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Abstract

Qur objective in this paper is lo survey some of
the inherently difficult issues that will be faced by a
designer of any imperative debugging language. To-
ward this end, we outline a powerful debugging lan-
guage that we call GDL (for General-purpose Debug-
ging Language), justify the particular set of mecha-
nisms that we have included in GDL, and address the
issue of the minimalily of this set. We focus especially
on the semantic issues that arise when the language’s
mechanisms are combined—in short, the issue of being
well-integrated. In our case, we see that GDL’s mecha-
nisms are well-integrated; however, some mechanisms
are rather inefficient for many debugging applications.
We, therefore, ezpand GDL’s mechanisms, but in do-
tng so, new semantic problems arise. We then show
how these semantic problems can be avoided by follow-
ing certain coding conveniions.

1 Introduction

This paper addresses some of the central semantic
issues inherent in the design of imperative debugging
languages. The key aspect that distinguishes a de-
bugging language from conventional programminglan-
guages is that it must provide mechanisms that control
execution of the program being debugged, allow explo-
ration of that program, and, to be reasonably useful,
allow these activities to be realized programmatically.
By themselves, these requirements are nothing special.
What makes designing debugging languages interest-
ing and challenging is the integration of these require-
ments.

Languages for debugging have been largely ne-
glected in the modern literature, which might lead one
to conclude that no outstanding problems in the de-
sign of debugging languages remain to be solved. How-
ever, there has been negligible progress toward solv-
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ing many fundamental problems of debugging since
the advent of “source-level” debugging (i.e., debug-
ging languages able to recognize entities present at the
level of the source code language, e.g., statement labels
and variable names). Moreover, the lack of attention
to languages for debugging is primarily responsible for
this lack of progress. Recent work in the debugging of
sequential programs has focused almost exclusively on
graphical interfaces to a set of underlying linguistic
features that, in itself, has remained essentially un-
changed for perhaps 20 years.

We have achieved significant progress in debugging
by focusing initially on the debugger’s language. Be-
cause a (sufficiently expressive) debugging language
allows one to speak precisely and unambiguously
about the low-level details of debugging, as well as
to rigorously formulate higher level abstractions, this
approach has provided an ideal vehicle for our research
into debugging. That research has already resulted in
a production-quality debugger, Dalek [11, 12], whose
debugging language is quite respectable in its expres-
siveness and power. Once progress with a debug-
ger’s language has been made, the results should be
amenable to “translation” - i.e., perhaps essentially
identical semantics could be presented to the user
packaged in a friendlier syntax, or provided via graph-
ical modes.

Our objective in this paper is to survey some of
the inherently difficult issues that will be faced by a
designer of any imperaiive debugging language. We
broaden our scope in the later sections to include
certain non-procedural debugging language constructs.
We shall generally speak as though our debugger is
dealing with a compiled form of its target program —
i.e., one that is executing directly on some underlying
hardware platform. However, many of the semantic
and language-design issues we raise are equally rel-
evant to a target program that is being interpreted
instead — i.e., running on a virtual machine com-
posed of software, rather than of hardware and oper-



ating system calls. Many of the tradeoffs we consider
for implementation of the debugging language differ
substantially between these two cases; our discussion
highlights these differences.

The rest of this paper is organized as follows; ad-
ditional details appear in [3]. Section 2 introduces
relevant background material on debugging. Section
3 outlines a powerful debugging language that we call
GDL (for General-purpose Debugging Language). Im-
portantly, we justify the particular set of mechanisms
that we have included in GDL. We also address the
issue of the minimality of this set. Section 4 describes
a key issue in the design of any language: semantic
issues that arise when the language’s mechanisms are
combined—in short, the issue of being well-integrated.
In our case, we see that GDL’s mechanisms are well-
integrated; however, some mechanisms are rather inef-
ficient for many debugging applications. In Section 8,
therefore, we expand GDL’s mechanisms, but in doing
50, new semantic problems arise. Section 6 shows how
these semantic problems can be avoided by following
certain coding conventions. Finally, Section 7 contains
some reflections on our work and relates it to previous
work.

2 Preliminaries: Architectural and

System Support for Debugging

To anchor our discussion solidly in the real world,
we make certain minimal assumptions about the sys-
tems architecture of the platform for which the debug-
ging language is to be implemented. Such a framework
is required regardless of whether the underlying plat-
form consists of an operating system running a com-
piled target program directly on a physical CPU, or
whether the target program is instead interpreted on
another software virtual machine. We assume that
the underlying platform offers no more than the four
most common debugging primitives, namely the capa-
bility for a debugger to control and monitor its target
process by:

o reading any memory location in the target’s ad-
dress space (including registers),

e writing any memory location in the target’s ad-
dress space (including registers),

o single-stepping the target process — i.e., causing
it to execute a single (virtual-) machine instruc-
tion — without otherwise modifying its address
space in any manner, and
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o setting a code breakpoint anywhere in the target’s
address space.

For a compiled target, we shall assume that the de-
bugger and its target program run as two different
processes in separate address spaces. Although this
two-process debugging paradigm corresponds to the
situation in typical UNIX systems, it is not the only
possible memory model for the debugging of compiled
targets. For example, VMS runs VAX DEBUG (14],
in conjunction with the target program, as a single
process. The commingling of what otherwise would
be separate address spaces is accomplished by link-
ing the debugging routines directly into the target’s
executable file. However, this single-process debug-
ging schema is more typical of the situation encoun-
tered when working with an interpreted target pro-
gram, since in that case the interpreter, target rou-
tines, and debugging routines are usually all executed
by the same process (e.g., [8]).

For compiled programs, we prefer {2, 3] the two-
process model: it avoids possible perturbation of a
target’s behavior due to the presence of a debugger
residing in the same address space and, conversely,
it avoids potential corruption of the debugger, e.g.,
by errant pointers in the target. The runtime perfor-
mance of the two-process model is, however, gener-
ally more costly than that of the single process model:
a context switch is needed each time control trans-
fers back and forth between the debugger and target
processes. (Until [9], for a debugger even to read or
write the target’s address space necessitated a con-
text switch.) We use the number of context switches
as our primary metric of runtime efficiency. However,
for targets that are interpreted rather than compiled,
the debugger and the target will occupy the same ad-
dress space. In this case, no context switch is neces-
sary for control to transfer between the target’s code
and that of the debugging routines. Therefore, in a
single-process debugging schema, the number of con-
text switches is not a relevant criterion; instead, the
efficiency of the primitives themselves is.

Finally, debugging requires support from compilers.
For example, compilers must pass on symbol table in-
formation to debuggers. Besides the usual informa-
tion that a compiler’s symbol table may contain, the
“debugging” symbol table also contains information
that allows, for example, a source line number to be
mapped to an address (or addresses) in the target pro-
cess.



3 The Building Blocks of GDL

Below, we sketch the outline of GDL, a powerful
language for debugging. The semantics of GDL were
designed based on extensive debugging research con-
ducted during the last several years. One outgrowth
of that research effort was Dalek — a debugger dis-
tinguished from the previous “state of the art” in de-
bugging primarily by its fully programmable language,
and by the nature of its language support for user-
definable events. Dalek’s features also included pro-
visions for representing hierarchical events, thus en-
abling users to monitor the behavior of their target
programs in terms of the abstractions they found most
relevant. The experience we and others have gained
building and actually using the Dalek language has led
us to a framework that captures the essential aspects
of debugging, which is what GDL incorporates.

3.1 Special-Purpose Language Features

We begin our design of a debugging language by
selecting primitives that are specific to the applica-
tion domain of debugging. Perhaps not surprisingly,
we choose four such primitives — read, write, step,
and break — that correspond roughly to the four ba-
sic debugging capabilities supported by the hypothet-
ical system architecture. At this stage, it is immate-
rial whether these special-purpose linguistic primitives
have the syntactic form of statements, commands, or
predefined functions.

An interesting issue is the question of the mini-
mality of our primitives. Although step and break
are not semantically equivalent, each can simulate
the other.[3] (A break primitive requires an additional
primitive to resume execution of the target.) The
tradeoffs between step and break include efficiency con-
cerns, whether code space must be modified (prob-
lematic for dynamic linking, shared code, and self-
modifying code), and availability on existing systems.

3.2 General-Purpose Language Features

We choose to embed our special-purpose debug-
ging features in a general-purpose language providing
such familiar constructs as if statements, while loops,
block structure allowing local and global variables, and
library and user-definable procedures and functions.
Let us suppose that all our special-purpose linguistic
primitives are incorporated into this language as pre-
defined functions, and let us allow the specific mean-
ings of their incoming parameters and return values
to remain unspecified for the moment.

3.3 Motivation for GDL’s Feature Set

Some readers might question whether this language
is too “rich” for our needs. One very basic premise of
our philosophy is that the debugging language should
be sufficiently powerful and expressive that it encour-
ages a user to explore and analyze the state and be-
havior of the target program, rather than penalizing
such attempts to glean further insights.

As an example, suppose at some point during de-
bugging, the user desires to print out the contents of
a linked list in the target program. If GDL lacked ei-
ther a conditional statement or a looping construct, it
would make the user reluctant even to undertake such
an activity due to its tedious and manually repetitive
nature. Similarly, the traversal of a binary tree struc-
ture in a target process becomes straightforward if
GDL provides recursive functions and local variables.

On the other hand, some readers might claim that
GDL is too low-level, since it lacks truly high-level con-
structs, such as a print_linked_list() predefined func-
tion. However, we feel that such routines should be
provided in a library or written by the user, rather
than cluttering the language itself with additional
(not-at-all-)primitive constructs. The above example
illustrates this point well: the code to traverse a linked
list depends on the list’s specific representation, i.e.,
whether it is circularly linked, has dummy head and
tail nodes, etc.

Clearly, debugging variables, both local and global,
are needed. It is convenient that they be dynamically
typed.

3.4 Naming and Scope

A syntactic issue—referents of names— has a pro-
found effect on the clarity of our subsequent presen-
tation of semantic issues. Fundamentally, the issue
is one of scope: Both static and dynamic scoping
models are equally unsuitable for our purposes, be-
cause GDL must span two conceptually disjoint name-
spaces. Entities in GDL should not mask the exis-
tence of identically-named objects in the target pro-
cess. Conversely, target objects should not mask GDL
objects.

We, therefore, adopt the syntactic convention that
names beginning with a ‘8’ (or some other prefix not
used in the source language of the target) refer to enti-
ties in the debugger’s name space. This syntax allows
us to make the read and write primitives implicit—
their invocations driven by GDL’s expression evalua-
tion mechanism from positional context. This scheme
is exactly that employed by the GNU project’s gdb



debugger [13]. We also follow gdb’s convention of “re-
serving” a small number of variable names for denot-
ing the registers of the target process, e.g., $PC for
the Program Counter register, and $SP for the Stack
Pointer register. For interpreted targets — where the
underlying platform is a virtual machine — we assume
that conceptual counterparts to $PC and $SP exist.
See [3] for a more detailed discussion of the different
syntactic possibilities and further justification of our
choice.

4 Composing Higher Level Special-
purpose Debugging Constructs

One design requirement of paramount importance
is that all of GDL’s disparate constructs should be
well-integrated. We illustrate what well-integrated
means in the context of debugging by two simple ex-
amples, which serve as a gentle introduction to more
complex issues and compositions. Consider the follow-
ing code:

while ( $SP >= $old_sp )
$step();

It means that the target continues to execute until
the current (i.e., current at the time this construct
was initiated) function or procedure returns of its own
accord. Consider now the following code:

while ( -1 != $step() )
if ( $start_of_source_line($PC) )
$print ( $source_text (
$file_containing_address($PC),
$line_containing_address($PC)

) ),

It achieves the effect popularly known as “trac-
ing” the target’s execution. The loop terminates
when the target process terminates. The functions
$source.text(), $start_of.source.line(), etc. are pro-
vided as supporting library routines, which use symbol
table information, rather than as GDL primitives.

The use of the while-step construction in the above
examples for a compiled target incurs a significant run-
time performance penalty given our two-process de-
bugging paradigm, since its semantics logically neces-
sitate a series of context switches as control is trans-
ferred back and forth between the debugger and the
target.

The $step() primitive can be used to build higher
level step functions. For example, the granularity of

such step functions might be a “source_expression”, a
“source_statement”, or even a “source_block”. In addi-
tion, the behavior of stepping might be to step “into”,
“through”, or “out_of”. An actual implementation
would require additional information from a compiler,
but is readily achieved in an interpreter.

4.1 Importance of while-step

While-step constructs, as illustrated in the previ-
ous examples, provide a clean, simple mechanism for
expressing and automating many useful debugging ac-
tivities. Although (in the two-process model) their use
entails substantial performance penalties, nevertheless
it may be acceptable (and perhaps even desirable) in
such cases for the user to leave the debugger unat-
tended for a lengthy period to run in “batch” mode,
its behavior governed only, but precisely, by the blocks
of instructions comprising its GDL program.

The next subsections introduce two more applica-
tions for the while-step construct whose semantics are
essential for solving many real-world debugging prob-
lems. Although alternative GDL constructs realize the
same functionality, we express these applications in
terms of while-step loops because this approach clar-
ifies the absolutely fundamental nature of their se-
mantics. In fact, minor variants of these applications
comprise a complete set of lower-level debugging con-
structs. Later, we shall explore an alternative set of
methods that minimizes the performance degradation
incurred by the while-step construct for a compiled
target.
4.1.1 A while-siep Construct that Realizes the
Semantics of a Code Breakpoint

The functionality of a code breakpoint can be simu-
lated by means of the $step() primitive:

while ( $PC != $breakpoint_address )
$step();

Because most architectures provide a breakpoint
capability, our purpose in exhibiting this construction
is primarily expository: It is important to realize that
the semantics of the code breakpoint may be viewed
as a spectal case of a more general semantic concept
in debugging:

Allow the target program to execute until a
given, well-specified Boolean condition is sat-
isfied.

In the case of a code breakpoint, the Boolean condition
is merely that shown in the conditional test of the
above while loop.



4.1.2 A while-step Construct that Realizes the
Semantics of a Data Watchpoint

Figure 1 shows a while-step construct that allows one
easily to implement an extremely useful debugging id-
iom: the so-called “data watchpoint”. That term de-
notes some mechanism that causes execution of the
target process to be suspended — whereupon control
of the entire debugging computation is returned to the
user — whenever the target process alters the contents
of some particular, “watched” memory location.!

$x_ptr = (struct whatever_type *) &x;
$last_x = x;
while ( * $x_ptr == $last_x )

$step ();

Figure 1: A GDL while-step construction to imple-
ment a global “data watchpoint”.

Because the construction in Figure 1 is designed to
watch a global variable (“x”), it is necessary to em-
ploy a debugger variable that points to it, rather than
referring to “x” by name. In this manner we avoid
potential scoping problems caused by $step()-ping the
target into a block that declares a local variable also
named “x”.

By using GDL, one may employ various while-step
loops to monitor every detail of a target process’ be-
havior in terms of its Read, Write, and Execute modes
of accessing memory (see Section 4.2.2 and [3]). In
essence, these constructs satisfy the requirements for
low-level completeness of a debugging language, since
they allow a GDL program automatically to monitor
the behavior of the target in sufficient detail to verify
(i.e., prove) the reachability of any target state within
a limited number of steps.

4.1.3 Combined Usage of while-step Loops

To conclude our “proof by demonstration” that
certain GDL language features are indeed well-
integrated, Figure 2 gives an example of how the vari-
ous types of while-step constructs can be combined to

!Data watchpoints are not included as a GDL primitive be-
cause very few architectures provide them. The Intel 386 pro-
vides only four watchpoint registers; that is the most support
commercially available. A few operating systems provide some
support here, such as marking pages as Read-only; attempts to
write to those pages are then trapped. Of course, most inter-
preters can watch an arbitrary number of variables at very little
cost.

monitor several independent aspects of a target pro-
gram’s behavior simultaneously.

$x_ptr = (struct whatever_type *) &x;
$last_x = x;
while ( -1 != $step () ) {

if ( $PC == $breakpoint_address ) {

$print ("Code breakpoint encountered at");
$print (" Ox%x\n", $breakpoint_address);
$commence_interactive_dialog();

}

if ( * $x_ptr != $last_x ) {
$print (“Data watchpoint triggered for");
$print (" variable ’x’.\n");
$commence_interactive_dialog();
/* "Reset" the watchpoint. */
$last_x = * $x_ptr;

Figure 2: Combined GDL while-siep loops.

Figure 2 also contains calls to $commence_inter-
active_dialog(), another debugger library routine. This
allows the user to engage in an interactive dialog with
the debugger — perhaps inspecting the values of other
variables, viewing the runtime stack of the target pro-
cess, etc. — without having to exit all the way out to
the top-level command interpreter. Instead, when the
user chooses, he may return control to the (suspended)
GDL block that issued the call to $commence_inter-
active_dialog().

4.2 Efficient Alternatives to while-step

We now describe alternative constructs that em-
ploy the $break() primitive rather than $step() in order
to achieve an improvement in relative runtime perfor-
mance under the two-process debugging paradigm.

4.2.1 Binding GDL Code to a (Break)Point

A parameter of $break()) specifies a block of GDL code;
that block is executed as soon as control returns to
the debugger after the target encounters the corre-
sponding breakpoint. We say that the block of code
is bound to the breakpoint address. For example, the
code in Figure 3 counts the number of times control
flows through a particular address in the target.



$break ( $breakpoint_address,
"{ static $count = O;
$count = $count + 1;
$resume(); }" );

Figure 3: Simple block of GDL “breakpoint code”
bound to an address in the target process.

4.2.2 Implementation of Data Watchpoints
via Broadcast Code Breakpoints

A few debuggers, notably VMS DEBUG and Dalek,
allow the user to “broadcast” breakpoints en masse to
all machine instructions in the target program hav-
ing a particular opcode. Although GDL does not
provide a separate debugging primitive to accom-
plish such broadcasting, by utilizing various debug-
ger library routines, the user can compose one fairly
easily.[3] The basic idea is to place a breakpoint at
every “STORE-like” instruction; this can be accom-
plished using a while-loop that scans the code, disas-
sembling instructions, and establishing breakpoints at
each “STORE-like” instruction. Associated with each
of those breakpoints, a block of code detects whether
the watched variable has changed from last break-
point. This approach, ignoring the initial setup cost,
generally requires significantly fewer context switches
than a while-step construct.

4.2.3 Semantics of Multiple Code Break-
points at the Same Address

The ability to set multiple breakpoints at the same tar-
get address is desirable, e.g., to prevent a broadcast
breakpoint from interfering with a conventional break-
point. We therefore refine GDL’s semantics for $re-
sume() by specifying that it actually transfers control
to the target only if it is invoked from the last break-
point to be set at a particular target address; other-
wise it transfers control to the code associated with
the next breakpoint set at the same address. These
enhanced semantics allow users to employ strategies
involving broadcast breakpoints without concern for
unexpected interactions. By contrast, most existent
debuggers have notoriously ill-defined or undefined se-
mantics in this regard.

5 Semantic Interference between the
$break() and $step() Primitives

We have shown how every detail of a target pro-
gram’s behavior can be monitored by GDL constructs
composed of the (implicit) $read() debugging primi-
tive in conjunction with either the $step() exclusive-
or the $break() debugging primitives. Thus, on ar-
chitectures that provide a $step() debugging primi-
tive but lack code breakpoints and data watchpoints,
GDL can still implement these by using $step(). Sim-
ilarly, on architectures that provide code $break()-
points but lack a $step() debugging primitive and data
watchpoints, GDL can still implement these by using
$break(). But what if the underlying platform pro-
vides both of these debugging primitives? Might the
user safely mix GDL constructs composed using both
primitives, and if so, how? The answer is, “Yes, but
very carefully”!

5.1 A Free-Floating Watch-Loop

The example in Figure 3 illustrated how a block of
GDL code can be viewed as being bound to its corre-
sponding target breakpoint address. A “program” in
GDL might consist of several such “breakpoint blocks”
bound to different addresses in the target, in addition
to a series of GDL statements executed directly at the
interactive command level. In contrast, a while-step
block, rather than being bound to a breakpoint ad-
dress in the target, is associated with an entire range of
code addresses in the target. Another significant dif-
ference is that a top-level while-step block, although it
has a single GDL entry point and a single GDL exit,
causes the flow of control to depart GDL’s address
space entirely, before (presumably) having it re-enter
the block. When a while-step construct — such as one
designed to watch a global variable in the target — is
issued from the debugger’s interactive command level,
we shall say that it is free-floating if it allows transfers
of control to and from any address in the target’s code
space.

5.2 A Loosely-Bound Watch-Loop

In the two-process debugging paradigm, a context
switch is required every time control is transferred be-
tween the debugger and the target process. This de-
grades runtime performance: a free-floating while-step
loop taking strides the size of machine instructions in-
curs essentially the same performance penalty as set-
ting breakpoints at every instruction in the target’s
code space. Although one should strive to el:minate



any unnecessary context switches, this does not rule
out while-step loops entirely in a two-process model.
For example, if the user desires to watch a global vari-
able in the target, s/he may be confident that its value
is not altered within particular sections of the tar-
get’s code whose execution accounts for a significant
fraction of the target’s total runtime. Conversely, the
user may be confident that alterations to the watched
global variable are issued only from within a few, nar-
row sections of the target’s code space.

In such cases, for runtime efficiency in a two-process
schema, the user may employ what we term a loosely-
bound watch-loop. This is a simple variant of the
while-step construct that is only active over restricted
sections of the target’s code, and whose lifetime thus
spans considerably less than that of the target’s full
extent. In contrast to a free-floating watch-loop, a
loosely-bound watch-loop is typically initiated within
a block of GDL code that is bound to a breakpoint
in the target. In addition a loosely-bound watch-loop
normally terminates once the target’s $PC advances
beyond a certain point. The classic application for
a loosely-bound watch-loop is to monitor changes to
a local variable. One sets a breakpoint at the entry
to the relevant procedure in the target, and then as-
sociates with it GDL code similar to that shown in
Figure 4.

$break ( $entry_to_procedure("foo"),
"{ static $current_sp = $SP
static $last_x = x;
while ( $SP >= $current_sp ) {
$step();
if ( $SP == $current_sp
&& x !'= $last_x ) {
$print ("local var changed");
$print (" from ¥%d to %d\n",
$last_x, x);

$last_x = x; Py o

Figure 4: A loosely-bound GDL while-step loop to
watch a local variable named “x”.

5.3 Faully Monitoring due to Collisions
between Blocks of Code

Having introduced sufficient nomenclature, we can
now characterize any GDL block as being bound,
loosely-bound, or free-floating with respect to the tar-
get’s code space. We now address the original topic
of this section, namely, whether on architectures that

258

provide both the $step() and $break() debugging prim-
itives, it is possible to mix bound blocks with loosely-
bound or free-floating blocks. Unfortunately, con-
structs based on one of these debugging primitives are
not yet well-integrated with those based on the other
primitive.

When used in isolation, each of our GDL constructs
does indeed behave as advertised. But combining
them may produce extremely misleading results. Con-
sider what may be the simplest combination of GDL
constructs into a GDL “program”. Suppose we bind
the block of breakpoint code shown in Figure 3 to
a particular target address, and then employ the free-
floating while-step loop of Figure 1 to monitor changes
to a global variable. Assuming the flow of control in
the target eventually reaches the breakpoint address,
the watch-loop will $step() on the user’s breakpoint
— with results that are not (yet) covered by the lan-
guage definition. If the while-step loop were to ignore
the presence of the breakpoint, then (at the very least)
the GDL block of Figure 3 would not be executed, re-
sulting in an incorrect flow count past that point. This
is obviously unacceptable.

Because the results of such a “collision” are clearly
of vital importance for the integrity of the debugging
computation, the GDL language definition must cover
such situations, rather than leaving the semantics up
to each particular GDL implementation to deal with
in its own way. But what are the “right” semantics
in this case? Our guiding light will be the Principle
of Least Surprise. In the (quite typical) situation we
have just described, it is clearly the user’s intention to
simultaneously monitor multiple unrelated aspects of
the target program’s behavior. We accommodate such
desires by specifying that the GDL language defini-
tion requires that, whenever one GDL block causes a
transfer of control to the target process — e.g., via the
$step() primitive — execution in that GDL block does
not terminate, but rather is suspended. Should the
flow of control “immediately” return as anticipated
— i.e., from the target directly to that same GDL
block — then execution of that suspended GDL block
will be resumed at the statement following the $step().
On the other hand, if, upon returning from the target
process, the flow of control re-emerges in a different
GDL block (typically because the target has encoun-
tered a breakpoint, or received a signal “trapped” by
another GDL block), then the original GDL block is
to remain in its suspended state, pending its eventual
resumption.

But our simple GDL example “program” will still
not behave as intended with these semantics. The



key point is that, after the first breakpoint was en-
countered, the watch-loop has remained suspended,
“asleep on the job”, and thus has been oblivious to any
changes in the target’s state. More specifically, the
while-step loop is suspended once it executes $step(),
transferring control to the target process. The target
encounters the breakpoint, suspends, and control then
re-emerges in the block of GDL code associated with
that breakpoint. The statements shown in Figure 3
are executed sequentially, with the last statement in
that block invoking $resume(), thus initiating a trans-
fer of control back to the target process. The user’s
intentions will not be correctly implemented, because
after the first breakpoint is encountered, the while-
step loop will remain suspended until the target ac-
tually terminates! Only after the target’s termination
(according to the GDL language definition) will the se-
ries of suspended GDL block activation records begin
to “unwind”.

However, our attempt to specify GDL’s semantics
has not been a failure. On the contrary, GDL’s se-
mantics are now sufficiently robust to handle even the
most complex debugging activities. What our simple
example demonstrates is rather a misunderstanding
on the part of the user regarding certain details of
a properly structured GDL program. Yet the nature
of debugging is such that it is unrealistic to require
the user to know, in advance, exactly how many and
which specific aspects of the target’s behavior s/he
desires to monitor during runtime. Therefore, a user
must be able incrementally to write a GDL “program”
that is composed of semantically independent blocks
— i.e., GDL blocks whose execution by the debug-
ger will not interfere with the correct functioning of
other GDL blocks. Thus a block of GDL code — such
as a free-floating while-step loop — should function
as intended regardless of the actions of subsequently
written blocks of GDL code (e.g., a GDL block bound
to a breakpoint).

6 Structured Programming in GDL

6.1 Conceptual GDL Program Structure

An invocation of the GDL $break() primitive does
not result in an immediate transfer of control to the
target; rather, it effectively implants a Remote Pro-
cedure Call to the debugger in the target’s code. To
the unwary user, the effect may be akin to “booby-
trapping” the target program: If one sprinkles break-
points throughout the target’s code to monitor various
activities, yet fails to follow a disciplined coding style
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when writing their associated GDL code, it will be
almost impossible to predict the resulting trajectory
taken by the single thread of control on its journey
through the combined GDL-target program. Undis-
ciplined use of breakpoints is harmful for exactly the
same reasons that “GOTO” was considered harmful
— because it leads to spaghetti code. In the absence
of a disciplined GDL coding style, the appropriate
paradigm for debugging is no longer a simple two-
process master-slave model, but rather a model involv-
ing an arbitrary number of independent co-routines —
since in effect, a block of GDL code may behave as an
independent co-routine. The user can indeed be confi-
dent that, e.g., by executing a $step() primitive, con-
trol will transfer immediately to the target program.
But it would be a mistake for the user to assume that
the next transfer of control from the target to the de-
bugger will be a “return” to that same block. Yet
surely it should not be necessary to write a re-entrant
GDL program in order to debug a sequential program
that is executed by a single thread of control!

6.2 Ensuring Cooperation between Free-
floating Watch-loops and Breakpoint
Blocks

Interference between while-step loops and GDL
code associated with breakpoints can be prevented by
following a simple coding convention. Upon entry to
a while-step loop, the user increments a global debug-
ger variable (it is initially zero). When writing GDL
breakpoint code, the user must then guard each call
to $resume() by checking the value of that global vari-
able, e.g.,

if ( $in_while_step_loop == 0 ) $resume();

If $in_while_step.loop is non-zero, execution will
“fall off the tail” of that block of GDL breakpoint code,
thus resuming execution in the suspended while-step
loop.2

Naturally, the user must remember to include code
at the loop exit to decrement $in_while_step_loop.
6.3 Preventing Interference between
Loosely-bound Watch-loops

If the user employs several strictly nested loosely-
bound watch-loops — e.g., if target procedure “foo”

2This semantics is quite consistent with the Principle of
Least Surprise. If, when execution fell off the tail of some GDL
breakpoint code, there were no underlying suspended while-step
loop, then control would “land” at the top interactive level, en-
gaging the user in dialog just as one would expect.



calls procedure “hoo”, and two watch-loops monitor
variables local to each procedure — then interference
cannot occur. However, if there is even the slight-
est possibility that, at some point during the target’s
execution, both watch-loops should be active simul-
taneously, then either the user should recast all his
constructs in terms of breakpoints and avoid $step()
entirely, or else use an entirely different construction,
as shown in Figure 5. This construct allows unre-
stricted use of code breakpoints, and allows the user to
employ whatever quantity of “hardware” data watch-
points are provided by the underlying platform. Once
those hardware resources are exhausted, the user may
employ loosely-bound watch-loops, albeit only in a
tightly-controlled fashion. In Figure 5, new watch-
loops are not coded directly, but instead are “regis-
tered” with a single, top-level while-step loop, which
is responsible for “waking” each watcher at the proper
intervals during the target’s execution.

One crucial difference is that watch-loops are no
longer sovereign constructs that independently in-
struct the target to $step(), but rather have a non-
procedural aspect that expresses what to do, but not
how to do it. Thus, the single top-level loop is able to
coordinate their requests in a manner that precludes
inadvertent interference. Figure 5 also incorporates
a construct to optimize runtime performance: It in-
vokes $step() only within intervals of the target’s ex-
ecution which are of interest to registered watchers.
During other periods, it invokes $resume(), allowing
the target to run free at full speed until it encounters
a breakpoint.

7 Discussion

One of the inspirations for our work is [6). However,
that work did not address the fundamental issues that
we do in this paper. Further details on our work ap-
pear in [2].

Common existing debuggers (e.g., dbx [4], gdb, sdb
[7], and VMS DEBUG) for compiled programs are
not as attractive as GDL since their debugging lan-
guages are not as expressive; many of these debug-
gers also suffer from ill-defined or undefined semantics
for combinations of their features. Some interpreters
also provide substantial debugging aid (e.g., for Saber-
C [8] and for SNOBOL [5]). These are successful,
to a degree, in providing powerful debugging mech-
anisms, but have not explored the fundamental issues
addressed in this paper.

Higher level abstractions, such as events [1, 10,
11, 12}, are also useful for debugging. They are
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not just convenient, but essential for debugging large,
realistically-complex target programs. Such higher
level abstractions require a well-defined language on
which they can be built. They are, however, poten-
tial sources for additional code interference, akin to
the interference seen earlier between watch-loops and
breakpoints. However, if the lower level mechanisms
are well-integrated, which we described earlier how
to do, then the higher levels can be well-integrated
among themselves as well as with the lower level ones.

Our main concern in this paper is with the seman-
tics of debugging, so any reasonable syntactic vehicle
suffices if its semantics are clear and precise. We have
chosen a C-style syntax, primarily for expository pur-
poses. We choose not to address the valid question of
whether the debugging language should appear syn-
tactically similar to the target language, or whether it
should be clearly distinguishable from the source lan-
guage of the target program. That question is inex-
tricably linked with conditions of use — e.g., whether
the user community is comprised of expert or novice
programmers, whether mixed-language debugging is
to be supported, etc. In addition, for an interpreted
target (where the underlying architectural platform is
a virtual machine) there may be no choice but to use
the same language for the debugging routines as was
used to write the target program.

One interesting area of future research is to study
the formal semantics of debugging languages such as
GDL. Work on the semantics of coroutines or concur-
rent programming languages should be applicable.
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