A Software
Platform for
Testing Intrusion
Detection Systems

NICHOLAS PUKETZA, MANDY CHUNG, RONALD A. OLSSON,
and BISWANATH MUKHERJEE, University of California, Davis

The steady growth in
research on intrusion
detection systems bas
created a demand for
tools and methods to test
their effectiveness. The
authors have developed a
software platform that
both simulates intrusions
and supports their
systematic methodology

for IDS testing.

IEEE SOFTWARE

raditional computer system security efforts
were aimed at rendering systems invulnerable
to attack. However, because of system com-
plexity, configuration and administration er-
rors, and abuse by “authorized” users, this goal
is unlikely to be realized! for most systems. For
this reason, the emphasis on detecting intrusions is increasing.

Intrusion detection systems monitor system activities to iden-
tify unauthorized use, misuse, or abuse. IDSs offer a defense when
your system’s vulnerabilities are exploited and do so without re-
quiring you to replace expensive equipment. As the use of IDSs in-
creases, the need for tools and methodologies for testing and eval-
uating IDSs is also growing.

We have developed a software platform that simulates intrusions
and tests IDS effectiveness. Our platform lets you create scripts
that simulate both typical and suspicious activity. It also has a
record-and-replay feature that helps you create scripts quickly and

0740-7458/97/$10 00 © 1997 IEEE 43

Because window
interfaces are

easily. We created this software platform ‘
to support our testing methodology, |
which we have discussed at length else-
where? and review briefly here. Our test-
ing methodology includes techniques and
approaches that we adapted from the gen-
eral software testing field. Because nei-
ther the methodology nor the software
platform is specific to a particular IDS,
they can be used to test and compare sev-
eral different IDSs. IDS developers can
use the platform and methodology to
supplement their own testing approaches.
"The software platform can also be em-
ployed in testing other applications that
require simulation of computer users, es-
pecially multiple cooperating users.

TESTING METHODOLOGY

As the boxed text, “Intrusion Detec-
don Systems” on page 45 describes, IDSs
detect anomalies and misuse. We de-
signed our methodology to focus on mis-
use detection. In general, a misuse de- |

ubiquitous,

intrusions are
likely to occur.

tection system consists of two key
components: a database of intrusion sig-
natures, which are encapsulations of the
identifying characteristics of specific in-
trusion techniques; and a pattern-match-
ing mechanism that searches for the in-
trusion signatures in user activity records
(such as audit trails).

To formulate our testing method,
we first identified IDS performance
objectives.

¢ Broad detection vange. The 1IDS
should be able to detect many types of
intrusions.

¢ Economy in resource usage. The IDS
should function without monopolizing

system resources such as main memory,

CPU dine, and disk space.

& Resilience to stress. Stressful system
conditions, such as a very high level of
computing activity, should not impair

IDS function.

Selective simulations. As the first step in
our methodology, you select test cases—
simulated user sessions—for the testing
experiments. Although some of the tests
require you to simulate “normal” ses-
sions, most of the test cases are simulated
intrusions. Which intrusions to simulate
is a key problem. The best approach is

- to select test cases based on your orga-

nization’s computer security policy,
which should define whatis and whatis
not an intrusion.

You can derive some test cases from
published descriptions of well-known at-
tacks. You can also develop site-specific
test cases based on your security policy and
private, onsite information. To ensure that
your test cases cover many different kinds
of attacks, you can use intrusion classifica-
tons? to guide your test case selection.

You should consider also that system
intrusions can take one of two forms: se-
quential or concurrent. In a sequential
intrusion, a single person issues a single

| sequence of commands from a single ter-

minal or workstation window. In a con-
current intrusion, one or more intruders
Issue sequences of commands from sev-
eral terminals, computers, or windows.
The command sequences work cooper-
atively to carry out an attack. For exam-
ple, an intruder can open multple win-
dows on a workstation and connect to a
target computer from each window.
Muldple intruders can try to conceal an
intrusion attempt by distributing the sus-
picious behavior among themselves.
Because window interfaces are ubiqui-
tous, concurrent intrusions are likely to
occur and an IDS should be able to de-
tect them. Therefore, we recommend
that you include simulated concurrent
intrusions among your test cases.

| After you select test cases, you can de-
velop scripts that simulate the different
intrusive behaviors.

Testing experiments. The rest of our
methodology consists of using the
simulation scripts in a variety of test-
ing experiments. We have developed
a set of detailed procedures, several of
which are adaptations of the “higher-
order” testing methods described by
Glenford Myers.> Most of the proce-
dures include the same basic steps. You
create or select a set of test scripts and
establish the desired conditions in the
computing environment (such as the
level of “background” computer activ-
ity). You then activate the IDS and ex-
ecute the test scripts. Finally, you an-
alyze the output.

We have divided the test procedures
into three categories, which correspond
directly to the three performance objec-
tives described earlier.

& Intrusion identification tests measure
the [DS’s ability to distinguish intrusions
from normal behavior.

¢ Resource usage tests measure how
many system resources the IDS con-
sumes. You can use the results of these
tests to make decisions, such as whether
itis practical to run a particular IDS in a
particular computing environment.

¢ Stress tests check how the IDS is af-
fected by “stressful” conditions in the
computing environment. An intrusion
that the IDS would ordinarily detect
might go undetected under such condi-
tons. For example, one stress test evalu-
ates how the IDS performs on a heavily
loaded computer.

When detection fails. If the IDS fails to
detect a simulated intrusion, you attempt
to find the source of the failure. Given
the main IDS components in misuse de-
tection—an intrusion database and a pat-
tern-matching mechanism-—and the IDS
dependence on the computer’s system
activity logs (such as audit trails), an IDS
may fail to detect an intrusion during
| testing because:

SEPTEMBER/OCTOBER 1997

INTRUSION DETECTION SYSTEMS

An intrusion detection system is a system that attempts to
identify intrusion attempts by both Lnauthorized users and
insiders who abuse their privileges.! For example, an
intrusion has occurred when

¢ an employee browses through confidential
performance reviews,

¢ a systent adiministrator modifies system files to permit an
unauthorized user aceess to either system or user information,

¢ an intruder accesses or modifies other users” files or in-
formaton,

¢ an intruder modifies routing tables in a network to
upset message delivery, or

¢ an intruder installs a “snooping program” on a target
computer to examine sensitive data (such as user passwords)
contained in petwork traffic.

As these examples show, intrusions can lead to lost or al-
tered dara and can deny service to legitimate users. Intrusions
can also cost an organization money and the trust of their
employces and the public at large.

Interest in the research and development of IDSs has
been growing over the last several years. Biswanath
Mukherjee and his colleagues describe several IDSs in
“Network Intrusion Detection,”! including the National
Security Agency’s Midas, AT&1"s ComputerWatch, SRI
International’s Intrusion-Detection Expert System, Los
Alamos National Laboratory’s Wisdom and Sense, UC
Davis’ Network Security Monitor, and the Distributed
Intrusion Detection System (DIDS) developed jointdy by UC
Davis, l.awrence Livermore National Laboratory, Haystack
Laboratory, and the US Air Force.

IDSs use two general approaches: anomaly detection and
misuse detection.

Anomaly detection is based on the premise thatan
intruder’s behavior will differ noticeably from that of a typi-
cal user.? Anomaly detection works by cstablishing “profiles”

of typical user activity such as login time, CPU usage,
favarite editor, disk nsage, and login session length. The IDS
then uses these profiles to monitor current user activity and
compare jt with past user activity. Whenever a user’s current
activity deviates from past activity “significantly” (beyond
some predefined tolerance level), the activity is considered to

be anomalows, and hence suspicious.

A limitation of anomaly detection is that it depends on
consistency in the behavior of users. In some enviromnents,
legitimate users may frequently change their behavior. For
those users, it is difficult to create profiles that are flexible
cnough to tolerate legitimate variations in behavior, yet sen-

sitive enough to detect intrusions.

In misuse detection, the I1)S’s goal is to recognize “spe-
cific, precisely representable techniques of computer system
abuse.”™ The IDS detects intrusions by searching uscr-activ-
ity records for intrusion “signatures”—encapsulations of the
identifying characteristics of specific intrusion rechniques.
Anomaly detection lets you detect masqueraders or
legitimate users abusing their privileges without requiring
knowledge of sccurity tlaws in the target system.? Misuse de-
tection, on the other hand, can identify intrusive behavior
even when it appears to conform with established patterns of
usc. For this reason, several IDSs employ both an anomaly
detection component and a misuse detection component.

REFERENCES

[B. Mukherjee, 1.1, Llebetlein, and K.N. Levirt, “Network Intrusion
Detection,” IEEL Network, May 1994, pp. 26-41.

- DL Denning, “An Intrusion Detecton Model > IECE Truns. Software
Eng.. Fel. 1987, pp. 222-232.

3. S. Kumar and E.LL Spatlord, “A Sofeware Architecture to Support
Misuse Intrusion Detection,” Proc. 18th Nut'l Information Systems Security
Conf:, Narional lnst. Standards and "Technology, Washingron, 1C, 1995,
pp- 194-204.

+ the system activity logs do not sup-
ply enough information for the IDS to
detect the intrusion,

¢ the intrusion database does not
contain a signature representing the in-
trusion, or

¢ the pattern-matching mechanism
tails to recognize a match between a data-
base signature and a record in the system
activity logs.

You can address the first problem by
reconfiguring or adding to the system’s
logging component. This might require
changes to the IDS to accommodate
changes in the content or format of the

incoming information it analyzes. The

second problem is usually easy to correct:
an IDS typically includes a mechanism
for adding to its database of signatures.
However, the language used to describe
attack signatures might be inadequate to

IEEE SOFTWARE

- describe the intrusion. In that case, sig-
nificant language development work
might be needed. You can fix the third
problem by debugging the pattern-
matching mechanism.

You should continue the testing
process until all detection failures are
eliminated or at least explained; you can
then use other security mechanisms to
cover IDS weaknesses.

Limitations. The primary limitation of
our IDS testing methodology is that it
tests the IDS only against known attacks.
In many environments, known attacks
occur more frequently than new attacks
because their details are often distributed
widely (via newsgroup postings, for ex-
ample), while the number of people who
know the details of a truly new attack is
probably small.

Sdill, sites that value security highly are
clearly interested in detecting new attacks.
- Fortunately, the limitation of our method-
ology is not as severe as it initially seems.
New attacks are often similar to known
attacks; if an IDS can detect most of a
thorough set of test cases (known attacks),
the IDS will probably succeed in detect-
ing new attacks as well. However, evalu-
ating the thoroughness of the test case se-
lection method is an open problem.

Even thorough testing may not expose
all potential weaknesses in an IDS. Many
IDSs include programs that run on the
computers that they monitor. If intrud-
ers can take control of those computers,
they can manipulate the IDS programs
themselves. Also, if intruders have knowl-
edge of the database of intrusion signa-
| tures in the IDS, they can easily attempt
i attacks that are not represented in the

45

SOFTWARE PLATFORM COMMANDS

Our software platform has four groups of commands, each of whxch h‘iS dlﬂer— .

ent key commands.

BASIC SESSION COMMANDS

¢+ connect bost-

spawns a telnet process to connect to a host

¢ login user pussicord—logs in with a user name and password
¢ logout—logs out from the current user session
& ftp host user password—establishes an ftp connection to a host and logs in

with a user name and password

+ send_cmd conrmand—sends a command to a spawned process and retarns |

command output, if any

SYNCHRONIZATION COMMANDS

¢ sync_make_server— creates a synchronization server
+ sync_connect_server fost port#—cstablishes a conneetion from the Lhent ‘

to a'specific port on the server host

+ sync_add_client—adds a process as a client of the server (must be executed -

after the process is initiated)

¢ sync_server—starts the synchronization server for monitoring and receiv-

ing signals from clients

& sync process._id sync_id—establishes a synchronization point with an 1D rag
(process_id identifies the client ro the server)
¢ thread _exit process_id---informs the server that the client process is exiting

: 'COMMUNICATION COMMANDS

¢ sync data_snd process_id tag data—sends a message with an 1D g
(prb_cess_id identifies the sender to the server)

4 ‘sync____dat.a_rcv process_id sre_process tag—waits to reeeive a message with a spe-
cific ID tag from a source process (process_id identifies the receiver to the server)

f RECORD-AND-REPLAY COMMANDS

¢ record filenmne-—starts recording a command sequence into a file
¢ replay filenamel, filenanme2,.. —rveplays the activity recorded in the

‘spcw}iﬁcd files

database. The privacy of the intrusion |

database should be well protected.

OUR PLATFORM

Our software platform is based on the
Expect package* and the Tool Command

46

Language Distributed Programming
(Tcl-DP) package.® Expect s built on top
of Tcl and provides additional commands
for controlling interactive programs. Itis
particularly useful for simulating a human
user. Tcl-DP is an extension to Tel/Tk
and provides a suite of commands for cre-
ating client-server systemns.

Our platform extends Expect with
mechanisms that facilitate intrusion sim-
ulation, including basic session com-
mands for simulating common user com-
mands (such as login and telnet) and a
record-and-replay feature. You can also
use the platform to develop a concurrent
script set—a set of scripts that are executed
simultaneously to simulate a concurrent

| intrusion. The platform includes syn-

chronization and communication mech-
anisms for concurrent scripts.

The box “Software Platform Com-
mands” on this page shows some of the
basic session commands and other mech-
anisms provided by our platform.

¢ Basic session commands. The plat-
form provides several commonly used

. commands—emphasizing ones that re-

quire user interaction, such as telnet,
login, and ftp—as basic session com-
mands. These basic session commands
let you simulate many of an intruder’s
basic activities.

& Synchronization. The synchroniza-
tion mechanism lets you specify a fixed
execution order for important events,
even if they belong to separate scripts.

+ Communication. To accurately sim-
ulate a group of users working together,

| concurrent processes must be able to

communicate with one another (a process
here refers to the execution of a single
script that simulates a single user session).
You can specify send and recesve com-
mands in concurrent scripts so that the
corresponding processes can exchange
data with one another.

¢ Record-and-veplay. Our platform
provides a “record-and-replay” feature
to help you create scripts. You can record
a sequence of commands during a
recording session and then replay the

| recording at will. By using the record-

and-replay feature, you can create an in-
trusion script quickly and easily without
knowledge of Tcl and Expect. You can
also create and replay concurrent scripts,
complete with synchronijzation.

Platform in action. Expect and T'cl form
the core of the platform, providing much

SEPTEMBER/OCTOBER 1997

of the functionality needed to simulate |
user activity. The platform creates an
Expect control process as a substitute for
the user in an interactive session. Figure
1 shows an interactive telnet session.
Expect connects telnet’s standard input
(stdin) and standard output (stdout) to
the control process. The control process |
then issues a scripted command sequence
to the telnet process, just as if a user were
typing the commands. The output of
these commands is displayed on the ter- |
minal that invokes the script’s execution.
Thus, the simulation produces the same
output as a user. ‘
To see how our platform simulates
user activity, consider the following key
part of a simple script: ‘

Spawn a telnet process to
connect to machine alpha.
connect alpha

Login as user lee and check

if login succeeds or not.
if {!{login lee my
password]} {exit}

Send normal user commands
and then logout.
send_cmd "who"
send_cmd "ls"
send_cmd "ps"
logout

"This script uses the basic session com-
mands (explained in “Software Platform
Commands”) to simulate a user con-
necting to a computer system via telnet,
logging in, issuing some shell commands,
and then logging out.

SUPPORT FOR CONCURRENT
INTRUSIONS

Itis often necessary or desirable to re-
peat an IDS test. For example, you may
repeat a test to determine why the IDS
failed the test. In the repeated test, the
event sequence in the execution of the

1EEE SOFTWARE

Y

. > telnet alpha

2 SunOS Unix{Alpha)
ogin: lee

password: Last login:
. Fri Aug 23

alpha>

S

R SR

B

stdin stdout

Process for
simulating @
human user

Figure 1. Simulation of user activity during an intevactive telnet session.

| test scripts should be the same as in the

original test. To meet this condition, we
use synchronization techniques for con-
current script sets. Otherwise, there is no
guarantee that the overall event sequence
will stay the same from test to test, even
if the event order within each individual
process is fixed. Randomness in system
operations (such as variations in the du-
ration of disk I/O events) can cause this
nondeterminism in the execution se-
quence of a concurrent script set, result-
ing in a test you cannot reproduce.

Our synchronization mechanism al-
lows you to define a fixed order for the
important events in a concurrent script
set. Consider, for example, a concurrent

i password-cracking intrusion, in which

three intruders collaborate in an attempt
to crack passwords on a target machine.
Figure 2 lists the specific tasks for each
intruder: one intruder copies the cracker
program from a remote machine and
cleans up after the intrusion; one com-

¢ piles and runs the cracker program when

the program is available on the target
machine; one checks the cracker-pro-
gram output and logs in if a password is
cracked. In this concurrent intrusion,
several of the intruders’ commands must
be synchronized (as indicated by the ar-
rows in Figure 2). For example, the up-
permost arrow indicates that Intruder 1

must create the “attack” directory before
. Intruder 2 can change to that directory.
Figure 3 shows the simulation scripts
for this intrusion, along with the key el-
ements of our synchronization mecha-
nism. Each of the three simulated in-
truders has a separate script. The sync
command is used to create synchroniza-
tion points in the scripts. Each sync com-
mand takes an argument that specifies an
“ID tag” for the synchronization point.
Each ID tag is unique within a single
script and should be a single character
(number or letter) or a short string of
i characters. The synchronization matrix,
shown in the lower portion of the figure,
completes the specification of the syn-
chronization. The matrix has a column
for each script (process); the matrix en-
tries are the ID tags of the synchroniza-
don points shown in the script bubbles.
The rows of the matrix specify synchro-
nization events. Each row lists a syn-
chronization point for each process. Each
process must wait at that synchroniza-
tion point until each of the other
processes has reached its corresponding
synchronization point.
For example, the third row of the ma-
i trixindicates that process 1 should stop at
its synchronization point with ID tag “3”
! until process 2 reaches its synchroniza-
| tion point with ID tag “c.” The 0 in the

Intruder 1

Intruder 2

Infruder 3

Figure 2. A concurrent password-cracking intrusion. Arvows indicate the intruder commands that must be synchronized.

last entry of the third row indicates that
process 3 does not participate in this syn-
chronization event (as the matrix shows,
process 3 does not participate in any syn-
chronization events). You can specify dif-
ferent synchronization events simply by
changing the entries in the synchroniza-
tion matrix.

During the execution of a concurrent |

script set, a synchronization server (also
shown in Figure 3) monitors and controls
¢ synchronizaton of processes at
runtime according to the synchroniza-
tion matrix and
¢ communication among processes

send and receive data through the server.

Message passing can also be used as a
synchronization mechanism. The “sync_
data_rcv” command (used in the third

script in Figure 3) will cause a process to |

wait until data is received from a process
that sends data with a “sync_data_snd”
command (used in the second script in
Figure 3).

EXPERIENCE

We conducted several tests on a
widely used IDS called Network Security

Monitor. NSM monitors all packets |

transmitted on the host computer’s local
area network, associating each packet
with the corresponding computer-to-
computer connection. NSM primarily
uses string matching for its analysis,
searching for instances of certain strings
in the connections’ data streams. The
strings set is specified by the NSM ad-
ministrator, who chooses strings that in-

dicate suspicious behavior. NSM assigns
a warning value (between 0 and 10) to
each connection, based upon the strings
it matches and on other considerations
such as how often a similar connection
has occurred in the previous several days.
A higher warning value indicates that a
connection’s activity is suspicious.

We ran NSM on a Sun workstation
connected to the Computer Science
LAN segment at UC Davis, and tested

- its performance with simulated traffic

using our software platform. We first
performed intrusion identification tests.

| The tests revealed that NSM’s database
by storing messages and letting processes |

of intrusion signatures was missing some
of the signatures needed to detect the
simulated attacks. In NSM, you can solve
this problem by simply adding signatures
to the database.

We also performed stress tests that
measured the effect of increasing the
CPU load on the NSM host computer.
We found that as the load increased,
NSM missed an increasing number of
data bytes in the connections it was mon-
itoring. The stress tests thus demon-
strated that stressful conditions can af-
fectan IDS’s ability to detect intrusions.
We have described both the stress tests
and the intrusion identification tests in
more detail elsewhere.?

Concurrent intrusions. T'o escape detec-

distribute their activity over several con-
current sessions. The premise behind
this strategy is that the IDS will assign a
higher warning value to one very intru-
sive sessior than it will to several less in-
trusive sessions. We conducted some ex-

periments to test this premise. We first
created a small set of test scripts using
our software platform. Each script simu-
lates an intrusive command sequence.
Specifically, the scripts simulate

¢ transmitting a password file to a re-
mote host,

¢ cracking a password (via examina-

. tion of the password file),

¢ guessing a password using common
passwords, and

+ exploiting a vulnerability in a sys-
tem program (loadmodule) to obtain su-
peruser status.

We created corresponding concur-
rent script sets for each of these activities
by distributing the activity over several
scripts. Next, we activated NSM. For
each simulated intrusion, we ran the se-
quential script and then the correspond-
ing concurrent script set. We then com-
pared NSM warning values for the

sequential scripts with the warning val-

. ues for the concurrent script sets.

Table 1 shows the results. NSM as-
signed a warning value to each network
connection. Some of the sequential
scripts and all of the concurrent seript
sets initiated more than one network
connection, but for clarity’s sake we
show here only the maximum warning
values. For password file transmission,
the warning value for the concurrent

| script set was the same as the warning
tion by an IDS, intruders might try to |

value for the sequential script. And the
warning values were high. A possible ex-
planation is that the sequential script had
a very suspicious command or set of
commands that could not be divided
when the concurrent script set was
created. As a result, at least one process

SEPTEMBER/OCTOBER 1997

related to the concurrent script set was
just as suspicious as the execution of the
original sequential script. Password
cracking also had the same warning val-
ues for sequential and concurrent script
sets, but in this case the values were
lower. This is likely because NSM was
not configured to be sensitive to that
particular intrusion. ;

For the simulations of password
guessing and loadmodule attack, the
warning value for the concurrent script |

Seript For mtruder 1

telnet fo HostA,
login as userl’ :
make g dnr ncmed umxk
L. syne .
ip 1o hostB as userB
: .copy the crucker rogi
S e
| :end:ﬁp‘w‘s.#bnf |
. clean uplogout

Synchronization :
server

set was lower than the warning value for
the sequential script (dramatically so for

' the loadmodule attack simulation). In

these cases, it was possible to divide the
suspicious commands in the sequential

{ script between two or more processes |

related to the concurrent script set.

Findings. Taken together, our experi-
ments indicate that intruders may be able
to reduce their chance of IDS detection
by distributing their suspicious activities,

Script For intruder 2

 tolnet: to hostA
‘logm osuser?
R sym:a PR
o changc to the du‘ectory uﬂuck

" ‘Message ool o

pl p2 p3

Synchronization

matrix

Figure 3. Execution of the concurrent password-cracking intvusion.

IEEE SOFTWARE

! although this strategy is not always suc-

cessful. In future work, we plan to inves-
tigate the effects of this strategy on
different IDSs. For example, while NSM
evaluates each network connection in-
dependently, other IDSs evaluate a uset’s
entire history of activity, including the
current session and all previous sessions.
Against such an IDS, dividing up intru-
sive activity over several sessions would
not be effective, unless each session
involved a different user name.

Scrlpf for |nrruder 3

; TABLE 1
NSM WARNING VALUES: NETWORK CONNECTIONS

Maximum Warning Value

Intrusion description Sequential Concurrent
Lransmitting password tile 7472 7.472
Cracking a password 3.160

Guessing a password

FExploiting loadmodule flaw

Increasing sophistication. Because our pri- |
mary goal was to develop tools and a |
methodology for testing, we experi-
mented with a limited set of intruder
simulation scripts. However, our soft-
ware platform can be used to simulate
more sophisticated attacks. ‘

For example, consider the well-known
TCP sequence-number attack.” The ab-
breviated steps of the attack are as follows.
The intruder sends a connection request
packet to a server, and records the se-
quence number in the server’s reply. The
intruder then sends a second connection
request packet to the server, but this time
the packet has a forged source address of
a computer the server trusts. The in-
truder does not receive the reply; the

server sends the reply to the trusted com-
puter. To complete the connection-
opening protocol, the intruder sends an-
other packet that includes the sequence
number (plus one) of the server’s reply to
the trusted computer. The intruder pre-
dicts this sequence number based on the
sequence number recorded in the first
step of the attack. The attacker thereby
fools the server into accepting the con-
nection and thus has the power to harm
the server data or software.

The first step in creating a simulation of
this attack is to create programs (written
in C, perhaps) that can send connection
request packets and receive replies. You
can then develop an Expect script that runs
these programs in the appropriate se-

quence. Our extensions to Expect could
be used to create a simulated concurrent
attack: One process could make the first
connection request and receive the first
reply; a second process could make the sec-
ond connection request and—based on the
information received from the first
process—construct the packet with the
predicted sequence number and send it to
the server to complete the connection.

In the future, we may develop additional
performance objectives and tests for
IDSs based on the work of other groups,
such as tests that measure IDS processing
speed.® We may also extend our work by
developing a comprehensive testing facil-
ity for IDSs. The most challenging task in
that project would be selecting test data.
We could then develop user simulation
scripts from the test cases. To automate
the testing process, we could develop dri-
ver scripts and programs to operate the
IDS under test, run the simulation scripts,
analyze IDS output, and report test re-
sults. An independent group at Lincoln
Laboratory has started to build such a test-
ing facility.® We believe our work can pro-
vide both a blueprint, in our testing
methodology, and a useful tool, in our
software platform, for such efforts. @

ACKNOWLEDGMENTS

REFERENCES

Berkeley, Calif., 1994.

pp. 296-304.

pp. 181-199.

Don Libes of the US National Institute of Standards and Technology is the developer of Expect, which is the base of our software platform for
simulating computer users. We thank Becky Bace, our National Security Agency project monitor, for her guidance and enthusiastic support. This
work was funded by the National Security Agency INFOSEC University Research Program under contract number DOD-MDA904-93-C-4084.

1. B. Mukherjee, L. T. Heberlein, and K.N. Levitt. “Network Intrusion Detection,” IEEE Nerwork, May 1994, pp. 26-41.

2. N. Puketza, et al., “A Methodology for Testing Intrusion Detection Systems,” IEEE Trans. Software Eng., Oct. 1996, pp. 719-729.

3. GJ. Myers, The Art of Software Testing, John Wiley & Sons, New York, 1979.

4. D. Libes, Exploring Expect: A Tcl-based Toolkit for Automating Interactive Programs, O’Reilly & Assoc., Sebastapol, Calif., 1994.

5. B.C. Smith, L.A. Rowe, and S.C. Yen, Td Distributed Programming, T'cl-DP Distribution Package, Computer Science Division, University of California,

6. L.T. Heberlein et al., “A Network Security Monitor,” Proc. IEEE Symp. Research Security and Privacy, IEEE Computer Soc. Press, Los Alamitos, Calif., 1990,

7. S.M. Bellovin, “Security Problems in the TCP/IP Protocol Suite,” 4CM Computer Comm. Review, Apr. 1989, pp. 32-48.
8. K. Ilgun, RA. Kemmerer, and P.A. Porras, “State Transition Analysis: A Rule-Based Intrusion Detection Approach,” IEEE Trans. Software Eng., Mar. 1995,

9. R. Lippmann and H.M. Heggestad, “Lincoln Laboratory Intrusion Detection Research,” Proc. 4th Computer Misuse and Anomaly Detection Workshop, National
Security Agency, Ft. Meade, Maryland, to appear.

SEPTEMBER/OCTOBER 1997

Nicholas Puketza is
working on his doctorate
in the Computer Science
Department at the
University of California,
Davis. From 1988 to 1992
he was a software engineer
for Motion Control
Engineering. His research
interests include intrusion
detection, software testing,

and network security.
Puketza received a BS in electrical engineering
from Stanford University in 1988.

Ronald A. Olsson is a
professor and vice-chair of
computer science at the
University of California,
Davis. His research inter-
ests include computer se-
curity, concurrent
programming, program-
ming languages, verifica-
tion, systems software, and
operating systems. He is
the co-author (with Greg Andrews) of 7he SR
Programming Language: Concurvency in Practice
(Benjamin-Cummings, 1993).

Olsson received a BA in mathematics and com-
puter science and an MA in mathematics from the
State University of New York, Potsdam; an MS in
computer science from Cornell University; and a
PhD in computer science from the University of
Arizona. He is 2 member of the ACM.

Mandy Chung is a soft-
ware development
engineer at Hewlett-
Packard in Cupertino,
California. Her research
interests include concur-
rent programming
languages, parallel and dis-
uibuted computing, and
computer security.

Chung received a BS in
computer science from the University of Hong
Kong in 1990 and an MS in computer science from
the University of California, Davis, in 1996.

Biswanath Mukherjee is
professor and chair of
computer science at the
University of California,
Davis. His research inter-
ests include lightwave net-
works and network secu-
rity. He is on the editorial
boards of IEEE/ACM
Transactions on Networking
and the Journal of High-

Speed Networks.

Mukherjee received a BTech from the Indian
Institute of Technology, Kharagpur, in 1980 and a
PhD from the University of Washington, Seattle, in
1987. He is a member of the IEEE.

Address questions about this article to Puketza at Department of Computer Science, University of California,
One Shields Ave., Davis, CA 95616; puketza@cs.ucdavis.edu.

IEEE SOFTWARE

Classified Advertising

McMASTER UNIVERSITY
Faculty of Engineering
Faculty Positions in Software Design

McMaster University's Faculty of
Engineering is forming a new department
that will offer a new undergraduate pro-
gramme in Software Engineering as well as
the Faculty of Science's existing pro-
gramme in Computer Science.
Incorporating new faculty members, some
members of the Faculty of Engineering, and
the members of the current Department of
Computer Science & Systems, the new
Department's programmes will comple-
ment an established programme in
Computer Engineering that is offered by the
Department of Electrical and Computer
Engineering. The new programme is de-
signed with the philosophy that Software
Systems Engineering is a new speciality
within engineering and it is our intention
to have it accredited by the Canadian
Engineering Accreditation Board (CEAB).

We have openings for one senior tenured
and several junior tenure-track faculty
members interested in any aspect of
Computer System Design, commencing in
January or July, 1998. Applicants should
have a Ph.D. in either computer engineer-
ing, electrical engineering, computer sci-
ence or mathematics and have experience
either in industry or teaching appropriate
to the level of the appointment. The suc-
cessful applicants must be able to teach
both graduate and undergraduate courses
in software design, real-time systems, in-
formation systems, performance predic-
tion, and other aspects of computer system
design. The successful candidate for the
senior appointment will be expected to
play a major leadership role in the devel-
opment of the new department. All ap-
plicants must have a strong and demon-
strated commitment to research in a
university environment and will have nor-
mal faculty administrative and committee
responsibilities.

Ability to be registered as a Professional
Engineer in the Province of Ontario or be-
come registered within three years of.
his/her appointment will be considered an
advantage.

McMaster University has an employment
equity programme that encourages appli-
cations from all qualified candidates, in-
cluding women, aboriginal people, persons
with disabilities and visible minorities. In
accordance with Canadian Immigration re-
quirements, priority will be given to
Canadian citizens or permanent residents
of Canada.

These positions are subject to final bud-
getary approval; salary is commensurate
with experience and qualifications.
Applications, including a curriculum vitae,
a statement detailing research and teach-
ing interests, and the names of five refer-
ees should be sent to: Dr. M.Shoukri,
Dean, Faculty of Engineering, McMaster
University, 1280 Main St. West, Hamilton,
ON Canada L8S4L7.

The University will begin evaluating ap-
plications on September 30, 1997, but will
continue to accept publications until all
positions are filled.

