
Intrusion Detection Inter-component Adaptive

Negotiation1

Richard Feiertag, Lee Benzinger, Sue Rho, Stephen Wu

ffeiertag, benzinger, rho, wug@tislabs.com
NAI Labs at Network Associates, Inc.

3965 Freedom Circle

Santa Clara, CA 95054

Karl Levitt, Dave Peticolas, Mark Heckman

flevitt, peticola, heckmang@cs.ucdavis.edu
Computer Science Department

University of California, Davis

Davis, CA 95616

Stuart-Staniford-Chen

stuart@silicondefense.com

Silicon Defense

791 Shirley Blvd

Arcata, CA 95521

Cui Zhang

zhangc@ecs.csus.edu

Computer Science

Department

California State University

Sacramento, CA 95819-6021

September 29, 1999

1This work was supported by DARPA under contract F30602 - 97 - C - 0187

Abstract

The Intrusion Detection System (IDS) community is developing better
techniques for collecting and analyzing data in order to handle intrusions
in large, distributed environments [1, 5, 6]. To take advantage of this on-
going work, IDSs should be able to dynamically adapt to new and improved
components and to changes in the environment. The Intrusion Detection
Inter-component Adaptive Negotiation (IDIAN) project has developed a ne-
gotiation protocol to allow a distributed collection of heterogeneous ID com-
ponents to inter-operate and reach agreement on each other's capabilities and
needs { i.e., the information that can be generated and processed. Moreover,
the negotiation is dynamic so the information generated and processed can
evolve as the IDS evolves or the environment changes.

The IDIAN project leverages the Common Intrusion Detection Frame-
work (CIDF), an e�ort by DARPA to develop a common language, proto-
cols, and APIs that allow intrusion detection components to interoperate
and share information. The IDIAN project has extended the CIDF language
CISL (Common Intrusion Speci�cation Language) with constructs for dy-
namic negotiation. One such construct is the notion of a �lter to specify sets
of IDS messages. Filters are useful in negotiating, for example, what data
will be transmitted. The IDIAN project also adopts the CIDF framework
architecture that classi�es ID components according to their function.

The negotiation protocol uses the notion of a contract { an association
between two ID components, a producer and a consumer { which contains one
or more possible agreements. An agreement commits the producer to provide
the consumer with a set of services. For example, a detection component
(producer) might have a contract with an analysis component (consumer) to
provide a speci�c set of audit data. At any give time, at most one of the
agreements in a contract is in e�ect, although the ID components may switch
to one of the alternatives dynamically. Furthermore, two components may
have multiple contracts operating at the same time.

The primary function of the protocol is to allow ID components to dy-
namically negotiate new contracts/agreements and to change existing ones.
An extension of the protocol is designed to handle hierarchical negotiations
in which top-level components obtain the services of low-level components
through intermediaries.

To facilitate choosing among several options, the protocol uses the notion
of cost to capture the relative cost to a producer (resp., consumer) to provide
(process) a speci�c set of services. Services provided by producers require
a variety of system resources. A consumer may decide to use a particular
service only if the cost is below a certain threshold. The absolute and relative
amount of resources required to supply a particular service may vary over
time, and the protocol allows producers and consumers to renegotiate when
necessary.

In addition to the protocol, the IDIAN project has developed several
scenarios that demonstrate situations where an IDS must adapt to a changing
environment. The scenarios can be divided into two general classes:

1. The acquisition of a new capability by the IDS. For example, an ID
component may acquire a new attack signature or a new ID component
may come on-line. The IDS must adapt by incorporating the new
signature or ID component into the overall system.

2. An overload of the IDS caused, for example, by faults in the IDS itself
or by a ooding attack. The IDS could adapt by reducing the amount
of information being gathered, or by cutting o� the ow of data from
the ooding source.

The IDIAN project has developed a demonstration of the protocol in
which a new producer comes on-line and negotiates with an existing con-
sumer. The new producer can report bu�er overow attacks detected by the
StackGuard [2] system.

Finally, the IDIAN project is using the formal description language Estelle
[3] to specify the negotiation protocol.

2

1 Introduction

The Intrusion Detection System (IDS) community is developing better tech-
niques for collecting and analyzing data in order to handle intrusions in large,
distributed environments [1, 5, 6]. To take advantage of this on-going work,
IDSs should be able to dynamically adapt to new and improved components
and to changes in the environment. The Intrusion Detection Inter-component
Adaptive Negotiation (IDIAN) project has developed a negotiation protocol
to allow a distributed collection of heterogeneous ID components to inter-
operate and reach agreement on each other's capabilities and needs { i.e.,
the information that can be generated and processed.

This paper presents several di�erent components of this research. Sec-
tion 2 presents background information on the Common Intrusion Detection
Framework, a body of research which the IDIAN project has leveraged. Sec-
tion 3 presents a set of scenarios which demonstrate the need for adaptive
negotiation. Section 4 presents research in constructs for expressing com-
ponent capabilities, and Section 5 presents the protocol itself. Section 6
describes the testbed used to demonstrate the protocol in operation and Sec-
tion 7 concludes the paper and explores areas of future research.

2 Common Intrusion Detection Framework

The Common Intrusion Detection Framework (CIDF) [4] is an e�ort by
DARPA to develop a common language, protocol, and API that allow ID
components to inter-operate and share information. Since a thorough expo-
sition of CIDF would be too lengthy, we will only give enough information
to understand the rest of the document.

2.1 CIDF Architecture

The CIDF architectural model divides an IDS into components, all of which
have a persistent identity. New components may be introduced and other
components may be removed. However, the model assumes that the life-
time of a component is long compared to both the time required to deploy
the component and to the duration of intrusion incidents. Components con-
sist mainly of software code with some con�guration information (with the
exception of database components which store extensive amounts of data).

1

CIDF components interact in a real-time dataow model and exchange
data using Generalized Intrusion Detection Objects (GIDOs). GIDOs consist
solely of data (not code) and carry information about possible intrusions and
responses to intrusions. GIDOs are discussed in greater detail in Section 2.2.

CIDF de�nes four types of components. First, event generators passively
monitor sources of information and transmit that information using GIDOs.
For example, an event generator might monitor an IP network and turn
packet level information into GIDOs that are sent to other components. An-
other event generator might monitor host audit trails. Event generators send
GIDOs to analyzers, the second type of component. Analyzers examine the
incoming GIDOs, draw conclusions about what intrusive activity might be
occurring, and create new GIDOs that encapsulate these conclusions and,
possibly, prescribe responses.

Third, response components accept GIDOs that order a particular re-
sponse (for example, killing a connection), and carry out the response. Fi-
nally, database components store GIDOs and provide answers to queries.

2.2 Generalized Intrusion Detection Objects

A GIDO consists of two components: a �xed format header and a variable
length body. (There may also be GIDO addenda and signatures, but these
are beyond the scope of this discussion.) The header contains information
such as the version of CIDF in use, a timestamp, and the length of the body.

We explain the structure of the body using a sample body (Figure 1) that
might be generated by the StackGuard-based event generator described in
Section 6. This GIDO body expresses the fact that an attack occurred on the
host somehost.someplace.net, was detected by the StackGuard process,
and was directed at the fingerd program.

The structure of GIDO bodies is that of Lisp S-expressions; the parse
tree of the expression is explicitly delineated with parentheses. Two kinds
of constructs occur within the GIDO body. The �rst is actual data (all of
which is shown in single quotes in Figure 1). The second type of construct is
a Semantic Identi�er (SID). There is a SID associated with each piece of data
in the body. For example, the SID associated with the data `fingerd' is
ProcessName, indicating that the string `fingerd' refers to a process name.
SIDS which are directly associated with data are called Atom SIDS.

The Atom SIDS alone, however, are not suÆcient. Above the Atom SIDS
in the parse tree are additional SIDS which describe how the atoms of data

2

Figure 1: A sample GIDO body

(ByMeansOf

(Attack

(Observer (ProcessName `StackGuard'))

(Target (HostName `somehost.someplace.net'))

(AttackSpecifics

(Certainty `100')

(Severity `100')

(AttackID `1' `0x4f'))

(Outcome (CIDFReturnCode `2'))

(When

(BeginTime `14:57:36 24 Feb 1999')

(EndTime `14:57:36 24 Feb 1999')))

(ByMeansOf

(Execute

(Process (ProcessName `fingerd'))

(When

(BeginTime `14:57:36 24 Feb 1999')

(EndTime `14:57:36 24 Feb 1999')))))

combine to form a more complex meaning. For example, the Attack SID in
the example is a Verb SID. Verbs describe events, in this case an attack.

Every Verb SID has a set of Role SIDS that may appear beneath it. Role
SIDS provide additional information about the event (beyond the mere fact
that, e.g., an attack occurred). For example, the Observer Role provides
information about the observer of an event (in this case the StackGuard

process). Roles are completed by supplying the Atoms beneath them (such
as ProcessName); the Atoms tie the actual data into the structure.

Multiple events, each with their own verb-headed S-expression, can be
joined together with conjunction SIDS, such as And. In the example, the
attack is linked to the fingerd process with the ByMeansOf conjunction.

GIDOs are exible in that a GIDO producer can leave out any unavailable
information and may choose what information to include.

We note that the ASCII representation of the GIDO body shown above
is not the format used in transmission. The CISL speci�cation de�nes a

3

compact GIDO representation for transmission and storage.
Finally, because the GIDO body is the main component of a GIDO,

hereafter GIDO bodies are referred to as GIDOs.

3 Negotiation/Adaptation Scenarios

This section describes some of the scenarios which the IDIAN project has
developed to illustrate the need for adaptive negotiation.

3.1 New ID Component or Capability

ID systems must function continuously; any gaps in operation leave the pro-
tected system vulnerable to attack. However, the con�guration of an IDS
may be dynamic. Speci�cally, an IDS should incorporate new resources and
technology, in the form of new ID components or new capabilities of existing
components, while maintaining continuous operation.

In order to incorporate a new ID component, the other components in
the IDS must be aware of the new component's capabilities, i.e., the data it
can provide or consume. Additionally, the other components may only want
to use a subset of the new capabilities in order to conserve resources and to
utilize resources eÆciently.

For example, a network sni�er may be able to provide data on every
packet traversing the network to which it is connected. However, a speci�c
analyzer may only be able to detect intrusions based on the �le transfer
protocol (FTP). Therefore, the analyzer should be able to negotiate with the
sni�er to obtain only FTP packets. This would allow both components to
operate more eÆciently in that the sni�er only needs to format and transmit
FTP packets and the analyzer will only receive packets it can analyze. Thus,
the negotiation protocol must provide:

1. The ability to publish the capabilities of a new component. This re-
quires the ability to describe capabilities and to disseminate descrip-
tions to other components.

2. The ability for collections of components to determine a speci�c set of
capabilities that they will use. Thus, the protocol must be able to de-
scribe the data to be exchanged and to provide a quantitative measure
of the resources required to provide that data. Other information may

4

also be required, such as the latency for providing the data or a nego-
tiation progress metric to ensure that the negotiation will terminate.

These abilities are also useful when new capabilities are added to an
existing component. For example, new response capabilities may be added
to an operating system, such as the ability to maintain a log of a user's
actions. The OS would announce these capabilities and possibly negotiate
with an analyzer to accept requests for these new responses.

3.2 Overloading and Flooding

The second class of scenarios where adaptation and negotiation are important
are those in which the IDS becomes overloaded. Overloading can occur due
to faults on the network, on hosts, in applications, or within the IDS itself.
Alternatively, overloading might be due to deliberate attempts to ood the
IDS by an attacker.

For example, an event generator which is monitoring an on-going attack
could generate so much audit data that the analyzer is unable to handle the
load. In such a situation, an analyzer may wish to:

� Request the event generator to switch to a pre-negotiated \fallback"
setting in which only critical audit data is sent.

� Request that other event generators reduce their output so the analyzer
can concentrate on the attack.

Thus, the negotiation protocol must support both the negotiation of \fall-
back" or alternative positions and dynamic switching among those positions.

4 GIDO Filters

Negotiating over services requires the ability to express what services are
o�ered or desired. For example, an event generator must be able to express
the particular set of events that it can detect. Conversely, an analyzer must
be able to express the set of audit data it can analyze.

Since, in the CIDF framework, all communication is in the form of GIDOs,
the services which, for example, an event generator can provide can be rep-
resented by the set of all GIDOs it can generate. Consider again the GIDO

5

in Figure 1. That GIDO is generated in response to a StackGuard detection
of a stack overow. The structure of the generated GIDO is always the same
{ only the data �elds change. Thus, the service the StackGuard detector
provides is represented by the set of all such GIDOs.

Similarly, the audit data which an analyzer requires might be represented
by the set of all GIDOs it can process. Finally, the services of a response
component could be represented as the set of response GIDOs it understands
and can carry out.

The IDIAN project has developed the notion of a GIDO �lter, a construct
used to describe a set of GIDOs. GIDO �lters are themselves GIDOs (or,
perhaps, meta-GIDOs) that ID components can use to specify the services
they provide or require.

4.1 Filter Requirements

The IDIAN project has identi�ed a number of requirements for GIDO �lters.
We list the main requirements below:

1. Filters should be expressive enough that components can specify all sets
of GIDOs that are useful to them. In particular, it must be possible
to specify only part of the GIDO required to match the �lter, allowing
the GIDO to contain additional information that is not of interest. It
must be possible to �lter on any data �eld in the GIDO, and on any
combination of data �elds.

2. Filters should allow the possibility to specify sets of hosts, users or
other categorical variables in a convenient way.

3. Filters should allow the extraction of particular data values frommatch-
ing GIDOs, so that only the data of interest, rather than the whole
GIDO, is sent.

4. The �lter language should allow for eÆcient implementations.

5. Given two �lters, F1 and F2, which match sets of GIDOs G1 and G2 re-
spectively, it should be possible to de�ne unambiguously a �lter match-
ing the union of G1 and G2, and a �lter matching the intersection of
G1 and G2. This requirement facilitates the construction of more com-
plex �lters when, for example, an event generator can produce many
di�erent kinds of event GIDOs.

6

6. Filters should have conceptual clarity. People who understand GIDOs
should be able to easily write and understand GIDO �lters.

4.2 Filter Design

In general, the format of a �lter is the same as the format of a GIDO as ex-
plained in Section 2.2, with certain extensions. The main di�erence between
an ordinary GIDO and a �lter is in the body. The basic �lter body starts
with the Filter SID as shown in Figure 2.

Figure 2: A sample �lter

(Filter

(Fragment

(Attack

(Observer (ProcessName `observer:exp1'))

(Target (HostName `target:exp2'))))

(Permit `ByMeansOf')

(Variables `observer' `target'))

A Filter can contain two SIDS: Fragment and Permit. A fragment
speci�es a \piece" of a GIDO. A GIDO matches a fragment if the piece
speci�ed by the fragment occurs anywhere in the GIDO, although the GIDO
may contain extra information not in the fragment.

A fragment contains variable names and data expressions which appear in
the fragment in place of actual data. A variable/expression pair will match
any actual data in a GIDO which matches the expression. Thus, the GIDO
in Figure 1 matches the fragment in Figure 2, with the variables observer
and target instantiating to `StackGuard' and `somehost.someplace.net'

respectively (assuming expressions exp1 and exp2 match those data items).
The use of variables in �lters allows only the relevant information (i.e., ob-
server and hostname) to be transmitted rather than the whole GIDO.

The Permit SID speci�es any number of SIDS which must appear at the
top of a GIDO's parse tree. A GIDO matches a �lter if it matches both the
fragment and the permit clauses. The example �lter speci�es that matching
GIDOs must have ByMeansOf as their �rst SID, and thus the GIDO of Figure
1 matches the �lter of Figure 2.

7

Basic �lters may be joined using AndFilter and OrFilter. AndFilter

expressions must appear below the OrFilter, if present. Example:

(OrFilter (AndFilter (Filter : : :) (Filter : : :) : : :) (Filter : : :))

A GIDO matches an OrFilter (AndFilter) if it matches any (all) of the
child clauses.

Please note the design of �lters is an active area of research. This section
presented the current state of GIDO �lters as of this writing.

5 The Negotiation Protocol

This section describes the components of the IDIAN negotiation protocol,
including the state model, message types, and the �nite state machine de-
scription of protocol interactions.

5.1 State Model

Under the protocol, each component has a state composed of the elements
below.

Agreement An agreement is a relationship between a producer and a con-
sumer. An agreement speci�es a set of services which the producer
must provide to the consumer. For example, an event generator may
agree to provide a particular set of audit data to an analyzer. At a
minimum, an agreement must specify the producer, consumer, and the
set of services to be provided.

Contract A contract is a set of agreements, each of which involve the same
producer and consumer (the partners to the contract). At all times,
exactly one agreement in a contract is in e�ect. Thus, the agreements
in a contract constitute a set of alternatives. Every contract has an
implicit \null" alternative in which no service is provided.

Contract Database A contract database is a set of contracts. Every com-
ponent has a contract database containing all the contracts to which it
is a partner.

8

Capability Database A capability database associates services (e.g., pro-
vide IP audit data, �lter packets, etc.) with the components which can
provide those services. Each component has a database containing its
own capabilities and, possibly, those of other components.

The state of a component consists of its contract and capability databases.
The IDIAN protocol de�nes the steps by which a component's state may
be changed, i.e., how contracts and agreements are negotiated, altered and
removed, and how capability databases are updated.

5.2 Protocol Description

A portion of the IDIAN negotiation protocol is graphically depicted in Figure
3 in the form of a state machine. The machine shows the allowed behavior
of a consumer component during a negotiation. Transitions are labeled with
the message types which cause the transition. Dotted (resp. solid) lines are
transitions caused by the consumer sending (receiving) a message to (from)
the producer. The diagram for a producer component is mostly identical to
that for a consumer, but with the dotted and solid lines switched.

The diagram only depicts the portion of the protocol speci�cally related
to negotiation (the creation and modi�cation of contracts). Other states
and transitions related to, e.g., removing contracts or dynamically switching
among existing agreements have been omitted for clarity.

Figure 3: The negotiation protocol { consumer

Run

Open Negotiation

Proposal, n := 0Refuse + Reason

Decide Response

1. Accept + Cost
2. Subset + Cost

In Negotiation

Reject + Advertisement

Cancel
1. Seal All
2. Seal n

1. Counter-Proposal
2. Accept + Alternative, n := n + 1

Cancel

Proposal

The basic consumer protocol consists of four states: Run, Open Negotia-
tion, In Negotiation, and Decide Response. In the Run state, a consumer is
performing normal operation, i.e., accepting and processing incoming GIDOs.

9

While in the Run state, a consumer can receive Advertisement messages from
producers or initiate a negotiation by sending a Proposal message.

Advertisement A component sends an Advertisement to announce its ca-
pabilities. An Advertisement contains a �lter to denote the set of
GIDOs which it can produce or consume. A component receiving
an Advertisement could use the information to update its capability
database, or decide to initiate a negotiation to obtain the advertised
services. Note that the reception of an Advertisement in the Run state
is not shown in Figure 3.

Proposal A Proposal is used to initiate a negotiation. The component send-
ing the proposal is the consumer, while the recipient is the producer.
A Proposal contains a �lter specifying the service the consumer is re-
questing.

The object of a negotiation is always a speci�c agreement in a speci�c
contract. The contract may already exist, in which case the consumer is
proposing to change an existing contract, otherwise the consumer is propos-
ing to create a new contract. The same applies to the agreement.

Once the consumer has sent a Proposal, it enters the Open Negotiation
state to await the producer's response. Negotiations in the IDIAN protocol
are atomic { any given component can be negotiating with at most one other
component at any time.

During a single negotiation session (the time between leaving and then
returning to the Run state) a consumer may negotiate several agreements,
all of which must be in the same contract. The variable n in the diagram
records the number of agreements which have been negotiated so far.

A producer that has received a proposal can respond with one of several
types of messages:

Accept + Cost The producer accepts the proposal and provides an esti-
mate of the cost to supply the requested service.

Subset + Cost The producer rejects the proposal because it does not have
the resources to provide all the requested service. This message includes
a �lter specifying a subset of the services which the producer could
provide and the cost of providing it.

10

Reject + Advertisement The producer rejects the proposal because it
is unable to supply the requested service. In addition, the producer
provides an advertisement of its current capabilities.

Refuse + Reason The producer refuses to negotiate with with consumer
and provides a reason for the refusal. Possible reasons include the fact
that the producer is negotiating with another component (all negotia-
tions are atomic) and the fact that the consumer does not have author-
ity to negotiate with the producer. Refusals terminate the negotiation
immediately, so the consumer returns to the Run state.

Upon receiving a Reject message, the consumer enters the In Negotiation
state, from which it can send another proposal, or Cancel the negotiation al-
together. A consumer that has received an Accept or Subset message enters
the Decide Response state, where it must choose between accepting or reject-
ing the producer's o�er. Even if the producer simply Accepted the proposal,
the consumer may still reject if it deems the cost too high.

Cancel The consumer rejects all the agreements negotiated so far (n may
be greater than zero) and terminates the negotiation.

Counter-Proposal A Counter-Proposal implicitly rejects the producer's of-
fer and o�ers a new proposal instead.

Accept + Alternative The consumer temporarily accepts (pending a Seal
message) the previous negotiation and o�ers a new one representing a
di�erent agreement in the same contract. Negotiation now begins on
this new proposal.

Seal All The consumer accepts all of the agreements negotiated so far and
ends the negotiation. The contract databases of both components are
updated to reect the changes.

Seal n The consumer accepts all of the agreements except the one currently
under negotiation, which is rejected. The negotiation ends and the
contract databases are updated.

Seal All and Seal n are the only messages which cause the components'
contract databases to be changed, after which the new agreements immedi-
ately go into e�ect.

11

5.3 Additional Protocol Features

The previous section presented that subset of the protocol directly related to
negotiation. However, the protocol contains additional features. Speci�cally,
the protocol supports messages which accomplish the following:

� Termination of agreements and contracts.

� Querying of component capabilities and contract status.

� Dynamic switching among agreements.

Furthermore, an extended version of the protocol has been developed
which supports hierarchical negotiation. Under hierarchical negotiation, the
ID components are arranged in a hierarchy, such as in Figure 4.

Figure 4: Hierarchical negotiation

Consumer/
Producer

Consumer/
Producer

Consumer

Producer Producer Producer

C

A

B

D

In hierarchical negotiation, consumers may only negotiate with producers
directly below them in the hierarchy. Components in the middle layers of the
hierarchy behave as producers with respect to the components above, and
like consumers with respect to the components below.

For example, when high-level consumer A sends a proposal to component
B, component B may, in turn, negotiate with low-level producers C and D to
obtain the requested service for A.

Hierarchical negotiation could be used, for example, to help manage very
large IDS systems.

12

5.4 Protocol Speci�cation

The IDIAN project has developed a formal speci�cation of the protocol in
the Estelle [3] description language. Estelle is a Pascal-like language with
constructs for specifying processing, communication channels, and state tran-
sitions.

Figure 5 shows a fragment of the Estelle speci�cation of a consumer. The
fragment speci�es component behavior during the state transition from Run
to Open Negotiation, in which a suitable producer is selected and a proposal is
transmitted. The function SelectOneComponent is left unspeci�ed, a useful
feature of Estelle.

Figure 5: A fragment of the protocol speci�cation

FROM Run TO OpenNegotiation

BEGIN

InitProposal(MyProposal);

ProducerNegotiator :=

IdToNum(SelectOneComponent(MyID, RelationshipDataDB,

CapabilityReq));

OUTPUT C[ProducerNegotiator].proposal(MyProposal);

END;

Both the basic and hierarchical versions of the protocol have been speci-
�ed. In the future, the project plans to use the Estelle speci�cations togeth-
er with the XEC Estelle compiler [7] to aid in protocol implementation and
analysis.

6 IDIAN Demo

The IDIAN project has developed a demonstration of a subset of the protocol
on a testbed consisting of two computers running Linux, shown in Figure 6.

Upon startup, the event generator sends an advertisement message to the
analyzer, announcing the fact that it can generate noti�cations of stack over-
ow attacks. The analyzer negotiates with the event generator to monitor a
set of programs for stack overow. The speci�c set can be adjusted by the

13

Figure 6: The protocol testbed

Analyzer

GUI

(StackGuard)

Event Generator

Detection ComponentAnalysis Component

Ethernet

user by using the GUI, and the analyzer will renegotiate the contract. Upon
receiving a GIDO noti�cation of a possible attack, the analyzer passes it to
the GUI for display to the user.

The event generator monitors the system logs for messages from Stack-
Guard [2] code that identi�es possible stack overow attacks. Any such mes-
sages are transformed into GIDOs, but those GIDOs are sent only if they
match the �lter in the contract which has been negotiated with the analyzer.

Currently, the demo uses a subset of the protocol and supports a single
contract with a single agreement.

7 Conclusions and Future Work

This paper has presented the work of the IDIAN project in developing a pro-
tocol that allows ID components to negotiate over the provision of ID services
such as detection capabilities and response mechanisms. The protocol enables
components to create contracts which bind producer ID components (e.g.,
audit generators) to provide their services to consumers (e.g., analyzers).

The project has demonstrated the potential feasibility of this approach
using a testbed consisting of two systems which negotiate over the set of
audit data to be shipped.

Many open areas of research remain. For example, the current implemen-
tation of �lters uses full Perl expressions in the �lter GIDO to match data
values. This approach could raise issues of security and eÆciency. More work
is needed in the area of �lter design.

Another open area of research involves the measurement and expression
of cost { the amount of resources a component requires to provide a set of
services. Since there are so many resources involved in providing a service
(memory, CPU time, network bandwidth, etc.) and since these resources can

14

change dynamically, accurately estimating and communicating cost informa-
tion is a major challenge.

Also, the IDIAN project plans to create a larger testbed involving more
than two systems in order to test a complete version of the the basic protocol,
as well as the hierarchical extension.

Finally, an interesting project would be to incorporate the IDIAN protocol
into existing ID components to further explore the protocol's applicability.

References

[1] J. Balasubramaniyan et al. An architecture for intrusion detection using
autonomous agents. Technical Report Coast TR 98-05, Department of
Computer Sciences, Purdue University, 1998.

[2] C. Cowen et al. Stackguard: Automatic adaptive detection and preven-
tion of bu�er-overow attacks. In Proceedings of the 7th USENIX Security

Conference, 1998.

[3] ISO/TC97/SC21. Information processing systems | Open systems in-
terconnection | Estelle | a formal description technique based on an
extended state transition model. IS 9074, International Organization for
Standardization, Geneva, 1997.

[4] C. Kahn et al. A common intrusion detection framework.
http://seclab.cs.ucdavis.edu/cidf/papers/jcs-draft/

cidf-paper.ps, 1998.

[5] U. Lindqvist and P.A. Porras. Detecting computer and network misuse
through the production-based expert system toolset (P-BEST). In Proc.

1999 IEEE Symposium on Security and Privacy, Oakland, California,
May 1999.

[6] A. Mounji. Languages and Tools for Rule-Based Distributed Intrusion

Detection. PhD thesis, Computer Science Institute, University of Namur,
Belgium, Sept 1997.

[7] J. Thees and R. Gotzhein. Protocol implementation with Estelle {
from prototypes to eÆcient implementations. In Proc. Estelle '98, Evry,
France, 1998.

15

