
Abstract

This paper describes the design and implementation of
the Visual Audit Browser (VAB) Toolkit, which provides a
visual interface for browsing Sun BSM audit logs. Applica-
tions of the VAB Toolkit include investigating security viola-
tions and more routine system administration tasks. The low
level of abstraction in the logs, the large size of the logs, and
the lack of association indication in the logs are some of the
difficulties in manually analyzing audit logs, particularly
system-level audit logs. The tools employ several audit visu-
alization techniques including graphing, replay of audit
events (movies), hypertext organization, and slicing. As a
result of highlighting relevant associations between objects
and events, the VAB Toolkit allows easier access to related
data than textual browsing. This allows the user to more
easily reach new and useful conclusions regarding the infor-
mation presented as well as to confirm suspected facts. The
tools are also compared to relational database based audit
querying and shown to be an improvement except perhaps
when queries can be easily formulated and not too many
associations are needed to reach the intended conclusions.
Despite the benefits, the users of tools in the VAB Toolkit are
still challenged by the low level nature of BSM auditing and
some of the tools are challenged by scalibility on the size of
the log. However, audit reductions can help mitigate these
problems.

1.0 Introduction

Although the manual analysis of system audit logs is
often an essential activity in an environment where security
violations are investigated to determine vulnerabilities,
establish accountability, assess damage, and recover the sys-
tem, few tools are available to effectively review these often
volumous, low-level, and poorly organized logs. Audit log
formats that are just a list of records in time order can be
considered to be poorly organized in the sense that associa-

tions other than that of time, such as the events that involve
the same file, are not directly indicated.

Audit reductions can help raise the level of abstraction
in the log and reduce the size of the logs, but these reduc-
tions depend on the ability to predict patterns of events and
these patterns are not always available due in part to the dif-
ficulty in predicting human actions and the ever-changing
nature of computer systems. As a result, there is often a sig-
nificant amount of audit data remaining.

Audit logs are often the clearest source of information
about the events that occurred on a system. Files that have
been created can be removed, changed files can be restored,
access times may be changed, and processes that existed dis-
appear into nothingness. This historical information is
needed to determine what happened during an attack so that
accountability can determined, damage undone, and the
chance that a repeat of the violation occurs reduced.

As the above indicates, it is difficult to extract complex
information from audit logs although there is often benefit to
be gained from analyzing the large logs during an investiga-
tion. However, due to the difficulty in constructing prefor-
mulated queries, humans often need to look at the audit data
and that is where audit visualization can be valuable.

When used as a computer crime investigation method,
audit visualization supports the investigation aspect of the
cycle of system security involving detection, investigation,
recovery, and prevention. This is in comparison to formal
verification which can provide high assurance of the correct-
ness of protection mechanisms which contributes to preven-
tion aspect and to intrusion detection systems which satisfies
a detection function.

The Visual Audit Browser (VAB) Toolkit uses audit
visualization to communicate the information contained in
the audit log to the user. Although designed for the investi-
gation of security-related incidents, the toolkit has broader
applications including system administration.

Audit Log Analysis Using the Visual Audit Browser
Toolkit

James A. Hoagland

hoagland@cs.ucdavis.edu

Department of Computer Science

University of California, Davis

Davis, CA 95616

The next section describes the four audit visualization
techniques used by the toolkit and section 3 describes the
tools in the toolkit. Section 4 provides some example situa-
tions where the VAB Toolkit is used in investigation. Audit
reduction is described briefly in section 5. Textual and data-
base audit browsing are described in section 6 and the audit
browsing methods compared in section 7. Some conclusions
are mentioned in section 8, and possible future work outlined
in section 9.

2.0 Audit Visualization

Audit visualization supports audit log analysis by pro-
viding a means to access the data in the log and perhaps indi-
cate associations that might have otherwise remained
unnoticed or would have taken longer to realize. These asso-
ciations form the basis for drawing conclusions regarding the
events recorded in the log. These types of conclusions are
useful for audit analysis situations where obtaining informa-
tion that is not apparent in the log is necessary, such as in
security violation investigation. This is opposed to situa-
tions, for example, where summaries are sufficient or where
the action being investigated is recorded directly in the log.
As a result, visualizations that present many relevant associ-
ations in a clear manner are therefore more useful in a situa-
tion such as investigation than one that shows fewer relevant
associations.

Four audit visualization techniques that indicate these
associations are described in the remainder of this section
along with the value they add to the analysis process and
their limitations.

2.1 Graphing

Graphing is a technique in which logged objects, events,
and associations are represented by the nodes and edges of a
graph. In particular, files, processes and users are repre-
sented by nodes and events and associations are represented
by edges between the corresponding objects. If only pro-
cesses and fork system calls are graphed, this corresponds to
a “process tree” found in operating system literature.

Graphing helps the analysis of audit logs by enabling
the user to reach new conclusions. This is done by highlight-
ing certain associations between objects and events. Pro-
cesses that operated on files can be indicated along with the
system calls used, parents and children of processes can be
presented hierarchically, and the owners of processes and
files can be shown through the use of graphs.

A limit of this technique is that the available area for
presentation, be it on a screen or on paper, is limited, and as
the number of events grow, the density of nodes and edges
increases, eventually exceeding the point of legibility and

usefulness. Thus this is only effective when there is a lim-
ited amount of information to present. This can be dealt with
to an extent by audit reduction techniques, which are dis-
cussed in section 5.

2.2 Replay of Audit Events in Time Order

The replay of audit events is a technique in which the
logged events are presented across multiple displays in the
order they occurred1. As a new event is recounted on the
display, the set of information associated with the new event
is added or updated and the older (and presumedly less rele-
vant) information might be removed or presented in a less
prominent manner. The rate of the presentation can be the
rate at which it occurred, a rate proportional to real rate, or at
a rate of one per cue from the user. Note that tools that use
this method inherit the strengths and weakness that the other
audit visualization technique(s), which need to be used in
conjunction with replay, have.

The benefit that is gained by the replay technique is a
clear presentation of the timing association. In other words,
it helps the human understand the timing of events in the
audit log.

2.3 Hypertext Organization

The hypertext organization audit visualization technique
presents the logged data as a set of hypertext documents, in
which following a link results in the presentation of a docu-
ment that has more information regarding the object or event
represented by the text under the link. This can be viewed as
something like the “flattening out” of a graph presentation of
the events described in section 2.1.

An advantage of the hypertext organization technique is
that a larger amount of information can be presented in the
same area than with some of the other techniques such as
graphing, thereby allowing more, potentially useful, details
to be presented. Another benefit of this technique is that,
similar to the graphing technique, more information regard-
ing an object can be found easily, including other related
objects.

However, the “big picture” can be lost using this
method, and this larger view might be needed to realize more
complex patterns of events.

1. Or at least in an order close to the order the occurred in. The
ordering of events is not always clear. Take, for instance, the well-
known occurrence of out-of-order recording of events that BSM
logs [Wetm93].

2.4 Slicing

The slicing audit visualization technique is similar to the
program slicing debugging technique, described in [Weis81]
and [AgHo90], which extracts a minimum set of program
statements that affect a certain variable. This technique is
mentioned in [Wetm93] and is the presentation of the associ-
ations and objects closely associated with designated key
objects and events and not the associations and objects that
are not as closely associated. When combined with the
graphing technique, this corresponds to having certain nodes
or edges as the foci and presenting those and their surround-
ing nodes and edges to the user in a graph. The numbers of
levels of depth shown -- this is, how far away from a foci can
a node or edge be and still be displayed -- is a parameter to
the visualization. A somewhat more general technique is the
“graphical fisheye” approach presented in [SaBr94] which
involves varying the size of a node and length of an edge as a
function of its distance to the foci. This allows more nodes
to be presented in the same area.

The advantage of this method is one of scalibility on the
size of the log. Since only the “local” data is presented, the
amount of data in the overall log is irrelevant to a large
degree. There is a tendency for objects to be become
involved in more associations as the size of the log increases,
but this can be addressed by adjusting the depth used.

As with the hypertext organization method, the risk in
using this method is that the “big picture” is not presented
and may be lost.

3.0 The VAB Toolkit

We have developed four prototype audit browsing tools
which are collectively referred to as the Visual Audit Brows-
ing (VAB) Toolkit. The tools take SUN BSM audit logs as
input and produce visual representations of these logs. The
goal of this transformation is to make the important informa-
tion that is contained in the audit logs more readily accessi-
ble to the humans that need to examine this information.

The VAB Toolkit tools employ various combinations of
the four audit visualization techniques in order to help the
user obtain better use of logs so that time can be saved and to
help enable conclusions that might have otherwise escaped
detection to be seen. To simplify the presentation, a few
audit reductions (see section 5 on audit reductions) have
been coded into the tools. These reductions are fairly easy to
modify and consist of simple record filters. In some tools,
forks and subsequent “exec”s are combined into a single
node.

All of the tools are written in Perl which means they can
be ported with relative ease to different architectures.

Another benefit of using Perl is that it is fairly easy to custom-
ize the behavior of the tools.

3.1 The Frame Generator

The Frame Generator is a VAB tool that employs the
graphing audit visualization technique. In particular, by con-
vention in the Frame Generator output, files are represented by
rectangles, processes by ellipses, users by triangles, system
calls by solid edges between the calling processes and objects
involved, and ownership by non-contiguous edges between the
owner node and the object node. An example of the output of
the tool is in figure 1, which shows an rdist vulnerability
exploitation2 [CERT91].

The Frame Generator produces an intermediate form from
the BSM audit log, and from the intermediate form it produces
a DOT3 language file describing the corresponding graph. The
DOT file can then be converted into Postscript or other for-
mats. The exact output (i.e. whether or not to show the owners
of files) is fairly easy to change by modifying the code. In par-
ticular, the generator can filter out records meeting a certain
pattern in one line of Perl.

2. To better fit the output in the small area of the figure, a few small
details have been dropped from the output.
3. DOT is a graph layout tool from AT&T Bell Labs. It takes a graph
described in the DOT language, calculates an “optimal” layout for the
nodes and edges, and outputs this layout in a number of well known
formats including Postscript and Maker Interchange Format (MIF)
[KoNo93].

2260:
/usr/pkg/bin/perl

2261:
/usr/ucb/rdist

vfork

2262:
/usr/bin/sh

vfork

/usr/export/home/jhoaglan/rdist/rdista02261

made symlink

made symlink

2067

vfork

2264:
/usr/bin/sh

vfork

create(2):

/usr/bin/sh

chmod to 04655
from 100755 at

Tue May 24 17:02:48 1994

2263:
/usr/bin/ls

fork

2265:
/usr/ucb/whoami

fork

jhoaglan

audit id for

root

euid for

euid for

Figure 1. Frame Generator presentation of rdist attack

3.2 The Movie Maker

The Movie Maker employs the replay of audit events
audit visualization technique combined with the graphing
technique to produce a time-ordered sequence of graphs
where the graphs are like the ones output by the Frame Gen-
erator. There is one frame produced per audit event and the
new nodes and edges that occurred on the record correspond-
ing to a given frame are added on that frame. For a given
graph, the tool can either display all nodes and edges corre-
sponding to the objects and events recorded in the log up to
that point, the ones corresponding to the most recent events,
or all with the least recently active nodes and edges in lighter
shading. An example frame is presented in figure 2 and is
from the suid attack that involves executing a file “-i” that is
a link to a setuid root shell script.4

To produce the movie, the Movie Maker essentially runs
the Frame Generator including producing a Postscript file,
except that information about the proper time ordering of
nodes and edges is passed along as well. This information is
then used to rearrange the Postscript code such that there are
multiple pages produced, each with the appropriate nodes
and edges displayed and at the proper intensity level.

4. The limitations of print media hinder an adequate presentation of
the output here. The reader is referred to the URL http://
seclab.cs.ucdavis.edu/awb/Vab.Movie.Maker.html for online exam-
ples of Movie Maker output.

jhoaglan root

audit id foraudit id for euid for euid for

499

vfork

/home/hoagland/suid

501:
/usr/ucb/quota

/usr/export/home/jhoaglan/

115

505:
/usr/bin/ln

fork

fork

502:
/usr/bin/tty

oo

506:
/usr/export/home/hoagland/suid

/usr/bin/sh

vforkvfork

symlink()

500:
/usr/bin/csh

Figure 2. One frame of Movie Maker presentation of
suid attack. Note the lighter shading for the less
recently accessed nodes and edges.

3.3 The Hypertext Generator

Four types of pages are produced by the Hypertext Gen-
erator, which uses the hypertext organization audit visualiza-
tion technique. One user page is produced for each user in
the log. These pages include information about the pro-
cesses that an user’s audit uid owned and what actions those
processes took. One file page, which contains the actions on
the file, is created per file that was modified. A page that
summarizes each of the records in the audit log, in the origi-
nal order, is also generated as is a page that lists all the pages
produced. Figure 3abcd demonstrates the tool, which was
run on the same suid attack log as in the previous section.

log of a suid attack: the top of an auid page.

Auid jhoaglan Info

Processes

115:
499:
500: /usr/bin/csh
501: /usr/ucb/quota
502: /usr/bin/tty
505: /usr/bin/ln
506: /usr/bin/sh
507: /usr/bin/id
508: /usr/bin/chmod

Back to root

Processes Info for 115
Audit Uid: jhoaglan
Parent: (not in log)
Execed File: (none in log)

no forks recorded

Processes Info for 499
Audit Uid: jhoaglan
Parent: (not in log)
Execed File: (none in log)

Forked Processes:

500: /usr/bin/csh at Tue Jul 5 19:31:14 1994

Figure 3a. Output of the Hypertext Generator on the

File Info for /etc/security/password.adjunct
Chmods:

by 508 from 104644 to 00666 at Tue Jul 5 19:32:42 1994

Back to root

Generated on Wed Jul 20 12:05:28 PDT 1994 by hoagland using ab

log of a suid attack: a file page.
Figure 3b. Output of the Hypertext Generator on the

The Hypertext Generator reads the BSM audit log and
produces HyperText Markup Language (HTML) documents
that can be viewed using any World Wide Web browser.

3.4 The Focussed Audit Browser

The Focussed Audit Browser (FAB) uses the slicing and
graphing audit visualization techniques to present the data in

The Events (in the order of the audit log)
Tue Jul 5 19:31:14 1994: 500 (jhoaglan) forked 501

Tue Jul 5 19:31:14 1994: 501 (jhoaglan) execed /usr/ucb/quota

Tue Jul 5 19:31:14 1994: 499 (jhoaglan) forked 500

Tue Jul 5 19:31:14 1994: 500 (jhoaglan) execed /usr/bin/csh

Tue Jul 5 19:31:15 1994: 502 (jhoaglan) execed /usr/bin/tty

Tue Jul 5 19:31:15 1994: 500 (jhoaglan) forked 502

Tue Jul 5 19:32:26 1994: 500 (jhoaglan) forked 505

Tue Jul 5 19:32:26 1994: 505 (jhoaglan) execed /usr/bin/ln

Tue Jul 5 19:32:29 1994: 500 (jhoaglan) forked 506

Tue Jul 5 19:32:29 1994: 506 (jhoaglan) execed /usr/bin/sh

Tue Jul 5 19:32:32 1994: 507 (jhoaglan) execed /usr/bin/id

Tue Jul 5 19:32:32 1994: 506 (jhoaglan) forked 507

Tue Jul 5 19:32:42 1994: 508 (jhoaglan) execed /usr/bin/chmod

Tue Jul 5 19:32:42 1994: 506 (jhoaglan) forked 508

Tue Jul 5 19:32:42 1994: 508 (jhoaglan) chmoded /etc/security/password.adjunct

Tue Jul 5 19:32:47 1994: 500 (jhoaglan) created /usr/export/home/jhoaglan/.history

Back to root

Generated on Wed Jul 20 12:05:28 PDT 1994 by hoagland using ab

log of a suid attack: the date page.
Figure 3c. Output of the Hypertext Generator on the

Available Pages

High Level Pages

date page

Auid (User) Pages

jhoaglan

Process Info Pages

Parentless Processes (creating fork not in log)

115
499

Parented Processes

500: /usr/bin/csh
501: /usr/ucb/quota
502: /usr/bin/tty
505: /usr/bin/ln
506: /usr/bin/sh
507: /usr/bin/id
508: /usr/bin/chmod

File Info Pages

/etc/security/password.adjunct
/usr/export/home/jhoaglan/.history

Generated on Wed Jul 20 12:05:28 PDT 1994 by hoagland using ab

log of a suid attack: the index page.
Figure 3d. Output of the Hypertext Generator on the

the audit log. The prototype implementation of the tool
allows only nodes to be foci, permits only one focus, and has
a fixed depth. The display shows the focus node, the nodes
that share edges with the focus, and those edges. To choose
a new focus, the user types in the name of the node that is to
become the focus.5 Examples of FAB output are in figures
4abc and 5ab, which are explained below.

The GUI for FAB is based on HTML forms. At the top
of the document, the graph is displayed as GIF6 image and at
the bottom of the document an input box is present where the
user enters the next node that is to be the focus. Once a new
focus is selected, FAB is invoked with the focus input. The
BSM audit log is scanned for events that have the focus as a
node, and the other nodes and edges connected to the focus
are added to the DOT language graph. The DOT graph is
converted to GIF format and a HTML Form is output and is
displayed on the Web browser and the cycle repeats.

4.0 Example Uses of the VAB Toolkit

4.1 Investigating the Disappearance of a File

A configuration file is discovered to be missing by a sys-
tem administrator. A quick polling of the other system
administrators reveal that no one knows anything about it.
They decide to find out what happened to it by using the
VAB Toolkit. They start up the Focussed Audit Browser
with the initial focus as the missing file, “/etc/config.” This
is shown in figure 4a. The system calls that involved “/etc/
config” are seen as edges going into the file’s node. The

5. Unfortunately, time did not permit the inclusion of a more conve-
nient focus selection mechanism into our prototype FAB such as
simply clicking on the node that is to be the new focus.
6. GIF is a trademark and servicemark of CompuServe Incorpo-
rated.

4131

/etc/config

lstat open: r unlink

Figure 4a. FAB presentation of “Investigating the
Disappearance of a File” situation with focus on the
configuration file. The edges going into the file are
the system calls that involved the file, in this case
all coming from process 4131.

“unlink” system call that removed the file is immediately
seen to have come from process 4131.

To find out more information about process 4131, FAB
is focussed on that process. Figure 4b shows the result. The
process is seen to have "exec"ed the UNIX file move utility,
“/usr/bin/mv”. Another key fact seen is that “/tmp/config”
can be inferred to be the destination of the file move since it
is created by “mv” using the “creat” system call. Curious
about the events surrounding the move, the parent, which is
expected to be some sort of command-interpreter (shell), is
chosen to be the new focus (the output is shown in figure 4c.)
This process is seen to have “exec”ed “/usr/bin/su” and “/
sbin/sh” and to have forked three processes besides the one
that moved “/etc/config”. Refocusing on the shell from
which “su” was invoked shows that that process read the
initialization file of a junior system administrator and thus
appears to be running as that administrator.

Going back down to the “su” process then in turn to pro-
cesses 4129, 4130, and 4132, it is seen that this event took
place in the middle of several other similar, legitimate

events. It is apparent that the file was moved on accident and
the red-faced administrator puts the file back in place.

4.2 Finding a File’s Origin

Out of memory errors suddenly start occurring on a
workstation used primarily for development purposes. Since
the workstation has plenty of virtual memory this is puz-
zling. The experienced system administrator, knowing that
the virtual memory shares a disk partition with “/tmp” on
that machine, looks in “/tmp” and finds several large files,
“tmp3870”, “tmp3872”, “tmp3890”, etc., of unknown origin.
Due to the naming of these files, it is suspected that the files
are leftover from a program that didn’t completely clean up
after itself. Although owner of the file is the user “jhoag-
lan”, the user wants to confirm his suspicions and to find out
which of “jhoaglan”’s many programs created the file.

4128

4131

fork

/usr/bin/mv /tmp /etc

execve lstat access stat

/etc/config

unlink lstat open: r

/tmp/config

chmod old utime creat stat chmod

Figure 4b. FAB presentation of “Investigating the Disappearance of a File” situation with focus on process 4131.
The process that removed the file, 4131, is now investigated further with other system calls and its parent process
shown. It is seen that process is running the “mv” program, which is show to read and remove “/etc/config”,
create (and presumedly write to) the destination “/tmp/config.”

Figure 4c. FAB presentation of “Investigating the Disappearance of a File” situation with focus on process 4128.

4128

/usr/bin/su

execve

/etc/default/su

open: r

/var/adm/sulog

open: w open: w open: w open: w chown

/etc/shadow

open: r open: r open: r

/etc/passwd

open: r open: r open: r

/sbin/sh

execve

4129

fork

4130

fork

4131

fork

4132

fork

4092

fork

The parent of “mv”, process 4128, is now focussed on. This process, in addition to forking off “mv” and three other
processes, is seen to have “exec”ed “/usr/bin/su” then “/sbin/sh” (knowledge of UNIX and reasoning indicate that
order). Some of the usual system calls made by “su” and a shell are shown and the others have been filtered out.

Invoking the FAB with one of the temporary files as the
focus, the administrator sees, as shown in figure 5a, the pro-
cess, numbered 3872, that wrote to the file and presumedly
created it with an open for write. Changing the focus to
3872 (the result of which is shown in figure 5b), the system
administrator quickly sees that the files are created by a Perl
script, “/home/jhoaglan/doit.pl”, which is “exec”ed by the
process. “Jhoaglan” is informed, apologizes, and fixes the
bug in the program.

4.3 Investigating an Attack (Generalized)

Some initial piece of evidence is discovered that an
attack happened. This evidence can be from an IDS, Trip-
wire, chance discovery by a human, or by some other means
and indicates that something strange (or at least bad) may
have happened.

For instance, a file has been unexpectedly altered. This
file is then brought up as the focus on the Focussed Audit
Browser and, as in the previous two examples, the pro-
cess(es) that altered the file are seen on the display along
with how it (they) altered it. The process that performed the
unexpected event(s) can then be brought into focus to see

Figure 5a. FAB presentation of “Finding a File’s
Origin” situation with the focus on the file

3872

/tmp/tmp3872

open: w open: w open: r

“/tmp/tmp3872”. The file is shown to be accessed by
process 3872 exclusively (at least in the time frame
presented). By the naming of the file, it is presumed
that this file was also created by it with one of the
open for writes.

Figure 5b. FAB presentation of “Finding a File’s
Origin” situation with the focus on the process 3872.

3698

3872

fork

/home/jhoaglan/doit.pl

execve open: r

/home/jhoaglan/in

open: r

/tmp/tmp3872

open: w open: w open: r

/home/jhoaglan/out

open: w open: w

It is shown that “/home/jhoaglan/doit.pl” is “exec”ed
by that process and a couple files besides
 “/tmp/tmp3872” are read from and written to.

what else it did. This type of search is repeated until the
attacker’s point of entry (i.e. a login) is discovered.

If the evidence is that there is a masquerader, the Hyper-
text Generator is invoked on the audit logs for the time in
question. The page corresponding to the audit uid in ques-
tion is traversed to. The processes owned by that uid are
then examined for activities not attributable to the actual
user. A process tree, which can created by the Frame Gener-
ator set up only to graph “fork”s, might be useful in this
case.

If the incident involved becoming superuser, the point at
which the attacker got superuser privileges and the logged
portion of the circumstances is seen. Once the point of entry
is determined, the vulnerability exploited can be determined,
or at least hinted at, depending on what was logged. Going
forward from the point of entry, the user sees what processes
were spawned and what each of those processes did. This
information, which represents what the attacker did, is used
later for documentation for prosecution, for recovery, and for
attack analysis.

The Frame Generator or Movie Maker, or both, is later
called upon to create a presentation involving the critical
logged aspects of the attack to give to a jury.

4.4 Analyzing an Executable

A government agency is given an executable binary file
that is found on a recently attacked site. The file was recov-
ered from the disk after having been deleted from the file
system and is suspected to have been used by the attacker.
The file is loaded onto an isolated host that has a similar con-
figuration to the attacked host. Full auditing is turned on, the
file is executed, then auditing is turned off. The resulting
audit log is not too large, but is large enough that it would be
tedious looking at it using textual methods.

The Frame Generator is run on the audit log to get a
quick overview of the activities. The Movie Maker is then
invoked and the output viewed. The actions that the pro-
gram took (or attempted to take), and the order in which they
were taken, is clear from the presentation. More details
about the attack, such as the exact timing of events, is later
found out by using the Hypertext Generator.

5.0 Audit Reduction

Two challenges to visualizing audit logs are the often
large size of the logs and the low-level nature of system audit
logs. Both of these problems can be addressed by using
audit reduction techniques.

A basic audit reduction technique is to simply remove
events that fit into certain classes. Some examples are:

• removing events before and after a certain period of
time,

• removing or retaining only events that have certain user
ids attributed to them,

• removing certain event types such as “ioctl” system
calls and system call that failed, and

• removing events that involve certain files, such as those
involving system library files.

These filtering techniques, which are sometimes performed
at the logging level such as SUN BSM’s “auditreduce” tool
and audit configuration options [Sun91], can remove a frac-
tion of the records in the log and can aid audit analysis and
audit visualizations by doing so.

A more sophisticated technique is the reduction of audit
logs through signature recognition. In this, patterns, which
have become know by some means, are recognized and the
corresponding records replaced with a new record that
describes the pattern. This pattern represents at least a
somewhat higher level event, so this raises the abstraction
level of the log to a degree, which eases audit analysis. A
reduction of this sort might be as simple as replacing a
“fork” and corresponding “exec” system calls into a “spawn”
meta-level event or be more complicated such as replacing a
normal login with a “login” event or recognizing an attack
and replacing it with an attack event. An example of this is
protocol-based audit reductions, studied by Chris Wee
[Wee95b].

Patterns can even involve meta-events, and this type of
technique might appear, on the surface, to be scalable,
thereby reducing the number events and the size of the log
significantly. If signatures and other closed-form expres-
sions of audit reductions were always available, this might
indeed be the case. However, as a result of never before seen
or thought of events and attacks and the changing nature of
computer systems, signatures are not always known so a sig-
nificant amount of data is left for analysis.

 In addition, performing signature-based reductions of
this sort, however may require new analysis tools to be
developed or require existing tools to be modified in order to
operate on these new records.

6.0 Other Browsing Methods

6.1 Textual Audit Browsing

The simplest manner by which the audit log may be
viewed by a human is merely showing the text of the audit
log on a display tool such as the Unix programs “vi” or
“more”, and is referred to as textual browsing. The opera-
tions that the user has available in looking at the log are to

move forwards or backwards in the log, which amount to
seeing the next and previous events (if the log is organized
by time), and to search for a string, an operation which can
be used as a simple form of association-finding.

6.2 Relational Database Browsing

Another browsing method is to store the audit data in a
relational database and perform structured queries upon that
database using the Structured Query Language (SQL) or
another query specification mechanism. The purpose of the
query is to find the events and objects that meet the query
criteria so that associations between them can be found and
knowledge of how many there are can be used. The results
of the query are displayed (in a textual manner) to the user
who then interprets the result and formulates a new query.

One program that converts audit logs into relational
database files is ComputerWatch [DoRa90]. Computer-
Watch takes AT&T MLS audit logs and puts the records into
database format in several files; the files are statically orga-
nized such that by the data items that are most frequently
accessed together are put in the same file [Wetm93].

7.0 A Comparison of Browsing Methods

It is fairly easy to obtain information that is directly
recorded in an audit record using the textual audit browsing
method. However, obtaining more complex information
using this method can be difficult and time-consuming since
associations between objects and events (other than time
ordering associations) are not obvious and somewhat bur-
densome to obtain. This information then needs to be put
together to draw useful conclusions. Textual browsing is not
well suited to this task since it is unlikely that more than one
or two relevant associations appear on the screen at the same
time, and thus must be remembered or recorded externally.

To access audit data that has been stored in a database,
one must construct structured queries on that database. Con-
structing these queries requires practice, some time, and per-
haps some training on the query specification mechanism.
Associations can be seen from this method more easily than
in the textual browsing method, but similar problems exist
for seeing multiple associations at the same time. In addi-
tion, the time required to formulate a query might tend to
reduce the retention of previously learned associations.

Using the hypertext organization audit visualization
technique, and the Hypertext Generator in particular, for
audit browsing shows much of the same information as
would be shown by several database queries. Events involv-
ing a certain file are shown together as would be the case if
events involving that file were queried for, and events and
actions around a process are shown together as it would be if

that process were queried in the database. However, using
this method has the advantage that queries are preformulated
in the form of links that information, thereby saving time and
effort. In addition, as there is a tendency to want more infor-
mation about just seen objects and events, there is the added
advantage of those links being readily available. The disad-
vantage to this method is if there is not a section in the
hypertext pages about an object or event, what a query
would find cannot be readily found using this method. How-
ever a browser that makes good use of the hypertext organi-
zation visualization technique would have sections
corresponding to all queries of interest.

The graphing audit visualization technique, as with the
hypertext organization technique, presents the associations
between objects and events directly, but it does this in a
graphical manner. As having links was an improvement
over specifying a query, having the additional levels of asso-
ciation shown in a graph is an improvement over having
links to the next level since no additional action is needed to
see the next level of associations whereas the link needs to
be selected. The disadvantage of showing these additional
levels of associations is that it takes up additional space on
the display which either forces the nodes to be presented
smaller, and perhaps illegibly, or not all the nodes to be pre-
sented simultaneously. Another disadvantage to using the
graphing technique is that the details of the events and
objects would tend to be available via the graph. Although it
is conceivable that the graph would present this information,
this would tend to diminish the advantages of the graph as it
uses more space and might clutter the graph.

The Focussed Audit Browser shows only a portion of
the log, but does so in an organized manner. Browsers which
used the slicing audit visualization technique, such as FAB,
show just the portion of the audit log that is related to the
focus. This method is scalable on the size of the log, which
is important since, as noted previously, the log is often large.

The replay of audit events audit visualization method is
useful for showing the time ordering of events in a visual
manner. This helps the user get a “feel” for what happened
timewise and assists the user in understanding complex tim-
ing information.

8.0 Conclusions

The analysis of audit data faces several challenges,
including the size of the audit logs, the organization of data
in audit logs, and the low level nature of events recorded in
audit logs. Audit reductions can help, but there still may be
much data to analyze and this analysis often needs to be per-
formed manually.

The Visual Audit Browsing Toolkit, whose tools use
graphing, replay of audit events, hypertext organization, and
slicing audit visualization techniques, assists in the investi-
gation of security violations and other incidents that can be
aided by audit analysis. This is done primarily by providing
enhanced access to associations found in the audit log which
form the basis for forming conclusions from the data.

If the information sought is contained in a single audit
record, then textual audit browsing might be as useful as
tools based on the mentioned visualization techniques, but
this is unlikely to be the case for more complex situations.
Database audit browsing might be useful in situations where
queries are easy to specify and whose conclusions can be
reached through a couple simple associations in the data-
base, but a browsing tool based on the hypertext organiza-
tion visualization technique should be able to handle this
situation and more complex ones more easily.

Since the tools that make up the Visual Audit Browser
Toolkit have different strengths and weaknesses, and corre-
spondingly different situations and goals which they are
good at, the toolkit works best when it is considered a set of
tools to be used for analysis. Particularly when used in the
appropriate combination, the tools of the VAB Toolkit are
suitable for a variety of manual audit analysis situations.

9.0 Future Work

There are several issues involving audit visualization
and the VAB Toolkit that can be explored. One is to investi-
gate other audit visualization techniques such as the use of
color. Red can be used to represent processes with effective
uid root and system calls that are damaging such as “unlink”,
blue or black for relatively benign system calls such “open
for read” and “stat”.

New tools can be added to the VAB Toolkit involving
different combinations of the existing visualization tech-
niques. The current tools can be expanded as well. One idea
is to expand the Hypertext Generator to generate HTML that
links to other hosts that have also run the Hypertext Genera-
tor on their logs. The links can be to events that correspond
to the local events. Determining this correspondence is an
issue unto itself. FAB can be enhanced by allowing various
depths of display, edges to be foci, multiple foci, and audit
reductions to be performed to specified from the interface.
The Frame Generator can be expanded so that different
views of the audit data can be generated. Another view that
can be considered is viewing the data from the point of view
of the file system, rather than the somewhat process-centric
view now produced.

Visualization of other audit log formats can be looked at
including similar system-level logging mechanisms, applica-

tion-level audit trails, and per-object audit logs such as those
found in the Logging and Auditing File System (LAFS)
[Wee95a].

Information from outside the audit log can be brought
into the visualization including the system policy, an attack
database, user and attacker profiles, other audit sources,
intrusion detection system output, security analysis tool out-
put such as that from Cops [Farm91], Tripwire [KiSp93] and
SATAN [FaVe95], program profiles such as those developed
for privileged programs by Calvin Ko, et. al., [KoFL94], and
information from the file system as it exists at the time of
analysis. Such a tool, though perhaps daunting to imple-
ment, would be useful as a “cypersleuth’s notebook.”

10.0 Acknowledgments

I would like to thank Steven North and Eleftherios
Koutsofios at AT&T Bell Labs for their great tool, DOT, and
their help with it; they even added a feature to DOT to help
our implementation.

I would also like to thank the other members of the
Security Lab at UC Davis, in particular Chris Wee and Pro-
fessor Karl Levitt for their ideas and suggestions for this
work.

11.0 References

[ArHo90] Hiralal Agrawal and Joseph R. Horgan,
“Dynamic Program Slicing,” Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, June 1990.

[CERT91] CERT Advisory CA-91:20, 1991.

[DoRa90] Cheri Dowel and Paul Ranstedt, “The Com-
puterWatch Data Reduction Tool,” Proceedings of the 13th
National Computer Security Conference, Washington, DC,
October 1990.

[KiSp93] Gene Kim and E. Spafford, “Experiences with
Tripwire: Using Integrity Checkers for Intrusion Detection,”
Systems Administration, Networking and Security Confer-
ence III, Usenix, April 1994.

[KoFL94] Calvin Ko, George Fink, and Karl Levitt,
“Automated Detection of Vulnerabilities in Privileged Pro-
grams by Execution Monitoring,” Proceedings of the Tenth
Annual Computer Security Applications Conference,
December 1994.

[KoNo93] Eleftherios Koutsofios and Stephen C. North,
“Drawing Graphs withDot,” AT&T Bell Laboratories, Octo-
ber 18, 1993.

[FaSp91] Dan Farmer and E. Spafford, “The COPS
Security Checker System”, source available from ftp to
coast.cs.purdue.edu, 1991.

[FaVe95] Dan Farmer and Wietse Venema, “System
Administrator Tool for Analyzing Networks”, documenta-
tion and source available from via http to ciac.llnl.gov, 1995.

[SaBr94] Manojit Sarkar and Marc H. Brown, “Graphi-
cal Fisheye Views,” Communications of the ACM, Decem-
ber 1994.

[Sun91] Sun Microsystems, Inc., “Installing, Adminis-
tering, and Using the Basic Security Module,” December
1991.

[Wee95a] Christopher Wee, “LAFS: A Logging and
Auditing File System,” Submitted to Eleventh Annual Com-
puter Security Applications Conference, December 1995.

[Wee95b] Christopher Wee, Ph.D. Thesis (in progress),
University of California, Davis, 1995.

[Weis81] Mark Weiser, “Program Slicing,” CH1627-9/
81/0000/0439, IEEE, 1981.

[Wetm93] Brad Wetmore, “Paradigms for the Reduction
of Audit Trails,” Masters Thesis, University of California,
Davis, 1993.

