
NetKuang { A Multi-Host Con�guration

Vulnerability Checker�

Dan Zerkle and Karl Levitt

Department of Computer Science

University of California at Davis

zerkle@cs.ucdavis.edu, levitt@cs.ucdavis.edu

Abstract

NetKuang is an extension to Baldwin's SU-Kuang.
It runs on networks of computers using Unix and can
�nd vulnerabilities created by poor system con�gu-
ration. Vulnerabilities are discovered using a back-
wards goal-based search that is breadth-�rst on in-
dividual hosts and parallel when multiple hosts are
checked. An implementation in C++ found real vul-
nerabilities on production systems. Tests show rea-
sonably fast performance on an LAN.

1 Introduction

The security of modern networked computer systems
is dependent on more than just the integrity of the
software and protection mechanisms their operating
systems use; it is also dependent on the proper con-
�guration and use of that software. Unix comput-
ers have a wide variety of security mechanisms such
as �le permissions, passwords, trusted hosts, and
so forth. In practice, such mechanisms can quickly
grow very complex. A simple con�guration error
can lead to users gaining unintended access. The
problem has grown worse with the popularity of net-
worked systems. There are more hosts to con�gure,
and the security is dependent on more mechanisms.
This paper presents NetKuang, a system which

addresses some of these security concerns by check-
ing networked con�gurations for unintended security
vulnerabilities.

x2 reviews existing systems to enhance Unix secu-
rity and justi�es the need for NetKuang. x3 presents
the design of our NetKuang system. It considers
the basic functionality of the system, the algorithms
used, and the limitations of the design. x4 discusses
the current prototype implementation. x5 presents

�This work is funded by ARPA under Contract No.

USNN00014-94-1-0065.

a detailed discussion of the search technique used by
the prototype. x6 considers planned enhancements.
x7 presents the results of some experiments with this
tool. Finally, x8 presents our conclusions about the
initial prototype of NetKuang.

2 Previous Systems

A number of con�guration analysis tools have been
developed to check whether a system is vulnerable to
attack based on the content of system tables. Given
that is very likely that an administrator will make
mistakes in con�guring his system and that many
of these mistakes can leave the system open to easy
attack, these tools have been widely used as a pre-
ventive measure.
The Computer Oracle Password and Security Sys-

tem (COPS) [1], uses a set of shell scripts to check for
likely miscon�gurations in a Unix system. Among
its simple but important checks are the permission
modes of security-relevant �les and directories, such
as /etc/passwd and /etc/group. COPS also deter-
mines if set user-ID root �les are world-writable.
The SU-Kuang system [2] is a rule-based expert

system for checking the security of a Unix �le sys-
tem's con�guration. The rule base captures ap-
proaches by which an attacker can extend his privi-
leges by making system calls. Examples of such rule
are \if a user can write to a directory, then the user
can replace any �le inside the directory" and \a user
who can replace the password �le is able to acquire
superuser privileges." Using these rules, SU-Kuang
exhaustively searches for all possible actions that en-
able a user to acquire privileges inconsistent with a
speci�ed policy. Although very e�ective for single
host Unix systems, it does not work on a network of
Unix systems.
The Miro security constraint �le checking system

[3] checks a �le system against a set of speci�ed con-

1



straints that de�ne legal con�gurations of the sys-
tem. Security constraints are speci�ed as graphs,
and the system administrator uses a graphical editor
to create and modify graphs. A constraint checker
determines if the graphs are consistent with the pol-
icy.
Tripwire [4], the widely used �le integrity checker,

is used to determine if critical �les have been modi-
�ed. An attacker might write trojan horses or trap-
doors into critical programs; for example into the
login program to allow him future access to the sys-
tem without presentation of password, or into ls or
ps so that calls to these programs will not reveal the
presence of modi�ed �les or processes. In Tripwire,
a cryptographic checksum is computed for each �le,
and the original checksum is compared periodically
with that for the current version of the �le.
The Security Administrator's Tool for Analyzing

Networks (SATAN) [5] and the Internet Scanner [6]
both scan networks to �nd vulnerable hosts. They
can look for such suspicious states as use of faulty
versions of network software and improper NFS ex-
ports.

3 NetKuang

Netkuang is based on Baldwin's SU-Kuang [2], It
has all the functionality of SU-Kuang, but also ad-
dresses the concerns of a networked environment. It
is capable of searching a large number of hosts in
parallel, and it also considers potential con�guration
vulnerabilities present in a networked environment.
NetKuang and SU-Kuang are named after a �c-

tional piece of security-breaking software in William
Gibson's novel, Neuromancer [7].

3.1 Functionality

An example will best illustrate the kind of problem
that NetKuang can �nd. Consider a user Sandy, who
is logged into a Unix machine named apricot. She
wants to �nd if someone logged into Tom's account
on host banana can potentially modify a �le in her
home directory called private. This possibility is
illustrated in Figure 1.
NetKuang might �nd the following: A user named

Larry has an account on banana, and his home direc-
tory permissions are set to be group-writable. Larry
and Tom are both members of the sta� group, so
Tom could replace Larry's shell startup script �le.
The next time Larry logs in, the modi�ed script
makes a copy of the shell. The copy is owned by
Larry's account, and has set-user-ID permissions set.
Therefore, Tom can log in to banana as Larry.

????

Write file
/sandy/private

on banana

on apricot

Become user
Tom

Figure 1: An example query. Given the starting
privileges, is it possible to gain the ending privileges?

Another host, peach, has an account owned by
Larry. Also, peach has a /etc/hosts.equiv�le that
contains banana's name. Therefore, Larry (and now
Tom) can log into peach without providing a pass-
word. Peach is an NIS server for the network, includ-
ing apricot and banana. It keeps the NIS database
�les in a directory called /var/yp. The permissions
for the /var/yp directory are accidentally left world-
writable. Therefore, someone using Larry's account
can replace the NIS directory with a directory full
of modi�ed NIS �les. In particular, it is possible to
replace the NIS password �le there.
Once Tom uses Larry's account on peach to re-

place the NIS password �le, he can give Sandy's ac-
count any password he wants. Once this is done, he
can use the new password to log in to apricot us-
ing the new password. Once logged in, he can use
Sandy's account to modify private.txt. This path of
privileges is shown in Figure 2.
NetKuang works with privileges as goals. There

are only four kinds of goals, as follows: Become (log
in as) a user, become a member of a group, write
to a �le, and replace a �le. Each goal is tied to a
particular host and has an argument. For example, a
fully speci�ed goal is to write to the file named

/etc/passwd on host calvin.comics.com.
As shown in the example above, privileges of one

kind may lead to other privileges. For example, if a
user can write to the /etc directory on some host,
then he can also replace the /etc/passwd �le on that



Log in as
Tom

on banana

Replace file
/larry/.cshrc
on banana

Become user
Larry

on banana

Become user
Larry

on Peach

Write file
NIS directory

on peach

Replace file
NIS passwd

on peach

Become user
Sandy

on apricot

Write file
/sandy/private

on apricot

Figure 2: An example path corresponding to the
above query.

same host. Doing that will probably lead to further
privileges. NetKuang can �nd long chains of such
privileges.
NetKuang, as SU-Kuang, considers such things as

�le permissions and directory structure. As in SU-
Kuang, it also considers the special cases of the per-
missions on important �les such as the password �le
and users' shell startup �les. It has several features
beyond SU-Kuang's. It considers the contents of the
/etc/hosts.equiv �le and users' .rhosts �les to
identify which other users can log in without pass-
words. It also considers the NIS database �les, and
what privileges may be gained by modifying them.
Finally, NetKuang allows wild cards. It can consider
all the members of certain groups of users. The set
of all rules and goals used by NetKuang is listed in
Appendix A.

The user supplies the desired ending goal privi-
leges and the starting privileges that some theoret-
ical misuser might have. NetKuang then performs
a search to determine if it is possible to attain the
goal privileges from the start privilege. If it �nds
a solution, it reports the path of privileges leading
from the start to the goal.

3.2 Limitations

There are some limitations to the current NetKuang
prototype.
It does not consider the integrity of various

security-critical software. It does not check for bad
passwords or the presence of network sni�ers. It
does not attempt to parse many important system
con�guration �les, that may have security-critical
contents, such as the /etc/rc �le.

NetKuang only �nds a single match. It may be
that multiple paths exist between the start and goal
privileges. The only way to discover further paths
with NetKuang is to �x the known con�guration vul-
nerability and run another search.

4 Current Implementation

The current implentation of NetKuang is written in
Gnu C++. It runs on a small network of SunOS 4
and 5 systems. It is currently being ported to IRIX
and Ultrix systems on a much larger network for
further evaluation.
The search engine is implemented as a daemon

on each machine that can be searched. This allows
the daemon to directly examine the �le system in
question. Each engine is capable of participating
in multiple simultaneous searches. If a search on a



request fails, the engine may request other engines
to carry out the search further. See x5 for a detailed
description of the engine's search technique.
The user interface is a simple program that col-

lects the start and destination goals from the user
and forwards them to the host identi�ed in the des-
tination goal. Upon completion of the search, the
user interface either reports failure or reports the
path of goals from the start to the destination. It
also noti�es the search engines to cancel the com-
pleted search.
Communication in NetKuang is carried out by a

handcrafted message passing system called ZCS, de-
veloped for wide-area auditing. A ZCS message dis-
patcher daemon collects all NetKuang requests and
responses as UDP messages and redistributes them
to the modules that need them. Further description
of ZCS is not essential for this paper and will be
addressed in a future publication.
The search engines must run with super-user priv-

ileges in order to examine any .rhosts �les of users
that would not otherwise be readable. If this infor-
mation is not needed, it may run as any user and
unreadable .rhosts �les are, of course, ignored.

5 Search Technique

NetKuang uses a backward-chained goal-based
search. Given starting privileges and ending priv-
ileges, NetKuang analyzes the systems on which it
is run to determine if the starting privileges are ad-
equate to achieve the ending privileges. The search
is carried out breadth-�rst on each individual host,
and in parallel between di�erent hosts. This section
details the search technique as it is currently imple-
mented.

5.1 Goals

Searching by NetKuang is based on the generation of
goals. Each goal represents privileges that a given
user may hypothetically acquire. There are three
�elds for each goal. The �elds are the type of the
goal, an argument associated with the type, and the
name of the host on which the goal might be met.
The di�erent types of goals and their corresponding
arguments are listed in Table 1.
Specifying a user by ID and by name are very

similar. They simply imply the ability to become the
speci�ed user. Unix systems grant most privileges
to users based on the value of user ID's. However,
the contents of .rhosts and hosts.equiv �les may
allow users to log in from remote systems without
providing passwords. The identity of remote users

Goal Type Argument

Become user by ID User ID number
Become user by name User name string
Become member of group Group ID number
Write �le File's path name
Replace �le String �le's path name

Table 1: Possible goals and their arguments

is determined by the names of the users, not their
ID numbers, so NetKuang tracks both names and
ID numbers.
Replacing and writing a �le are also similar in

that they imply the ability to modify the contents
of a �le. However, a �le must exist before it can be
written, while even a non-existent �le might be re-
placed. Also, the ability to write a �le implies that
the ownership of that �le does not change upon mod-
i�cation. Thus, the ability to write a �le implies the
ability to replace it, but not the other way around.
The di�erence between writing and replacing is im-
portant because .rhosts �les must be owned by the
appropriate user or else Unix ignores them when re-
mote users use the rlogin protocol.
Here are some example goals:

� Become user named zerkle on host

krakatoa

� Become member of group 1 (staff) on

host dino

� Replace file /etc/passwd on host calvin

� Become user ID 0 on host jade

� Write file /usr/home/jack/.cshrc on

host trusty

Some goals contain wild cards. Goals with wild-
cards imply special privileges. They are mainly used
to specify one complicated search instead of many
simple ones.
A goal with a host name of all implies the posses-

sion of the speci�ed privileges on all hosts searched
by a particular instantiation of NetKuang. The host
name any in a goal implies the possesion of the priv-
ileges on at least one searched host.
The two become user goals use special wild cards.

The user names all and any imply the ability to
become all users or any user at a given host.
Wild cards exist in NetKuang mainly for two par-

ticularly interesting goals:

� Become user all at host all

� Become user root at host any



5.2 Goal Expansion

Goal expansion is the heart of NetKuang's search
mechanism. Expanding a goal results in a set of
new goals, any one of which, if achieved, grants the
original goal privileges. The expansion answers the
question, \What are the ways in which I could ac-
quire these privileges?"
Some expansions have preconditions. For in-

stance, the goal write file might expand to the
ability to become any user in the group of the user
that owns the �le. The preconditions in this case are
that the �le exists and that its permissions are set
to allow writing by the owner's group.
For instance, the goal

� become user ID 0 at host apple

might expand to (among others)

� replace file /etc/passwd at host apple,

� become user named ``root'' at host

apple,

� write file /.rhosts at host apple,

� replace file

/var/yp/users/passwd.byuid.pag at host

melon.

As shown by this example, some of the goals result-
ing from an expansion can be met by the same host
as the original goal, but some may be met only by
another host.
Expansion of goals with wild cards is handled in a

special manner. The goals with the all host or user
wild card do not expand at all. However, every other
goal, in addition to its normal expansions, expands
to the same goal with all as its host, and every
become user goal expands to become user all at
the same host. Every goal, in addition to its normal
expansions, expands to the same goal with all as
its host. A goal with host any is expanded to the
identical goal for every host on which NetKuang is
running, but is not otherwise expanded. The goal of
becoming any user at a given host expands to one
such goal for every user that can log in to that host.
All become user goals expand to becoming the all
user on the same host. The goals with the all host
or user wild card do not expand at all.
A complete list of the possible expansions is given

in Appendix A.

5.3 Search Algorithm

A NetKuang search consists of a test of whether a
given destination goal can be met from a starting

S

D

Figure 3: A local search after the �rst expansion.
Node D is the destination goal and node S is the
start goal.

privileges goal. Typically, a search is started by a
user request to a search engine.
NetKuang carries out both local and remote

searching. Local searching consists of goal gener-
ation and analysis of the local host to determine if
the destination goal can be expanded to the origin
goal. Remote searching is done if local searching
fails to �nd a solution. It consists of requests to
search engines on other hosts to carry out searches
to determine if they can meet the goal.

5.3.1 Local Search

Local search is a breadth-�rst expansion of a goal
tree. It is carried out upon receipt of a search re-
quest by a search engine, where the request may be
made by a user interface or by another search en-
gine. The search request consists of a two goals.
One goal identi�es start privileges, and the other
goal lists destination privileges. Upon receipt of the
request, the destination goal is expanded to a new
set of goals, as shown in Figure 3. Note that this
search is backwards. The expansion proceeds from
the destination goal in an attempt to �nd the start
goal.
Each of the new goals from the expansion is exam-

ined to see if it is the start goal. If not, each of the
new goals is expanded. Figure 4 shows these goals
partially expanded. One of the new goals is the start
goal. This indicates a successful search.
Di�erent goals, when expanded, may result in

some identical expansion goals. These might be
represented as non-tree links in the search tree, as
shown in Figure 5. Such duplicate goals must not be
further expanded, or loops will result and the search
will continue inde�nitely. Therefore, the generated
goals are kept in a hash table. Newly generated goals
already in the table are discarded.
Goals referring to hosts not identical to the host

on which the local search is carried out can not be
expanded locally. Instead, they are saved for a pos-



D

S

Figure 4: A local search after the second expansion.
The start goal has been found. Shaded nodes indi-
cate goals along the successful path.

D

S

Figure 5: A local search showing non-tree expan-
sions to duplicate goals. The dashed lines indicate
the duplicate expansions.

sible remote search.
If the start goal is found, the path between the

start and end goals is reported to the search engine
or user interface that made the search request. Be-
cause the search is breadth-�rst, it will always �nd
the shortest existing path to the start goal.

If the start goal is not found and no further non-
duplicate goals can be generated, the local search is
considered to be a failure. If any remote goals are
saved from the local search, the search engine will
start a remote search.

5.3.2 Remote Search

A search engine carries out a remote search when
the local search fails.

For every incoming query, the search engine keeps
a set of goals involving remote hosts (actually, there
is a queue of goals for each mentioned remote host).
When starting the remote search the engine sends
one request to each remote host mentioned in a goal
generated in the local search. These goals are all
sent immediately. The search engine does not wait
for results. This means that all the hosts queried can
search in parallel, dramatically speeding the search
over a serial approach.

If any of the remote requests returns a success-
ful goal path, the engine appends the remote path

to the local path used to reach the original remote
goal, then returns this successful result to the the
user interface or search engine that originated the
incoming query.

If a remote request reports a failed search and the
incoming query still has remote goals mentioning the
reporting host, the search engine will send another
query to that host. If no remote goals are left, the
engine reports failure to the host that generated the
incoming query. This also happens if the local search
stage generates no new remote goals.

As with the local search, this recursive remote
querying may generate duplicate goals. Therefore,
for each ongoing search, each search engine keeps
the hash table of previously generated goals. Goals
generated from a previous query but the same over-
all search are ignored in subsequent expansions. A
separate hash table is kept for each ongoing search,
so the same search engines may be used simultane-
ously by di�erent searches.

6 Planned Enhancements

Several enhancements are underway to the current
implementation of NetKuang.

NetKuang will consider NFS �le equivalency. It
is possible to modify an NFS-mounted �le that is
mounted on one host if it is possible to write to the
same �le on another host. It is quite di�cult to keep
track of where �les are mounted. The planned algo-
rithm is to consider only the host serving a partic-
ular remote-mounted �le. If the �le is local and ex-
portable (the local machine is an NFS server), then
the goal of writing the �le on a local system expands
to writing it on all systems to where it is exported.

Although duplicate searches are avoided on any
one particular host, they are not avoided between
hosts. If a request included intermediate and failed
goals, it would allow hosts to avoid duplication at
the expense of higher communication costs. An ex-
periment will be done to determine the performance
impact of this feature.

In actual deployment, most search requests are the
generic request: \Can any user on any machine get
super-user privileges on any machine?" As such, it is
a good idea to save results of previous searches and
use them to speed up subsequent searches. In fact,
the search for super-user privileges could be done
on each machine as it starts up its search engine.
The partial results are mostly in the form of failed
goals which should not be checked again. However,
once part of a host's �le system changes, some of
those goals become invalid and must be discarded.



As any intermediate goal may be generated by mul-
tiple paths, it is not clear which such goals should be
discarded and which may be kept. An attempt will
be made to implement such incremental search.

7 Experimental Results

NetKuang was deployed and run for experimental
purposes on a network of ten Sun Sparc worksta-
tions. Performance was reasonably fast. It found
some real con�guration errors.

7.1 Sample Runs

This section details performance tests done with
NetKuang. Each test was run �ve times, and the
mean processing time was calculated for each test.

7.1.1 Error on the NIS Server

This test conjectures a con�guration error on
olympus, an NIS server. The error does not actually
exist, but the start condition implies it. This demon-
strates the \what if" capabilities of NetKuang. Note
that the path found was not the shortest possi-
ble one. The results of a parallel search are non-
deterministic, and the �rst successful goal path is
the one reported. The mean run time was 6.2 sec-
onds.
Start condition:

� Write file /etc at

olympus.cs.ucdavis.edu

End goal:

� Write file /home/zerkle/tmp at

krakatoa.cs.ucdavis.edu

Goal path:

1. Write file /etc at

olympus.cs.ucdavis.edu

2. Replace file /etc at

olympus.cs.ucdavis.edu

3. Replace file /etc/passwd at

olympus.cs.ucdavis.edu

4. Become user number 0 (root) at

olympus.cs.ucdavis.edu

5. Write file

/var/yp/seclab.cs/passwd.byuid.pag at

olympus.cs.ucdavis.edu

6. Replace file

/var/yp/seclab.cs/passwd.byuid.pag at

olympus.cs.ucdavis.edu

7. Become user number 494 (zerkle) at

lhotse.cs.ucdavis.edu

8. Become user named zerkle at

lhotse.cs.ucdavis.edu

9. Become user number 494 (zerkle) at

krakatoa.cs.ucdavis.edu

10. Write file /home/zerkle/tmp at

krakatoa.cs.ucdavis.edu

7.1.2 Can I get root on the server?

This query starts a single-host search on the de-
partment server. It is roughly equivalent to an SU-
Kuang search, except that it may be initiated from
anywhere the NetKuang user interface can be run.
Fortunately, the search failed. The mean run time
is 1.3 seconds.
Start condition:

� Become user named ``zerkle'' at

toadflax.cs.ucdavis.edu

End goal:

� Become user named ``root'' at

toadflax.cs.ucdavis.edu

7.1.3 Can anybody get root anywhere?

This is probably the most standard test. It basically
asks if any user on any machine can get root on any
machine. The fault found is that the /etc directory
on lhotse is not owned by root. This run shows a
minor limitation of NetKuang. The user interface,
running on krakatoa, translated user number 2 to
\sys". However, on lhotse, user number 2 is actually
\bin". The average run time was 2.9 seconds.
Start condition:

� Become user named ``all'' at all

End goal:

� Become user named ``root'' at any

Goal path:

1. Become user named all at all

2. Become user named all at

lhotse.cs.ucdavis.edu



3. Become uid ALL USERS (non-root) at

lhotse.cs.ucdavis.edu

4. Become user number 2 (sys) at

lhotse.cs.ucdavis.edu

5. Write file /etc at

lhotse.cs.ucdavis.edu

6. Replace file /etc at

lhotse.cs.ucdavis.edu

7. Replace file /etc/passwd at

lhotse.cs.ucdavis.edu

8. Become user number 0 (root) at

lhotse.cs.ucdavis.edu

9. Become user named root at

lhotse.cs.ucdavis.edu

10. Become user named root at any

7.1.4 Can I get root anywhere?

The previous run found a solution too quickly. This
run forced the system to check for root-granting con-
�gurations on the whole system as a performance
check. This search failed. The mean run time was
14.3 seconds.
Start condition:

� Become user named ``zerkle'' at all

End goal:

� Become user named ``root'' at any

7.1.5 Can he log in as me?

This test run is for the sole purpose of demonstrating
rlogin privileges granted though the .rhosts �les.
For this run, a vulnerability was purposely intro-
duced to allow user puketza on host k6 to log into
the zerkle account on toadax. The mean run time
was 3.0 seconds.
Start condition:

� Write file /home/puketza/.cshrc at k6

End goal:

� Write file /home/zerkle/tmp at toadflax

Goal path:

1. Write file /home/puketza/.cshrc at

k6.cs.ucdavis.edu

2. Replace file /home/puketza/.cshrc at

k6.cs.ucdavis.edu

3. Become user number 423 (puketza) at

k6.cs.ucdavis.edu

4. Become user named puketza at

k6.cs.ucdavis.edu

5. Become user number 494 (zerkle) at

toadflax.cs.ucdavis.edu

6. Write file /home/zerkle/tmp at

toadflax.cs.ucdavis.edu

7.2 Errors Found

During the testing of NetKuang, some con�guration
errors were found.

One machine contained several unexpected entries
in its t/.rhosts �le. These entries allow root access
to the vulnerable machine to all hosts mentioned in
the �le.

On the department mail server, the directory con-
taining the NIS database was left world-writable,
which means that any user could get root access by
replacing the NIS password �le.

8 Conclusions

NetKuang is a tool for network administrators that
has already demonstrated its usefulness by �nding
a serious con�guration vulnerability. By considering
complex con�gurations and large numbers of hosts,
it helps secure modern networks of Unix hosts.

Future plans for NetKuang include integration
into an automated intrusion detection system. It can
be run periodically to determine if any new vulner-
abilities have appeared. If so, they may indicate the
presence of an intruder. After an intruder has been
detected, it should be run immediately to determine
if the intruder has created new vulnerabilities.

NetKuang is under continuing development Com-
plete source and documentation for the latest version
of NetKuang is available on the World Wide Web at
http://seclab.cs.ucdavis.edu/~ zerkle/netkuang.

9 Acknowledgements

Thanks to Todd Heberlein and Calvin Ko for the
original idea behind NetKuang.



References

[1] D. Farmer and E. H. Spa�ord. The cops security
checker system. In Proceedings of the Summer

1990 Usenix Conference, June 1990.

[2] Robert W. Baldwin. Kuang: Rule-based secu-
rity checking. Documentation in
ftp://ftp.cert.org/pub/tools/cops/1.04/cops.104.tar.

[3] A. Heydon. Specifying and checking unix se-
curity constraints. In Proceedings of the 3rd

USENIX Security Symposium, September 1992.

[4] Gene Kim and E. H. Spa�ord. The design of
a system integrity monitor: Tripwire. Tech-
nical Report CSD-TR-93-071, Department of
Computer Sciences, Purdue University, West
Lafayette, Indiana, November 1993.

[5] D. Farmer and W. Venema. Security
administrator's tool for analyzing networks.
http://www.�sh.com/ zen/satan/satan.html.

[6] Internet Security Systems. Internet scanner.
http://www.iss.net/iss/scanner.html.

[7] WilliamGibson. Neuromancer. Ace Books, 1984.

A Search Rules

This appendix lists all of the goal expansion rules
used by NetKuang. Unless speci�ed otherwise, the
expanded goals refer to the same host as the original
goal.
For the purposes of this table, U refers to a user

ID number and G refers to a group ID number.
A full path name is speci�ed as /d/f, where f is
the last component of the path and d is the direc-
tory containing f (f may be the name of a direc-
tory). The function user(/d/f) refers to the user
ID number of owner of the �le, while the function
group(/d/f) refers to the group ID. On the other
hand, uid(name) and gid(name) refer to the user and
group ID's associated with user and group names.
The uname(U) function reverses this. The expres-
sion home(U) refers to the home directory of user U.
\Any trusted users" refers to the set of all users spec-
i�ed by user name and host name that are trusted,
according to the .rhosts and hosts.equiv �les. \Be-
come any user in G" expands to a separate goal for
each user in the speci�ed group. These last two may
expand to many goals.
Each of these expansions is taken if the precondi-

tion is true.

In addition to the expansion in this appendix,
goals with wild cards are expanded as described in
x5.2.



Replace �le /d/f
Precondition Expansions
/d/f is not the root directory replace �le /d
(none) write �le /d/f

Table 2: Expansions of replace file goals.

Write �le /d/f
Precondition Expansions
/d/f exists become user(/d/f)
/d/f exists and is group-writable become member group(/d/f)
/d/f exists and is world-writable become any user

Table 3: Expansions of write file goals.

Become user \name"
Precondition Expansions
(none) become uid(name)

Table 4: Expansions of become user name goals.

Become user-ID U
Precondition Expansions
(none) become uname(U)
(none) replace �le /etc/passwd
(none) replace password �le on NIS server
(none) become any trusted user
�le home(U)/.rhosts exists write �le home(U)/.rhosts
�le home(U)/.cshrc exists replace �le home(U)/.cshrc
�le home(U)/.login exists replace �le home(U)/.login
�le home(U)/.pro�le exists replace �le home(U)/.pro�le
U != 0 replace �le /etc/hosts.equiv
U == 0 replace �le /usr/lib/crontab
U == 0 replace �le /usr/lib/aliases
U == 0 replace �le /etc/rc
U == 0 replace �le /etc/rc.local

Table 5: Expansions of become user ID goals.

Become group G
Precondition Expansions
(none) replace �le /etc/group
(none) replace group �le on NIS server
(none) become any user in G

Table 6: Expansions of become member of group goals.


