Towards a framework for worm-defense evaluation

Senthilkumar G Cheetancheri*

ABSTRACT

Computer worms are a serious problem. Much research has
been done to detect and contain worms. One major de-
ficiency in most research is that the claims are supported
by theoretic models or simulations only and not by realis-
tic tests. Network testbeds such as emulab and deter can
be used to conduct worm experiments on networks of a few
hundreds nodes. However, setting up such an experiment
is not trivial. In this paper, we describe a wrapper around
emulab to deploy such experiments quickly. We also demon-
strate its use by evaluating an example worm containment
strategy.

General Terms

Worm defense, Testbeds, evaluation

Keywords
EMULAB, DETER, worm defense

1. INTRODUCTION

Computer worms are a serious problem, and it is likely
that future worms will carry a lethal payload and will be
more difficult to detect; for example, future worms are likely
to be stealthy and could be polymorphic. Much research
has been carried out in recent years to detect and respond
to worms, where the goal is to produce a defense that in
real time can detect a worm and quarantine sites not yet
infected[11, 20]. One major deficiency in most of the re-
search is that the claims are not supported by realistic tests.
Most claims are supported by theoretic models or simula-
tions only.

One reason for this lack of realistic testing is the impossi-
bility of testing a worm defense on the real Internet, clearly
the playground for worm writers, or even on a local net-
work. A promising, and maybe the only one that is viable,

*e-mail:First 8 letter of last name@cs.ucdavis.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Malware’06 April 10-12, 2006, Phoenix, Arizona USA

Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Denys L Ma
Security Lab, Department of Computer Science
University of California, Davis

Karl N Levitt Todd L Heberlein
NetSquared Inc.

Davis

approach is to test a worm defense on a testbed. One ma-
jor difficulty with this approach is that a large number of
test machines have to be configured and managed efficiently.
Also care should be taken that the malcode used for testing
doesn’t leak into the real Internet. These are challenging
tasks. Given the difficulty of reproducing live environments
for worm-defense research, most researchers resort to simu-
lations. At the outset they might seem sufficient but they
have several limitations. For example, the effects of back-
ground traffic, traffic load on network components such as
routers, bandwidth saturation, the timing idiosyncrasies due
to the network stack, the diversity of the hardware in the
real Internet,etc. — all issues that impact the operation of
a worm and a worm defense system — are not reflected in
simulations.

Weaver et al.[19] highlight the stochastic effects on the re-
sults of worm experiments when scaled-down networks are
used. These effects can be overcome by repeating each ex-
periment numerous times and averaging the relevant values.
Similar work has yet to be carried out for a worm defense
system, but the problem is likely to be more difficult than
for experiments just involving worm studies.

Thus there is a great need for a way to faithfully reproduce
live environments for worm- and worm-defense research. In
this paper we make use of a network testbed called EM-
ULAB|21] to satisfy this need and evaluate our framework
for worm-defense evaluation within enterprise networks, i.e.,
networks with a few tens to few thousands of nodes. We de-
scribe an implementation of the framework and use it to
evaluate an example defense strategy, but emphasize that
the framework can support many different defense strate-
gies. The framework is encapsulated in an API. This API ac-
cepts a topology description and a description of the defense
system, and evaluates the defense system against worms.
The worms can be characterized by a specification or oper-
ationally by a worm program.

The next section provides the motivation for this API and
section 3 analyses some of the previous and relevant work
concerned with worms and worm defense systems. Sectionb
shows how a defense strategy previously developed by the
author in [10] can be evaluated using our framework; pre-
viously, this worm defense system was evaluated using a
simulation, and this present work confirms the results of the
simulation but in a realistic setting. Finally, section 6 shows
future directions to pursue.

2. MOTIVATION
EMULAB/21] and DETERJ[1] are network testbeds that

can be used for network security research offering a low cost
option to operational testing. They provide hundreds of
end host systems with various popular operating systems
that can be bought up in a matter of minutes, saving both
equipment and maintenance expenses. Virtual nodes are
also supported on each physical node, thereby multiplying
the effective number of nodes that can be used for our exper-
imentation. Nodes can be remotely controlled in terms of
the OS each one loads and the way they are interconnected.
These capabilities and their similarity to the typical size of
real-world enterprise networks make them a perfect theater
for worm-in-enterprise research.

However, a large scale worm experiment is very difficult
to setup. It typically takes a new user only a few hours to
run the first “Hello World” experiment but several weeks
to run the first worm-defense experiment. Due to the re-
sults of Weaver et al’s[19] results, we need to repeat the
experiments numerous times times to get credible results.
However, while working on [17], we discovered that the set-
up time for each experiment is significantly higher than the
experiment duration itself. It usually takes 10-15 minutes
to setup an experiment that ran for 2—3 minutes, depending
on the size of the topology. Also, worm experiments require
a large number of nodes that are not always available on the
testbed. Hence, setting up the testbed for such numerous
experiments manually becomes infeasible. We needed a way
to automatically setup the testbed and perform experiments
in batches.

To facilitate this, the testbed offers features such syn-
chronization servers, program objects and group event con-
trol systems. However, it requires very careful program-
ming of these sub-systems to repeatedly reproduce test en-
vironments. During our efforts to evaluate The Hierarchi-
cal Model of Worm Defense[10], we had developed several
programs and scripts to automate these processes. Also, ex-
perience shows that the event system set-up doesn’t differ
much from one experiment to another. Hence, we reasoned
that we could package and parameterize these scripts to be
used by other users through a simple interface. Thus, taking
the testbed one step closer to the community.

Nevertheless, using EMULAB, people can evaluate their
worm defenses without using this API, but it is a very ex-
acting task. The other, easy, end of the spectrum would be
a command line or point and click tool. This tool would
have a set of pre-programmed defense schemes that can be
executed with a few pre-determined parameters to evalu-
ate which scheme is best for their enterprise. However, this
would not be as flexible as using EMULAB directly. Hence,
we try to find a sweet spot in between these two extremes
that would make life of researchers easy as well as provide
them a framework with enough flexibility to tweak and tune
their schemes.

3. RELATED WORK

Most of the research done on worm defense and quaran-
tine strategies has relied on simulation to validate the algo-
rithms[8, 20, 7, 11]. Simulations, however, cannot capture
insights related to systems variability, network characteris-
tics, worm behaviors, and other operational details that it
abstracts. There are efforts to capture these characteris-
tics in simulation efforts by Liljenstam et al[13] using the
SSFNet[6] simulation tool. This is better because SSFNet
tries to simulate the network stack behavior also. But in

general, all these simulations are based on formulated mod-
els and cannot fully represent some of the more difficult
network and mal-ware behaviors. For example, it is gener-
ally very difficult to simulate “smart” worms that exploit
various network evasion techniques[16, 9].

Using emulation on testbeds such as EMULAB, on the
other hand, fully captures the heterogeneity of the network
and worm characteristics that simulation cannot accurately
measure. Lippmann et al[14] developed a testbed in or-
der to accurately model a government enterprise network
and evaluate real intrusion detection systems. There are
projects that have used EMULAB and DETER but unfor-
tunately, they have not used these infrastructures effectively.
Weaver et al[20] use DETER but as a parallel processing en-
vironment to run their simulation quickly rather than as an
emulator. Wei et al [17] use EMULAB, but as a distributed
simulation environment.

An ongoing effort at the EMIST|3] project provides vari-
ous tools addressing testbed issues. Penn State University’s
EMIST ESVT]2] provides a GUI package for topology cre-
ator and generator, traffic and experiment interfaces and
visualization tools. ESVT does not provide experiment syn-
chronization and automation. EMIST Tool Suite from Pur-
due University, on the other hand, provides a Scriptable
Event System(SES)[4] for synchronization and automation
for individual nodes in the experiment. The EMIST Tool
Suite, however, does not provide any tools for topology util-
ities and worm specific tools. Finally, both tools do not
support real applications such as IDS and firewalls that are
crucial to worm experiments. They also do not provide any
methods to integrate additional components, such as real
worm codes, real defense strategies, and live background
traffic.

4. THE API

This API takes in 3 parameters, a network topology in
NS format, a defense program and a worm. It returns a
thorough analysis of the proposed defense strategy based
on various parameters. Some these parameters are the to-
tal number of nodes infected, the time taken to stop the
worm from spreading, the effects on the network such as la-
tency, bandwidth occupied by the defense vs the worm vs
the normal traffic, the effects of false alarms on the normal
operational efficiency and the recovery time. Recovery time
is the time taken for the network to return from a defensive
posture during worm attack to its normal state of opera-
tion. This is a very important factor in real-world networks
because there is a cost involved when the network is not
operating in its usual fashion.

Figure 1 gives a white-box design diagram for this API.
At the outset, we can see that user specifies the above men-
tioned 3 parameters apart from the ability to play back-
ground traffic using some third party tool. The following
sub-sections describe the user-inputs required and the vari-
ous components of the framework.

4.1 User Inputs

This sub-section describes the various user parameters
and their specifications. These are the topology specifica-
tion, the worm parameters and the user’s defense program
and optionally a background traffic generator.

4.1.1 The topology specification

The user specifies the topology of the test network as an
NS2[5] file. This would represent the enterprise network of
the user. The NS2 language was chosen because it lets us
specify exactly various network parameters like the network
bandwidth, latency, etc., and also allows for traffic shaping
information. This topology information should also include
the location of various servers, gateways, routers, firewall,
IDSes, etc., in the enterprise.

One can reconfigure the interconnection of the experiment
nodes in EMULAB by feeding it a script written in NS-
testbed, an extension of the NS language. This extension
contains several commands that are specific to the testbed.
These commands control the event groups and program ob-
ject sub-systems, the routing protocol used, the synchroniza-
tion sub-system, etc.,. The user’s topology is transformed
into NS-testbed by the compiler in our framework. This
compiler will be discussed in the next sub-section.

4.1.2 The defense program

This API provides a hook on which to hang the users’
defense program. Since users’ home directories get auto-
mounted on all experiment nodes, there is no need for any
special installation procedures for these programs. It is suf-
ficient if they are available in the user’s execution path and
the user just has to provide the program name. Our com-
piler picks up this defense program and inserts it to the
NS-testbed script thus registering it with the testbed.

By providing such a hook, we allow for maximum flexi-
bility for the user to implement their own defense and re-
sponse mechanisms. The programs could be be anything
from worm detection algorithms using correlation, decision
trees, Bayes Net techniques to automatic signature genera-
tion to response mechanism using firewalls, IP black-listing,
or any other novel technology that the users’ want to eval-
uate. This is the parameter of the API for which we expect
the user to spend the most effort and rightly so because this
is the program we are evaluating.

Since the defense program is already included in the de-
fense event group by our compiler, it would be called at the
appropriate time from the Fvent Control System of our tool.
Ideally, we expect the user to design their defense program
as a server that responds to events, typically events that
are symptoms of worm activity. Hence, the most propitious
time to start up these defense programs would be at the
beginning of the experiment.

If the defense programs use any tools or programs that
are not available by default on the experiment nodes, these
have to be installed manually and a disk image made prior to
starting the experiment. Then this image can be specified in
the NS-testbed file to be loaded on to the experiment nodes.

4.1.3 Worms Parameters

Our API by default provides a very parameterized worm
generator. The parameters are as follows:

1. Type of connection: UDP or TCP.
2. Speed of worm: The number of scans per second.

3. Scanning method: Random or subnet scanning. If
subnet-scanning is specified the user could also specify
the Percentage of Out-of-Domain Scanning, pods, de-
sired. If no pods is specified we experiment with pods
from 10 to 100 with step size of 10. In fact, at 100
pods, the worm becomes a random scanning worm.

4. A payload to the worm: This could just be a ran-
dom text. This is only to analyze the effect of payload
size on the worm dynamics and network bandwidth
rather than anything else. If it is a malicious function
to be executed on the testbed, the user should also
provide the vulnerable servers along with the topol-
ogy specification. However, we discourage this, as this
worm can get out of control and doesn’t add any value
to the experiments.

The users can choose one or more worms and parameterize
them to be deployed against their defenses. Alternatively,
the API also provides hooks to hang the users own scan-
ning method for the worm. For example, a hit-list scanner,
or a real Code-Red, Slammer, etc.,. These user scan func-
tions need to be added into the framework’s worm library
beforehand. Then the API should be instructed to use this
users’ worm function while choosing the ’Scanning method’
mentioned above.

After all, the users can just ignore all of these and provide
their own worm programs and corresponding dummies.

4.1.4 Background Traffic Generator

The users can replay their normal enterprise traffic in
the background on EMULAB while testing their defense.
The background traffic can be played using tools like TCP-
Opera[12] or NTGCJ[18] depending on whether the users
want the traffic to be source or trace parameterized. This
may also depend on the defense strategies. If the defense
contains signature matching, the user may want to replay
raw traces.

4.2 The API components

This sub-section describes the components of the frame-
work. Figure 1 shows the interconnections between these
components within the broken line box. The NS to NS-
testbed compiler generates user defined topologies for the
testbed. After proper topology configurations, the Dummy
Vulnerable Server and Event Control System integrate user-
supplied defenses and worms and conduct experiments for
certain number of iterations predetermined by the user. The
Data Analysis Tools collects various data about the exper-
iments and generates evaluation statistics. These modules
are transparent to the users, creating an appliance approach
to worm defense experiments.

User’s
Background Traffic

User’s
Worm Defense AP NS topology

Worm Library

1
| User’s Defense

NS to NS—testbed
Compiler

I
Choose Worms !

Program

User Worms
NS-testebed
Topology

Dummy Vulnerable
Server

EMULAB

Event Control
System

Data Analysis
Tools

Evaluations

Figure 1: Design of the Worm-Defense Evaluator.

4.2.1 NS to NS-testbed compiler

The NS to NS-testbed compiler in the API, takes the
user’s NS file and compiles it to format suitable for the
testbed. Apart from the usual tasks of specifying the OS
to load, the routing protocol and assigning IP addresses to
the nodes, the compiler should do the following two impor-
tant tasks.

First, set up a synchronization mechanism for the exper-
iment. This can be done by using specifying a node as the
synchronization server and using the testbed’s sync_server
tool. This is required so that we can make use of the batch
processing feature of the testbed. As mentioned in section 2
batch processing is the only practical way of running large
experiments.

Second, set up ‘Program Objects’ and ‘Event Groups’ ap-
propriately. The users’ defense programs and the ’dummy
vulnerable servers’, called dummies, need to be inserted into
the appropriate event groups, such as, defense event group
and vulnerable event group respectively. This grouping is
required so that the dummies and the defense programs can
be restarted from a single tevc command in the ‘Event Con-
trol System’. This helps us to bring the testbed to a clean
state instantaneously without swapping out and swapping
in experiments which takes about 10-15 minutes. A clean
state of the testbed is the state when all experiment nodes
are just booted up and no user processes are running, and all
changes made to the routing tables, firewall rules, IDS signa-
tures, etc., during the last run of an experiment are erased.
Such a state is required for each run of an experiment. A
typical worm experiment series has about 1000-1500 experi-
ments lasting 2 minutes each on an average. This step helps
to finish a series in about 36 hours that would otherwise
take us about 12 days. That is a huge saving.

4.2.2 Dummy Vulnerable Servers

The dummies listen for traffic on a certain port. Once
they are receive a packet of a specified type, a worm packet,
they mark themselves as infected, save a time-stamp of the
infection and spawn off a worm in their own node. This
relieves us of the task of writing an exploit for the worm.
By deploying our own dummies for vulnerable servers, we
are also able to make use of them as data acquisition tool.

This doesn’t compromise the experiment in any way. Dum-
mies are a valid abstraction of vulnerable servers because we
don’t know how the real servers would be attacked. Even if
we write our own complex exploit for a real server, it will
not reflect reality as a real worm’s exploit is probabilistically
bound to be very different than ours. Rather, we are more
interested in the worm dynamics and ways to mitigate the
repercussions and dummies capture that effectively. We also
note that, the dummies don’t take much time to spawn off
a worm in their own node. This is not very different from
real exploits which spawn off a worms in a victim machine
rather instantaneously.

As a pleasant side-effect, we end up with safe worms;
worms that cannot spread out on the Internet where our
own dummies are not installed.

4.2.3 The worm library

Our framework has a very flexible built-in worm genera-
tor. This takes in several parameters as already mention in
section 4.1.3. Our worm generator can generate several fam-
ilies of worms, such as, random or subnet scanning worms

based on TCP or UDP protocol, at various speeds and with
different payloads.

It is a simple program running in a tight loop. It sleeps
for 1/scanrate seconds, wakes up and sends a TCP/UDP
message to the dummy server on a victim chosen accord-
ing to its scanning method. In our implementation we use
function pointers to scanning methods. This provides us
the flexibility to easily extend our library as well as use any
users’ scanning methods.

4.2.4 The Event Control System

The Event Control System(ECS) runs on the sync-server
of the experiment. It controls the start and stop of the ex-
periment run, triggering the data analysis tools and rotating
the log files.

This is a script that was hand-coded originally to help in
evaluating our earlier defense models. Now, we have param-
eterized this script so that others can also use it. The param-
eters to the ECS are the worms that need to be launched,
and the names of the event groups generated by the com-
piler. These values are passed on to this component inter-
nally transparent to the user.

When an experiment needs to be run, ECS starts all the
program event groups. Given the worm’s characteristics, the
ECS bootstraps a worm on one of the dummies, thereby cre-
ating patient 0. This starts the worm outbreak. The ECS
keeps track of the progress of the experiment by counting
the time-stamps of the infections from the dummies. Since
the same home directory is mounted on all experiment nodes
all dummies write to the same directory and hence counting
the time-stamps becomes easy as does the final data process-
ing. Once the worm count reaches a stable value the ECS
deems that the experiment run is complete. The collected
data is stored in a retrievable fashion. The event groups are
restarted and the next worm is launched. This is repeated
for several pre-determined iterations. Once the entire ex-
periment series is complete data analysis programs are run
on the collected data to give us the evaluations.

4.3 Data Analysis Tools

The dummies write all data on the user’s home direc-
tory. Current implementation of the dummies collect infec-
tion time and alert time, the time when defensive responses
kick in. Currently, we have tools that chart the infection
trace, the total number of nodes infected during each ex-
periment run and the time taken to stop the worm from
spreading. The users are welcome to do their own analysis
of the data. In case, the user needs more data, the defense
programs need to be programmed appropriately.

The next section presents an implementation of the pro-
posed framework and evaluates an example defense model.

5. AN EXAMPLE - THE HIERARCHICAL
MODEL OF WORM DEFENSE

To demonstrate the effectiveness of this tool, we consider a
worm-defense model called, The Hierarchical Model of worm
defense that was developed in [10].

Briefly, this model assumes that all participating nodes
are arranged in a tree structure. The leaves are vulnerable
but run some sort of an IDS system to detect attacks and
and have some tunable firewall capabilities. The non-leaves
are invulnerable to attacks and run the worm-defense pro-
grams. Once a leaf detects an attack, it send a message to

its parent. In essence, this message would contain the suspi-
cious packets. Once the parent receives a threshold number
of messages from unique children it takes two actions. One,
it instructs all its children to turn on responses to this attack.
Two, it sends a message to its own parent about the infec-
tion. Needless to say, for each non-leaf its threshold should
be lesser than its number of children to get any benefit from
this scheme. Thus the information about the attack trav-
els up the tree and the instructions to respond percolates
down the tree. Intuitively, the lower the threshold, better
the defense.

5.1 Modeling the system

This sub-section models the example defense strategy to
be fed to the API.

5.1.1 The topology specification

This model reflects a real enterprise network as closely as
possible. The root node would be entry point to the enter-
prise. The leaves would be end-nodes, users machines and
servers that are vulnerable to attacks. The non-leaf nodes
are routers or gateways to individual departments inside the
enterprise.

Our experiments contained 4 levels in the hierarchy, repre-
senting the UCDavis’s College of Engineering network. Go-
ing down from the root to the leaves, each level represents,
Gateway for the College of Engg., the departmental gate-
ways, research lab routers and then finally the individual
machines in that order.

This model consists of dummies at the leaves running host
based firewalls and IPSs that can be tuned upon receiving
instructions from their parents. All the non-leaves run the
defense program, lets call them controllers, in the sense they
control the defense. We also assume that they are invulner-
able to attacks.

This model is so simple that it can be represented by just
the number of levels in the hierarchy, the number of children
and threshold of the nodes in each level of the hierarchy. We
hand-rolled a program that would read this specification and
give us a NS-testbed script. However, when we finally release
the full implementation of this API, this program would be
a more versatile compiler to handle NS scripts.

5.1.2 The defense program

The defense program is run on all the non-leaf nodes.
Upon a worm infection, the infected dummy would alert
its parent. Once the threshold is reached, the parent sends
a similar alert to its own parent. In addition, it also ex-
tracts a signature from the suspicious packets received from
its children. This signature is then sent to its children in-
cluding the infected ones, and instructs them to block traffic
matching this signature. Refer to [10] for further details of
this model on back-off mechanisms, handling false positives,
etc.,.

5.1.3 The worm program

Our experiments used the default worms provided by the
framework. UDP random and sub-net scanning worms were
deployed against our defense using a simple text string as
the payload. No malicious programs were on the payload.

5.2 The experiment
All our nodes in the experiment ran FreeBSD 4.10 Jails.

The controllers just copied the payload string into the sig-
nature distributed to the dummies. The dummies imple-
mented the defenses using a combination of firewall and IPS.
“ipfw” was the firewall of choice. This helped to divert pack-
ets arriving at a certain port to a program that could exam-
ine them for the malicious signature. “snort_inline” was the
IPS of choice to examine the packets and drop packets that
matched the signature provided by the controllers.

Our tool ran the experiments with 160 dummies and 21
controllers in 3 layers(1, 4 and 16) above them. We used
both random scanning and sub-net scanning worms with
pods of 10-100. In fact, a subnet-scanning worm with pods
of 100 is the same as a random scanning worm. Each worm
ran on a wide range of scanning speeds from 0.2 to 100
scans per second. Each experiment was run for 10 times, to
smoothen out the stochastic effects. Thus 10 different worm
kinds at 9 different speeds ran for 10 repetitions making for
900 experiments. It took about 18 hours to complete it. This
is where the diligence of this tool comes to the fore. For sake
of clarity, we only present the results of experiments with
pods of 30, 60 and 100.

First we corroborated our worm spread pattern with no
defense to the mathematical models and simulation results
[10]. The results of this run is shown in Figure 2. This
means that our worm program and the framework work as
expected. Then we turned-on the defense mechanism. Fig-
ure 3 shows how the defense overtakes the worm spread. We
used a worm with a speed of 2 scans/second.

5.3 Results

With the current set of experiments and the data analysis,
we were able to draw several insights into the hierarchical
defense strategy. These are:

1. The root node alerts all of its children to turn on de-
fenses within a definite time from the first infection.
All the experiments ran to completion. This shows
that the system is convergent and does not run-away
due to any feed-back effects. This verifies our mathe-
matical proof given in [10].

2. No matter how fast a worm spreads, we can stop its
spread with the same number of infections. This lets
us decide the threshold parameters at the controllers
based on our tolerance for infections. Figure 5 shows
this result. Each data point shows the average number
of infections and the standard deviation.

3. The experiments showed us that this scheme works
better for suppressing subnet-scanning worms that are
more biased towards scanning within the subnet than
those that scan outside the subnet. This also means
this scheme performs poorly against random scanning
worms. Figure 5 shows this feature of the model. This
is obvious once we realize that alerts go out of the
subnet faster than the subnet scanning worms.

4. Scale down factors: Figure 4 and 5 together show
that the stochastic effects of scaling down of networks
can reduced by increasing the experiment repetitions.
The experiment originally carried out with just 5 iter-
ations gave us large standard deviations, whereas the
one with 10 iterations gave a considerably lower devi-
ations from the average value.

T
worms 0.1 ——
worms 0.2 ---X---

TGS 0.5 @
worms 1 ——m-—
worms 2 ---e---

worms 3 ----e- -
WOrms 6 -—--& -

/ worms 10 ---a---

% of 160 nodes

60 80 100 120 140
Time(ticks)

Figure 2: Random scanning worms with no defense

T
worms —+—

alerts ---x---
100

% of 160 hosts.
5

) g
N - g =
e

[10 20 30 40 50 60
Time(ticks)

Figure 3: Alerts are distributed faster than the

worms

5. It is only the threshold levels that makes or breaks
the network. A low threshold helps to save a lot of
machines but in reality it might help raise several false
positives. Figures 6 and 7 show the effect of different
thresholds.

6. FUTURE WORK

Currently, the data analysis tools only analyze the kine-
matics of worms. We need to design and implement the
traffic analysis tools. As mentioned earlier, the effects on
the network such as latency, bandwidth occupied by the de-
fense vs the worm vs the normal traffic, the effects of false
alarms on the normal operational efficiency needs to be an-
alyzed. For this, we need to design program stubs to be
inserted at the appropriate locations on the testbed.

In this paper we presented only an operational work-around
to counter the scale-down effects on worm experiments. Two
solutions to over-come this are to increase the experiment
size and increase the number of iterations. Obviously, we
can’t emulate the entire Internet and we also can’t repeat
experiments indefinitely. We need to find a compromise be-
tween these two for our framework to be applicable to In-
ternet wide worm problems.

We also want the users to be able to choose different kinds
of networks from a library. The library would provide a set
of environments like university, a commercial organization

100

100 pods
60 pods --------
30 pods -~

80

60

40

% of 160 nodes infected

20

1 10 100
‘Worm speed

Figure 4: Only 5 iterations

100

100 pods
60 pods --------
30 pods ----

80

60

40

% of 160 nodes infected

20

‘Worm speed

Figure 5: Increased to 10 iterations

or a defense network. There are differences between these
networks. University networks usually tend to be quite open
with little or no firewalls enforced. It usually tends to have
several web-servers hosted by individual departments as well
as individuals. A commercial environment tends to be quite
hardened on the outside but highly interconnected on the
inside. Companies also have trusted connections with their
suppliers. A defense establishment’s network tends to be
highly compartmentalized with rigid firewalls on the perime-
ter as well between different departments.

7. ACKNOWLEDGMENTS

A great deal of thanks to Mike Hibler of emulab/netbed,
Univ of Utah for implementing ‘on-demand’ solutions to run
divert-sockets on FBSD jails that helped us run snort_inline
and ipfw on jails. Without them, we can’t scale to real-
sized networks. Thanks to Nick Rogness, also for ‘overnight’
enhancements to snort_inline.

8. REFERENCES

[1] Deter - a laboratory for security research. Internet.
http://www.isi.edu/deter.

[2] “EMIST ESVT Software Version 2.0.”. Internet.
http://emist.ist.psu.edu/ESVT2/download\
_esvt2.html\#0verview.

50% Threshold

100 worms 10 ---x--- |
worms 5 =}

% of 160 hosts

40

20

Time(ticks)

Figure 6: Worm Containment with 50% Threshold

75% Threshold

T
worms 2 —+—
worms 5 ---x---
100 worms 10 ---x--- |
worms 50 &

* Pl f"‘
60 ® At

% of 160 hosts
*
X

" / . / e

20 .
DA

[5 10 15 20 25 30 35 40
Time(ticks)

Figure 7: Worm Containment with 75% Threshold

[3] “EMIST Project Overview”. Internet.
http://www.isi.edu/deter/emist.temp.html.

[4] “EMIST Tool Suite”. Internet.
http://www.cs.purdue.edu/homes/fahmy/software/
emist/index.html.

[5] “NS: Nework Simulator”. Internet.
http://www.isi.edu/nsnam/ns, Last Accessed: Feb
06, 2006.

[6] “SSENet”. Internet. http://www.ssfnet.org Last
Accessed: June 21, 2005.

[7] M. Abdelhafez and G. Riley. “Evaluation of worm
containment algorithms and their effect on legitimate
traffic”. In Third IEEE International Workshop on
Information Assurance (IWIA), March 2005.

[8] L. Briesemeister and P. Porras. “Microscopic
simulation of a group defense strategy”. In Proceedings
of Principles of Advanced and Distributed Simulation
(PADS), June 2005.

[9] L. Briesemeister, P. A. Porras, and A. Tiwari. “A
Formal Model of Worm Quarantine and
Counter-Quarantine under a Group Defnese”. In
Proceedings of Malware’06, Apr. 2006. To appear.

[10] S. G. Cheetancheri. “Modelling worm defense
systems”. Master’s thesis, June 2004. University of
California, Davis.

[11] D.Noijiri, J.Rowe, and K.Levitt. “Cooperative

(14]

Response Strategies for Large Sacle Attack
Mitigation”. DISCEX, 2002.

S.-S. Hong and S. F. Wu. “On Interactive Internet
Traffic Replay”. In Proceedings of the Eighth
International Symposium on Recent Advances in
Intrusion Detection, 2005.

M. Liljenstam, D. M. Nicol, V. H. Berk, and R. S.
Gray. “Simulating Realistic Network Worm Traffic for
Worm Warning System Design and Testing”. In
Proceedings of the I ACM Workshop on Rapid
Malcode (WORMO03), Washington, DC, October 2003.
R. P. Lippmann et al. “Evaluating Intrusion Detection
Systems: The 1998 DARPA Off-line Intrusion
Detection Evaluation.”. In Proceedings of the 2000
DARPA Information Survivability Conference and
Ezposition (DISCEX), 2000.

J. McAlerney. “An Internet Worm Propagation Data
Model”. Master’s thesis, Sept. 2004. University of
California, Davis.

T. H. Ptacek and T. N. Newsham. “Insertion, Evasion
and Denial-of-Service: Eluding Network Intrusion
Detection”. Technical report, Secure Networks Inc.,,
Jan 1998.

Y. A. Ting, D. Ma, J. Rowe, and K. Levitt.
“Evaluation of Collaborative Worm Containment
Strategies”. Work in Progress.

Y. A. Ting, D. Ma, J. Rowe, and K. Levitt. “NTGC:
A Tool for Network Traffic Generation Control and
Coordination”. Work in Progress.

N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson.
“Preliminary Results Using Scale-Down to Explore
Worm Dynamics”. In Proceedings of the II ACM
Workshop on Rapid Malcode (WORMO4),
Washington, DC, Oct 2004.

N. Weaver, S. Staniford, and V. Paxon. “Very Fast
Containment of Scanning Worms”. In Proceedings of
the USENIX Security Symposium, Aug. 2004.

B. White, J. Lepreau, L. Stoller, R. Ricci,

S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proc. of the
Fifth Symposium on Operating Systems Design and
Implementation, pages 255-270, Boston, MA, Dec.
2002. USENIX Association.

