safety
and progress properties, and the proof required both a
composition step and a refinement step. The compo-
sition step took a very small part of the overall proof
effort, and the majority of the work was spent in refin-
ing the progress properties.

We have also described how the composition method
can be applied to the composition of a hierarchy of
security servers that enforce an access control policy.
The method presented here can be used to reason about
the access control policy on the storage objects that are
used to store sensitive information, and is a step toward
our eventual goal of proving the security of an entire
distributed operating system.

References

[1] Martin Abadi and Leslie Lamport. The existence

of refinement mappings. Theoretical Computer
Science, 82:253-284, 1991.

Martin Abadi and Leslie Lamport. Composing
specifications. ACM Transactions on Program-
ming Languages and Systems, 15(1):73-132, Jan-
uary 1993.

2]

Willam R. Bevier. Kit: A study in operating sys-
tem verification. IEEFE Transactions on Software
Engineering, 15(11):1382-1396, Novermber 1989.

Martha Branstad, Homayoon Tajalli, Frank
Mayer, and David Dalva. Access mediation in a
message passing kernel. In Proceedings of the 1989
IEEE Computer Society Symposium on Research
in Security and Privacy, pages 66-72, Oakland,
California, May 1989.

Mark R. Heckman, Cui Zhang, Brian R. Becker,
David Peticolas, Karl N. Levitt, and Ron A. Ols-
son. Towards applying the composition prin-
ciple to verify a microkernel operating sys-
tem. In Joakim von Wright, Jim Grundy,
and John Harrison, editors, Theorem Proving in
Higher Order Logics: 9th International Confer-
ence, TPHOLs’96, number 1125 in Lecture Notes
in Computer Science, pages 235-250, Turku, Fin-
land, August 1996. Springer-Verlag.

Judith A. Hemenway and Dr. Jonathan Fellows.
Applying the Abadi-Lamport composition theo-
rem in real-world secure system integration en-
vironments. In Proceedings of the Tenth Annual
Computer Security Applications Conference, pages
44-53, December 1994.

347

[7] Leslie Lamport. A simple approach to specifying
concurrent systems. Communications of the ACM,
32(1):32-45, January 1989.

[8] John McLean. A general theory of composition

for trace sets closed under selective interleaving

functions. In Proceedings of the Symposium on

Research in Security and Privacy. IEEE, 1994.

National Computer Security Center. Department
of Defense Trusted Computer System Evaluation
Criteria, December 1985. DOD-5200.28-STD.

O. Sami Saydjari, S. Jeffrey Turner, D. Elmo
Peele, John F. Farrell, Peter A. Loscocco, William
Kutz, and Gregory L. Bock. Synergy: A dis-
tributed, microkernel-based security architecture.
Technical report, NSA INFOSEC Research and
Technology, November 1993.

Marvin Schaefer and Roger R. Schell. Towards an
understanding of extensible architectures for eval-
uated trusted computer system products. In Pro-
ceedings of the 1984 Symposium on Securily and
Privacy, Oakland, California, April 1984. Tech-
nical Committee on Security and Privacy, IEEE
Computer Society.

E. John Sebes and Richard J. Feiertag. Trusted
distributed computing: Using untrusted network
software. In Proceedings of the 14th National Com-

puler Security Conference, pages 608-618, Octo-
ber 1991.

W. R. Shockley and R. R. Schell. TCB subsets for
incremental evaluation. In Proceedings of the 3rd
Aerospace Computer Securily Conference, pages
131-139, Orlando, Florida, December 1987.

C. Zhang, R. Shaw, M. R. Heckman, G. D. Ben-
son, M. Archer, K. Levitt, and R. A. Olsson. To-
wards a formal verification of a secure distributed
system and its applications. In Proceedings of the
17th National Computer Security Conference, Bal-
timore, October 1994.

[13]

[14]

