Attack Class: Address Spoofing

L. Todd Heberlein

23 Oct 1996

Net Squared Inc. todd@NetSQ.com

Overview of Talk

- Introduction
- Background material
- Attack class
- Example attack
- Popular questions
- Extensions

UCD Vulnerabilities Group

 UCD's vulnerabilities group studies attacks and their underlying vulnerabilities for the purpose of modeling them. We believe a sufficiently complete model will allow us to both predict new instances of general attack classes and build generic schemes for detecting exploitations of general vulnerability classes.

Address Masquerading

- Many of today's network services use host names or addresses for both identification AND authentication.
- Examples: rlogin, rsh, mountd, wrappers, firewalls
- Higher level services use these lower level services (e.g., backups)

History of Talk

- R.T. Morris, 85
- S. Bellovin, 89
- UCD Discussed, Feb. 94
- UCD Presented, Mar 94
- Mitnick-Tsutomu, Dec 94

- UCD paper, spring 95
- Mendax, Rbone, summer 95
- Wee (UCD), fall 95
- USAF project, Jan. 96

Orders and Dialogues

Need better names

» asynchronous vs. synchronous
 » connectionless vs. connection-oriented

- An order is a request requiring only a single "message".
- A dialogue is a request which requires the exchange of several, interdependent "messages".
- From recipient's point of view

Connectionless Communication (Orders)

- Connectionless communication (e.g., supplied by UDP), does not keep state information
- No guarantee of delivery or order
- Efficient in many environments
- RPC on UDP (NFS)

Connection-oriented Communication (Dialogues)

- Additional state information kept, representing a limited history of communication
- Provides "guarantee" that information will both arrive and arrive in order
- May require more resources and be less efficient in some environments

TCP/IP Example

- Three phases: setup, data exchange, tear-down
- set-up is a threeway handshake
- Third packet requires information from second packet.

Routing in an internet

- Host constructs packet and simply places it on the network
- As the packet travels across the internet, only the destination address is used

The Attack

- Definition of what an attack is
- Restrictions to be concerned with
- Strategy of the attacker

Definition of Attack

- Players: Alice (A),
 Bob (B), and Eve (E)
- Bob grants Alice special privileges by listing Alice's address or name in a special file
- Eve is the villain

 Eve's goal: To get
 Bob to perform a specific action
 that he would
 perform for Alice
 but not Eve

Restrictions

- The placement of Alice, Bob, and Eve (the topology)
- The nature of the communication required by Eve to carry out the attack.
- These restrictions will help define Eve's strategy

Architecture (or Topology)

- Alice and Bob on separate networks; Eve in one of four locations
- Other architectures are simply special cases of this one

Nature of Communication

- Eve's communication must be indistinguishable from Alice's communication with Bob
- Order communication
 - » request is carried out immediately
 - » No role-backs
- Dialogue communication
 - » must make sense to Bob
 - » Alice cannot be allowed to interfere

Eve's Strategy

- Establish a forged communication with Bob
- Prevent Alice from alerting Bob until it is too late

Establishing a Forged Communication

- Construct packet, and place it on the network.
 The network will deliver it for Eve
- For order-based communication, the communication is done
- For dialogue-based communication, further messages must be exchanged
 - » if Eve is in E_1 , E_2 , or E_3 , further communication is easy
 - » if Eve is in E₄, she must either modify the messages' routes, or predict what the messages will contain

Prevent Alice from Interfering

- Prevent Bob's packets from reaching Alice (or Alice's from reaching Bob)
- Take away Alice's ability to respond
 » wait for Alice to go down for maintenance
 - » force Alice to crash
 - » block part of Alice's operating system from processing Bob's packets (graceful ??)
- Complete communication before Alice can respond

Example Attack

- Players E adversary
 - A server
 - **B** X-client
 - Steps 1 Prevent Alice From Responding
 - 2 Probe for sequence number prediction
 - **3** Forge communication

- Used against Tsutomu Shimamura, attributed to Kevin Mitnick
- Detailed ten years earlier by R.T. Morris

Questions

 Couldn't this attack be stopped by simply configuring routers not to forward obviously forged packets?

Questions cont.

 Couldn't we require all "trusted" hosts to belong to the same physical network and use lower level addresses (e.g., ethernet)?

ie(7D)	Devices	ie(7D)
NAME ie - Intel 8	2586 Ethernet device driver	
SYNOPSIS /dev/ie		
DESCRIPTION		

• • •

The DL_SET_PHYS_ADDR_REQ primitive changes the 6 octet Ethernet address currently associated (attached) to this stream. The credentials of the process which originally

Questions cont.

- Couldn't we simply write a more secure algorithm for choosing initial sequence numbers?
- Only if Eve is NOT is position E₁, E₂, or E₃, and Eve is NOT able to alter the path of Bob's messages to Alice (e.g., source routing or routing table modification). Also, this solution does not apply to order-based communications.

Extensions to this Attack: Session Hijacking

- One-time authentication services are vulnerable
- Commercial programs exist which do session hijacking
- Demonstrated against systems with challenge-response authentication

Extensions cont.

Eve's goal: To get Bob to accept information he would only accept from Alice

