
Data Level Inference Detection in Database Systems�

Raymond W. Yip and Karl N. Levitt

Department of Computer Science

University of California, Davis

One Shields Avenue, Davis CA 95616

Abstract

Existing work on inference detection for database
systems mainly employ functional dependencies in the
database schema to detect inferences. It has been no-
ticed that analyzing the data stored in the database
may help to detect more inferences. In this paper,
we describe our e�ort in developing a data level in-
ference detection system. We have identi�ed �ve infer-
ence rules that a user can use to perform inferences.
They are `subsume', `unique characteristic', `overlap-
ping', `complementary', and `functional dependency'
inference rules. The existence of these inference rules
con�rms the inadequacy of detecting inferences using
just functional dependencies. The rules can be applied
any number of times and in any order. These infer-
ence rules are sound. They are not necessarily com-
plete, although we have no example that demonstrates
incompleteness. We employ a rule based approach so
that future inference rules can be incorporated into the
detection system. We have developed a prototype of
the inference detection system using Perl on a Sun
SPARC 20 workstation. The preliminary results show
that on average it takes seconds to process a query for
a database with thousands of records. Thus, our ap-
proach to inference detection is best performed o�-line,
and would be most useful to detect subtle inference at-
tacks.

1. Introduction

Inference is a method to subvert access control in
database systems. An inference occurs when a user
is able to infer some data without directly access-
ing them. In multilevel database systems, early work
on inference detection used a graph to represent the

�Copyright 1998 IEEE. Published in Proceedings, 1998 IEEE

Computer Security Foundations Workshop, Rockport, Mas-

sachusetts, June, 1998.

functional dependencies among the attributes in the
database schema. An inference occurs when there are
two or more paths among the attributes, and the paths
are labeled at di�erent classi�cation levels [6, 2, 12].
The inference path is eliminated by upgrading some
attributes along the path [15, 13]. Lunt [9] points out
that some inference problems can be avoided by re-
designing the database schema, and classifying the at-
tributes properly. However, redesigning the database
schema results in data duplication which leads to up-
date anomalies. It also requires modi�cations to the
existing application programs. There is also work on
incorporating external knowledge into the inference de-
tection systems [18, 7, 16, 17, 3]. More recently, re-
searchers suggest using data of the database to gener-
ate a richer set of functional dependencies for inference
detection. Hinke et al. use cardinality associations to
discover potential inference paths [8]. Hale et al. in-
corporate imprecise and fuzzy database relations into
their inference detection system [5]. However, existing
e�orts still simply employ functional dependencies to
detect inferences. As noted by SRI researchers, moni-
toring user activities may lead to detecting more infer-
ences [14]. By data level inference detection, we mean
the system detects inferences by considering the data
in the database, as opposed to the database schema
only.

Inferences can also occur in discretionary access con-
trol systems where users are explicitly granted access
rights to access data (as in System R). It is not an
obvious task to grant users the exact amount of ac-
cess rights they need. In some cases, users are simply
granted more access rights than they need in order not
to hinder their work. To ensure the users do not misuse
the database, we need to monitor their accesses.

A simple way to monitor user accesses is to exam-
ine each user query, and reject any query that accesses
sensitive data. However, it is possible for a user to
use a series of unsuspicious queries to infer data in the
database. Motro et al. address a similar problem, but

their work focuses on detecting aggregation instead of
inference attacks [11]. In the statistical database secu-
rity community, various techniques have been proposed
to protect individual records, for example, query-set-
size control, cell suppression, and data perturbation
[1]. However, these techniques are not suitable for de-
tecting inferences using general purpose queries.

In this paper, we describe our e�ort in developing
a data level inference detection system. It is a static
inference detection system where inferences are per-
formed with respect to a snapshot of the database. We
have identi�ed �ve inference rules that users can use to
infer data: `subsume', `unique characteristic', `overlap-
ping', `complementary', and 'functional dependency'
inference rules. Users can apply these rules any number
of times, and in any order to infer data. These inference
rules are sound but not necessarily complete. Although
we have no example that demonstrates incompleteness,
more research e�ort is needed to determine if they are
complete. We employ a rule based approach so that
when a new inference rule is discovered, it can be in-
corporated into the inference detection system. The
existence of these inference rules con�rms the inade-
quacy of functional-dependency based inference detec-
tion schemes. We have developed a prototype of the
inference detection system to study its performance.
The preliminary results show that on average the sys-
tem takes a few seconds to process a query that returns
hundreds of records from a database of ten thousand
records. Thus, our approach to inference detection is
best performed o�-line, and would be most useful to
detect subtle inference attacks.

This paper is organized as follows. In Section 2, we
provide the intuition behind the �ve inference rules.
In Section 3, we introduce the notations used in this
paper. In Section 4, we present the �ve inference rules.
In Section 5, we describe our implementation and the
preliminary results. We give our conclusions in Section
6.

2. Overview of the Inference Rules

In this section, we provide the intuition behind the
�ve inference rules. The goal of our inference detection
system is to detect if a user can indirectly access data
using two or more queries. In particular, the system
determines if the user can infer the return tuples from
di�erent queries corresponding to the same tuple in the
database.

The result of each user query is a set of return tuples
1. The user cannot identify each return tuple unless

1Unless otherwise stated, a set of return tuples is indeed a

the primary key of the tuple is also returned. How-
ever, a certain group of attribute values of a tuple may
uniquely identify the tuple. The unique identi�cation
rule handles this situation. Another way to identify a
return tuple is to compare it with other return tuples
that have already been identi�ed.

There are two possible relationships between two
sets of return tuples. One possibility is that for each
return tuple t1 of a query, there is a return tuple t2
of the other query, such that t1 and t2 correspond to
the same tuple in the database. The subsume infer-
ence rule handles this case. Another possibility is that
only some return tuples of a query correspond to some
return tuples of another query. The overlapping in-
ference rule identi�es the corresponding return tuples
that are common to both queries. The complementary
inference rule identi�es the corresponding return tuples
by taking the \di�erence" between two sets of return
tuples. The functional dependency inference rule is
introduced to simulate the schema level inference de-
tection scheme.

Once the corresponding return tuples between two
queries are identi�ed, the user can generate inferred
queries. The user knows the return tuples of an inferred
query without directly issuing it to the database. For
example, the user can infer a new query with returns
tuples \common" to both queries, or a new query that
returns tuples from one query but not from another
query. The user can also combine several queries into
a single query. We will discuss the e�ect of applying
inference rules to unions of queries. Essentially, the �ve
inference rules cover the set intersection, di�erence and
union relationships between two sets of return tuples.

When the user issues a query, the inference detec-
tion system compares it with previously issued queries
and inferred queries, and applies inference rules when
appropriate. An occurrence of inference will result in
either the modi�cations of the existing queries (for ex-
ample, combining two corresponding return tuples), or
the generation of new inferred queries. These may trig-
ger further applications of the inference rules. Hence,
the inference rules are applied repeatedly until there is
no new inference occurs. This is a terminating process
as the number of inferences that can occur is bounded
by the size of the database. When two users are sus-
pected of cooperating in performing inference, we can
run the inference detection system against their com-
bined set of queries.

multiset of return tuples. That is, duplicated return tuples are

not removed

3. Preliminaries and Notation

We consider inference detection in a relational
database with a single table. A database with multi-
ple tables can be transformed into a universal relation
[10]. We assume that the only way the user can learn
about the data in the database is by issuing queries to
it. That is the user does not rely on real-world knowl-
edge to perform any inference. Such knowledge might
be added to the database as `catalytic relation' as sug-
gested in [6].

Ai denotes an attribute in the table, and ai denotes
an attribute value from the domain of Ai. t[Ai] denotes
the attribute value of a single tuple t over the attribute
Ai. A query is represented by a 2-tuple: (attribute-set,
selection-criterion), where attribute-set is the set of at-
tributes projected by the query, and selection-criterion
is the logical expression that is satis�ed by each return
tuple of the query. No aggregation function (for exam-
ple, maximum and average) is allowed in the attribute-
set. In general, Qi refers to the query fASi; SCig. jQij
denotes the number of return tuples of Qi. fQig de-
notes the set of return tuples of Qi. For each query Qi,
ASi is expanded with an attribute Ai when `Ai = ai'
appears in SCi as a conjunct. A query Q is a `partial
query' if the user can determine jQj, but not all return
tuples of Q. `\', `[', and `n' stand for the set intersec-
tion, union, and di�erence operation respectively.

Now, we introduce several notions that are used
throughout this paper.

De�nition 1 A tuple t over a set of attributes AS

`satis�es' a logical expression E if E is evaluated to
true when each occurrence of Ai in E is instantiated
with t[Ai], for all Ai in AS. t `contradicts' with E if
E is evaluated to false.

For example, the tuple (35, 60K) that is projected over
(Age, Salary) satis�es E = (Age > 30 ^ Salary < 70K);
while the tuple (25, 50K) projected over the same set of
attributes contradicts with E. The tuple (45K, Man-
ager) projected over (Salary, Job) neither satis�es nor
contradicts E. This is because after the instantiation,
E becomes (Salary < 70K) whose truth value is unde-
termined.

De�nition 2 Given two queries, Q1 and Q2, we say
that Q1 is `subsumed' by Q2, denoted as Q1 < Q2, i�

1. SC1 ! SC2; or

2. for each tuple t1 in fQ1g, t1 satis�es SC2.

where ! is the logical implication. `<' is a reexive,
anti-symmetric, and transitive relation. A return tuple

t1 `relates' to another return tuple t2 if the two tu-
ples are selected from the same tuple in the database.
Hence, Q1 < Q2 implies that for each return tuple t1
of Q1, there is a return tuple t2 of Q2, such that t1
relates to t2.

When evaluating a logical implication, we need to
consider the integrity constraints that hold in the
database. Consider the following implication,

(age > 18 ^ age < 35) ! (age > 20 ^ age < 50),

which is false. Suppose the youngest person in the
database is 22 years old. By adding this constraint to
both sides of the implication, it becomes,

((age > 18 ^ age < 35) ^ (age � 22)) !

((age > 20 ^ age < 50) ^ (age � 22)) �
(age � 22 ^ age < 35) !
(age � 22 ^ age < 50),

which is true.
Now, we introduce the notion of `indistinguishable'.

De�nition 3 A return tuple t1 of Q1 is `indistinguish-
able' from a return tuple t2 of Q2 i�

1. for all Ai in (AS1 \ AS2), t1[Ai] = t2[Ai];

2. t1 does not contradict with SC2; and

3. t2 does not contradict with SC1.

t1 is `distinguishable' from t2 if t1 is not indistinguish-
able from t2.

Intuitively, t1 is indistinguishable from t2 if it is not
possible to conclude that t1 and t2 are selected from two
di�erent tuples in the database. Two tuples that relate
to each other are indistinguishable from each other,
while two tuples that are indistinguishable from each
other does not imply that they relate to each other.

Our system only detects inferences of the \right in-
stances" of the data. Consider the following table,

Name Job Age Salary

John Engineer 29 60K
Paul Engineer 31 60K

Suppose the user knows that John is an engineer, and
that there is an engineer who is 31 years old and earns
60K. A naive user may conclude that John earns 60K,
assuming that John's age is 31. Although the user
correctly infers the salary of John, this is not the right
instance of the salary of John. In fact, when the user
learns that John is indeed 29, the user will revoke this
inference. In our model, a skeptical user will not make
such hasty inferences.

Name Job Age Salary Department O�ce

Alice Manager 35 60K Marketing 2nd Floor
Bob Secretary 35 45K Marketing 2nd Floor

Charles Secretary 40 40K Production 1st Floor
Denise Manager 45 65K Sales 2nd Floor

Figure 1. Sample database.

4. Inference Rules

In this section, we describe the �ve inference rules.
We illustrate the inference rules using the sample
database as shown in Figure 1. The user is allowed
to access all data in the database. However, it is sus-
picious if the user can infer the salaries of employees.
We assume the the security policy is to determine if
the user infer the associations between `Name' and
`Salary'. In general, the policy can specify detecting
inferences of any association among the attributes. Un-
less otherwise stated, all queries appear in the inference
rules are not partial queries.

4.1. Subsume Inference

In this section, we describe the use of the `<' rela-
tions to perform inferences.

Inference Rule 1 (Subsume) Given two queries
Q1 and Q2, such that Q1 < Q2.

SI1 If there is an attribute A in (AS2 n AS1), such
that all return tuples of Q2 take the same attribute
value a over A, then for each return tuple t1 of Q1,
t1[A] = a. Q1 may be a partial query.

SI2 If there is a return tuple t1 of Q1 that is indis-
tinguishable from one and only one return tuple t2
of Q2, then t1 relates to t2. Q1 may be a partial
query.

SI3 Let S be the set of return tuples of Q2 that are
distinguishable from the return tuples of Q1. If jSj
= (jQ2j� jQ1j), then two inferred queries are gen-
erated: (AS2; SC2 ^ : SC1) with S as the set of
return tuples, and (AS2; SC2 ^ SC1) with (fQ2g n
S) as the set of return tuples. If jSj < (jQ2j�jQ1j),
then an inferred partial query is generated: (AS2;
SC2 ^ : SC1) with S as the partial set of return
tuples.

Q1 < Q2 implies that for each return tuple t1 of Q1,
there is a return tuple t2 of Q2, such that t1 relates to
t2. SI1 says that when all return tuples of Q2 share
a common attribute value, say a, over an attribute A,

the user can infer that each return tuple of Q1 also
take the attribute value a over the attribute A. For
example, consider the following two queries:

Q1 = (Age; Name = `Alice'), and

Q2 = (Department; Age < 40).

Q1 returns a single tuple (35) which says that Alice is
35 years old. Q2 returns two tuples (`Marketing') and
(`Marketing') which shows that all employees at the
age less than 40 work in the Marketing department.
By SI1, Alice works in the Marketing department.

SI2 says that if t2 is the only return tuple of Q2 that
is indistinguishable from a return tuple t1 of Q1, then
t1 relates to t2. Consider the following two queries:

Q3 = (Age; Name = `Charles'), and

Q4 = (Age, Salary; Age � 40).

Q3 returns a single tuple t3 = (40) which says that
Charles is 40 years old. Q4 returns two tuples (40,
40K) and (45, 65K) which says that there are only two
employees who are at the age greater than or equal to
40. As Q3 < Q4 (since (40) satis�es SC4) and (40,
40K) is the only return tuple of Q4 that is indistin-
guishable from t3, by SI2, Charles earns 40K.

SI3 says that if a user identi�es all the return tuples
of Q2 that relate to the return tuples of Q1, then the
user can infer these two queries: (AS2; SC1 ^ SC2)
which includes return tuples of Q2 that relate to the
return tuples of Q1, and (AS2; SC2 ^ : SC1) which
includes return tuples of Q2 that do not relate to the
return tuples of Q1. Continue from the above example
on Q3 and Q4, after the application of SI2, we generate
the following two inferred queries:

Q21 = (Age, Salary; Name = `Charles' ^ Age � 40),
and

Q22 = (Age, Salary; Name 6= `Charles' ^ Age � 40).

Q21 returns a single tuple (40, 40K), and Q22 returns
a single tuple (45, 65K). The two inferred queries to-
gether contains more information than Q2. For exam-
ple, Q22 says that the employee who is at the age of 45
and earns 65K must be someone other than Charles.

4.2. Unique Characteristic Inference

A unique characteristic is de�ned as follows,

(a) (b)

T1

Q1

Q2

Q3

Q1

Q2

Q3

t21

t22

t31

t32

... ...

t11

t12

...

Figure 2. Examples on overlapping inference.

De�nition 4 A logical expression E is a unique char-
acteristic of a tuple t i� t is the only tuple in the
database that satis�es E.

For example, if Alice is the only manager at the age of
35, then (Job = `Manager' ^ Age = 35) is the unique
characteristic of Alice in the database.

Inference Rule 2 (Unique Characteristic)
Given a tuple t1 with unique characteristic C1 in a
database D, and another tuple t2 with unique charac-
teristic C2 in D. If C1 ! C2, C2 ! C1, or C1 $ C2

(that is C1 ! C2 and C2 ! C1), then t1 relates to t2
in D.

For example, the query

(Salary; Job = `Manager' ^ Age � 40)

returns a single tuple (60K). This query together with
the above unique characteristic of Alice implies Alice
earns 60K. Unique characteristic inference is a special
case of the subsume inference. Suppose (AS1; UC1)
returns a single tuple t1, and (AS2; UC2) returns a
single tuple t2. Then, UC1 is the unique characteristic
of t1, and UC2 is the unique characteristic of t2. If
UC1 ! UC2, UC2 ! UC1, or UC1 $ UC2 holds,
then by SI2, t1 relates to t2.

If all inferred queries are identi�ed, unique charac-
teristics are determined as follows,

1. if Qi returns all but one tuple t in the database,
then the unique characteristic of t is (:SCi).

2. if Qi and Qj have only one overlapping return tu-
ple t, then t has the unique characteristic (SCi ^
SCj).

3. if Qi returns one more tuple t than Qj, then the
unique characteristic of t is (SCi ^ :SCj).

where both Qi and Qj are not partial queries. The
determination of the overlapping tuples between two
queries is discussed in the Section 4.3.

4.3. Overlapping Inference

In this section, we describe the overlapping inference
rule.

Inference Rule 3 (Overlapping) Given n queries
Q1, : : :, Qn, where n � 3.

OI1 Let S be the set of return tuples of Q2 that are
indistinguishable from the return tuples of Q3. If
Q1 < Q2, Q1 < Q3, jSj = jQ1j, and t2 is the only
return tuple of Q2 that is indistinguishable from
a return tuple t3 of Q3, then t2 relates to t3. Q1

may be a partial query.

OI2 Let QS = fQ2, : : :, Qng. Suppose for each Qi in
QS, Qi < Q1, and the return tuples of Qi are in-
distinguishable from the return tuples of at most
one other query in QS. Also, the total number
of indistinguishable tuples in all queries in QS is
equal to (2 � (jQ2j+ : : :+ jQnj � jQ1j)). For any
two queries Qj and Qk in QS, if tj is the only re-
turn tuple of Qj that is indistinguishable from a
return tuple tk of Qk, then tj relates to tk. Q1

may be a partial query.

OI3 When all relating tuples between Qi and Qj

are identi�ed, three inferred queries are generated
(possibly partial): (ASi; SCi ^ : SCj), (ASj ;
SCj ^ : SCi), and (ASi \ ASj ; SCi ^ SCj).

Figure 2(a) illustrates OI1. Each rectangle represents
a set of return tuples of a query. The rectangles are
drawn in such a way that return tuples that are se-
lected from the same tuple in the database are aligned

(a) (b)

Q1

Q3

Q2

Q4

Q1

Q3 Q4
T1

T2

Q2

T1

T2

Figure 3. Examples on complementary inference.

horizontally. For example, t11, t21, and t31 correspond
to the same tuple in the database. Suppose Q1 < Q2

and Q1 < Q3, and the number of indistinguishable tu-
ples between Q2 and Q3 equals jQ1j. This implies that
for each return tuple t11 of Q1, there is a return tuple
t21 of Q2, and a return tuple t31 of Q3, such that t11 re-
lates to t21, and t11 relates to t31; that is, t21 relates to
t31. We further illustrate OI1 by an example. Consider
the following three queries,

Q1 = (Name; Job = `Manager' ^ Age = 35),
Q2 = (Salary; Job = `Manager'), and
Q3 = (Salary; Age = 35).

Q1 returns a single tuple (Alice) which says that Alice
is the only manager at the age of 35. Q2 returns two
tuples (60K) and (65K). Q1 and Q2 together implies
that the salary of Alice is either 60K or 65K.Q3 returns
two tuples (60K) and (45K). Q1 and Q3 together im-
plies that the salary of Alice is either 60K or 45K. As
Q1 < Q2 and Q1 < Q3, and there is only one return
tuple of Q2 that is indistinguishable from return tuples
of Q3, namely the tuple (60K). Hence, by OI1, Alice
earns 60K. When Q1 implies three or more queries, OI1
is applied to two of them at a time.

Figure 2(b) illustrates OI2. Let T1 be the set of
return tuples of Q1 that relate to return tuples of Q2.
(jQ1j + jQ2j � jT1j) is the number of tuples in both
Q1 and Q2 that do not relate to one another. When
(jQ1j+ jQ2j � jT1j) = jQ3j, the user can infer that for
each return tuple t1 ofQ1 that is indistinguishable from
a return tuple t2 of Q2, t1 relates to t2. As the tuples
that are indistinguishable from each other appear in
exactly two queries, the number of indistinguishable
tuples equals 2� (jQ1j+ jQ2j� jQ3j). We further illus-
trate OI2 with the following three queries,

Q1 = (Salary; Department = `Marketing' ^
O�ce = `2nd Floor'),

Q2 = (Salary; Job = `Manager' ^
O�ce = `2nd Floor'), and

Q3 = (Name; O�ce = `2nd Floor').

Q1 returns two tuples (60K) and (45K) which says that
the two employees who work in the Marketing depart-
ment on the 2nd oor earn either 60K or 45K. Q2 re-
turns two tuples (60K) and (65K) which says that the
two managers who work on the 2nd oor earn either
60K or 65K. Q3 returns three tuples (Alice), (Bob),
and (Denise) which says that Alice, Bob and Denise
all work on the 2nd Floor. We have 1) Q1 < Q3,
2) Q2 < Q3, 3) there is only one return tuple of Q1

that is indistinguishable from a return tuple of Q2,
namely the tuple f(60K)g (that is, the number of in-
distinguishable tuples in both Q1 and Q2 is 2), and 4)
2 � (jQ1j + jQ2j � jQ3j) = 2 � (2 + 2 - 3) = 2. By
OI2, the tuple (60K) of Q1 relates to the tuple (60K)
of Q2. That is, the user can infer that the marketing
manager who works on the 2nd oor earns 60K.

4.4. Complementary Inference

Complementary inference rule performs inferences
by eliminating tuples that are not relating to one an-
other.

Inference Rule 4 (Complementary Inference)
Given four queries, Q1, Q2, Q3, and Q4, where Q1

< Q2, and Q3 < Q4. Also, the return tuples of Q1
that relate to the return tuples of Q3 are identi�ed (for
example using the overlapping inference rule), and sim-
ilarly for those between Q2 and Q4. If one of the fol-
lowing three conditions holds,

1. for each return tuple t1 of Q1 that does not re-
late to any return tuple of Q3, t1 is distinguishable
from all return tuples of Q4,

2. Q4 < Q3, or

3. jQ3j = jQ4j,

then Q0

1
< Q0

2
, where Q0

1
= (AS1; SC1 ^ : SC3), and

Q0

2
= (AS2; SC2 ^ : SC4).

Figure 3(a) illustrates the case where condition (1)
holds. Let T1 be the set of return tuples of Q1 that
do not relate to any return tuple of Q3, and T2 be the
set of return tuples of Q2 that do not relate to any
return tuple of Q4. As Q1 < Q2 and T1 � fQ1g, each
tuple in T1 relates to a return tuple of Q2. Condition
(1) says that each tuple in T1 does not relate to any
return tuple of Q4. Hence, each tuple in T1 relates to
a tuple in T2. Figure 3(b) illustrates the case where
condition (2) or (3) holds. Condition (2) or (3) implies
that Q3 < Q4 and Q4 < Q3. By removing from Q1 and
Q2 the \same" set of return tuples, we have Q0

1
< Q0

2
.

We further illustrate this by an example. Consider the
following four queries,

Q1 = (Name; Department = `Marketing'),
Q2 = (Salary; Department = `Marketing' _

O�ce = `2nd Floor'),
Q3 = (Name; Job = `Secretary'), and
Q4 = (Salary; Job = `Secretary').

Q1 returns two tuples (Alice) and (Bob). Q2 returns
three tuples (60K), (45K), and (65K). As Q1 < Q2,
both Alice and Bob earn either 60K, 45K, or 65K. Q3

returns two tuples (Bob) and (Charles). Q4 returns
two tuples (45K) and (40K). As SC3 = SC4, both
Bob and Charles earn either 45K or 40K. Now, we have
Q1 < Q2, Q3 < Q4, and Q4 < Q3, (Bob) is the only re-
lated tuple between Q1 andQ3 (assuming the employee
names are unique), (45K) is the only related tuple be-
tween Q2 and Q4 (it is the only indistinguishable tuple
between Q2 and Q4). By the complementary inference
rule, Q0

1 < Q0

2, where
Q0

1
= (Name; Department = `Marketing' ^

Job 6= `Secretary')

Q0

2 = (Salary; Department = `Marketing' _
O�ce = `2nd Floor' ^ Job 6= `Secretary')

Q0

1 returns a single tuple (Alice), as it is the tuple re-
turned by Q1 but not by Q3. Q0

2
returns two tuples

(60K) and (65K), as they are the tuples returned by
Q2 but not by Q4. Therefore, the user can infer that
Alice earns either 60K or 65K.

4.5. Functional Dependency Inference

The functional dependency inference rule employs
the functional dependencies among the attributes to
perform inferences. It simulates the uses of functional
dependencies in schema level inference detection sys-
tems.

Inference Rule 5 (Functional Dependency)
Given that attribute A1 functional determines attribute
A2, and there exists a tuple t, such that t[A1] = a1 and
t[A2] = a2. If there is a tuple ti, such that ti[A1] = a1,

then ti[A2] = a2. The same applies when A1 or A2 is
a composite attribute (that is, a group of attributes).

For example, if it is known that the attribute `Depart-
ment' functionally determines the attribute `O�ce',
and in particular the Marketing department is located
on the 2nd Floor. Then, whenever a user knows a per-
son who works in the Marketing department, the user
knows the o�ce of that person is located on the 2nd
Floor. A similar rule exists for multivalue functional
dependencies.

4.6. Inference with Union Queries

In this section, we discuss the use of a union of
queries in inferences. Consider the following three
queries,

Q1 = (Job; Age < 50 ^ Age > 40),
Q2 = (Job; Age > 45 ^ Age < 60), and
Q3 = (Job; Age > 30 ^ Age � 45).

since the following implication holds,
(Age < 50 ^ Age > 40) !
((Age > 45 ^ Age < 60) _ (Age > 30 ^ Age � 45)),

Q1 < (Q2 [Q3) holds. The inference rules can still be
applied by treating (Q2 [Q3) as a single user query.
We call such a union of queries a `union query'. In
contrast, a user query is called a `simple query'. If Qu

is a union query that consists Qi, : : :, and Qj , then
ASu = (ASi\ : : :\ASj), and SCu = (SCi_ : : :_SCj).
The applications of the unique characteristic and func-
tional dependency inference rules on a union query are
the same as their applications on the simple queries of
the union query. Hence, we only consider the applica-
tions of the subsume, overlapping, and complementary
inference rules on union queries.

Consider the applications of the subsume inference
rule on union queries. Suppose (Q2 [Q3) < Q1. This
implies that (Q2 < Q1 and Q3 < Q1). If the subsume
inference rule is applicable due to (Q2 [Q3) < Q1,
then it is also applicable due to (Q2 < Q1) and (Q3 <

Q1). Hence, we do not need to consider the application
of the subsume inference rule when the union query
occurs on the left hand side of a `<' relation. Now,
suppose Q1 < Qu, where Qu is a union query. The
application of SI1 on union queries is the same as when
only simply queries are involved. To apply SI2, the user
must has identi�ed all the overlapping tuples among
the simple queries of Qu that correspond to the return
tuples of Q1. The subsume inference rule can still be
applied when the simple queries of Qu have no common
projected attribute.

Consider the applications of the overlapping infer-
ence rule on union queries. Firstly, consider the appli-
cation of OI1. If Qu < Q1 is involved, jQuj must be

known to the user. If Q1 < Qu is involved, the user
must has identi�ed all the overlapping tuples among
the simple queries of Qu that relate to the return tu-
ples of Q1. Now, consider the application of OI2. If
Qu < Q1 is involved, the user must has identi�ed all
the overlapping tuples among the simple queries of Qu

that relate to the return tuples of Q1. If Q1 < Qu is
involved, jQuj must be known to the user. In either
case, the attribute set of the union query cannot be
empty.

To apply the complementary inference rule on union
queries, the overlapping tuples of the simple queries in
the union query must have been identi�ed. Also the
attribute set of the union query cannot be empty.

Finding all the eligible union queries that have the
`<' relations with other queries is an NP-hard problem.
This is because for each simple query Q1, we need to
�nd all union queries Qu such that Q1 < Qu holds.
This becomes the problem of �nding a set of simple
queries that together returns a set of tuples that covers
another set of return tuples. If we can solve this prob-
lem, we can also solve the set-covering problem which
is known to be an NP-complete problem [4]. We have
developed a prototype to study the performance of the
inference detection system in practice. It is discussed
in Section 5.

5. Implementation and Preliminary Re-

sults

We have developed a prototype of the inference de-
tection system in about 4,000 lines of Perl code. We
have implemented the subsume, unique characteristic,
overlapping, and complementary inference rules. We
run our experiments with randomly generated tables
and user queries. Each table has Nattr number of at-
tributes, and Nrec num number of records. The pri-
mary key of the table is a single attribute. All at-
tributes are of integer types. Each attribute value
in the table is uniformly distributed between 0 and
(Ndata dist � Nrec num), where 0 < Ndata dist � 1.
We also randomly generate Nquery num number of user
queries. Each query projects Nproj number of at-
tributes from the table. The selection criterion of each
query is a conjunction of Ncond number of conjuncts.
Each conjunct is of the form `Ai op ai', where Ai is
an attribute from the table, op is one of the relational
operations (>, �, �, <, and =), and ai is an attribute
value. We only consider queries with the number of re-
turn tuples falls between 1 and (Nset size �Nrec num),
where 0 < Nset size � 1. We approximate the evalua-
tion of a logical implication Ci ! Cj by checking if the
tuples selected by Ci is also selected by Cj , and that

the set of attributes appears in Cj is a subset of those
appear in Ci.

The preliminary results of running the inference de-
tection system on a Sun SPARC 20 workstation are
shown in Table 1{Table 4. In each experiment, we run
the inference detection system against 500 user queries.
We have collected data about 1) the average number
of seconds used to process one query; 2) the number of
inferred queries generated; 3) the number of times the
inference rules are applied; and 4) the ratio between the
number of attribute values of those individual records
that have been identi�ed by the user (either by directly
accessing them using a query or by inferences) and the
total number of attribute values in the database. The
ratio is denoted as \% of DB revealed". For exam-
ple, consider the two queries Q1 and Q2 in Section
4.1. These two queries together reveals that Alice is 35
years old, and she works in the Marketing department.
Hence, the number of attribute values revealed to the
user is 3 (namely Alice's name, Alice's age, and Alice's
department). Note that although Q2 returns two tu-
ples, the user cannot determine whom these two tuples
belong to; hence, they are not included as the attribute
values that are revealed to the user. The total number
of attribute values in the sample database is 24 (there
are four records, each with 6 attribute values). Hence,
the `% of DB revealed' by Q1 and Q2 to the sample
database is (3 / 24) � 100%, or 12.5%.

Table 1 shows the results for Nrec num = 1000,
Nsetsize = 10%, Nproj = 4, Ncond = 3, Nquery num

= 500, Ndata dist takes the values of 33%, 66%, and
100%, and Nattr takes the values of 50, 70, and 90.
The number of tuples returned by each query is about
30. It shows that the system performs better as Nattr

increases. This is because the larger the number of at-
tributes in the table, the lesser the chance that the `<'
relations hold among queries. Also, the system per-
forms better when Ndata dist decreases. The lower the
distribution of the data, the more duplication of the
data values, the lesser the chance a return tuple will
be distinguishable from others, and hence the smaller
number of occurrences of inferences. Table 2 shows
similar results for Nrec num equals 10,000. The num-
ber of tuples returned by each query is about 200.

Table 3 shows the results for Nrec num = 1000,
Ndata dist = 50%, Nattr = 80, Nproj = 4, Ncond = 3,
and Nquery num = 500, and Nset size takes the values
of 10%, 20%, 30%, 40%, and 50%. It shows that the
system performs better when Nset size decreases. This
is because the more the number of records returned
by the queries, the more the number of occurrences of
inferences, and also the more the number of inferred
queries being generated.

Ndata dist Nattr average query number of number of % of DB
(%) processing time (sec) inferred queries inferences inferred

33 50 1.990 40 3 6.94
33 70 1.622 14 0 3.42
33 90 1.532 7 0 3.06
66 50 2.208 49 5 8.30
66 70 1.632 18 0 3.45
66 90 1.608 7 0 3.74
100 50 2.386 50 11 8.79
100 70 1.642 18 0 3.78
100 90 1.650 9 0 3.95

Table 1. Nrec num = 1000, Nset size = 10%, Nproj = 4, Ncond = 3, Nquery num = 500.

Ndata dist Nattr average query number of number of % of DB
(%) processing time (sec) inferred queries inferences inferred

33 50 3.876 53 14 6.12
33 70 4.534 27 9 5.67
33 90 2.484 13 0 1.82
66 50 4.948 65 19 7.01
66 70 5.534 35 9 6.13
66 90 2.848 19 0 2.23
100 50 6.160 87 99 7.45
100 70 6.618 45 39 6.34
100 90 3.002 19 0 2.29

Table 2. Nrec num = 10000, Nset size = 10%, Nproj = 4, Ncond = 3.

Nset size average query number of number of % of DB
(%) processing time (sec) inferred queries inferences inferred

10 1.700 34 0 1.85
20 1.890 23 0 5.77
30 1.956 20 3 5.76
40 2.152 22 3 8.08
50 2.168 16 3 8.03

Table 3. Nrec num = 1000, Ndata dist = 50%, Nattr = 80, Nproj = 4, Ncond = 3, Nquery num = 500.

Nproj Ncond average query number of number of % of DB
processing time (sec) inferred queries inferences inferred

4 3 1.700 34 0 1.85
4 4 1.400 3 0 1.93
4 5 1.452 3 0 2.76
4 6 1.432 1 0 2.31
3 3 1.346 5 0 2.22
5 3 1.800 28 0 4.29
6 3 2.556 68 0 7.30

Table 4. Nrec num = 1000, Ndata dist = 50%, Nattr = 80, Nset size = 10%.

Table 4 shows the results for Nrec num = 1000,
Ndata dist = 50%, Nattr = 80, Nset size = 10%, Nproj

takes the values of 3, 4, 5, and 6 while Ncond is kept
constant at 3, and Ncond takes the values of 3, 4, 5,
and 6 while Nproj is kept constant at 4. It shows
that the system performs better when Nproj decreases.
This is because the more the number of attributes pro-
jected by the queries, the more overlapping among the
queries, and hence the more number of inferences can
occur. Also, the system performs better when Ncond

increases. This is because with a larger number of con-
juncts in the selection criteria of the queries, there is
lesser chance that the `<' relations hold among the
queries, and hence the smaller number of occurrences
of inferences.

In general, we expect to see the inference detection
system performs better with the larger number of at-
tributes in the table, the more duplication of attribute
values in the database, the smaller number of records
returned by queries, the smaller number of attributes
projected by the queries, and the larger number of con-
juncts in the selection criteria of the queries.

6. Conclusions

In this paper, we describe our e�ort in developing a
data level inference detection system. We have identi-
�ed �ve inference rules: subsume, unique characteris-
tic, overlapping, complementary, and functional depen-
dency inference rules. These rules are sound but they
are not necessarily complete. The existence of these
inference rules shows that simply using functional de-
pendencies to detect inferences is inadequate. We have
developed a prototype of the inference detection system
using Perl on a Sun SPARC 20 workstation. The pre-
liminary results show that the system on average takes
seconds to process a query for a database of thousands
of records.

Although in theory detecting inferences at data level
is an NP-hard problem, in practice, there are cases
where the use of such approach is practical. In par-
ticular, this is the case when there is a limited amount
of overlapping among the return tuples of the queries.
We can further improve the system performance using
distributed computing techniques. For example, the
inference rules can be applied to the queries in paral-
lel.

Instead of using the inference detection system to
detect if a user has accessed particular data, we can
also employ it as an anomaly detection system. For
example, when a user has inferred certain amount of
data in the database, it is reported to the security of-
�cer so that closer monitor to user activities will be

carried out.

Acknowledgements The research reported in
this paper is supported by the National Security
Agency University Research Program under Contract
DOD MDA904-96-1-0117, and by the CIA O�ce of Re-
search and Development under Contract 96F 154000-
000. The authors would like to acknowledge the helpful
comments made by the reviewers of this paper.

References

[1] N. R. Adam and J. C. Wortmann. Security-control
methods for statistical databases: A comparative
study. ACM Computing Surveys, 21(4):515{556, De-
cember 1989.

[2] L. J. Binns. Inference through secondary path anal-
ysis. In B. M. Thuraisingham and C. E. Landwehr,
editors, Database Security VI: Status and Prospects,
pages 195{209. North-Holland, 1993.

[3] H. S. Delugach and T. H. Hinke. Wizard: A database
inference analysis and detection system. IEEE Trans-

actions on Data and Knowledge Engineering, 8(1):56{
66, 1996.

[4] M. R. Garey and D. S. Johnson. Computers

and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman, 1979.

[5] J. Hale and S. Shenoi. Catalytic inference analysis:
Detection inference threats due to knowledge discov-
ery. In Proceedings of the 1997 IEEE Symposium on

Security and Privacy, pages 188{199. IEEE Computer
Society Press, 1997.

[6] T. H. Hinke. Inference aggregation detection in
database management systems. In Proceedings of the

1988 IEEE Symposium on Security and Privacy, pages
96{106. IEEE Computer Society Press, 1988.

[7] T. H. Hinke and H. S. Delugach. Aerie: An inference
modeling and detection approach for databases. In
B. M. Thuraisingham and C. E. Landwehr, editors,
Database Security VI: Status and Prospects, pages
179{193. North-Holland, 1993.

[8] T. H. Hinke, H. S. Delugach, and A. Chandrasekhar.
Layered knowledge chunks for database inference. In
T. F. Keefe and C. E. Landwehr, editors, Database
Security VII: Status and Prospects, pages 275{295.
North-Holland, 1994.

[9] T. H. Hinke, H. S. Delugach, and R. Wolf. A frame-
work for inference-directed data mining. In P. Sama-
rati and R. S. Sandhu, editors, Database Security X:

Status and Prospects, pages 229{239. Chapman and
Hall, 1997.

[10] T. H. Hinke, H. S. Delugach, and R. P. Wolf. Iliad: An
integrated laboratory for inference analysis and detec-
tion. In S. A. D. David L. Spooner and J. E. Dobson,
editors, Database Security IX: Status and Prospects,
pages 333{348, 1995.

[11] T. F. Lunt. Aggregation and inference: Facts and fal-
lacies. In Proceedings of the 1989 IEEE Symposium on

Security and Privacy, pages 102{109. IEEE Computer
Society Press, 1989.

[12] D. G. Marks. Inference in mls database systems.
IEEE Transactions on Knowledge and Data Engineer-

ing, 8(1):46{55, February 1996.
[13] A. Motro, D. G. Marks, and S. Jajodia. Aggregation in

relational databases: Controlled disclosure of sensitive
imformation. In Proceedings of the Third European

Symposium on Research in Computer Security, pages
431{445, November 1994.

[14] X. Qian, M. E. Stickel, P. D. Karp, T. F. Lunt, and
T. D. Garvey. Detection and elimination of inference
channels in multilevel relational database systems. In
Proceedings of the 1993 IEEE Symposium on Security

and Privacy, pages 196{205. IEEE Computer Society
Press, 1993.

[15] M. E. Stickel. Elimination of inference channels
by optimal upgrading. In Proceedings of the 1994

IEEE Symposium on Research in Security and Pri-

vacy, pages 168{174. IEEE Computer Society Press,
1994.

[16] M. E. Stickel, T. D. Garvey, T. F. Lunt, and
X. Qian. Inference channel detection and elimination
in knowledge-based systems. Technical report, SRI
International, Octobet 1994.

[17] T.-A. Su and G. Ozsoyoglu. Data dependencies and
inference control in multilevel relational database sys-
tems. In Proceedings of the 1987 IEEE Symposium on

Security and Privacy, pages 202{211. IEEE Computer
Society Press, 1987.

[18] B. Thuraisingham. The use of conceptual structures
for handling the inference problem. In C. E. Landwehr
and S. Jajodia, editors, Database Security V: Status

and Prospects, pages 333{362. Elsevier Science Pub.
Co., 1992.

