
A Methodology for Testing

Intrusion Detection Systems1

Nicholas J. Puketza, Kui Zhang, Mandy Chung,
Biswanath Mukherjee*, Ronald A. Olsson

*Correspondence Author
Department of Computer Science
University of California, Davis

Davis, CA 95616
Tel: (916) 752-4826
Fax: (916) 752-4767

E-mail: mukherje@cs.ucdavis.edu
Original submission date: October, 1993
First revision date: September 8, 1995

Second revision date: September 27, 1996

Abstract

Intrusion Detection Systems (IDSs) attempt to identify unauthorized use, misuse,

and abuse of computer systems. In response to the growth in the use and develop-

ment of IDSs, we have developed a methodology for testing IDSs. The methodology

consists of techniques from the �eld of software testing which we have adapted for

the speci�c purpose of testing IDSs. In this paper, we identify a set of general IDS

performance objectives which is the basis for the methodology. We present the de-
tails of the methodology, including strategies for test-case selection and speci�c testing

procedures. We include quantitative results from testing experiments on the Network

Security Monitor (NSM), an IDS developed at UC Davis. We present an overview of

the software platform that we have used to create user-simulation scripts for testing

experiments. The platform consists of the UNIX tool expect and enhancements that we

have developed, including mechanisms for concurrent scripts and a record-and-replay

feature. We also provide background information on intrusions and IDSs to motivate

our work.

Copyright Note

This work has not yet been published but it has been accepted by the IEEE for pub-

lication. The authors have already transferred the copyright to the IEEE. When the

work is published, this version will be superseded by the published version.

1This work has been funded by the National Security Agency INFOSEC University Research Program

under Contract Number DOD-MDA904-93-C-4084. A short, summarized version of this work was presented

at the 17th National Computer Security Conference in Baltimore, MD, in October, 1994.

1

1 INTRODUCTION

An intrusion detection system (IDS) is a system that attempts to identify intrusions, which
we de�ne to be unauthorized uses, misuses, or abuses of computer systems by either autho-
rized users or external perpetrators [27]. Some IDSs monitor a single computer, while others
monitor several computers connected by a network. IDSs detect intrusions by analyzing in-
formation about user activity from sources such as audit records, system tables, and network
tra�c summaries. IDSs have been developed and used at several institutions. Some exam-
ple IDSs are National Security Agency's Multics Intrusion Detection and Alerting System
(MIDAS) [31], AT&T's ComputerWatch [9], SRI International's Intrusion Detection Expert
System (IDES) [24, 25] and Next-Generation Intrusion-Detection Expert System (NIDES)
[1], UC Santa Barbara's State Transition Analysis Tool for UNIX (USTAT) [15, 16], Los
Alamos National Laboratory's (LANL's) Network Anomaly Detection and Intrusion Re-
porter (NADIR) [14], and UC Davis' Network Security Monitor (NSM) [13] and Distributed
Intrusion Detection System (DIDS) [33].

As more and more organizations depend on IDSs as integral components of their computer
security systems, techniques for evaluating IDSs are becoming more important. IDS users
need to know how e�ective their IDSs are, so that they can decide to what extent they
can rely on their IDSs, and to what extent they must rely on other security mechanisms.
However, evaluating an IDS is a di�cult task. First, it can be di�cult or impossible to
identify the set of all possible intrusions that might occur at the site where a particular IDS
is employed. To start with, the number of intrusion techniques is quite large (e.g., see [28]).
Then, the site may not have access to information about all of the intrusions that have been
detected in the past at other locations. Also, intruders can discover previously unknown
vulnerabilities in a computer system, and then use new intrusion techniques to exploit the
vulnerabilities. A second di�culty in evaluating an IDS is that an IDS can be a�ected by
various conditions in the computer system. For example, even if an IDS can ordinarily detect
a particular intrusion, the IDS may fail to detect that same intrusion when the overall level
of computing activity in the system is high. This complicates the task of thoroughly testing
the IDS.

We have developed a methodology for testing IDSs which confronts these di�culties. As the
basis for the methodology, we have identi�ed a set of general IDS performance objectives,
such as the ability to detect a broad range of known intrusions. The methodology is de-
signed to measure the e�ectiveness of an IDS with respect to these objectives. It consists of
strategies for selecting test cases, and a series of detailed testing procedures. To develop the
methodology, we have borrowed techniques from the �eld of software testing and adapted
them for the speci�c purpose of testing IDSs. We use the UNIX tool expect [23] as a software
platform for creating user-simulation scripts for testing experiments. In addition, we have
enhanced expect with features that allow us to simulate more-sophisticated intrusions, and
a feature that greatly facilitates script creation.

Our work should be useful to IDS developers, who can use our methods and tools to sup-

2

plement their own approaches to testing their respective IDSs. System administrators can
use our work to check for weaknesses in the IDSs that they currently employ. An organiza-
tion that plans to acquire an IDS can use our work to compare the relative strengths and
weaknesses of several IDSs and choose the system that best �ts their computing environment.

As background, Section 2 of this paper presents some examples of intrusions, provides motiva-
tion for intrusion detection, and discusses speci�c approaches to intrusion detection. Section
3 describes a software platform for testing experiments, which consists of expect (which, in
turn, is based on Tcl [29]) and our enhancements. Section 4 begins the discussion of our
testing methodology by �rst identifying a set of important IDS performance objectives, and
then discussing the selection of test cases, and some limitations to our approach. Section 5
describes our speci�c procedures for testing experiments in detail. Section 6 presents quan-
titative results from our own testing experiments which we conducted on the NSM. Section
7 concludes the paper.

2 BACKGROUND

In this section, we present some information on intrusions and intrusion detection as back-
ground for our work. Readers who are already familiar with these topics may skip this
section.

2.1 Intrusions

Intrusions in computer systems are occurring at an increasingly alarming rate. Some sites
report that they are the targets of hundreds of intrusion attempts per month [3]. Moreover,
there are numerous di�erent intrusion techniques used by intruders [28]. The following
scenarios are examples of intrusions:

� An employee browses through his/her boss' employee reviews;

� A user exploits a aw in a �le server program to gain access to and then to corrupt
another user's �le;

� A user exploits a aw in a system program to obtain super-user status;

� An intruder uses a script to \crack" the passwords of other users on a computer;

� An intruder installs a \snooping program" on a computer to inspect network tra�c
[12], which often contains user passwords and other sensitive data; and

� An intruder modi�es router tables in a network to prevent the delivery of messages to
a particular computer.

3

The reader can easily infer some of the consequences of intrusions from the preceding list.
Some additional consequences include loss or alteration of data, loss of money when �nancial
records are altered by intruders, denial of service to legitimate users, loss of trust in the
computer/network system, and loss of public con�dence in the organization that is the
victim of an intrusion [12].

2.2 Concurrent Intrusions

In addition to the variety of intrusion techniques, another complication in the task of de-
tecting intrusions is the possibility of concurrent intrusions, in which one or more intruders
use several terminals (or \windows" on a workstation) to carry out one or more intrusions
simultaneously. Based on this observation, we classify intrusions according to the following
categories2:

� Single Intruder Single Terminal (SIST)
Intrusions in this category are launched by a single intruder from a single terminal
device or its logical equivalent. The terminal device might be connected directly to the
system being attacked, or it might be connected to the system remotely via a modem
or network connection.

� Single Intruder Multiple Terminal (SIMT)
This category consists of intrusion scenarios in which an intruder uses multiple windows
on a computer to carry out one or more intrusions. The intruder might use each
window to attack a di�erent target computer. Alternatively, the intruder might use
multiple windows to establish several connections to the same target, hoping to hide
the intrusive activity by distributing the activity over several windows, each of which
controls a separate \session" on the target computer.

� Multiple Intruder Multiple Terminal (MIMT)
This category covers scenarios in which multiple intruders participate in one or more
intrusions simultaneously. Intrusions in this category are similar to those in the SIMT
category, in that there may be one or more target computers, and the intruders might
attempt to conceal the intrusion attempt by distributing the suspicious behavior over
several simultaneous sessions.

2.3 Motivation for Intrusion Detection

One approach to computer security is to attempt to create a completely-secure system. Un-
fortunately, in many environments, it may not be feasible to render the computer system

2In each of the categories, an intruder can be a person issuing commands manually, or a computer issuing

commands automatically based on an intrusion script or program.

4

immune to intrusions, for several reasons. First, system software is becoming more com-
plex. A major challenge programmers face in software design is the di�culty in anticipating
all conditions that may occur during program execution and understanding precisely the
implications of even small deviations in such conditions. Thus, system software often con-
tains aws that may create security problems, and software upgrades often introduce new
problems. Second, the increasing demand for network connectivity makes it di�cult, if not
impossible, to isolate and thereby protect a system from external penetration. Finally, a cen-
tral component of computer systems, the computer network itself, may not be secure. For
instance, there are a number of security aws inherent in the widely-used Transmission Con-
trol Protocol/Internet Protocol (TCP/IP) suite, regardless of its particular implementation
[4].

PREVENTION

INVESTIGATION

POST-MORTEM DETECTION

Figure 1: A Computer System Security Management Model.

In response to these di�culties in developing secure systems (which are discussed further in
[27]), a new model of system security management [2] has emerged. The model is pictured in
Figure 1. In this more-realistic approach to security, developing secure systems (the preven-
tion component) is just one of four parts of the security system. The detection component
identi�es security breaches. The investigation component determines exactly what happened
based on data from the detection component. This component may also include the gath-
ering of further data in order to identify the security violator. Finally, the post-mortem
component analyzes how to prevent similar intrusions in the future. In the past, most of the
attention of computer security researchers has been focused on the prevention component.
With the emergence and the proven utility of the intrusion detection concept, the detection
component is beginning to receive more attention. Unfortunately, the other two components
in Figure 1 have not yet received su�cient attention. In summary, the new model divides
the �eld of computer security into four non-trivial and challenging but more manageable
sub-problems; also, it encourages security researchers and practitioners to distribute their
e�orts over each of these important components of computer security.

5

2.4 Approaches to Intrusion Detection

The two major approaches that are used by IDSs to detect intrusive behavior are called
anomaly detection and misuse detection. The anomaly-detection approach is based on the
premise that an attack on a computer system (or network) will be noticeably di�erent from
normal system (or network) activity, and an intruder (possibly masquerading as a legitimate
user) will exhibit a pattern of behavior di�erent from the normal user [8]. So, the IDS
attempts to characterize each user's normal behavior, often by maintaining statistical pro�les
of each user's activities [25, 17]. Each pro�le includes information about the user's computing
behavior such as normal login time, duration of login session, CPU usage, disk usage, favorite
editor, and so forth. The IDS can then use the pro�les to monitor current user activity and
compare it with past user activity. Whenever the di�erence between a user's current activity
and past activity falls outside some prede�ned \bounds" (threshold values for each item in
the pro�le), the activity is considered to be anomalous, and hence suspicious. The interested
reader is referred to [17] for a thorough discussion of both this topic and the implementation
of the IDES anomaly detection component.

In the misuse-detection approach, the IDS watches for indications of \speci�c, precisely-
representable techniques of computer system abuse" [18]. The IDS includes a collection of
intrusion signatures, which are encapsulations of the identifying characteristics of speci�c
intrusion techniques. The IDS detects intrusions by searching for these \tell-tale" intrusion
signatures in the records of user activities.

Although there exist only the above two major approaches to intrusion detection, IDSs
are nevertheless quite diverse in their designs. Di�erent IDSs employ di�erent algorithms,
di�erent criteria for identifying intrusive behavior, and so forth. Also, several IDSs (including
several of the example IDSs mentioned in Section 1) use a combination of both detection
approaches.

Often, the main source of information about user activity for an IDS is the set of audit
records from the computer system. However, relying on audit records alone can be problem-
atic [27]. First, audit records may not arrive in a timely fashion. Some IDSs use a separate
computer to perform the analysis of audit records (e.g., Haystack [32]). So, it may take a
signi�cant amount of time to transfer the audit information from the monitored computer
to the computer which performs the analysis. Second, the audit system itself may be vul-
nerable. Intruders have been known to be able to turn o� the audit system or to modify
the audit records to hide their intrusions. Finally, the audit records may not contain enough
information to detect certain intrusions. For example, in the so-called doorknob attack [33],
an intruder tries to guess passwords of accounts on several computers in a network. To avoid
arousing suspicion, the intruder attempts only a few guesses on each individual computer.
This intrusion is not likely to be detected by analysis of the audit records of any single
computer in the network. We use the term network intrusion to refer to such an intrusion
that involves more than one computer (or other component) in a network.

6

This example illustrates that an e�ective IDS should also collect and analyze information
from the network itself. For example, the NSM monitors network tra�c on a Local Area
Network (LAN), so the NSM can detect security-related network events such as the transfer
of a password �le across a network. DIDS collects and analyzes information from both
the group of monitored computers and the network. Thus, DIDS is capable of recognizing
network intrusions such as the aforementioned doorknob attack. A number of other scenarios
in which the aggregation of information from a network of computers is necessary to detect
intrusions is described in [33].

User Interface
Expert System

Communications
Manager

Host DIDS Director Monitored Host Monitored Host

Local Area Network (Ethernet)

LAN Monitor

Communications
Agent

Host Monitor

Communications

Host Monitor

Communications
Agent Agent

Figure 2: The Distributed Intrusion Detection System (DIDS).

To conclude this section, we describe the components of an elaborate IDS by way of an
example. In the case of DIDS (see Figure 2), each monitored computer runs a Host Monitor
program, which �lters and analyzes the audit records associated with activity on that par-
ticular computer. The Communications Agent program on each monitored computer sends
information to a central computer designated as the DIDS Director. Programs that run on
the DIDS Director include: (1) an expert system to analyze the aggregated information from
the monitored sources; (2) a communications manager to control the information ow for the
entire system; and (3) a user-friendly interface for the SSO (System Security O�cer). An
additional computer runs the LAN Monitor program, which, like the NSM, monitors network
tra�c in the LAN. Like the monitored computers, the LAN Monitor communicates with the
DIDS Director via a Communications Agent program. With this architecture, intrusions
on individual computers in the LAN can be detected by the Host Monitor programs, while
network intrusions such as the doorknob attack can be detected by the DIDS Director, using
information from the LAN Monitor and each of the monitored computers.

3 SOFTWARE PLATFORM

Our testing methodology is based on simulating computer users|both intruders as well as
normal users|while the IDS is running. We employ the UNIX package expect [23] to simulate
users in our testing experiments. The expect package is based on another UNIX package called
Tcl (Tool command language) [29]. Using the expect language, we can write scripts (similar

7

to UNIX shell scripts) that include intrusive commands. For running the scripts, expect
provides a script interpreter which issues the script commands to the computer system just
as if a real user had typed in the commands.

The Tcl package provides an interpreter for a simple programming language that includes
variables, procedures, control constructs such as \if" and \for" statements, arithmetic expres-
sions, lists, strings, and other features. Recent versions of Tcl also provide string-matching
commands for matching strings against regular expressions. The syntax of Tcl shares sim-
ilarities with the syntaxes of the UNIX shells and Lisp. Tcl is implemented as a C library
package.

Expect
control
process

script

password:
login: chungm

SunOS Unix(K6)

> telnet k6

Last login: Fri Aug 23

k6>

telnet
process

stdinstdout

stdoutstdinoutput

input

a human user
Process for simulating

Figure 3: Simulation of a Human User's Activity.

The expect package also provides a programming language interpreter. The core of the
expect interpreter is the Tcl interpreter, but expect extends the Tcl command set to include
several commands for controlling interactive programs. The command \spawn" creates an
interactive process (such as telnet). The command \expect" waits to receive a speci�ed string
pattern (such as \login: ") from the process. The command \send" sends a string to the
process. Thus, a script containing several \expect/send" sequences and general programming
constructs (such as variables, procedures, conditionals, and loops) can control an interactive
session and thereby simulate a human computer user. Figure 3 illustrates the operation of
expect. The following is a simple expect script that controls a brief rlogin session:

8

#Spawn an rlogin process.

spawn rlogin ComputerName -l UserName

#Expect the password prompt, then send the password.

expect {"Password:" send "ActualPassword \r"}

#Expect the shell prompt, then send commands.

#The shell prompt is specified in a regular expression.

expect {-re ".*%|.*>|.*#" send "whoami \r"}

expect {-re ".*%|.*>|.*#" send "ls \r" }

expect {-re ".*%|.*>|.*#" send "logout \r" }

The expect package by itself provides the capability to create a script to simulate a com-
puter user. We have augmented expect with some additional commands that provide the
capability to create concurrent scripts, complete with mechanisms for synchronization and
communication among di�erent scripts [35, 7]. These extensions to expect provide users with
the ability to simulate concurrent intrusions, which were described in Section 2.2.

Often, in the course of testing an IDS, it may be necessary to repeat a particular test. For
example, a test can be repeated to determine why (or why not) the IDS failed the test.
Repeating the execution of a sequential test script is accomplished by simply running the
script again with the same input. However, tests that involve concurrent script sets may
be di�cult to repeat exactly. Although each individual script is executed in a �xed order,
the overall order of all of the events in all of the scripts may be non-deterministic. Unless
the testers3 employ some synchronization techniques, events are not guaranteed to occur in
exactly the same order as in the original test.

event#

1 User foo on host A telnets to host B

2 foo logs in as foo on host B

3 foo issues some commands

4 foo logs out

5 User foo on host C telnets to host B

6 foo logs in as foo on host B

7 foo issues some commands

8 foo logs out

(a) Command Sequence 1 (b) Command Sequence 2

Figure 4: Two Command Sequences with no Interleaving.

As an illustration of non-deterministic execution, consider the execution of two command se-
quences shown in Figures 4 and 5. When two command sequences are executed concurrently,

3Throughout this paper we will use the term testers to refer to a group of people that are testing an IDS.

9

event#

1 User foo on host A telnets to host B User foo on host C telnets to host B

2 foo logs in as foo on host B foo logs in as foo on host B

3 foo issues some commands foo issues some commands

4 foo logs out foo logs out

(a) Command Sequence 1 (b) Command Sequence 2

Figure 5: Two Command Sequences with Interleaving.

di�erent interleavings of the execution of commands in di�erent sequences result in di�erent
overall execution sequences. In Figure 4, user foo from host C initiates the telnet connection
to host B in command sequence 2 only after user foo logs out from host B in command
sequence 1. On the other hand, in Figure 5, user foo logs in to host B from both host A and
host C at the same time. Since it is unlikely that a legitimate user is logged in to a host
from two di�erent hosts at the same time, this execution sequence is more suspicious than
the sequence in Figure 4. Thus, the IDS is likely to react di�erently to these two scenarios,
even though all of the commands are the same in both scenarios.

To accommodate \reproducible testing" or \replay" [6, 22], deterministic execution of con-
current script sets is required. We have developed a synchronization mechanism to meet
this requirement. The mechanism provides a means for the programmer to establish a �xed
order of execution for key events, even if the events are associated with di�erent scripts.
Furthermore, the mechanism is exible, so that the programmer can easily modify the order
of events. This exibility should be useful during testing experiments. The testers can run a
concurrent script set several times, each time with a di�erent synchronization speci�cation,
and they can then observe if the changes in synchronization a�ected the IDS's reaction to
the commands in the scripts, or the IDS's ability to detect intrusions.

An additional feature that we have incorporated into our software platform is a \record-and-
replay" capability. A user can type in a sequence of commands manually, and use the record
feature to record that sequence. The \recording" can then be replayed at will, just like other
scripts. Also, it is possible to set \synchronization points" in the recorded session, so that it
can be replayed in synchronization with other recorded sessions. A limitation of the record-
and-replay approach is that it does not directly support programmability. For instance,
currently, it is not possible to insert a conditional statement into the recording at the time
of recording. However, this limitation can be easily overcome by combining a programmed
script with a recording. In summary, the record-and-replay feature highly facilitates the
creation of simulation scripts for testing experiments. In particular, this feature should be
most useful to system managers when they wish to create site-speci�c scripts to simulate
site-speci�c intrusion techniques, which are described in Section 4.2.

10

4 TESTING ISSUES

Now, we begin the discussion of testing methodology by examining some key testing issues.

4.1 Performance Objectives for an IDS

The �rst step in the IDS testing methodology is to identify a set of performance objectives
for an IDS. We have identi�ed the following objectives (which are similar to the key design
goals for developing an IDS cited in [19]):

� Broad Detection Range: for each intrusion in a broad range of known intrusions,
the IDS should be able to distinguish the intrusion from normal behavior;

� Economy in Resource Usage: the IDS should function without using too much
system resources such as main memory, CPU time, and disk space; and

� Resilience to Stress: the IDS should still function correctly under stressful conditions
in the system, such as a very high level of computing activity.

An IDS should meet the �rst objective or else many intrusions will escape detection. The
second objective is required because, if an IDS consumes too much resources, then using the
IDS may be impossible in some environments, and impractical in others. Finally, the third
objective is necessary for two reasons: (1) stressful conditions may often occur in a typical
computing environment; and (2) an intruder might attempt to thwart the IDS by creating
stressful conditions in the computing environment before engaging in the intrusive activity.
For example, an intruder might try to interfere with the IDS by creating a heavy load on the
IDS host computer. Thus, we claim that it is necessary (though perhaps not su�cient) for
an IDS to meet these three objectives in order to be e�ective in a wide range of computing
environments. Our testing procedures are designed to measure the e�ectiveness of an IDS
with respect to these objectives.

At di�erent sites, these objectives will have di�erent relative values. A broad detection
range may not be necessary if the IDS monitors a site that is protected from many attacks
by other security mechanisms. For example, the site might use a �rewall to block most
incoming network tra�c, and strict access control and authentication techniques to prevent
abuse by insiders. Economy in resource usage may not be required at a site where security is
a high priority and where computing resources exceed user needs. Finally, resilience to stress
may be less important if controls in the computing environment (e.g., disk quotas and limits
on the number of processes per user) prevent users from monopolizing resources. Thus, the
most important objectives for a particular site should be identi�ed by system administrators
before an IDS is evaluated, and the IDS tests should be developed accordingly.

11

4.2 Test Case Selection

In our approach to testing IDSs, a test case is a simulated user session. While some of the
tests require simulated \normal" sessions, most of the test cases are simulated intrusions. A
key problem is to select which intrusions to simulate. The testers should �rst collect as much
intrusion data as possible. For UNIX systems, [20] and [5] report that intrusion data can be
obtained from various sources, such as CERT advisories, periodicals such as PHRACK and
2600, and the USENET [10], and also by analyzing the vulnerabilities detected by security
tools such as COPS [11] and TIGER [30]. Next, assuming that the number of intrusions is
too large to simulate all of them, the testers must partition the set of intrusions into classes,
and then create a representative subset of intrusions by selecting one or more intrusions from
each class. This technique is known in the software-testing �eld as equivalence partitioning
[26]. Ideally, the classes should be selected such that, within each class, either the IDS
detects each intrusion, or the IDS does not detect any intrusions [34]. Then, one test case
from each class can be selected to represent the class in the �nal set of test cases. However,
in general, it is di�cult to identify perfect equivalence classes [34].

Now, we consider some possible strategies for classifying intrusions. Intrusions can be clas-
si�ed according to the intrusion technique. A comprehensive example of this type of classi-
�cation is presented in [28]. A second strategy is to classify intrusions based on a taxonomy
of the system vulnerabilities that the intrusions exploit (e.g., see [5, 21]). A limitation of
using either of these strategies for the purpose of selecting test cases is that, even though
two intrusions share the same classi�cation, the IDS might detect one intrusion but not the
other. In other words, neither of these classi�cation schemes is likely to produce perfect
equivalence classes. However, both of the schemes would ensure that a wide range of test
cases would be selected.

A third strategy is to classify intrusions based on their signatures, which we de�ned in
Section 2.4 as encapsulations of the identifying characteristics of speci�c intrusion techniques.
A classi�cation scheme based on signatures is presented in [20]. A limitation of using this
classi�cation strategy to select test cases is that the number of classes is small. However, this
technique may possibly be extended to yield a �ner-grained classi�cation. This technique
could also be extended to use information about the internal representation of signatures in
a particular IDS.

Given the limitations of the three classi�cation strategies with respect to selecting test cases,
the set of test cases should be constructed by using all three strategies. Also, for each strategy,
several test cases should be selected from each class. A natural extension to our work would
be to develop a large set of test cases for various types of computer systems, which could be
used for testing a wide range of IDSs.

As the �nal step in selecting test cases, the testers can supplement the set of test cases with
some simulated intrusions that are of particular interest to the site at which the IDS will be
employed. For example, in environments with strict policies governing computer use, some

12

activities that would be considered normal at most sites are considered to be intrusions. The
testers can create test cases based on such activities. As a second example, the testers may
be aware of intrusion techniques that are not well-known. Simulations of these techniques
should be included in the set of test cases.

4.3 Limitations

Our approach to testing IDSs has some limitations. First, the software platform that we
use to simulate users cannot completely simulate the behavior of a user working with a
GUI-based program, e.g., the X Window System. However, it is not always necessary to
simulate an intruder's complete behavior. The intruder's activities generate some system
activity, only a subset of which is related directly to the attack. The simulation tool must
only be capable of causing that subset of system activity to occur. For example, while the
simulation tool may not be able to simulate a user who moves the mouse pointer and then
presses a mouse button to select a certain option from a GUI menu, it can still issue the
same command to the computer system as the GUI. Even for cases in which the simulation
tool cannot re-create the key intrusive activity, our testing methodology is still valid. The
intrusion can be simulated using a di�erent tool. In the worst case, the testers can simulate
the intrusion manually.

A second limitation is that our methodology is designed to test systems that primarily
perform misuse detection. However, some of the testing procedures can be adapted for
testing IDSs that perform anomaly detection as well.

4.4 Using the Test Results

The test results can be used by the developers, users, and potential customers of an IDS to
make the IDS more e�ective or to make a site more secure. A developer can use the results
to �nd and correct weaknesses in the IDS. For example, if the tests show that the IDS is
unable to detect a particular attack, the developer might enhance the language for describing
attack signatures, so that the IDS could recognize that attack. Or, if the tests indicate that
the IDS is consuming a large amount of resources (e.g., disk space), the developer might
create a more e�cient implementation that uses less resources. If nothing else, the developer
might advertise the weaknesses revealed by the tests, so that users of the IDS can protect
their sites by supplementing the IDS with other security tools. An IDS user (e.g., a system
administrator) may employ the test results to identify con�guration problems, which may
occur when the IDS has many con�guration options or when the con�guration steps are
complex. If instead the user detects problems with the IDS itself, then the user can seek
additional tools to protect the computer system. Finally, a potential IDS customer can use
the test results to compare IDSs and thereby select the one that will perform best in the
customer's computing environment.

13

5 TESTING METHODOLOGY

We have developed a set of detailed procedures for testing an IDS. The procedures are
designed for testing an IDS that monitors a network of computers, although some of the
procedures can be directly applied to an IDS that only monitors a single computer. The
best environment to use for these tests is an isolated local area network, because many of
the tests require direct control over the amount of computing activity in the environment.

The installation and con�guration of the IDS should be performed carefully. The testers
should consult the IDS manuals to determine how to set up con�guration �les and how to
select appropriate values for each con�guration parameter4. The testing procedures may
eventually reveal weaknesses in the IDS con�guration, in which case the IDS should be
recon�gured and tested again.

Most of our procedures are variations of the following basic testing procedure:

� create and/or select a set of test scripts;

� establish the desired conditions (such as the level of \background" computer activity)
in the computing environment;

� start the IDS;

� run the test scripts; and

� analyze the IDS's output.

We have divided the test procedures into three categories, which correspond directly to the
three performance objectives described earlier in Section 4.1. Several of the test procedures
are adaptations of the \higher-order" software-testing methods described by Myers [26].

5.1 Intrusion Identi�cation Tests

The two Intrusion Identi�cation Tests measure the ability of the IDS to distinguish known
intrusions from normal behavior. The �rst of these tests is the Basic Detection Test, which
should be conducted as follows:

� create a set of intrusion scripts;

� as much as possible, eliminate unrelated computing activity in the test environment;

� start the IDS; and

� run the intrusion scripts.

4For example, to con�gure the NSM, the user must set up �les that indicate the IP addresses of the

monitored computers, and the names of the network services to be monitored. In addition, the user must

specify in a �le a list of strings that the NSM should use for pattern-matching against the monitored network

tra�c.

14

The testers can then analyze the IDS output. The speci�c analysis method depends on the
type of information available in the output of the particular IDS. We will consider two exam-
ples. In the �rst example, the IDS output classi�es each monitored session as \suspicious"
or \normal." After conducting the test, the testers can simply calculate the percentage of
intrusion scripts that were identi�ed as suspicious.

In the second example, the IDS output consists of a numerical \warning value" for each
session, such that a higher warning value indicates a more suspicious session. The testers
should compare the IDS output from the test to a large sample of IDS output associated with
monitoring normal users in the same computing environment. The testers can use standard
statistical techniques to compare the warning values associated with the intrusion scripts
to the warning values associated with the normal users. Ideally, the testers should �nd a
statistically-signi�cant di�erence between the two groups of values. If there is no sample
of IDS output available for normal users, then that output can be generated by running
normal-user simulation scripts while the IDS is active.

The Basic Detection Test indicates how well the IDS detects intrusions. However, there is a
second component in the ability of an IDS to distinguish intrusions from normal behavior.
Ideally, an IDS should rarely generate a false alarm by agging normal behavior as \intru-
sive." The second Intrusion Identi�cation Test, called the Normal User Test, measures how
well an IDS meets this objective. The test is conducted in the same manner as the Basic
Detection Test, except that the normal-user scripts are used instead of intruder scripts. The
IDS output associated with the scripts should be examined to determine how often normal
behavior is identi�ed as suspicious. This measurement can be used to estimate how much
time will be wasted in investigating false alarms if the IDS is to be used regularly. Return-
ing to the two examples of IDS output described earlier in this section, we note that the
Normal User Test is needed only for the �rst example. The analysis in the second example,
in addition to indicating how well the IDS detects intrusions, should also indicate how often
the IDS generates false alarms.

5.2 Resource Usage Tests

The Resource Usage Tests measure how much system resources are used by the IDS. The
results of these tests can be used, for example, to decide if it is practical to run a particular
IDS in a particular computing environment.

At this point, we have developed one Resource Usage Test: the Disk Space Test, which
measures the disk space requirements of an IDS. A script that simulates a user who produces
computer activity at a constant rate is required for this test. For example, the script might
issue a sequence of commands repeatedly.

The procedure for the Disk Space Test is as follows:

� eliminate unrelated activity in the test environment;

15

� start the IDS;

� run the test script for a measured period of time (e.g., one hour); and

� calculate the total disk space used by the IDS to record the session associated with the
script.

The test should be repeated several times using a range of di�erent time intervals. Based on
the group of tests, the testers can determine the relationship between disk space usage and
monitoring time. For example, in the case of the NSM, disk-space usage increases in direct
proportion to monitoring time. The tests should also be repeated using di�erent numbers of
simulated users, by running copies of the test script simultaneously. Then, the testers can
determine the relationship between disk-space usage and the number of users monitored.
The testers can use their analysis of all of these test results to predict the IDS storage
space requirements when the IDS is monitoring several real users in the real computing
environment. The testers can then compare several di�erent IDSs based on such predictions.

5.3 Stress Tests

Stress Tests check if the IDS can be a�ected by \stressful" conditions in the computing
environment. For example, an intrusion that the IDS would ordinarily detect might go
undetected under such conditions. We have developed testing procedures for several di�erent
forms of stress.

5.3.1 Stress Test: Smokescreen Noise

We de�ne noise to be computer activity that is not directly part of an intrusion. An intruder
might attempt to disguise an intrusion by employing noise as a smokescreen. For example,
an intruder on a UNIX computer might intersperse intrusive commands with normal pro-
gramming commands, according to this model:

1. with some probability, do an ls5 to check a �le;

2. edit a �le;

3. compile;

4. with some probability, do an ls to check a �le;

5. with some probability, go back to Step 1;

6. execute the program; and

5The UNIX ls command lists the contents of a �le-system directory.

16

7. with some probability, go back to Step 1.

The programming behavior can be used to disguise the ls and edit commands which the
intruder may be using to examine some target �les. Depending on the algorithm that the
IDS is using, the IDS may not detect the intrusive behavior, because the overall behavior
appears to be normal.

The �rst step in the Smokescreen Noise Test is to create suitable test scripts. One approach is
to supplement a copy of each intruder script with a sequence of several \normal" commands
between each pair of original commands. Then, the test should be conducted like the Basic
Detection Test. The IDS output for each script should be compared to the corresponding
IDS output from the Basic Detection Test. Ideally, this comparison will show that the
IDS detects the same intrusions during each test. On the other hand, if the IDS detects a
particular intrusion in the Basic Detection Test, but does not detect the same intrusion in
the Smokescreen Noise Test, then that is an indicator of a weakness in the IDS. The testers
should conduct further tests to determine the cause of the problem.

5.3.2 Stress Test: Background Noise

We de�ne background noise to be noise caused by legitimate user activity. For example, an
intrusion may occur during working hours, when there are several legitimate users logged in
to the computer system. To prepare for the Background Noise Test, a set of noise scripts
that generate continuous normal activity should be created. The scripts for the Normal User
Test can be adapted for this test.

The testers should start running the noise scripts �rst. Then, the test proceeds just like
the Basic Detection Test, in which each attack script is run one at a time. Again, the IDS
output for each script should be compared to the corresponding IDS output from the Basic
Detection Test, and di�erences may indicate a vulnerability in the IDS.

The testers should repeat this procedure several times, each time with a di�erent amount
of noise. Di�erent numbers of copies of the same noise script (or script set) can be run at
the same time to create di�erent levels of noise. If possible, a maximal noise level should
be used in at least one of the tests. For example, there might be a limit on the number of
sessions that the IDS can monitor at the same time. In that case, the IDS should be forced
to monitor as many noise-script sessions as possible.

5.3.3 Stress Test: High-Volume Sessions

The Volume Test checks how the IDS is a�ected by high-volume sessions. The de�nition
of \high volume" depends on the IDS. For example, if the IDS monitors each command in
user sessions, then a high-volume session would be a session in which a large number of

17

commands are issued. A \volume script" that simulates a high-volume session should be
created for this test.

The purpose of this test is to check if the IDS monitors the high-volume session correctly,
and to check if the IDS can still correctly monitor other sessions at the same time. This
test might detect, for example, a case in which the IDS runs out of main memory, and is
physically unable to monitor all of the user sessions at once.

The volume script should be started �rst. Then, each intrusion script should be run one at
a time. After each script has stopped running, the IDS output associated with the volume
script should be analyzed carefully. Also, the IDS output associated with each intruder
script should be compared to the IDS output from the Basic Detection Test. Di�erences
may indicate that the IDS was a�ected by the volume script.

This test should be repeated, using di�erent numbers of volume scripts running concurrently
each time. As in the Background Noise Tests, a maximal level of volume should be used in
at least one of the tests, in which the IDS should be forced to monitor as many volume-script
sessions as possible.

5.3.4 Stress Test: Intensity

The Intensity Test checks if the IDS is a�ected by sessions in which a lot of activity is
generated very quickly, and therefore the IDS's information source logs a lot of activity
in a short time. First, a \stress script" that simulates such a session should be created.
The script should simulate several consecutive user sessions, in each of which the simulated
intruder logs in, carries out some intrusive activity, and then logs out. Such a script could be
constructed by combining several of the scripts from the Basic Detection Test. expect includes
a mechanism that allows the user to specify how quickly consecutive script commands will
be issued [23]. Such a mechanism should be used for this stress script so that the commands
are issued at a high rate.

The script should be run once. Then, a modi�ed version of the script should be created,
which generates the same commands, but at a much slower rate. After the slower script is
run, the IDS output associated with the two scripts should be compared. Di�erences may
indicate a weakness in the IDS. For example, due to the high rate of activity caused by the
stress script, the IDS might \miss" some of the intrusive activity.

It should be possible to run several stress scripts concurrently. Then, the stress test can be
repeated several times, each time with a di�erent number of stress scripts running. This is
important because the IDS may be able to cope with one high-intensity session, but perhaps
it will make errors if it is forced to simultaneously monitor several high-intensity sessions.
In each case, the IDS output associated with the stress scripts should be compared to the
IDS output associated with the slower test script.

18

5.3.5 Stress Test: Load

The Load Stress Test investigates the e�ect of the load on the IDS host CPU6.

This test is conducted in the same way as the Basic Detection Test, except that a high load
should be established on the IDS host during the test. A high load can be created by running
additional programs on the IDS host, so that the IDS program must share CPU time with
the other programs. For a UNIX system, this e�ect can be enhanced by using the UNIX
\nice" command to lower the \scheduling priority" of the IDS program while other CPU-
intensive programs are running on the same host. This tends to decrease the percentage of
CPU time allocated to the IDS program by the operating system of the IDS host.

The output from this test should be compared to the output from the Basic Detection Test.
Di�erences may be evidence that the IDS is missing some intrusive activity because it is
not running for a high-enough percentage of time on the CPU. This test should be repeated
several times, each time with a di�erent load on the IDS host.

6 EXPERIMENTAL RESULTS

We conducted testing experiments on the NSM. The NSM monitors all of the packets that
travel on the LAN to which the NSM host7 is connected. The NSM can associate each
such packet with the corresponding computer-to-computer connection. It assigns numerical
warning values to connections based on the contents of the packets, and on the likelihood
of the connection occurring, based on a pro�le of recent connections. The warning values
range from 0 to 10, such that a higher warning value indicates a more suspicious connection.
We ran the NSM on a Sun SPARCstation 2 workstation connected to the Computer Science
(CS) LAN segment at UC Davis (UCD).

6.1 Basic Detection Test

For this test, we used several di�erent expect scripts, each designed to simulate a speci�c
intrusive command sequence. Speci�cally, the scripts simulate these behaviors:

� browsing through a directory, using the ls command to list �les, and an editor to view
�les;

� password-cracking;

� password-guessing using a dictionary �le;

6In our testing experiments, we measure the load by using the UNIX uptime command, which reports

the average number of jobs in the CPU run queue.
7We use the term NSM host to refer to the computer on which the NSM programs are running.

19

� door-knob rattling (password-guessing using common passwords);

� attempting to modify system �les (e.g., /etc/passwd);

� excessive network mobility (moving from computer to computer via telnet connections);
and

� exploiting a vulnerability in a system program to obtain super-user status.

Each script establishes a telnet connection to another computer, sends a sequence of intrusive
commands to the remote computer, and then closes the connection. The NSM monitored
the execution of each of these scripts, and assigned a warning value to each connection. For
comparison, we also set up the NSM to monitor regular tra�c to and from a busy computer
on the UCD CS LAN segment for several hours. Although some of this tra�c could have
been caused by intrusive behavior, we expect that most of it was caused by the legitimate
activities of legitimate users.

Ideally, of course, the warning values for connections associated with known intrusive be-
havior would be high, and warning values for connections associated with normal, benign
behavior would be low. Assuming that most of the connections to and from the busy com-
puter were normal, the NSM succeeded in this case in assigning a relatively low warning
value on average to these connections.

However, the NSM also assigned low warning values to some of the connections associated
with the intrusive scripts. We determined, though, that this was caused by our con�guration
of the NSM. Like many IDSs, the NSM can be \tuned" so that it is sensitive to particular
intrusive sequences of commands. Our experience illustrates how testing procedures can be
used to uncover weaknesses in both the IDS itself and the IDS con�guration.

6.2 Stress Tests

We hypothesized that stress in the form of a high load on the NSM host might a�ect the
NSM's ability to monitor network connections. So, we performed a Load Stress Test on the
NSM, based on the procedure described in Section 5.3.5.

We con�gured the NSM so that it would monitor the TCP (Transmission Control Protocol)
packets associated with telnet connections to and from a speci�c computer (\Computer A")
on the LAN. To create various levels of load on the NSM host, we used a \load script," which
simply creates a telnet connection to the NSM host, and then issues a continuous sequence
of UNIX shell commands. We measured the load using the UNIX uptime command, which
reports the average number of jobs in the CPU run queue. We created higher levels of stress
in successive tests by running several copies of the load script simultaneously. In addition,
we added a second form of stress on the NSM. As described in Section 5.3.5, we used the
UNIX nice command to lower the \scheduling priority" of the NSM program, so that the
operating system would tend to allocate the NSM program a lower percentage of CPU time

20

than it normally would otherwise. The scheduling priority of the NSM program was the
same for each test.

For each test, we generated the desired load on the NSM host, and then we ran an \intrusion
script" on Computer A. The script would establish a telnet connection from Computer A to
another computer on the LAN, issue a sequence of several intrusive commands to the remote
computer, and then close the connection. The intrusion script is a combination of several of
the intrusion simulation scripts described in Section 6.1.

For each test, the NSM produced a report describing the connection established by the
intrusion script. Ideally, the report would be identical for each test, because the same script
was run for each test. However, the connection reports were a�ected by the increased loads
on the NSM host. Apparently, the lower scheduling priority together with high loads on the
NSM host caused the NSM program to miss some network packets. The NSM connection
reports include the number of TCP data bytes missed for each connection. The NSM can
calculate this number by monitoring the sequence numbers in the TCP headers. As indicated
in Figure 6, the percentage of data bytes missed by the NSM tended to increase as the load
on the NSM host increased.

0

5

10

15

20

25

30

35

40

45

2 4 6 8 10 12 14 16

P
er

ce
nt

ag
e

of
 T

C
P

 D
at

a
B

yt
es

 M
is

se
d

by
 N

S
M

NSM Host CPU Load (ave. number of jobs in run queue)

Figure 6: Bytes Missed by NSM vs. NSM Host CPU Load.

One possible explanation for the missed bytes is that the NSM program, when it is waiting
to run due to the scheduling decisions of the operating system, can miss the transmission of
some of the TCP data bytes. However, the monitoring operation involves several components
of network hardware and software, and thus the actual explanation for the missed bytes may

21

be more complex. The test results indicate, though, that an IDS can be a�ected by stressful
conditions, and it may be potentially vulnerable to an attack by an intruder who knows how
to exploit this weakness.

7 CONCLUSION AND FUTURE WORK

Our experimental results demonstrate that our testing methodology can reveal useful in-
formation about an IDS and its capabilities. As the growth in the use and development of
IDSs continues, such testing techniques are growing in importance. Future work includes the
careful development of a suite of intrusion test cases for the Basic Detection Test. We plan
to develop additional performance objectives and tests for IDSs based on the related work of
other groups. For example, tests that measure the processing speed of USTAT are described
in [16]. Another task is to �ne-tune the testing procedures and develop suitable metrics to
create a \benchmark suite" for IDSs, similar in spirit to the well-established benchmarks such
as SPECmarks, Livermore Loops, and Dhrystone, which are used to test the performance
of various computer architectures. In the meantime, though, our tools and approaches can
be used to systematically evaluate and measure the e�ectiveness and performance of IDSs.
We expect that the development of such methods for assessing IDSs will also have a positive
impact on the �eld of intrusion detection, since developers can use assessment results as
feedback in the design process. We also expect that some of our testing techniques can be
adapted to testing other software systems. In particular, the stress-testing techniques can be
applied to testing computer operating systems and real-time control systems, and in general
any software system which is required to cope with stressful conditions.

We have encapsulated our work into a package that includes sample test scripts, our enhance-
ments to expect for concurrent scripts and for the record-and-replay feature, and complete
documentation and installation instructions. Readers are encouraged to contact the authors
if they are interested in acquiring this package.

Acknowledgements

We thank Becky Bace, our NSA project monitor, for her guidance and enthusiastic support
of this project. We also appreciate the helpful comments from the anonymous reviewers and
from our colleagues in the Computer Security Research Laboratory at UC Davis.

22

References

[1] D. Anderson et al., \Next Generation Intrusion Detection Expert System (NIDES),"
Software Design, Product Speci�cation, and Version Description Document, Project
3131, SRI International, July 11, 1994.

[2] R. G. Bace, Division of Infosec Computer Science, Research and Technology, National
Security Agency, private communication, May 1995.

[3] S. M. Bellovin, \There Be Dragons," Proc., Third USENIX UNIX Security Symposium,
Baltimore, MD, pp. 1-16, September 1992.

[4] S. M. Bellovin, \Security Problems in the TCP/IP Protocol Suite," ACM Computer
Communication Review, vol. 19, no. 2, pp. 32-48, April 1989.

[5] M. Bishop, \A Taxonomy of UNIX System and Network Vulnerabilities," Technical
Report CSE-95-10, University of California at Davis, September 1995.

[6] P. Brinch Hansen, \Reproducible Testing of Monitors," Software{Practice and Expe-
rience, vol. 8, pp. 721-729, 1978.

[7] M. Chung, N. Puketza, R. A. Olsson, and B. Mukherjee, \Simulating Concurrent
Intrusions for Testing Intrusion Detection Systems: Parallelizing Intrusions," Proc.,
18th National Information Systems Security Conference, Baltimore, MD, pp. 173-183,
October 1995.

[8] D. E. Denning, \An Intrusion-Detection Model," IEEE Transactions on Software En-
gineering, vol. SE-13, no. 2, pp. 222-232, February 1987.

[9] C. Dowell and P. Ramstedt, \The COMPUTERWATCH Data Reduction Tool," Proc.,
13th National Computer Security Conference, Washington, D.C., pp. 99-108, October
1990.

[10] D. Farmer and W. Venema, \Improving the Security of Your Site by Breaking Into
It," USENET posting, December 1993.

[11] D. Farmer and E. H. Spa�ord, \The COPS Security Checker System," Proc., Summer
USENIX Conference, pp. 165-170, June 1990.

[12] L. D. Gary, talk presented in \Crime on the Internet" session, 17th National Computer
Security Conference, Baltimore, MD, October 12, 1994.

[13] L. T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber, \A
Network Security Monitor," Proc., 1990 IEEE Symposium on Research in Security
and Privacy, Oakland, CA, pp. 296-304, May 1990.

23

[14] J. Hochberg et al., \NADIR: An Automated System for Detecting Network Intrusion
and Misuse," Computers and Security, vol. 12, no. 3, pp. 235-248, May 1993.

[15] K. Ilgun, \USTAT: A Real-Time Intrusion Detection System for UNIX," Proc., IEEE
Symposium on Research in Security and Privacy, Oakland, CA, pp. 16-28, May 1993.

[16] K. Ilgun, R. A. Kemmerer, and P. A. Porras, \State Transition Analysis: A Rule-Based
Intrusion Detection Approach," IEEE Transactions on Software Engineering, vol. 21,
no. 3, pp. 181-199, March 1995.

[17] H. S. Javitz and A. Valdes, \The SRI IDES Statistical Anomaly Detector," Proc.,
IEEE Symposium on Research in Security and Privacy, Oakland, CA, pp. 316-376,
May 1991.

[18] S. Kumar and E. H. Spa�ord, \A Software Architecture to Support Misuse Intrusion
Detection," Technical Report CSD-TR-95-009, Purdue University, March 17, 1995.

[19] S. Kumar and E. H. Spa�ord, \An Application of Pattern Matching in Intrusion De-
tection," Technical Report CSD-TR-94-013, Purdue University, June 17, 1994.

[20] S. Kumar and E. H. Spa�ord, \A Pattern Matching Model for Misuse Intrusion Detec-
tion," Proc., 17th National Computer Security Conference, Baltimore, MD, pp. 11-21,
October 1994.

[21] C. E. Landwehr et al., \A Taxonomy of Computer Program Security Flaws," ACM
Computing Surveys, vol. 26, no. 3, pp. 211-254, September 1994.

[22] T. J. LeBlanc and J. M. Mellor-Crummey, \Debugging Parallel Programs With Instant
Replay," IEEE Transactions on Computers, vol. C-36, no. 4. pp. 471-482, April 1987.

[23] D. Libes, Exploring Expect: A Tcl-based Toolkit for Automating Interactive Programs,
O'Reilly & Associates, Inc., 1994.

[24] T. F. Lunt et al., \IDES: A Progress Report," Proc., Sixth Annual Computer Security
Applications Conference, Tucson, AZ, December 1990.

[25] T. F. Lunt et al., \A Real-Time Intrusion Detection Expert System(IDES)," Interim
Progress Report, Project 6784, SRI International, May 1990.

[26] G. J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 1979.

[27] B. Mukherjee, L. T. Heberlein, and K. N. Levitt, \Network Intrusion Detection," IEEE
Network, vol. 8, no. 3, pp. 26-41, May/June 1994.

[28] P. G. Neumann and D. B. Parker, \A Summary of Computer Misuse Techniques,"
Proc., 12th National Computer Security Conference, Baltimore, MD, pp. 396-407, Oc-
tober 1989.

24

[29] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.

[30] D. R. Sa�ord, D. L. Schales, and D. K. Hess, \The TAMU Security Package: An
Ongoing Response to Internet Intruders in an Academic Environment," Proc., Fourth
USENIX UNIX Security Symposium, Santa Clara, CA, pp. 91-118, October, 1993.

[31] M. M. Sebring, E. Shellhouse, M. E. Hanna, and R. A. Whitehurst, \Expert Sys-
tems in Intrusion Detection: A Case Study," Proc., 11th National Computer Security
Conference, Baltimore, MD, pp. 74-81, October 1988.

[32] S. E. Smaha, \Haystack: An Intrusion Detection System," Proc., IEEE Fourth
Aerospace Computer Security Applications Conference, Orlando, FL, December 1988.

[33] S. Snapp, J. Brentano, G. Dias, T. Goan, L. Heberlein, C. Ho, K. Levitt, B. Mukherjee,
S. Smaha, T. Grance, D. Teal, and D. Mansur, \DIDS (Distributed Intrusion Detection
System) { Motivation, Architecture, and An Early Prototype ," Proc., 14th National
Computer Security Conference, Washington, D.C., pp. 167-176, October 1991.

[34] E. J. Weyuker and B. Jeng, \Analyzing Partition Testing Strategies," IEEE Transac-
tions on Software Engineering, vol. 17, no. 7, pp. 703-711, July 1991.

[35] K. Zhang, A Methodology for Testing Intrusion Detection Systems, M.S. Thesis, Uni-
versity of California at Davis, May 1993.

25

