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Abstract

 

In this dissertation, we present 

 

LaSCO

 

, the Language for Security Constraints on Objects, a new

approach to expressing security policies using policy graphs and present a method for enforcing

policies so expressed.  A security policy is a statement about how a system (any executing entity)

should behave with respect to a site’s particular notion of security.  Other approaches for stating se-

curity policies fall short of what is desirable with respect to either policy clarity, executability, or

the precision with which a policy may be expressed.  This results in expressed policies that are am-

biguous, are not implementable, or are that are not an accurate reflection of the policy goal, respec-

tively.  However, 

 

LaSCO

 

 is designed to have those three desirable properties of a security policy

language as well as:   relevance for many different systems, statement of policies at an appropriate

level of detail, user friendliness for both casual and expert users, and amenability to formal reason-

ing.  In 

 

LaSCO

 

, the constraints of a policy are stated as directed graphs annotated with expressions

describing the situation under which the policy applies and what the requirement is.  

 

LaSCO

 

 may be

used for such diverse applications as executing programs, file systems, operating systems, distrib-

uted systems, and networks.  

Formal operational semantics have been defined for 

 

LaSCO

 

.  An architecture for implementing

 

LaSCO

 

 on any system, consisting of a system-independent policy interpretation engine and a sys-

tem-specific interface layer, is presented along with an implementation of the engine in Perl.  Using

this, we have implemented 

 

LaSCO

 

 for Java programs.  Our implementation prevents Java programs

from violating policy through instrumented run time checks and includes a 

 

GUI

 

 to facilitate writing

policies.  This implementation is analyzed quantitatively and qualitatively.  We have studied apply-

ing 

 

LaSCO

 

 to a network as viewed by 

 

GrIDS

 

, a distributed intrusion detection system for large net-

works.  A proposed design involves correlating partial policy matches in a hierarchy and sending

alerts on violations.  We conclude that 

 

LaSCO

 

 has characteristics that enable its use on different

types of systems throughout the process of precisely expressing a policy, understanding the impli-

cations of a policy, and implementing it on a system.
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1

 

Introduction

 

This dissertation presents a new approach to security policy specification and enforcement.  In

particular, we describe a policy language called 

 

LaSCO

 

 (the Language for Security Constraints on

Objects).  Using this language, users may write policies for many applications.  We demonstrate that

the language has features that promote ease of use, promote clear and precise statement of policy,

and describe policies at the level of abstraction suitable for the problem.  A formal operational se-

mantics for 

 

LaSCO

 

 is described, which forms the basis for formal reasoning.  We present a frame-

work to apply 

 

LaSCO

 

 policies on their target system

 

1

 

, and demonstrate its use though an

implementation for Java and through a design for implementing it for networks using the 

 

GrIDS

 

 in-

trusion detection system.  The work presented in this dissertation shows promise as a mechanism

through which security policies can evolve, be formally reasoned about, and be implemented.

 

1.1 What is a security policy?

 

Goguen and Meseguer state in [13]:  “A security policy … defines the security requirements for

a given system.”  Thus a security policy is a statement about how a certain system should behave

with respect to security.  What is desired for security may not always be clear, and will vary by ap-

plication.  The military model of security is to prevent improper disclosure of sensitive information;

an end user might want to limit who can access his sensitive files; an e-commerce site may want to

prevent modification of transaction records; a financial institution may want to ensure certain pro-

cedures are always followed; and a developer of an in-house program may want to ensure that cer-

tain combinations of methods are never used for the same object.  For some of these needs, formal

 

1.  We use “system” generally in this dissertation, to include any computational entity.
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models have been developed to capture the policy; for others it is up to a policy analyst -- hence the

need for 

 

LaSCO

 

.

The type of security policy that this dissertation focuses on are those that impose constraints on

the events and state of a system.  Note that this includes the traditional notion of access control pol-

icies, i.e., restricting the access a subject has to an object.  Beyond this, constraint policies may in-

clude restrictions on the allowed state of an object or system.  We have been able to express certain

types of non-constraint security policies

 

1

 

 in 

 

LaSCO

 

, but do not have a model of its expressiveness

in these cases.

 

1.2 Why state a policy in a security policy language?

 

The current practice for stating security policies (when they are stated at all) is to use English.

Due to the nature of natural language, these are usually vague, which can lead to ambiguity and mis-

understanding.  The translation to operating procedures or mechanized enforcement components is

manual, which can be labor-intensive and subject to error.  It is also difficult to reason about policies

so stated, or to perform other formal operations on informally stated policies, such as composition.

However, if a security policy language is used, then a policy stated in it can be unambiguous,

especially if the language has clearly stated semantics.  Furthermore, using a formal language en-

ables automated processing of specifications.  Given the appropriate enforcement mechanisms such

as is presented in this dissertation, this can enable the policies to be enforced with a minimum of

human intervention.  Formally stated policies allow the possibility of formally reasoning about cas-

es that are covered and the overall effect of policies on a situation.

We believe that the primary impediment to more specific and mechanizable security policies is

the unavailability of a formal language that supports the creation, analysis, understanding, and

mechanization of real security policies.

 

1.3 Desirable characteristics of a security policy language

 

We feel that these are the desirable characteristics of a useful security policy language:

 

1.  These include:  policies indicating obligation, policies that indicate what should happen in certain situa-
tions (including intrusion detection response (IDR) policies), and policies describing trust relationships.  (To 
our knowledge, there has not been any published work towards a formal taxonomy of different types of secu-
rity policies.)
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•

 

Clear statement of policy.

 

  A policy stated in the language should be clear and be obvious in

its meaning.  There should be no ambiguity in the meaning of the policy.

 

•

 

Executable.

 

  The language should be such that it lends itself to being enforced on a system.  A

stated policy should be able to be generated into implementation mechanisms.  This would

allow the expressed security properties to be maintained.

 

•

 

Applicable to many systems.

 

  The language should be able to express policies for a variety of

systems, both common and custom.  This would avoid needing to learn a new language for each

system with which one is concerned.  In addition, when a new system is created, one would not

need to invent a new policy language.  Furthermore, one may be able to quickly express a par-

ticular policy for one system based on an example from another system if the same language is

used.

 

•

 

Precise statement of desired policy.

 

  The policy language should be able to express the policy

the creator wishes to enforce.  There should be a minimum of needs to compromise on inten-

tion or to unnecessarily represent it using multiple expressions of policy, as these are failures to

express what the policy creator wants.  Current models of security should expressible in the

language.

 

•

 

Descriptive.

 

  The language should be able to express the policy at the level of detail desired for

an application.  This would allow policies to be stated at multiple levels of abstraction.  Thus

the policy can convey the security intent of the creator.  In addition, this ability would be useful

in a framework for translating high level policies into lower level policies and enforcement

mechanisms -- the same language can be used to represent requirements throughout.

 

•

 

User friendly.

 

  Policies expressed in the language should be easy to write, modify, and under-

stand for both casual and experienced users.  This will increase the likelihood that the language

will be used and that it will embody the policy the user intended.  This is part of what Simon

and Zurko [31] call “user centered security.”

 

•

 

Amenable to formal reasoning.

 

  The language should lend itself to reasoning about the com-

pleteness and correctness of policies stated in it and to other applications of formal reasoning.

Thus one can be sure of the properties derived for policies stated in the language.
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1.4 LaSCO

 

LaSCO

 

 may be used to state security policies for a wide variety of environments.  It may state

restrictions on the execution of any system that has been described in terms of its system model.

Systems that have been so described include executing programs, file systems, operating systems,

distributed systems, and networks of hosts.  In our model, a system consists of objects and events.

Attributes on a object correspond to variables representing the state of an object.  The attributes on

an event denote the specifics of the event’s execution, e.g., the time of execution and the event type.

Events may be concurrent.  There are typically several ways to describe a system in terms of the

system model.  A particular way in which a system is modeled is called a system description.

Policies in 

 

LaSCO

 

 are stated as policy graphs.  These are annotated directed graphs.  Consider

the policy graph shown in Figure 1-1, depicting a constraint that might be found on a system that

handles exam administration.  The policy is that “a student submitting exam answers to an exam

database should do so before the instructor posts the solution to that database.”  The annotations on

the graph are domain predicates (depicted with 

 

bold text

 

, for example 

 

action=“submit-

answer

 

”

 

 above)

 

 and requirement predicates (depicted with 

 

standard text

 

, for example 

 

time

< $TP

 

).  Nodes in the policy graph represent any object described by the associated domain pred-

icate.  The top left node in Figure 1-1 represents a student, or, more precisely, any system object

whose 

 

type

 

 attribute has value “student.”  Edges represent events in the system.  To allow attributes

on different objects and events to be interrelated in the policy, policy variables are present in the

language.  References to policy variables may be found in predicates, denoted prefixed by a dollar

sign (“$”).  A variable represents the same value throughout the policy.

Collectively, the nodes, edges, and domain predicates form the domain of a policy graph.  The

domain describes when the policy is in effect, i.e., when it applies.  It applies if  each of the domain

predicates is matched with a different part of the system; this is called a match.  Each variable is

bound to a singe value in a successful match.  In the example, upon a match, the variable TP be-

comes bound to the time of the posting event.  The other part of the policy graph is the  requirement,

Figure 1-1.  Policy graph for ordering of exam answer submission and 
solution posting restriction

action=“submit-answer”

time < $TP

action=“post-soln” 
&& time=$TP

type=“student”

type=“instructor”

type=“exam_db”
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which states the restrictions on the system for whenever the domain matches.  The requirement is

made up of the requirement predicates found on particular nodes and edges.  Each is an expression

that must be met on the object or event that matched the node or edge in the domain.  The only re-

quirement present in the example policy graph is that the time of the exam solution submission be

prior to the time of solution posting, represented in the value of TP from the domain.

The 

 

LaSCO

 

 system model and language have been formalized, and the language semantics fully

defined in logic (Chapter 4).  A system-independent policy interpretation engine has been devel-

oped (Chapter 5) and a policy enforcement mechanism has been developed for Java programs

(Chapter 6).  This mechanism has a user interface which facilitates writing policies in the context

of a program.  A policy compiler inserts the appropriate policy checks into a program; at run time

these checks prevent the execution of method invocations that would violate the policies assigned

to the program, as decided by the policy engine.  A design has been developed in which policy vi-

olations on a network are detected in a distributed fashion using that policy engine and the 

 

GrIDS

 

intrusion detection system

 

1

 

 (Chapter 8).

In the next section and Chapter 9, we argue that no other policy statement method has strength

in the properties described in the previous section to the degree that LaSCO does.

 

1.5 LaSCO and the desirable properties

 

LaSCO

 

 has characteristics that establish its strength in the desirable properties listed in

Section 1.3.  We take those individually: 

 

•

 

Clear statement of policy.

 

  

 

LaSCO

 

’s formal semantics say exactly what the policy means, in

terms of the system description.

 

•

 

Executable.

 

  The system may be modeled as close to the concrete terms of the system as

needed due to the generality of the 

 

LaSCO

 

 system model.  This saves needing to translate terms.

The executability also is supported by the existence of formal semantics, which allows precise

interpretation of the policy with respect to system state and events.

 

1.  GrIDS is an intrusion detection system for large networks developed at UC Davis.  Novel aspects of 
GrIDS include its use of graphs as an aggregation method, the use of a hierarchy of departments to address 
scalability, and the incorporation of external data sources such as host-based IDSs.
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•

 

Applicable to many systems.

 

  The system model employed by LaSCO has a general basis.

This allows LaSCO to describe policy for a diverse range of systems, as demonstrated in this

dissertation.  In fact, we believe any existing system can be described using out model.  Fur-

thermore, this also allows the language to express policies in terms customizable for an applica-

tion, allowing it to be used in unique situations.

• Precise statement of desired policy.  LaSCO has features to help in expressing policies.  These

include:

• A policy’s domain describes the type of situation under which it should apply directly

rather than enumerating particular objects, avoiding the need to divide a policy along these

lines.  Along the same lines, the requirement of the policy is an assertion on all the elements

of its domain, stated as an expression on the domain’s attributes.  Thus one can keep the

policy at a higher level, rather than subdividing it, e.g., into an enumeration of the particular

ways to uphold or violate the policy.

• Using domain predicates, the objects and events referred to in a particular policy may be

described in terms of their (possibly dynamic) attribute values.  Included in this is the abil-

ity to form expressions composed of comparisons of attributes to other values, including

the values of other attributes.  Through the use of policy variables, this includes attributes

found on other objects or events.

• Using a multiple edge policy, historical context (both that involving events that have

occurred and past state) may be employed in making a policy decision.

LaSCO can express instances of all of the standard safety models: multi-level security, discre-

tionary access, Clark-Wilson [7], role-based access control, and Chinese Wall [5] as well as

custom policies.  In addition to these features, that LaSCO expresses policies using policy con-

cepts instead of system primitives means that the policy can be closer to what was intended.

• Descriptive.  LaSCO can state policy at various levels of detail.  The level of detail is deter-

mined by the system description.  The system description can be customized for a particular

application, and the system model employed by LaSCO is flexible enough to allow this.  To

state a policy at a low level of detail, the system can be modeled close to the system.
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• User friendly.  An intent when developing LaSCO was to make it user friendly and it has some

features present to promote this.  The graphical basis to the language provides a visual meta-

phor to help users (especially those with less familiarity) understand policies depicted.  In par-

ticular, results of the graphical basis are:

• Represented objects are depicted exactly once in a policy graph, eliminating the need to

mentally connect the multiple representations that would otherwise be present.

• Edges are a metaphor for an event.  The edge itself represents a kind of event.  The edge

also clearly depicts the relationship between the source object and the destination object of

the event and their connection to the event.

• The node depicting an object in the policy serves as a focal point for the representation of

the events that surround the object.  This means that all the events required for a policy to

apply that involve an object are located contiguously and are easy to locate.

Further supporting the argument that a graphical basis is friendly to users is the fact that graphs

are widespread in its use and are familiar formalisms.  Some users might find the predicates

used to describe the domain and requirement familiar, as it resembles expressions in common

programming languages such as Java, C/C++, and Perl and resemble logical expressions.  The

clear separation in LaSCO between the domain and requirement of a policy conveys the seman-

tics of implication better than if the aspects of the policy were less distinct, which promotes

understanding and implementing policies correctly.

• Amenable to formal reasoning.  Although no overall framework has been devised for formal

reasoning about LaSCO policies, we have taken the necessary first steps -- formally describing

the language and system model and describing the semantics in full formal detail.  Thus it is

possible to translate a policy into first order logic.  We anticipate that the language is amenable

to formal reasoning.

1.6 Summary of Contributions

The research discussed in this dissertation provides the following key contributions:

• A formal language called LaSCO for describing security policies.  LaSCO can be applied to any

system that can be modeled as consisting of objects and events, each of which contains labeled

attributes.  This language is based on graphs and depicts the circumstances (in terms of system
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state and events, including their history) under which a policy applies and the requirement for

when it does.  As described in Section 1.4, this language has properties promoting its strength

in several desirable characteristics of a policy language.

• Operational formal semantics for LaSCO.  The formal semantics presented in this dissertation

describe the meaning of a LaSCO policy in terms of a system description.  The semantics use

first order logic.

• An architecture for applying LaSCO to any system that one can write policies for.  This architec-

ture consists of a generic policy engine, which is not specific to any system, and an interface

layer, whose implementation is particular to a system.  The generic policy engine maintains a

set of policies and responds to reports of changes in the system with any new policy violations

that have occurred as a result.  The interface layer conveys the objects and events of the under-

lying system to the policy engine in terms of the system description for the system.

• An implementation of a generic policy engine for LaSCO.  A generic policy engine is imple-

mented in Perl and can be interfaced with any system that LaSCO can write policies for.  For

particular policies, it checks either changes in a system history or a whole system history for

policy violations.

• An implementation of a mechanism for applying LaSCO to Java program execution, including

means to facilitate writing policies for programs and means to prevent the execution of method

invocations that would violate given policies.  A user interface enables a user to write LaSCO

policies in the context of a program schema graph -- a view of a program specialized for writ-

ing policies.  A policy compiler instruments Java source code with calls to a run time system for

policy checking.

• A design for implementing LaSCO for a network using the Graph-based Intrusion Detection

System (GrIDS).  Modifications that can be made to GrIDS to monitor a network in a decentral-

ized fashion for violations of LaSCO policies are described in this dissertation.  A way of mod-

eling a network for use in LaSCO is also presented.

• Observations about enforcing policies using IDSs.  Based on experience in applying LaSCO to

GrIDS, we conclude that policies and IDSs are mutually beneficial and make observations

regarding design considerations for policy languages and IDSs if they are to be used together.
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1.7 Dissertation Outline

The remainder of this dissertation is organized as follows: Chapter 2 presents how to use LaSCO

for different systems and presents a scenario.  We introduce LaSCO and its system basis in detail in

Chapter 3, including several examples of LaSCO policies. Chapter 4 formalizes LaSCO and its sys-

tem model and presents its formal semantics. In Chapter 5 we present an architecture for applying

LaSCO to systems in general and our implementation of it.  Chapter 6 describes our implementation

of LaSCO to Java and an analysis of applying LaSCO to Java is presented in Chapter 7.  We present

a design for implementing LaSCO for networks, using the GrIDS intrusion detection system in

Chapter 8.  We compare our work to that of others in Chapter 9.  Chapter 10 concludes and

Chapter 11 is our reference list.  The appendix presents details about our implementation that were

not presented earlier.
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2 Using LaSCO

Before going into the details of the LaSCO language in the next two chapters, this chapter takes

a small step forward, presenting how LaSCO might be used.  The method by which LaSCO is applied

to different application domains (“systems”) is described in Section 2.1.  Section 2.2 presents an ex-

tended scenario in which LaSCO is used for Java, using the implementation described in Chapter 6.

2.1 How LaSCO can be used for different application domains

The LaSCO language can be used to describe policies for to a variety of systems.  However, when

a LaSCO policy is applied, it is in the context of a specific system.  It is applied to a particular exe-

cution of the system, which we refer to as a system history.  A LaSCO policy describes patterns in a

system history and includes an assertion to evaluate in situations where the pattern is found.

LaSCO may be applied to any system that can be modeled using LaSCO’s system model.  Thus

a system model needs to be constructed for a system.  A particular instance of the LaSCO system

model is termed a system description.

There can be many ways to model a system within the LaSCO system model.  The choice of how

to describe a system in accordance with the LaSCO system model effects what policies may be stat-

ed in LaSCO and how they are stated, as the elements of the system description constitute the build-

ing blocks for the policy specification.  It has an effect on the ease with which policies are written.

When modeling the system, it is important to keep in mind what is security relevant for the system

and to be sure that that is represented in the system description.

One needs to know the correspondence between the terms in the system description and ele-

ments of the actual system in order to know the complete implication of a policy on the actual sys-

tem it is applied to.  This would be used in enforcement and reasoning.  How best to record this, and
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in fact how to denote the system description, is likely specific to its intended use and is beyond the

scope of this dissertation.

Once an adequate system description has been found for a system, then one can state policies

using it.  How policies are stated in LaSCO is described in the next chapter.

2.2 A session with LaSCO applied to a Java program

Joe Smith, president and founder of Smith Magic Software Solutions, no longer trusts his own

software, the lifeblood of his business.  While a graduate student, Joe had a burst of inspiration

while letting his mind wander in an Advanced Algorithms course.  He had figured out how to me-

chanically generate software packages for a large class of common business applications.  Joe rec-

ognized the opportunity to pay off his student loans and then some.  After a little research to verify

the necessity for these applications, Joe decided to go into business for himself to commercially de-

velop his solution (after quickly completing his Ph.D. of course).  Though naive to business, he

thought he could do okay on his own.

Joe modeled his business as a service bureau, where customers describe their need to Joe and he

provides them with the software package that solves their need, typically within a day.  He manages

this through the use of a proprietary implementation of his “magic” solution in Java.  He made a

bad business decision though.  He decided to outsource much of the implementation to a contract

programmer, while he implemented the core functionality himself.  However, though written just a

couple years before the turn of the millennium, that programmer did not write Y2K compliant code.

Joe decided to outsource solving the Y2K problems to a professional firm specializing in year 2000

issues.  Unfortunately due to the lateness of his search, the only ones he could find (and afford),

were located in the Independent Nation of Kuraq.  After the fixes were nearly completed, he heard

an FBI warning that foreign countries might conduct industrial espionage through access granted to

software to complete Y2K fixes .  Now Joe thinks this might be the case for him.

Rather than trying to analyze the complex code worked on by the Kuraqies,  Joe decides to em-

ploy LaSCO and its implementation for Java (detailed in Section 6) to specify some policies for the

part of his code that he does not trust and have them enforced.  He decides that he wants to prevent

the untrusted code from performing any system level output.  He reckons that that will prevent any

Trojan horse in his code from leaking out information about the program and its use.

In preparation for using LaSCO on his Java program, he runs the “extract_schema.pl” script on

his source code to extract a schema and schema graph (abstract views Java code)  for each source



12

file, and runs “merge_schema_graphs.pl” to combine the schema graphs.  He also downloads the

schemas for the standard Java base classes, thoughtfully provided by the Java development commu-

nity1.  Next Joe runs the security policy editor GUI described in Section 6.4.  He brings up the com-

bined schema graph representing his program on the left side of the interface for use as reference

when writing policies for the program on the right side of the interface.

The policy that Joe wishes to state is that no code in the untrusted classes should access (using

any method or constructor) the classes provided by Java to perform output.  Specifically, these

would be a subclass of java.io.OutputStream or java.io.RandomAccessFile or perhaps a subclass of

that.  In LaSCO, policies are viewed as having a domain and a requirement.  The domain describes

the situation under which the policy comes into force and the requirement is an assertion on the

code.  Joe recognizes that the domain here refers to an attempt is made by any class (or class in-

stance) to use any method on one of the aforementioned classes.  Since there is no circumstances

under which that is allowed, there is no way to satisfy the requirement.  In LaSCO this is denoted by

“False”.  Using the user interface, Joe creates the policy depicted in Figure 2-1.  There, the domain

is depicted with bold text  and the requirement with standard text .  Nodes represent classes

and class instances and edges represent method invocations.  Domain predicates, when they appear,

refine the type of entity that matches with that node or edge.  When applied to Java, classes denotes

the class associated with an class or instance plus its superclasses.  He saves the created policy to a

file.

Now Joe uses the policy compiler to modify the untrusted code to enforce the policy.  To do this,

he provides the compiler:  the file containing the policy, the source code for the untrusted code, and

the schemas for his trusted code and the standard Java classes.  This causes the provided source to

be instrumented with run time policy checks before key method invocations.  This is then recom-

piled using a standard Java compiler.

1.  Note that this is not currently available.  The most direct way in which it could be derived is running the 
extract_shema.pl script on its source code.  A version of the schemas could also be obtained from the skele-
tons of those classes present in the Java Language Specification [15] (albeit with certain limitations).

Figure 2-1.  Policy graph for Joe’s first policy

”java.io.OutputStream” ∈  classes || 
“java.io.RandomAccessFile” ∈  classes

False
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When Joe tries using his program after this, he realizes a problem in the policy he devised.  A

PolicyViolationException is triggered when the program writes to the log file.  So, in the policy ed-

itor, he modifies the policy.  Looking at the schema graph displayed, he sees that the class Operate

makes calls to the class java.io.RandomAccessFile.  He decides to allow this.  So, rather than having

a “False” requirement, Joe wishes the source node to be from the class Operate and the destination

to be an instance of the class java.io.RandomAccessFile with filename “/etc/log”.  Since he is going

to be making  reference to a class member not found in all objects that might match the target in the

old policy, he decided to keep things simple and create a separate policy to handle the java.io.Ran-

domAccessFile class.  The result is shown in Figure 2-2.  Variables (the words in the predicate pre-

fixed with a “$”) are used here to record values for use in the requirement.  He then modifies the

domain of the original policy to exclude that class, producing the policy in Figure 2-3.

Saving this,  he again runs the policy compiler, but with both the new policy and the revised pol-

icy this time.  After compiling, he runs the program again and is happy with the policies.

Following this, Joe decides to write a policy for the core part of his program.  He is not so much

concerned about malicious code as with making sure the program is operating correctly.  Thus the

policy is very specific to his program.  He wants to make sure that when the class Stage2 and the

class Stage3 both call the fulfill  method on an instance of the class Product and Stage2’s call has a

size parameter at least 100, then the size parameter of Stage3’s call is larger than Stage2’s.

To write the policy, Joe again uses the user interface.  To get a quick start at the policy, he decides

to use the “create domain constraints” feature of the interface.  So, he finds the location in the sche-

ma graph of his program displayed where the Stage2 and Stage3 nodes each have an edge labeled

“fulfill” to the Product node.  He selects these edges and presses the “create domain constraints”

Figure 2-2.  Policy graph for Joe’s RandomAccessFile policy

 class=”java.io.RandomAccessFile” && 
filename=$Nclass=$C

$C=“Operate” $N=“/etc/log”

Figure 2-3.  Policy graph for Joe’s revised first policy

(”java.io.OutputStream” ∈  classes || 
“java.io.RandomAccessFile” ∈  classes) 
&& class != “java.io.RandomAccessFile”

False
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button.  This creates the policy shown in Figure 2-4.  He further refines this by editing the appropri-

ate predicates until he creates the final policy shown in Figure 2-5.  He uses the policy compile to

add the policy to his code and is happy.

Figure 2-4.  Initial policy graph created for Joe’s “fulfill” policy.

name=“fulfill”

name=“fulfill”

class=”Stage2”

class=”Product”

class=”Stage3”

Figure 2-5.  Final policy graph created for Joe’s “fulfill” policy.

name=“fulfill” 
&& size >= 100 

&& size=$Z

size > $Z

name=“fulfill”

class=”Stage2”
type=“instance” && 

class=”Product”

class=”Stage3”
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3 LaSCO Description

This chapter presents the security policy language LaSCO in detail.  An overview of the system

model is given in Section 3.1 and of LaSCO in Section 3.2.  Many examples of LaSCO policies are

presented in Section 3.3.

3.1 LaSCO system model overview

The LaSCO system model is simple, and closely resembles object-based systems.  In the model,

the real environment for which a policy is described, which we generically refer to as the system,

consists of a set of objects and a set of events.  Both objects and events contain a set of attributes.

A particular execution of the system is referred to as a system history.

We now elaborate on the terms just introduced:

• An attribute is identified by a label.  It has a certain value at a given time.

• An object is a system entity that has state.  This state is represented by a set of attributes.  An

object persists over some duration of time, and the values of its attributes may change over this.

All objects contain the attribute id, which uniquely identifies a object.  This attribute does not

change value.

• An event is momentary activity on a system.  It originates at an object and terminates at an

object.  The details of an event are captured in a set of attributes.  An attribute found on all

events is time, which is the time the event occurs.

• A system history represents a particular execution of a system over a period of time.  Typically

this is the duration over which policy is being considered.
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• From the point of view of our policy language, something existing in the environment to which

it is applied but not captured in the system description (Section 2.1) is beyond reference.

Therefore, where clear, the term system will be used to mean the actual system as viewed from

a LaSCO policy, that is, through its system description.

An example system history is presented in Figure 3-1.  There are four objects and three events

depicted.  The user objects have four attributes each.  The type attribute denotes the type of the ob-

ject, the value of the name attribute is the name of the user, clearance represents the clearance level

of the user, and id is the required unique identifier.  Similarly, each event has a set of attribute values

that denote the details of its invocation.  In this simple example, each event has a attribute name,

whose value is the name of the event and a attribute time, whose value is the time of its execution.

The write event also contains an attribute str, denoting what is written.

3.2 LaSCO Overview

In this dissertation, security policies are described using a formal language based on directed

graphs.  This language is called LaSCO, the Language for Security Constraints on Objects.  LaSCO

policy graphs describe constraints on a system that must hold for a system execution.  In a policy

graph, nodes represent system objects and edges represent system events.  Each policy graph rep-

resents both the situation under which a policy applies (the domain) and the constraint that must

hold for the policy to be upheld (the requirement).  Thus a LaSCO policy provides an assertion that

indicates that if the system is in a specific state, the events and objects of the system must satisfy a

set of properties.

Figure 3-1.  Example system history depicted as a graph. The nodes represent objects 
and the edges events.

type: user
name: john

clearance: unclassified
id: U1704

type: file
name: a
sec_level: unclassified
id: F54222

type: user
name: jane

clearance: unclassified
id: U1854

type: file
name: b
sec_level: secret
id: F18946

name: read, time: 2

name: read, time: 5

name: write, time: 5, str: xyz
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Figure 3-2  is an example policy graph.  The policy depicted is that guests cannot write to any

file.  The left node represents the user named “guest” and the right node represents a file.  The edge

here represents an access by the guest to a file and the requirement is that the type of access not be

a write.

Another example policy is shown in Figure 3-3.  This policy graph depicts the simple security

property of Bell-LaPadula [3]: if a user is reading a file, the security level of the user’s clearance

must be at least as great as that of the file’s classification.

3.2.1 Predicates

Policy graphs are annotated directed graphs.  The annotations on a policy graph are called pred-

icates.  There is a domain predicate (depicted with bold text  in this dissertation) and a require-

ment predicate (denoted with standard text ) for each node and edge in the policy graph.  For

instance, there are three domain predicates (type=“user” && clearance=$UL , meth-

od=“read” , and type=”file” && sec_level=$FL ) and one explicit requirement predicate

($UL ≥ $FL ) in Figure 3-3.   (Nodes and edges without an explicit domain or requirement predicate

have an implicit “True” predicate.)  Domain predicates determine the objects and events that are

relevant to a part of a policy.  Requirement predicates describe what must hold once the domain is

satisfied.  Although they serve different roles, both types of predicates are evaluated in the same

way.  In either case a predicate is a pattern on the attributes of an object or event.

As a simplification, for the moment let us consider only predicates without variables, which we

will term simple predicates.  Policy variables will be introduced in Section 3.2.3.  A simple predi-

cate is a boolean expression formed from attribute names and literals, combined with operators

Figure 3-2.  Policy graph for guest write access restriction.

type=“file”

name≠“write”

type=“user” && 
name=“guest”

Figure 3-3.  Policy graph for the simple security property

name=“read”

type=“file” && 
sec_level=$FL

$UL ≥ $FL

type=“user” && 
clearance=$UL
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shown in Figure 3-4.  Predicates are evaluated in the context of a set of attributes; applying the pred-

icate consists of substituting in the corresponding value for each name and resolving the resulting

boolean expression to be true or false.  If it is true, then attributes satisfy the predicate.

3.2.2 Domain matching

The domain of a policy describes the conditions under which the policy applies.  It is a set of

domain predicates, nodes, and edges.  The way in which a LaSCO policy is evaluated is identifying

the locations in the system history where the domain matches, and checking the policy requirement

for each match.  Let us now consider the process of matching the domain of a policy to a particular

elements of the system history for simple domain predicates.

The domain pattern is satisfied when each node and edge in the policy graph is satisfied by cor-

responding elements of a system history.  This correspondence is called a policy to system (ps) map.

It consists of an object for each node and an event for each edge, in a one-to-one association.  In the

simple predicate case, a ps map is sufficient to constitute what is termed a policy to system match

(match for short).  Section 3.2.4 will describe what else is needed if variables are present.  A match

represents a particular application of a domain to a system  history.  As the domain may apply in

Logical Operators
• &&:   logical and
• ||:  logical (non-exclusive) or
• !:   logical not (unary)

Comparison Operators
• =:  numeric and string equality
• !=:  numeric and string inequality
• >:  numeric greater than
• >=:  numeric greater than or equal to
• <:  numeric less than
• <=:  numeric less than or equal to
• ⊂ :  proper subset
• ⊆ :  subset
• ∈ :  set membership

Arithmetic Operations
• +:  addition
• -:  subtraction
• *:   multiplication
• /:  division
• %:   modulo

Set Operations
• ∩:  intersection
• ∪ :  intersection

Figure 3-4.  LaSCO predicate operators.

Nesting Operation
• ():  nesting of contained expression

Notes:
• all operators are infix binary except as noted
• all binary operators are left-associative or non-

associated
• “!” is right-associative
• the order of operator precedence is, from loosest to

tightest (most immediate):
• “&&”, “||”
• “=”, “!=”
• “<”, “>”, “<=”, “>=”
• “union”, “intersect”
• “pcont”, “cont”
• “in”
• “+”, “-”
• “*”, “/”, “%”
• “!”
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several ways in the system history or not at all, applying the domain to the system history produces

a set of these matches, each of which must satisfy the requirement.

Consider a policy edge E being considered as matching a system event e that occurs at time t.

For E to match e, these criteria must be met:

1. the domain of E matches e

2. the domain of the source of E matches the source of e at time t

3. the domain of the destination of E matches the destination of e at time t

Note that due to the one-to-one relationship of a ps map, for each event incident with a particular

object, the same policy node must be matched.  Isolated policy nodes, those with no incident edges,

are easier to match.  They can match a system object at any time.

3.2.3 Variables

LaSCO policies may contain a set of policy variables.  A policy variable represents a value of an

attribute and relates attribute values associated with different objects and events.  Variables may ap-

pear as operands in domain and requirement predicates.  They are denoted by a “$” prefix.  The

scope of a variable is a single LaSCO policy graph.  Within this scope, each variable has a particular

value.  Variables are present in the language in order to permit the interrelation of attributes of dif-

ferent objects and events.

Variable bindings represent a set of policy variables that have a bound value.  Predicates are

evaluated in the context of a set of variable bindings.  We demonstrate predicate evaluation through

a simple example.  Figure 3-5 presents several example policy nodes, system objects, and variable

(type=“file”) && 
(owner=“bill”)

(type=“file”) && 
(owner=$U)

(name=“secretfile”)

 || ($C ∈  labels)

P1:

P2:

P3:

type: file
owner: bill
name: x
labels: {blue,green}

O1:

type: file
owner: jan
name: secretfile
labels: {brown}

O2:

B1:
C: brown
U: bill B2:

C: green
U: chris

Figure 3-5.  Example policy nodes, system objects, and variable bindings. P1, 
P2, and P3 are policy nodes, O1 and O2 are system objects, and B1 and B2 are 

variable bindings.object.
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bindings.  The table in Figure 3-6 uses these to show the result of evaluating predicates of a domain

pattern node in the context of a system objects and variable bindings.  For example, P2 evaluated in

the context of O1 and B1 yields (“file”=”file”) && (“bill”=”bill”) , which is true, so the

predicate is satisfied.  This means that P2 would match O1 given B1.  However P3 evaluated in the

context of O1 and B1 yields (“x”=”secretfile”) || (“brown” ∈  {“blue”,”green”}) ,

which is false, so P3 is not satisfied.  This means that P3 would not match O1 given B1.

3.2.4 Domain matching with variables

A policy domain is satisfied when all of its nodes and edges can simultaneously be satisfied by

a set of variable bindings.  That is, all of the domain predicates evaluate to true given a certain set

of variable bindings and a ps map.  Recall that a policy to system match as described for simple

predicates contained only a ps map.  Now that variables have been introduced, it must also contain

the set of variable bindings that enable the map.

Let us now consider domain satisfaction for the policy of Figure 3-3 in the context of the exam-

ple system history depicted in Figure 3-1.  Figure 3-7 is a diagram that depicts the application of

the policy domain to the system history by overlaying the policy graph on the system history graph.

P1

P2

P3

O1 O2

satisfied with any

satisfied by B1 not satisfied by

variable binding
not satisfiable by any

variable binding

satisfied by B2 satisfied by either
but not B1 B1 or B2 

B1 nor B2but not B2 

Figure 3-6.  Predicate evaluation example.  The table depicts which variable 
bindings satisfy each policy node’s predicate when evaluated in the context of the 

object.

type: user
name: john

clearance: unclassified

type: file
name: a
sec_level: unclassified

type: user
name: jane

clearance: unclassified

type: file
name: b
sec_level: secret

Figure 3-7.  Depiction of simple security property applied to the example system. The two 
places where the domain applies is noted along with the necessary variable bindings.

$UL: unclassified
$FL: unclassified

① ✔

$UL: unclassified
$FL: secret

② ✘

name: read, time: 2

name: read, time: 5

name: write, time: 5, str: xyz
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We also show the necessary variable binding.  When the domain of the policy is applied to the sys-

tem history, the policy graph matches in two locations, indicated by the ① and the ② and the thick

lines.  Note that the domain did not match for the third event, which means that the event is not cov-

ered by the policy.  This is because the given policy only covers read accesses.

Generally, predicates can contain any valid logical expression formed as described in

Section 3.2.1.  However, there are two restrictions.  First, each variable present in a policy must ap-

pear in at least one domain predicate subexpression of the form ‹variable ›=‹value › or ‹val-

ue›=‹variable › where ‹value › is a single value This restriction ensures that all variables have a

single value for a domain..  To qualify, this subexpression with the “=” cannot be part of a disjunc-

tion or a negation.  (This additional restriction is in place since otherwise that subexpression would

be allowed to be false, which would deny us the single value binding.)  Note that while could con-

ceptually allow variables to become bound in the requirement, this would add complexity to the se-

mantics and an implementation without additional expressability.  It is simpler and cleaner to have

all variables bound in a match.  There is no additional ability to express policies since the domain

predicates offer sufficient opportunity for any attribute value to be captured.

Second, node requirement predicates may not contain attributes as operands.  The reason for this

is that the attributes of an object might vary at the times of the events that match incident events,

e.g., an object might have attribute t with value 1 when one incident event matches a policy edge,

but value 2 when a second incident event matches a policy edge.  This would lead to ambiguity as

to the correct value if the attribute is mentioned in a requirement predicate.  Thus, this restriction is

imposed to preclude this ambiguity.  Variables may be bound to an attribute value in the domain and

referred to in the requirement, which ensures that they hold a single value.

3.2.5 Requirement checking

The requirement of a policy is the set of requirement predicates in a policy graph.  A requirement

predicate is evaluated against a policy to system match.  If each of the requirement predicates eval-

uates to true for a match, the policy has been upheld.  Otherwise the policy has been violated by the

match.  Edge requirement predicates are evaluated in the context of the parameters of the event that

matched the edge in the match and the variable bindings in a match.  A node requirement predicate

is evaluated in the context of the variable bindings from a match.  The policy does not dictate a par-

ticular response to a policy violation.
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Consider the matches in Figure 3-7 noted earlier.  The policy requirement ($UL ≥ $FL ) is sat-

isfied by match ① but not ②. ① succeeds because “unclassified” ≥ “unclassified”  is true

but ② does not because “unclassified” ≥ “secret”  is false.  Thus, ① is allowed by the policy.

However, ② is not.

A policy is said to be upheld by a system history if and only if all matches of the domain to the

system history have their requirement satisfied.  A policy is violated if there is a match where the

requirement is not satisfied.  This is the logical negation of a policy being upheld on the system.

A set of policies are often in effect on a system.  The policies are composed to form an overall

policy for the system.  Under typical semantics, the overall policy is violated if and only if any of

the individual policies are violated.  The composed policy is upheld if each of the individual policies

are upheld.

3.3 Examples

This section presents examples of LaSCO policy graphs.  These policies are based on the tradi-

tional models as well as models for a particular application.  To know the precise implication of the

policies, a system description needs to be constructed to describe the correspondence between the

LaSCO system model and the system upon which it is applied.  This is generally left implicit here;

it is assumed that the reader can infer the meaning of an attribute from its name.  Section 3.3.1

through Section 3.3.3 present several examples roughly organized by type.  Representing an Adage

policy in LaSCO is discussed in Section 3.3.4.

3.3.1 Single-event restriction policies

The policies in this section involve a single event and its associated objects.  This corresponds

to a LaSCO policy graph containing a single edge and adjacent nodes.  Policies like this do not make

use of historical context (except inasmuch as the object state records it) and have particularly low

complexity for checking whether they are violated or not.

3.3.1.1 State restriction for an event policies

The kind of policy discussed here restricts the state of objects on a system or requires a certain

relationship between the source and destination of an event, for a certain type of event.  The type of

access that is restricted is represented in LaSCO in the domain predicates.  A node’s requirement
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predicate is the restriction on the state of objects it denotes.  Variables in these predicates may be

used to represent a condition between objects.

 The access restrictions of Bell-LaPadula [3] and Biba [4] fall into this category.  Recall that the

simple security property was depicted in Figure 3-3 on page 17, representing that if a user is reading

a file, the security level of the user’s clearance must be at least as great as that of the file’s classifi-

cation.  The star property is depicted in Figure 3-8, denoting that a user’s clearance must be at least

as low as a files security classification for a write to be allowed.

3.3.1.2 ACM entry type policies

Policies of the type described in this section are restrictions for subjects regarding their access

to objects.  This is the type of restriction found in access control matrices (ACM) [23] and access

control lists (see [11]).

Figure 3-8.  Policy graph for the star property of Bell-LaPadula.

name=“write”

type=“file” && 
sec_level=$FL

$UL ≤ $FL

type=“user” && 
clearance=$UL

Figure 3-9.  Access control matrix example indicating subject access rights over objects and a set 
of equivalent policy graphs.

file1 file2 file3

ford read read read, 
write

arthur read read

tricia read, 
write

write read, 
write

type=“object” && 
name∈

{“file1”,“file2”}
action=“write”

type=“subject”
 && name=$S

$S=“tricia”

type=“object” & &
name=“file2”

action=“read”

type=“subject”
 && name=$S

$S∈ {“ford”,“arthur”}

type=“object” & &
name=“file3”

action ∈ 
{ “read”,“write”}

type=“subject”
 && name=$S

$S∈ {“ford”,“tricia”}
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Consider the access control matrix in Figure 3-9.  A set of policy graphs in that figure demon-

strate one way to describe the restrictions in place using LaSCO policy graphs.  Note that there are

several such ways; this way focused on restricting the subject given a action and object.  Translation

of an access control matrix (or access control list) to policy graphs could easily be automated.

Policies generated from access control matrices do not take full advantage of the ability to select

subjects and objects.  Those are limited to listing the subjects or objects wanted.  LaSCO can select

objects based on the values of arbitrary attributes.  A domain predicate that refers to local attributes

limits the policy’s applicability to objects or events that meet that restriction.  For example,

Figure 3-10 depicts the restriction that if subject “sam” is accessing an object in category 4, then it

must be a read.  No other types of access is allowed in this case.  The case is similar for the actions.

For access control list entries with wildcards that makes a policy applicable to all subjects, objects,

or accesses is permitted in LaSCO by having that policy entity have no explicit domain predicate.

Other types of generalized ACMs such as [25], additional predicate expressions can be added to re-

strict the domain or requirement appropriately.

3.3.1.3 Role-based access control policies

Role-based access control (RBAC) (see a review in Sandhu, et.al. [27]) is similar to access-ma-

trix type restrictions discussed in Section 3.3.1.2.  The major difference is in the subject.  Whereas

the subject in an ACM is a user, program, or process, the subject in RBAC is one of a defined set of

roles.  Every user with a certain role is treated the same with respect to access control.  One might

also select objects by attributes.

RBAC is used on a system with defined roles and roles that are (possibly dynamically) assigned

to users.  We will assume the system description for an example system denotes the roles a user cur-

rently has active by a roles set attribute on objects that are of the type subject.  This is part of the

Figure 3-10.  Policy graph for attribute ACL example

type=“object” && 
category=4

action=“read”

type=“subject” 
&& name=“sam”
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way the system is modeled.  Figure 3-11 denotes the RBAC policy that only subjects that have the

“paymaster” role can issue an object of document type paycheck.

Roles may not explicitly denoted in some systems, but they may still have a similar effect.  For

example, consider Figure 3-12 which is a policy that might be in effect on a system used to admin-

ister exams.  The restriction is that users can only post solutions for exams they teach.

3.3.1.4 Restricted event parameter access policies

Restricted event parameter access policies limit the values of the parameters to a event.  This is

denoted in LaSCO by an edge requirement predicate that states the restriction on event attributes.

An edge domain predicate describes the kind of event being restricted.  An additional limitation can

be placed on the policy, to apply it to just a certain type of source or destination object.  This is

achieved through domain predicates on the edge and nodes.

As an example of this type of policy, consider a bank that operates an automated teller machine

(ATM).  One of their security interests is making sure that the machine does not give out too much

money, either through misuse or a flaw in the control system.  The ATM control system is written in

Java.  It includes a class “dispenser” which interfaces the cash dispenser hardware to the rest of the

program.  The dispenser class contains a “dispense” method, which tells the dispenser to release a

certain amount of money.  One policy the bank may wish to impose on the system is that no part of

the control system should call the dispense method with an amount parameter greater than 500.

This policy is shown in Figure 3-13.

Figure 3-11.  Policy graph for payroll RBAC example

type=”object” && 
doc_type=”paycheck”

action=“issue”

type=“subject” 
&& $R=roles

“paymaster” ∈  $R

action=“post-soln”
type=“user”

type=“exam_db” 
&& course=$C

$C ∈  courses_taught

Figure 3-12.  Policy graph for restriction on solution posting.

Figure 3-13.  Policy graph for the ATM example property.

name=“dispense”

class=“dispenser” 

amount ≤ 500
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3.3.1.5 Moderation policies

One may wish to restrict the source or destination of certain events to a particular object or set

of objects.  Consider, for example, the policy for a network shown in Figure 3-14.  Here the desti-

nation is being restricted.  The policy comes into effect when a host other than mail.us.com is send-

ing mail.  The restriction is that the destination must be mail.us.com.  That is, all mail must be sent

through mail.us.com.

3.3.2 Pattern of events policies

The policies in the previous section all had one edge and therefore matched a single event.  Using

multiple edges, one can describe policies that come into effect when multiple events occur.  These

make use of a part of the history of the system.  This can be viewed as a pattern of events, since the

policies indicate which the objects adjacent the different events are the same and which are not.  A

few subclasses of this are presented in the following subsections.

3.3.2.1 Event type restriction

One of the simpler type of pattern of event policies is when a restriction is placed on what one

of the events can be.  One example is in Figure 3-15, which is a policy that might be applied to a

network.  It indicates that when a host is accessed through HTTP, it should not access another com-

puter through NFS.  (The idea behind this might be to limit the possible access by someone access-

ing the web server.)  The restriction imposed by this policy is that the protocol of any connection

from the host that was accessed by HTTP to any other host cannot use NFS.

type=“host” 
&& name=$N

prot=“smtp”

type=“host” &&
name != “mail.us.com”

$N=“mail.us.com”

Figure 3-14.  Policy graph for mail gateway policy. 

type=“host”

prot=“http”

prot != “nfs”

type=“host” type=“host”

Figure 3-15.  Policy graph for prohibition of HTTP-NFS chain. 
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3.3.2.2 Object comparison policies

A type of pattern of event policy is one in which two or more of the objects related by events are

required to have a certain relationship.  As an example in which there are two edges with the same

origin, consider the Chinese Wall policy [4].  The idea behind the Chinese Wall policy is to prevent

conflict of interest situations by consultants that may be employed by several parties with compet-

ing interests.  The policy specifies separation of interests by forbidding any consultant from access-

ing data from different parties where the parties are in the same conflict of interest class.  The policy

is depicted in LaSCO by a node with two edges originating from it as shown in Figure 3-16.  The

middle node represents a “consultant” whose accesses are limited by the Chinese wall policy.  The

edges from the consultant node represent accesses to sensitive objects with different owners that are

subject to the Chinese Wall policy.  The constraint is that the owners of these objects cannot be in

the same conflict of interest class, stored in the attribute “COI_class”.

Separation of duty policies require different peoples’ involvement in some transaction.  In LaS-

CO this is depicted by two edges with different sources leading to either a single node or to nodes

that are somehow linked through their domain predicates.  An example is shown in Figure 3-17.

This depicts a policy for a system where there is a separate function for requesting policies and hav-

ing them approved.  The policy states the restriction that the name of the “request” user must be

different than the name of the “approve” user.

Figure 3-16.  Policy graph for the Chinese Wall policy

“CW” ∈  policies 
&& owner=$O && 
COI_class=$C1

type=“user” && 
“CW” ∈  policies

type=“access”

“CW” ∈  policies 
&& owner ≠ $O && 

COI_class=$C2

$C1 ≠ $C2

type=“access”

Figure 3-17.  Policy graph for purchase request and approval separation of duty

method=“request”

$A ≠ $R

method=“approve”

class=”user” 
&& name=$R

class=”purchase”

class=”user” 
&& name=$A
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3.3.2.3 Time ordered access policies

In LaSCO policies, time is always available through references to attributes on edges.  Pattern of

event policies may impose a certain restriction is placed on the order of events.  This is achieved by

setting a variable in the domain of one of the edges and making use of that in the requirement of

another edge.  Multiple variable and multiple restrictions may be used in policies with more than

two edges.  Consider two examples.

Figure 3-18 shows a policy that might be in effect over a system for electronically processing

exams.  The restriction is that when a student in a course submits his or her solutions for an exam

in the course, then that should take place before the time that an instructor posts the exam key.  Here

variable C is used to represent the course and variable I to represent the exam identifier.  Variable

TS records the time of the submit for use in comparing it to the time of the post.

The three edge policy in Figure 3-19 specifies a policy that when a reviewer reviews a paper, an

editor approves the paper, and the paper is submitted to a publication, then the time of the submit

should be after both the review and the approval.  The variable T is used to record the time of sub-

mission.  Note the use of two requirement predicates.  As per the LaSCO semantics (Section 4.4),

these both must be satisfied or the policy is violated.

3.3.2.4 Forbidden pattern policies

Sometimes what a policy wishes to indicate is that a certain pattern of events should never occur.

For example, a certain signature of events on a network or on a host may indicate that an attack is

underway.  The way that this type of policy may be represented in LaSCO is that the pattern that is

Figure 3-18.  Policy graph for ordering of exam submission and key posting restriction

method=“submit” &&
time=$TS

time > $TS

method=“post”

class=“student” 
&& $C ∈  courses

class=“instuctor”

class=“exam_answers”
 && course_for=$C

&& exam_id=$I

class=“exam_key”
&& course_for=$C

&& exam_id=$I

Figure 3-19.  Policy graph for review and publication policy

action=“review”

time < $T

action=“approve”

t ype=”reviewer”

type=”paper”

type=”editor”

time < $T

type=
”publication”

action=”submit”
 && time=$T
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forbidden is described in the domain and the (arbitrarily placed) requirement predicate is False .

Since False  never evaluates to true, whenever the signature is matched, the policy is violated.

As an example, consider the LaSCO policy depicted in Figure 3-21.  This is a policy that might

be desired on a program that serves images from a database.  The restriction is that, for a customer

with assigned service level less than 6 and for images that are not free, the image cannot be retrieved

by the customer more than three times.  By the semantics, if the service_level attribute of the source

changes while the policy is being considered, the policy will only count retrieves that occur while

the object has service_level less than 6.  (An extension to LaSCO that might be useful as syntactic

sugar for policies such as this is an iteration count for edges.)

3.3.3 Object state policies

The policies stated thus far do not contain any isolated nodes.  Isolated nodes may be used to

state restrictions on objects that apply to all times or may be used to require certain historical context

for a policy to apply.  An example of each is presented here.  An example of the former is in

Figure 3-21.  The policy in this figure states that the “/etc/passwd” file should never be world writ-

able.

False

method=“retrieve”

Figure 3-20.  Policy graph for image retrieval quantity restriction

class=“customer” && 
service_level < 6

class=“image” && 
type ≠ “free”method=“retrieve”

method=“retrieve”

method=“retrieve”

$W=False

Figure 3-21.  Policy graph for password file 

type=“file” &&
name=“/etc/passwd” && 

$W=world_writable
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Figure 3-22 presents a policy that might be in effect at a university.  Here, if a department has

been declared to impacted and student is adding a class in the department during round 1 of enroll-

ment, then the student must have that department as their major.

3.3.4 Implementing Adage Policies in LaSCO

Adage [31,2]  is a system for supporting the definition and distribution of  policies in a distrib-

uted environment.  Authorization rules (Adage’s notion of policies) can be translated into a one edge

LaSCO policy.  One way to describe the system in LaSCO terms is to have the individual actors and

targets be the nodes and to have the actions be the events, which occur between an actor and a target.

All objects can have the labels, secrecyLevel, and integrityLevel attributes as represented in the Ad-

age Authorization Language (AL).  (Levels can be converted to numbers.)  Also as in the AL repre-

sentation, actor objects can have a teams attribute and target objects can have a collections attribute.

(Other parts of a actor or target in the AL that would seem to be candidate for attributes, such as

fullName, are never a basis for policy decisions in Adage, so are not included here.)  Events would

have few attributes since actions in Adage are not parametrized.  Their label, the roles that they are

a part of, and the time of the action would be encoded as attributes.  In addition, an attribute for each

role it is part of is present to indicate the number of principals acting in the role at the time of the

action.

The history mechanism in Adage is both different and more limited than that of LaSCO.  Whereas

in LaSCO event history is used as part of domain, in Adage, action history can be referred to as part

of the requirement (but not the domain).    The restrictions that Adage can employ regarding history

are requirements that a certain type of action has had to have occurred or not occurred.  The type of

action can only be selected by the principal, action, and target involved.  As had been shown, LaSCO

is far more general in its ability to refer to history.  Regardless, LaSCO (at least at present) cannot

directly require the existence or non-existence of an event.   However the capability found in Adage

can be simulated by making history available to the policy through the principal object as an at-

tribute, history.  (This seems reasonable, as the Adage system would need to record this information

type=“class” 
in_dept=$N

action=“add” && 
round=1

type=“student” &&
major=$M

$D=$M

Figure 3-22.  Policy graph for course adding policy. 

type=“department” &&
impacted && name=$N
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anyway.)  The history attribute is a set reflecting what has occurred involving the principal repre-

sented.  Three types of string may be found in that set.  The name of the action is found if the prin-

cipal has ever performed that action.  The name of a target is found if the target has ever been used.

A string that is the is the concatenation of an action, a colon, and a target indicates that the principal

has done the action on the target.  (If new data types or new operators were introduced to LaSCO,

this representation could be made more efficient.)

Authorization rules consist of a principal scope, an action scope, a target scope, and a constraint.

The action and target scopes correspond to the domain of a LaSCO policy and the principal score

and the constraint corresponds to the requirement.  The action scope is either the label of an action

or a role.  If it is a label, the edge domain predicate is of the form label=<action-label> .  If it

is a role it is in the form roles ∈ <role-name> .  The target scope is a collection of targets and

would be represented by the destination node domain predicate.  The predicate would be an expres-

sion involving a reference to one of the required teams being a member of the collections attribute

or, if the target is an label, possibly in a more compact expression.  The principal scope is a set of

team names.  This would be represented in on the source node requirement predicate as a expression

stating that the the current team name is one of those in the principal scope.

The constraint part of authorization rules can be represented as an additional part of the require-

ment predicate on the source node, conjuncted with the requirement from the principal scope.

Though the references in the constraint are not localized to that node, attributes on the edge and des-

tination node can be referred to through variables that are introduced as needed.  The constraint con-

tains three types of comparisons which can be connected by conjunction, disjunction, and negation.

To represent these in the predicate in a direct translation, join the representations of these types as

described here with “&&”, “||”, and “!”.  The first of these types are several relationship operators

to compare secrecy level, integrity level, and category sets.  These can be straightforwardly trans-

lated into expressions with “=”,”≤”, “ ≥”, “ ⊂ ”, and “⊆ ”, and make reference to the labels, secre-

cyLevel, and integrityLevel attributes on objects.  The second type is activation rules.  There,

“notwith” indicates that two specific teams cannot both be in the principal’s labels, a straightfor-

ward expression in LaSCO.  “Atmost” uses the edge attribute holding the number of principals in a

role to test that it is not greater than an certain integer.  The remaining type is history expressions.

The design of the history attribute makes it easy to test the history as required in the constraint.  the

form of these history comparison relations in Adage are:  <principal> “hasdone” <action>, <prin-
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cipal> “hasdone” <action> “to” <target>, <principal> “neverdid” <action>, <principal> “neverdid”

<action> “to” <target>, and <principal> “neverused” <target>.

Figure 3-23 shows a policy in Adage and its translation into a LaSCO policy.  The policy is based

on one in [31], but made more complicated to demonstrate more features.  The policy requires

writes to the internal project 2 web pages to be made by a member of project 2 or a member of the

Web-Admin team and that the writer have read the web-content-policy.  Translation of an Adage

authorization to an LaSCO policy graph could be automated.

secrecyLevel=“Internal” && 
{“proj2”,”Web-Page”} ⊆  labels

label=“Write”

$T=teams && 
$H=history

(“proj2” ∈  $T ||
“Web-Admin” ∈  $T) &&

“Read:web-content-policy” ∈ $H

Figure 3-23.  Adage policy and it converted to a LaSCO policy graph. 

Description of Policy in Adage AL

principal scope Proj2 OR Web-Admin

action scope Write

target scope [Internal,(Proj2,Web-Page)]

constraint PRINCIPAL  HASDONE  
Read TO web-content-policy
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4 LaSCO Formal Description

The LaSCO system model, language, and semantics is formalized in this chapter.  Section 4.1

formalizes the system model, describing how system histories are denoted by nested tuples.  LaSCO

is formally described in Section 4.2.  Some supporting concepts for the language semantics are in-

troduced in Section 4.3.  Section 4.4 presents the LaSCO formal semantics, providing functions in

first order logic to evaluate tuples describing system history against the representation of a policy.

Finally, a formal concept useful in applying and implementing LaSCO is introduced in Section 4.5.

4.1 Formal system model

The LaSCO system model, informally described in Section 3.1, is formalized in this section.

4.1.1 LaSCO system model 

A system history consists of a sequence of system instances, each representing the system at a

particular time.  (The only assumptions about the time representation is that it is monotonically in-

creasing and the different event sources are synchronized.)  A system instance is a snapshot of the

system at a moment in time.  It contains the set of objects present in the system and the set of events

that are pending.  There can be infinitely many of these in a system history.

Some notation for attributes, objects, and events is defined here.

Definition 1.  Attribute binding.
An attribute binding is a tuple of the form ‹α,µ› where:
 α is the attribute name, and
 µ is the value of α

Definition 2.  System object.
Let o denote an object in a system instance:

o is the set of attribute bindings associated with the object, each as in Definition 1.
For system object o:
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id(o)=i where ‹’id’,i› ∈  o

Definition 3.  System event.
Let ‹s,d,a› denote an event in system instance It, where:

s is the id of the source object of the event,
d is the id of the destination object of the event, and
a is the set of attribute bindings associated with the event, including ‹’time’,t›, each as 
in Definition 1.

Let e=‹s,d,a›:
src(e)=s
dest(e)=d
attrs(e)=a
time(e)=t where ‹’time’,t› ∈  a

System history and a system instance are formally defined here:

Definition 4.  System instance.
Let It=‹Mt,Ot› denote the system instance at time t, where:

Mt is a set of pending events and
Ot is a set of objects present in the system at time t.

Definition 5.  System history.
Let H=‹I,<› denote a system history, where:

I={‹Mt,Ot›| t∈ N} is the set of all system instances in the history (where N is the set of 
natural numbers,

< is a relation that totally orders the (discrete) system instances in I by the time they 
occur (‹Mi,Oi› < ‹Mj,Oj› iff i < j), and
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A simple example system history is depicted in Figure 4-1.  (This history is depicted as a graph

in Figure 4-2.)

4.1.2 System Graph

In a system graph, the nodes and edges are the objects and events in a system history.  Figure 3-

1 presented an example system graph.  The event attributes are annotations on edges.  System graph

nodes contain a set of attribute sets.  One is present for each event it is involved with and for each

instance in which the attributes change.  We define some system graph notation in Definition 6.

Definition 6.  System graph for the times in T.
Let ‹O,M› denote a system graph for the times in T, where:

O={o | t∈ T ∧  o ∈  Ot} is the set of nodes of the graph, and
M={e | t∈ T ∧  e ∈  Mt} is the set of edges of the graph.

For each system graph edge e∈ M:
src_attr(e)=o where o ∈  O ∧  time(o)=time(e) ∧  src(e)=id(o) is the set of attribute 
values on src(e) that is from the same system instance as e

dest_attr(e)=o where o ∈  O ∧  time(o)=time(e) ∧  dest(e)=id(o) is the set of attribute 
values on dest(e) that is from the same system instance as e

{appr40} {joe40,pur40,chris40}

{M38,O38}

∅ {joe38,pur38}

Figure 4-1.  System history H1.  Arrows run from a term to its definition.

H1

<: I4 < I38  < I40I

{I4,I38,I40}

{M4,O4}

{req4}

‹Ujoe,P57,p4›

{‹’name’,“request”›,  
 ‹’time’,4›}

{pur4,joe4}

{‹’id’,“Ujoe”›,
 ‹’class’,“user”›,
 ‹’name’,“joe”›,
 ‹’team’,“team1”›}

{‹’id’,“P57”›,
 ‹’class’,“purchase”›,
 ‹’priority’,4›}

{‹’id’,“P57”›,
 ‹’class’,“purchase”›,
 ‹’priority’,2›}

{‹’name’,“approve”›,
 ‹’time’,40›}

{‹’id’,“Uchris”›,
‹’class’,“user”›,
‹’name’,“chris”›,
‹’team’,“team1”›}

{M40,O40}

‹Uchris,P57,p40›
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Figure 4-2 is a depiction of H1 (Figure 4-1) as a system graph, S1.  This is formally denoted in

Example 1:

Example 1.  System graph S1, a representation of H1.
S1=‹O4 ∪  O38 ∪  O40,M4 ∪  M38 ∪  M40›, where

O4, O38, O40, M4, M38, M40 are as defined in Figure 4-1.

4.2 Formal language description

This section presents the formal notation that we use to represent LaSCO policies.

4.2.1 Graphs

In this dissertation several kinds of graphs are used for LaSCO and for defining its semantics.

System graphs were introduced in Section 4.1.2.  To keep the terminology clear, the term basic

graph will refer to a conventional directed graph, which consists of basic nodes and basic edges.

Definition 7 gives the notation associated with basic edges and Definition 8 that with basic graphs.

Definition 7.  Basic edge.
Let the tuple e=‹s,d› denote a basic edge, where:

s is the source node and
d is the destination node

For e=‹s,d›:
src(e)=s
dest(e)=d

Definition 8.  Basic graph.
Let the tuple ‹N,E› denote a basic directed graph, where:

N is the set of basic nodes in the graph, and

time: 4 38 40

id P57 … …

class purchase … …

priority 4 2 2

Figure 4-2.  System graph S1, depicting system history H1 as a system graph.  The object 
attributes at different times are depicted.  The “…” denotes that the attribute value is the same as 

in the previous column.

name: request, time: 4

name: approve, time: 40time: 40

id Uchris

class user

name chris

team team1

time: 4 38 40

id Ujoe … …

class user … …

name joe … …

team team1 … …
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E is the set of basic edges in the graph.
For a node n, isolated(n)=‹∀ e : e ∈  E : src(e) ≠ n ∧  dest(e) ≠ n› is true if n is a isolated 

node

An isolated node is a node that has no incident edges.  An example basic graph is given in

Example 2:

Example 2.  Basic graph G1.
G1=‹{n1,n2,n3},{e1,e2}›, where:

e1=‹n1,n2›, and
e2=‹n3,n2›.

4.2.2 Language description

Definition 9 gives the notation for a policy graph, the basic unit of policy representation:

Definition 9.  Policy graph.
Let a policy graph be represented by the tuple ‹G,γ,Λ,V›, where:

G is the basic graph in the policy graph,
γ is a function mapping nodes and edges in G to their domain predicate,
Λ is a function mapping nodes and edges in G to their requirement predicate, and
V is the set of variables for the policy graph.

Figure 4-3 gives an example policy graph.  Example 3 shows how this is represented formally.

Example 3.  Policy graph P1 describing the graph in Figure 4-3.
P1=‹G1,γ1,Λ1,{A,R}›, where:

G1 is described in Example 2,
γ1={n1⇒ nd1, n2⇒ nd2, n3⇒ nd3, e1⇒ ed1, e2⇒ ed2},
Λ1={n1⇒ true, n2⇒ true, n3⇒ nr3, e1⇒ true, e2⇒ true},
nd1 is a representation of the predicate class=“user” && team=$R ,
nd2 is a representation of the predicate class=“purchase” ,
nd3 is a representation of the predicate class=“user” && team=$A ,
ed1 is a representation of the predicate name=“request” ,
ed2 is a representation of the predicate name=“approve” ,
true is a representation of the predicate True , and
nr3 is a representation of the predicate $A ≠ $R .

The domain is a pattern for the system which describes when policy is in effect.  The require-

ment, on the other hand, is a pattern which indicates the restrictions imposed on the system by the

policy.  Both the domain and requirement consist of nodes and edges annotated with predicates.

Figure 4-3.  Policy graph for purchase request and approval separation of duty

name=“request”

$A ≠ $R

name=“approve”

class=”user” 
&& team=$R

class=”purchase”

class=”user” 
&& team=$A
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From a formal point of view, it convenient to view the domain and requirement each as a pattern

graph, a pattern for part of a system.  Definition 10 gives the notation associated with pattern

graphs.

Definition 10.  Pattern graph.
Let a pattern graph be represented by the tuple ‹G,χ,V›, where:

G is a basic graph,
χ is a function mapping each node and edge in G to its predicate, and
V is a set of policy variables associated with the pattern graph.

The pattern graph for the domain of the policy graph in Figure 4-3 is given in Figure 4-4 and for

the requirement in Figure 4-5.  As examples, the domain pattern graph is formalized in Example 4

and the requirement pattern graph in :

Example 4.  Pattern graph D1, describing the pattern graph in Figure 4-4.
D1=‹G1,γ1,{A,R}›, where:

G1 is described in Example 2, and
γ1 is described in Example 3.

Example 5.  Pattern graph R1, describing the pattern graph in Figure 4-5.
R1=‹G1,Λ1,{A,R}›, where:

G1 is described in Example 2, and
Λ1 is described in Example 3.

A node n in G along with its predicate χ(n) is termed a pattern node.  A pattern node represents

an entity in a LaSCO policy that matches a set of objects in a system.  For example, the right pattern

node in Figure 4-4 represents all users and would match any object with class attribute equal to

“purchase”.  A pattern edge is an edge in G with its predicate.  A pattern edge matches a set of

events.  It has a pattern node as its source that represents the originator of the event that the edge

Figure 4-4.  Domain pattern graph for purchase request and approval separation of duty

name=“request”

name=“approve”

class=”user” 
&& team=$R

class=”purchase”

class=”user” 
&& team=$A

Figure 4-5.  Requirement pattern graph for purchase request and approval separation of duty

True

$A ≠ $R True

True

True
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represents and a pattern node as its destination that represents the target object of the event.  There

are two pattern edges in Figure 4-4.

The domain pattern graph consists of a basic graph, the domain predicates, and the set of vari-

ables mentioned in the policy.  Similarly, the requirement pattern graph consists of a basic graph,

the requirement predicates, and the set of variables mentioned in the policy.  The domain and re-

quirement pattern graphs are related in that they have the same basic graph and the same set of vari-

ables are used in both graphs.  (Since they have the same basic graph, we show them composed.)

The domain for a policy is ‹G,γ,V› and the requirement is ‹G,Λ,V›.  Note that together these two

pattern graphs fully describe a policy graph ‹G,γ,Λ,V› as defined in Definition 9.

Variable bindings represent a set of policy variables that are bound to specific values.

Definition 11.  Variable bindings B.
B={ ‹υ,µ›| υ is the variable name

 µ is the value bound to υ.
vars(B)= { υ | ‹υ,µ› ∈  B} is the set of variable names in B
val(B,υ)= µ where ‹υ,µ› ∈  B is the value in B of υ

A set of variable bindings is complete if every policy variable has a value bound to it.

Logically, a LaSCO predicate is a pattern on actual objects or events.  The pattern specifies which

objects and events a pattern node or edge represents.  Syntactically, a predicate is a boolean expres-

sion containing the operators described in Figure 3-4.  Formally, a predicate is a predicate expres-

sion, as defined in Definition 12:

Definition 12.  Predicate expression.
Let a predicate expression be represented by the tuple ‹l,p1,p2›, where:

β= {’&&’, ’||’, ’=’, ’!=’, ’<’, ’>’, ’<=’, ’>=’, ’∈ ’, ’⊂ ’, ’⊆ ’, '∩’, ’∪ ’, ’+’, ’-’, ’*’, ’/’, ’%’}, the set of 
binary operators

l is a label indicating the form of the predicate expression, l  ∈  ({’literal’, ’attrname’, 
’varname’, ’()’, ’!’} ∪  β),

p1 is dependent on the value of l:
l=’literal’: p1 ∈ A is the literal value
l=’attrname’: p1 is the attribute name
l=’varname’: p1 is the variable name
l=’()’: p1 is the parenthesized predicate expression
l=’!’: p1 is the predicate expression operand
l∈β : p1 is the first operand of the operator, a predicate expression

p2 is dependent on the value of l:
l∈β : p2 is the second operand of the operator, a predicate expression
l∉β : p2 is vacant (denoted by λ)

true=‹’literal’,true› is a literal representing the expression true
false=‹’literal’,false› is a literal representing the expression false
p ∧  q=‹’&&’,p,q›, where p and q are predicate expressions
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For example, consider nd1:

Example 6.  Predicate expression, nd1 (representing class=“user” && team=$R )
nd1=‹’&&’,left,right›, where:

left=‹’=’, ‹’attrname’, “class”, λ›, ‹’literal’, “user”, λ››, and
right=‹’=’, ‹’attrname’, “team”, λ›, ‹’varname’, “R”, λ››.

4.3 Formal semantics supporting concepts

This section presents some additional concepts and notation used to define LaSCO semantics.

4.3.1 Notation for bindings, maps, and function

We define the following notation for use in formal LaSCO semantics:

Definition 13.  Map notation.
Let domain(m) denote the (mathematical) domain of a binding, map, or function m.
Let m(e) the value of the binding, map, or function m for e, for e∈ domain(m).

This domain should not be confused with the domain of a policy.

4.3.2 Map and function combination

A pair of mathematical maps (therefore functions or bindings) is consistent if they do not dis-

agree on the value associated with any element of their overlapping domain.

Definition 14.  consistent.
For maps m1 and m2:

consistent(m1,m2)=‹∀ e : e ∈ (domain(m1) ∩ domain(m2)) : m1(e) = m2(e)›

map_combine() denotes the combination of two maps.  The domains are merged and the first

operand takes precedence over the second operand if the value of any range element disagrees

(which they do not if the are consistent).

Definition 15.  map_combine.
For maps m1 and m2:

map_combine(m1,m2)={‹e,m1(e)› | e∈ domain(m1)} ∪  {‹e,m2(e)› | e∉ domain(m1) ∧  
e∈ domain(m2)}

4.3.3 Policy to system match

A  policy to system match consists of a ps map and a set of variable bindings.  The variable bind-

ings are the ones needed to satisfy the domain predicates when evaluated with their corresponding

system node or edge the ps map.  As formally denoted, a ps map is two functions: ϖ, which maps

basic edges to system edges, and ω, which maps isolated basic node to system nodes.  Definition 16

formalizes the definition of a policy to system match:
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Definition 16.  Policy to system match.
Let ΘP=‹ϖ,ω,B› denote a complete policy to system match, where:

P=‹G,γ,Λ,V› is a policy graph as defined in Definition 9,
ϖ is a one-to-one function mapping each edge in G to a system edge (E→M),
ω is a one-to-one function mapping each isolated node in G to a system node (N→O), 
and

B is a complete set of variable bindings.
ΘP is shortened to Θ when the policy referred to is clear.

Since the edge binding function ϖ is one-to-one, that each policy edge matches a distinct event.  An

example match of P1 (Example 3) to S1 (Example 1), Θ1 is given in Example 7:

Example 7.  Policy to system match Θ1.
Θ1=‹ϖ1,ω1,{‹R,"team1"›,‹A,"team1"›}›, where

ϖ1={e1⇒ req4, e2⇒ appr40},
ω1={n1⇒ Ujoe, n2⇒ P57, n3⇒ Uchris}, and
other terms are as in Example 1 and Example 3.

4.3.4 Variable conditions

For the purposes of formalizing LaSCO’s semantics, we introduce the concept of variable con-

ditions.  This is the logical conditions for policy variables under which a predicate is satisfied.

4.3.4.1 Condition expressions

A condition expression, a part of variable conditions, is a special case of a predicate expression.

It is a predicate expression without any attribute references, i.e., the only operands are variables and

literals.  Notationally it is identical to the notation for predicate expression in Definition 12 (page

39), except that no label in the expression may have the label “attrname”.

An example condition expression is $x > 17 && $y ∈ {“a”,“b”} , which indicates that x

must have a value greater than 17 and that y must be either “a” or “b”.  Another is $x > $y ,  indi-

cating that x must have a value greater than y.  

Two test functions on condition expressions are defined here.  has_vars checks whether a condi-

tion expression contains any variables.  If this is not the case, then the condition expression can be

completely evaluated without additional context.

Definition 17.  has_vars.
Where c=‹l,c1,c2› is a condition expression:

has_vars(c)= {true if l=’varname’
{false if l=’literal’
{has_vars(c1) if l=’!’
{has_vars(c1) ∧  has_vars(c2) if l∈β
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may_be_sat reports if it is possible for a certain condition expression to be true with some bindings

for variables.  This is considered the case if it contains variables or has been evaluated to true.

Definition 18.  may_be_sat.
may_be_sat(c) denotes whether the condition expression c might be satisfiable, where:

may_be_sat(c)=has_vars(c) ∨  p=true

4.3.4.2 Variable conditions

Variable conditions consist of variable bindings and a condition expression.

Definition 19.  Variable conditions.
Let variable conditions c be represented by the tuple ‹Bc,Cc›, where:

Bc is the (possibly not complete) set of variable bindings for c as defined in 
Definition 11, and

Cc is the condition expression for c.
true_expr(‹Bc,Cc›)= (Cc=true) is checks if variable conditions have a true (Definition 12) 

condition expression

A variable is bound and is present in the variable bindings of a variable conditions only if it can be

satisfied by a single value.  The condition expression in a variable conditions indicates the possible

values for those variables that are not bound to a single value.  This expression, when given partic-

ular values to use for the currently unbound variables, will evaluate to true if the new bindings are

acceptable and false otherwise.  Two examples of formally represented variable conditions are given

in Example 8:

Example 8.  Variable conditions c1 and c2.
c1=‹{ ‹A,4›} , ‹’!=’, ‹’varname’, “B”, λ›, ‹’literal’, “user”, λ›››, representing that $A is bound to 

4 and $B != “user” .
c2=‹∅ ,‹’>’,  ‹’varname’, “A”, λ›, ‹’literal’, 1, λ›››, representing that there are no known 

bindings and $A > 1 .

4.3.4.3 Merging variable conditions

As will be seen in Section 4.4.2, we sometimes need to merge two variable conditions using log-

ical “and” semantics.  This results in a new variable conditions representing the combined restric-

tion on variables of the originals.  If there is no way to satisfy both conditions simultaneously (i.e.,

a variable found in both variable conditions has different bound values), the result is ‹∅ ,false›.  Oth-

erwise, the resulting condition is reduced.  That is, all bound variables found in the condition ex-

pression are moved to the variable bindings.  The function merge_conds merges several variable

conditions.  To support the definition of merge_conds, we first introduce two functions and a oper-

ation.  Only variable substitution, simultaneously replacing variable names in a predicate with their

values, is used elsewhere in this dissertation.
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Definition 20.  Variable substitution.
Substitution of a set of variable names for their values is denoted by p•B, where:

B is a set of variable bindings (as defined in Definition 11), and
p is a predicate or condition expression (as defined in Definition 12)

Let ‹l,p1,p2›=p
 ‹l,p1,p2›•B={‹’literal’, val(B,p1), λ› if l=’varname’

{‹l, p1•B, p2•B› otherwise

Definition 21.  extract_bound.
For predicate expression p (as defined in Definition 12):

Let:
‹l,p1,p2›=p
‹l1,p11,p12›=p1
‹B1,p1´›=extract_bound(p1)

When p2≠λ:
‹l2,p21,p22›=p2
‹B2,p2´›=extract_bound(p2)

extract_bound(p)= {‹∅ ,p› if l∈ {’varname’,’attrname’,’literal’}
{‹{‹p11,p21›},true› if l=’=’∧  l1=’varname’∧  l2=’literal’
{‹{‹p21,p11›},true› if l=’=’∧  l2=’varname’∧  l1=’literal’
{‹B1,‹’!’,p1´,λ›› if l=’!’
{‹B1 ∪ B2,‹l,p1´,p2´›› otherwise

Definition 22.  reduce_cond.
For variable conditions ‹Bc,Cc›:

Let ‹B,C›=extract_bound(‹Bc,Cc•Bc›)
reduce_cond(‹Bc,Cc›)= ‹Bc ∪  B, C›

Definition 23.  merge_conds.
merge_conds(c1,c2, …, cn)= merge_conds(merge_conds(c1,c2), …, cn)
merge_conds(c1,c2)= {‹∅ ,false› if ¬consistent(Bc1,Bc2)

{reduce_cond(‹Bc1 ∪ Bc2,Cc1 ∧  Cc2›) otherwise

For example, using c1 and c2 from Example 8, merge_conds(c1,c2)= reduce_cond(‹{‹A,4›}  ∪ ∅ ,

‹’!=’, ‹’varname’, “B”, λ›, ‹’literal’, “user”, λ›› ∧  ‹’varname’, “A”, λ›, ‹’literal’, 1, λ›››)=

‹{ ‹A,4›},‹’!=’, ‹’varname’, “B”, λ›, ‹’literal’, “user”, λ›››.

4.4 LaSCO semantics

The meaning of LaSCO policies when applied to a system history is formally expressed in this

section.  This have a bottom-up up construction, starting with evaluating predicates and ending with

the semantics of a policy graph and a set of policy graphs.

4.4.1 Predicate evaluation

Predicates are evaluated with respect to variable bindings and either a system object or event.

After instantiating a predicate with variable bindings as described in Definition 20, the resulting ex-
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pression is evaluated with respect to attribute bindings from the system object or event, resulting in

a boolean value.  The function eval_pred is formally defined in Definition 24.  The meaning is that,

given a predicate p, a set of attribute values values σ, and a set of variable bindings B,

eval_pred(p,σ,B) is the variable conditions under which p evaluates to true given σ and B:

Definition 24.  eval_pred.
eval_pred(p,σ,B)= {‹B,false› if sp(p•B,σ)=λ || ¬sp(p•B,σ)

{‹B,true› otherwise
where:

sp(‹l,p1,p2›,σ)= { val(σ,p1) if l=’attrname’ ∧  p1 ∈  domain(σ)
{ λ if l=’attrname’ ∧  p1 ∉  domain(σ)
{ p1 if l=’literal’
{ sp(p2,σ) if l=’||’ ∧  sp(p1,σ)=λ
{ sp(p1,σ) if l=’||’ ∧  sp(p2,σ)=λ
{ λ if sp(p1,σ)=λ
{ sp(p1,σ) if l=’()’
{ ¬sp(p1,σ) if l=’!’
{ λ if sp(p2,σ)=λ
{ sp(p1,σ) ∨  sp(p2,σ) if l=’||’
{ sp(p1,σ) ∧  sp(p2,σ) if l=’&&’
{ sp(p1,σ) = sp(p2,σ) if l=’=’
{ sp(p1,σ) ≠ sp(p2,σ) if l=’!=’
{ sp(p1,σ) < sp(p2,σ) if l=’<’
{ sp(p1,σ) > sp(p2,σ) if l=’>’
{ sp(p1,σ) ≤ sp(p2,σ) if l=’<=’
{ sp(p1,σ) ≥ sp(p2,σ) if l=’>=’
{ sp(p1,σ) ∈  sp(p2,σ) if l=’∈ ’
{ sp(p1,σ) ⊂  sp(p2,σ) if l=’⊂ ’
{ sp(p1,σ) ∩ sp(p2,σ) if l=’∩’
{ sp(p1,σ) ∪  sp(p2,σ) if l=’∪ ’
{ sp(p1,σ) + sp(p2,σ) if l=’+’
{ sp(p1,σ) − sp(p2,σ) if l=’-’
{ sp(p1,σ) * sp(p2,σ) if l=’*’
{ sp(p1,σ) /  sp(p2,σ) if l=’/’
{ sp(p1,σ) mod sp(p2,σ) if l=’%’

Generally, after the variable values are substituted into the predicate, the attribute values are also

substituted and the operators in the expression may be evaluated since there are only literals present.

The case in which an attribute name is mentioned in a predicate but is not found in the attribute bind-

ings requires special attention.  As fully described above, the most immediate boolean expression

in which the attribute name without a value appears evaluates to false, regardless of any other part

of that expression.  This implies that, unless that boolean expression is within an expression with a

disjunction, the predicate is not satisfied by the object or event.  For example, using nd1 from
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Example 6, eval_pred(nd1,{‹R,“team1”›},{‹class,“user”›}) = ‹∅ ,false›, since the team attribute is

not defined.

4.4.2 Pattern node and pattern edge matching

The semantic pieces of a pattern graph are defined to be each pattern edge (and its incident

nodes) and each isolated pattern node.  It is from matches to these pieces that a pattern graph match

is derived.  Each match of a semantic piece in a policy domain is concerned occurs within one par-

ticular time instance.  Separate semantic pieces may occur at separate time instances though.  This

design allows an implementation of LaSCO to look for matches to the system at the semantic entity

level, which may be later composed into a full match of the domain.

Match_node(p,σ,B) denotes the variable conditions under which a pattern node with the predi-

cate p matches the system node attribute bindings σ with variable bindings B.

Definition 25.  match_node.
match_node(p,σ,B)= eval_pred(p,σ,B)

As an example, consider nd1 from Example 6, joe4 from Figure 4-1 and the variable R bound to

“team1”.  match_node(nd1, joe4, {‹R,“team1”›})= ‹{‹R,“team1”›},true›.

The variable conditions under which a pattern edge with predicate p matches the system edge

attributes σ with variable bindings B are given by match_edge(p,σ,B).

Definition 26.  match_edge.
match_edge(p,σ,B)= eval_pred(p,σ,B)

As an example, consider ed1, representing name=“request”  as per Example 3, req4 from

Figure 4-1 and no variable bindings.  match_node(nd1, attrs(req4), ∅ )= ‹∅ ,true›.

A pattern edge together with its source and destination nodes match an event using variable bind-

ings B if:

1. using B, the predicate of the edge evaluates to true for the event,

2. the source pattern node matches the source object of the event using B and the attribute
values that were on the source object at the time of the event, and 

3. the destination pattern node matches the destination object of the event using B and the
attribute values that were on the destination object at the time of the event.

This is detailed in Definition 27.  That definition presents match_edge_area, the variable conditions

that result from attempting to match a pattern edge and its adjacent nodes to a corresponding part

of the system, given certain variable bindings.
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Definition 27.  match_edge_area.
match_edge_area(e,m,χ,B)= merge_conds(

match_edge(χ(e),attrs(m),B),
match_node(χ(src(e)),src_attr(m),B),
match_node(χ(dest(e)),dest_attr(m),B) )

where:
e is a pattern edge,
m is a system event,
χ is a function mapping pattern graph nodes and edges to their predicates, and
B is a complete set of variable bindings

For this example, consider matching the request policy edge in P1 to the req4 edge in S1.  There,

corresponding incident nodes must also match.

Example 9.  Applying match_edge_area to e1 in P1 to the req4 in S1.
Given:

γ1 is as defined in Example 3,

match_edge_area(e1,req4,γ1,∅ )=
merge_conds(

match_edge(ed1,attrs(req4),∅ ),
match_node(nd1,joe4,∅ ),
match_node(nd2,pur4,∅ ) )=

merge_conds(‹∅ ,true›, ‹{‹R,“team1”›},true›, ‹∅ ,true›)=
‹{‹R,“team1”›},true›.

4.4.3 Pattern and policy graph matching

Given a pattern graph ‹G,χ,V›, a map of edges in G to edges in a system graph ϖ, a map of iso-

lated nodes in G to nodes in a system graph ω, and a complete set of variable bindings B,

match_graph(G,ϖ,ω,χ,B) returns true if and only if the pattern graph matches given the pattern

graph to system graph maps and the variable bindings.  The edges and isolated nodes match if vari-

able conditions that result from the match satisfy true_expr (Definition 19).

Definition 28.  match_graph.
match_graph(G,ϖ,ω,χ,B)= ‹∀ e : e ∈  E : true_expr(match_edge_area(e,ϖ(e),χ,B))›

∧  ‹∀ n : n ∈  N ∧  isolated(n): true_expr(match_node(χ(n),ω(n),B)›)

To demonstrate this, consider the pattern graph D1 from Example 4 as applied to S1.

Example 10.  match_graph applied to D1 and S1.
Given: 

D1=‹G1,γ1,{A,R}› as per Example 4,
ϖ1={e1⇒ req4, e2⇒ appr40},
ω1={n1⇒ Ujoe, n2⇒ P57, n3⇒ Uchris}, and

B={‹R,“team1”›,‹A,“team1”›},
match_graph(G1,ϖ1,ω1,γ1,B)=

 ‹∀ e : e ∈  {e1,e2} : Cc=true where c=match_edge_area(e,ϖ1(e),γ1,B)› ∧
‹∀ n : n ∈  ∅ : Cc=true where c=match_node(γ1(n),ω1(n),B)›=
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Cc1=true ∧  Cc2=true (where:
c1=match_edge_area(e1,req4,γ1,B)=‹B,true› and 
c2=match_edge_area(e2,appr40,γ1,B)=‹B,true›) =

true

Note that node and edge predicates can be evaluated in any order.

4.4.4 Domain matching

The application of the domain with respect to a part of a system history, when it succeeds, pro-

duces a policy to system match (see Section 4.3.3).  A match represents the location and the way in

which the domain is satisfied.  As the domain may apply in several ways in a system history or not

at all, applying the domain to a history produces a set of matches.

A  policy to system match completely describes a match of a policy domain to the system.  Note

that at most one set of variable bindings will cause the domain to match a particular part of the sys-

tem due to the requirement mentioned in Section 3.2.4 that each variable be on one side of an “=”

operator in some domain predicate.  This has benefits toward implementation efficiency since one

does not need to search for variable bindings, one can just accumulate variable conditions as a

match is formed.  If the variable conditions become unsatisfiable, then the considered match was

not meant to be.

 The domain of a policy is satisfied if the domain pattern graph is satisfied by a match, as defined

in Section 4.3.3.  Satisfaction of the domain of policy graph P is denoted by DP(‹ϖ,ω,B›).  Match-

es(P,S) is all the ways to satisfy DP with the system S.

Definition 29.  Domain satisfaction.
DP(‹ϖ,ω,B›)= match_graph(G,ϖ,ω,γ,B)

matches(P,S)= {‹ϖ,ω,B› | ϖ ∈ 2E→M ∧  ω ∈ 2N→O ∧  B ∈ 2V→Α ∧  DP(‹ϖ,ω,B›)}

The effect of the semantics presented here is that nodes must match for the attribute values for

the system node for each system instance in which an incident edge matches.  Since isolated nodes

have no incident edges, they can match the system node in any system instance.  An interesting

question is: what happens if the value of a object attribute changes over time such that it no longer

matches a node as it did for when an adjacent edge matched a previous event.  The semantics  indi-

cate it does not matter if the attribute values change.  The domain will match (for the part of the

policy involving that node) when each of the edges find a match given the value of the object at-

tributes at the time of the event that matches the edge.
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4.4.5 Requirement satisfaction

Formally, in terms of pattern graphs, whenever the domain pattern graph matches, one checks to

see that the requirement pattern graph also matches.  The variable bindings and map between the

basic graph and system graph has been determined by this point and are represented in a match.

Formally noted, RP is whether the requirement of policy P (as defined in Definition 9) is satisfied

by a match ‹ϖ,ω,B›.

Definition 30.  Requirement satisfaction.
For a policy P=‹G,γ,Λ,V›, as defined in Definition 9:

RP(‹ϖ,ω,B›)= match_graph(G,ϖ,ω,Λ,B)

As an example, consider Θ1 from Example 7, a match between P1 and S1:

Example 11.  match_graph applied to Θ1.
Given:

Θ1=‹ϖ1,ω1,{‹R,"team1"›,‹A,"team1"›}› and
Λ1 from Example 3,

RP(Θ1)= match_graph(G,ϖ,ω,Λ1,B)=
 ‹∀ e : e ∈  {e1,e2} : Cc=true where c=match_edge_area(e,ϖ1(e),Λ1,B)› ∧

‹∀ n : n ∈  ∅ : Cc=true where c=match_node(Λ1(n),ω1(n),B)›=
Cc1=true ∧  Cc2=true (where:

c1=match_edge_area(e1,req4,Λ1,B)=‹B,true› and 
c2=match_edge_area(e2,appr40,Λ1,B)=‹B,false›) =

false

4.4.6 Policy application to a system

Violations(P,S) is the set of matches of the policy graph P to the system history S that violate the

policy.  Violation(P,S) denotes whether a set of policies, P, is violated on a system history S.  Up-

held(P,S) denotes the opposite case.

Definition 31.  Policy semantics for a system.
For a policy graph P applied to a system history S:

violations(P,S)= {Θ | Θ ∈ matches(P,S) ∧  ¬RP(Θ)}

Definition 32.  Semantics of policy composition.
For a set of policy graphs P applied to a system S:

violation(P,S)= ‹∃ p : p ∈ P : violations(p,S) ≠ ∅ ›
upheld(P,S)= ¬violation(P,S)= ‹∀ p : p ∈  P : violations(p,S) = ∅ ›

4.5 Partial policy to system matches

Section 4.3.3 considered complete matches of a policy graph to a system history, which is what

is typically found when considering LaSCO’s application from a formal point of view.  In some other
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situations, particularly when implementing LaSCO, we must deal with partial information.  When

browsing a system history to detect policy matches, a program would naturally notice some parts

of the match before other parts.  In fact, some events may not have occurred when first checking,

e.g., if doing run time monitoring.

Given this, we introduce the concept of a partial policy to system match.  This is defined to be

a ps map plus variable conditions.  These variable conditions represent the requirements on the val-

ue of variables that enable a partial match.

Definition 33.  Partial policy to system match.

Let ΘP
*=‹ϖ,ω,C› denote a partial policy to system match, where:

P=‹G,γ,Λ,V› is a policy graph as defined in Definition 9,

ϖ is a one-to-one function mapping each edge in E* ⊂  E to a system edge (E→M),

ω is a one-to-one function mapping each isolated node in N* ⊂  N to a system node 
(N→O), and

C is variable conditions as defined in Definition 19.

ΘP
* is shortened to Θ* when the policy referred to is clear.

Towards building a complete match, two partial matches may be merged if they agree on which

subsets of the system history correspond with which subgraphs of the policy and if their variable

conditions are consistent.  That is, they don’t contradict on what the value of a variable should be.

The function unifiable represents whether two partial match may be merged.

Definition 34.  unifiable.

unifiable(Θ1
*,Θ2

*) denotes whether the unification of partial matches Θ1
* and Θ2

* might be 
valid, where:

Θ1
*=‹ϖ1,ω1,C1›

Θ2
*=‹ϖ2,ω2,C2›

‹B,c›=merge_conds(C1,C2)

unifiable(Θ1
*,Θ2

*)= consistent(ϖ1,ϖ2) ∧  consistent(ω1,ω2) ∧  may_be_sat(c)

A more complete partial match is the result of merging partial matches.  This has the union of

the ps maps.  The new variable conditions are the conjunction of the variable conditions of the orig-

inal partial matches.  Definition 35 formally defines this as the function unify.

Definition 35.  unify.

unify(Θ1
*,Θ2

*) denotes the unification of the partial matches Θ1
* and Θ2

*:

Θ1
*=‹ϖ1,ω1,C1›

Θ2
*=‹ϖ2,ω2,C2›

‹ϖr,ωr,Cr›=unify(Θ1
*,Θ2

*), where:
ϖr=map_combine(ϖ1,ϖ2)
ωr=map_combine(ω1,ω2)
Cr=merge_conds(C1,C2)
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Note that by the point at which a partial match becomes complete, its variable conditions can be

extracted into a single set of variable bindings, due to the variable assignment restriction from

Section 3.2.4.
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5 A Framework for Applying LaSCO

In the next four chapters, we discuss the application and enforcement of LaSCO on systems and

the implementation of LaSCO.  This section focuses on a general architecture for implementing LaS-

CO policies on any system.  Section 5.1 describes the concept and its implementation is described

in Section 5.2.

5.1 An architecture for implementing LaSCO policies

As LaSCO is independent of any specific system or enforcement mechanism, let us now consider

how to apply LaSCO to a particular system.  In this chapter, when a system is referred to, it is the

actual resource that is intended to be protected.  An appealing approach is to use a generic policy

engine and an interface layer for each particular system, and is in fact the approach we take in our

implementation.  Using this approach one only need create a new interface layer to apply LaSCO to

a new system.  One need not rewrite the core policy interpretation elements of an implementation.

This architecture is diagramed in Figure 5-1.

Figure 5-1.  Diagram of the generic policy engine architecture for applying LaSCO.

policies to enforce

desired policies

system objects
and events

events and
state changes

policy
violations

allow/disallow,
where violates policy

Generic
Policy
Engine

Interface Layer

System to
protect

Security
administrator



52

5.1.1 Generic Policy Engine

In our architecture, a generic policy engine is a component that interprets the activity on a sys-

tem (presented to it in terms of the system description for the system) with respect to policy.  It is

capable of detecting policy violations on any system that meets the LaSCO system model

(Section 3.1).

There are two forms of input required to the policy engine, both provided an interface layer (de-

scribed in the next section).  The first is the set of policies, specified in LaSCO, that it must monitor

for violations.  The second form of input is the system execution upon which it should apply the

policy.  This execution is the system history for which the policies are being checked.  This consists

of system events and objects, both with their attributes.  How the system history is gathered, whether

by report, by query, or both is dependent on the implementation.  Both of these input describe the

system using the terms from the system description (the system’s instance of the system model),

which allows the engine to be independent of the monitored system.

The engine would receive sets of new events and new objects (or new attribute values) together

over time.  In the case of off-line policy checking, all this might be given together at once.  In the

case of real-time checking, this would the events and object changes for a given moment.  In its op-

eration, the engine would build matches of each policy domain to the system history it has seen so

far.  When a complete policy to system match has been formed, the policy requirement is evaluated.

The output of the policy engine is the set of policy to system matches in the provided system history

that violate the policies it was given to enforce.  One can thus view the policy engine abstractly as

a query engine, responding to queries about how a system history violates given policies.

5.1.2 Interface Layer

The interface layer is customized for specific systems.  Its task is to be a bridge between the

activities and state of a system and the generic policy engine.  It interprets the natural form of the

system and provides the engine the system description view.

The form of the interface layer depends much on the corresponding system, and there may be

different approaches.  For real-time monitoring, it may be in-line code, a wrapper around entities of

a system, or potentially something in-between.  If the monitoring is not done in real time, the layer

may run over log files and pass activity reports to the engine.  Depending on how the generic policy

engine was designed, it may need to push reports to the engine, respond to queries, or both.
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In some manner appropriate to the system being protected, the interface layer also needs to de-

termine the proper set of policies to be enforced, and let the engine know this.  Presumedly there is

an administrator of some sort that decides what policies should be in effect.  When the engine re-

ports a match of the policy to the system in which the system violates a policy, the interface layer

should respond to it.  The response can vary widely from aborting system execution to preventing

the offending event to simply making note of the violation or reporting it to the appropriate person

or program.

5.2 Generic policy engine implementation

We have implemented a generic LaSCO policy interpretation engine in Perl [34], which is de-

scribed here.  The interface to implementation are instances of the class LaSCO.  Each of these in-

stances  serves as an interpreter for a particular LaSCO policy.  This class represents a LaSCO policy

and is implemented using object orientation in Perl version 5.

We now examine the aspects of the implementation in the following subsections.

5.2.1 Initialization and policy representation

An instance of the LaSCO class, representing a LaSCO policy, is initialized by reading the policy

from in a file or a string.  In both cases, the text is in the LaSCO file format (Section A.2).  Once an

instance is created, policy node and edges can be added or deleted through method calls.  Predicates

may also be modified in this way.

Predicates are represented within the LaSCO class by instances of the class Predicate.  Each

node and edge in an instance of the LaSCO class (a LaSCO object) is annotated with two of these,

one for the domain, and one for the requirement.  To facilitate processing, predicates are represented

by a parse tree.  A YACC-type source file is converted by perl-byacc into a Perl class for translating

predicate strings into a predicate parse tree.  Each node in the parse tree is an instance of the class

PredTree.

5.2.2 Interacting with an interface layer and representing partial matches

An interface layer would maintain a set of LaSCO objects corresponding to the set of policies to

enforce.  When the interface layer wishes for a policy to be evaluated on a system history, it encodes

this history in an instance of the class SystemGraph.  This SystemGraph instance is then passed to

the LaSCO object for the policy via the method call check_with_system.  The return value is all the
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locations in the SystemGraph where the policy is violated, encoded as a set of instances of the class

Match.  This method may also be used to find violations involving only the most recent parts of the

system history, as is appropriate when the system is being checked incrementally for violations.

The SystemGraph class is an implementation of a system graph, a system history viewed as a

directed graph annotated with node and edge attribute names and their values.  For nodes (repre-

senting objects), attributes are noted with their values at various times.  This representation is cho-

sen as it allows the search for a policy match to be a search for a graph overlay, as will be seen in

Section 5.2.5.

The Match class is an implementation of a policy to system match, introduced in Section 4.3.3.

As such, it stores a one-to-one map between pieces of a LaSCO object and elements of a System-

Graph object.  In particular, it maps policy edges to system graph edges and isolated policy nodes

to system graph nodes.  There is also a set of variable bindings that allow the match.  Incidental pol-

icy node to system graph node bindings, the result of an adjacent edge match, are also stored.  All

system graph nodes in a Match have the time instance of their match recorded.

The Match class can represent partial matches of the policy to the system (Section 4.5) in addi-

tion to complete matches, so rather than storing a simple set of variable bindings, a set of variable

conditions (Section 4.3.4) is stored.  These variable conditions are encoded in the class VarConds,

which consists of a set of separated variable bindings and a condition expression.  Recall that the

condition expression uses a subset of the predicate language, so a PredTree instance is used to rep-

resent this expression.

5.2.3 Predicate evaluation

When finding domain matches and in evaluating the policy requirement, predicates on nodes and

edges are evaluated.  In either case, they are evaluated with respect to a certain set of attribute val-

ues.  For edges these are the parameter values and for nodes these are the object state at a given time.

The result of this evaluation is the variable conditions under which the given attribute values cause

the predicate to evaluate to true.

The implementation uses the following sequence of four steps to evaluate predicates:

1. Attribute substitution.  The given set of attributes are substituted into the predicate.  To
accomplish this, the PredTree representing the predicate is searched for attribute refer-
ences.  If the attribute name is one that is given (as is typically the case), then the leaf node
representing the attribute is replaced by a node representing the corresponding (literal)
value.  The order in which the substitution takes place is unimportant.
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2. Undefined attribute expression replacement.  The PredTree that results from attribute
substitution is next checked for attributes that were not in the given set.  By the language
semantics, undefined attributes cause their closest enclosing boolean expression to evalu-
ate to false.  To achieve these semantics, we search the PredTree for remaining attributes.
As can be seen from the language definition, the only operator that can prevent an expres-
sion containing a undefined attribute from evaluating to false is “||”, representing logical
or.  So, if the found attribute is contained in an “||” expression, that expression is replaced
by the subexpression on the other side of the “||”.  If it is not, then the PredTree as a whole
becomes false.  This step eliminates all attributes from the expression, leaving literals and
variables as the only operands.

3. Constant folding.   The compiler optimization technique of constant folding is employed
next to simplify the expression.  For this, the PredTree is searched for subtrees where both
operands are literals.  In all cases like this, the result of that subexpression can be deter-
mined.  This result, a literal, is computed and a corresponding PredTree node is substituted
for the PredTree.  This search proceeds in a depth first, postfix manner so that only one
pass is required over the PredTree.  The net effect of this step is that all constant expres-
sions are replaced by their value.

4. Forming a variable condition.  The result of the previous step is used as the basis for a
conditional expression of the variable condition resulting from this predicate evaluation.
For this, established variable bindings are extracted.  The constant-folded PredTree is
searched for subtrees where the operator is “=”, one of the operands is a variable, and the
other operand is a literal.  This represents a case where the required value of a variable is
known.  The variable operand and the literal operand are added as a variable binding in the
variable condition.  (If a binding with the same variable name is already present (as a
result of a previous extraction), and the value is different, the variable condition is known
to be false and is so converted.)  In addition, the value of the binding is substituted for the
variable name in the rest of the expression.  The PredTree with “=” is replaced with the lit-
eral “true” as a PredTree.  If any variable bindings were extracted, steps 3 and 4 are
repeated until no new variable bindings are extracted.

This process could be achieved in one passes, but are kept sequential to keep the implementation

simple.

5.2.4 Variable condition satisifiability and unifiablity

A frequent query to the VarConds class is whether certain a certain variable conditions are sat-

isfiable by any set of variable bindings.  If not, then a considered match can be disregarded.  Given

this use, the implementation keeps things simple by producing an inexact but conservative answer

to the question as to whether the variable conditions are unsatisfiable.  For otherwise, it would need

to have the logic to determine that expressions such as $x > $y && $x < 4 && $y > 4  are

unsatisfiable.  This is sufficient to implement LaSCO correctly due to the requirement mentioned in

Section 3.2.4 that all variables in a policy are part of an expression of the form ‹variable ›=‹val-

ue›.  Our implementation can extract variable bindings from that expression form.  There is no harm
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from a correctness point of view in retaining partial matches that are could in logically be found to

be inconsistent.

In that implementation, satisifiability of a set of variable conditions is determined by looking at

the condition expression (it is already known that the variables in the variable bindings are satisfi-

able).  If the condition expression is the literal “false”, then result is that it is not satisfiable, other-

wise the result is that it might be satisfiable.  Recall that the condition expression is kept reduced by

constant folding, variable extraction, and substitution.

Another common question for the implementation is whether two variable conditions are mutu-

ally satisfiable.  We term this question unifiability.  At a conceptual level, this can be addressed by

seeing if the conjunction of the variable conditions is satisfiable.  We use this approach in the im-

plementation.  

The first step the implementation takes towards merging two variable conditions is it to compare

the variable bindings in their corresponding VarConds instances.  If any variable name is present in

both bindings but the value is different, the resulting VarConds is “false” as there is no way to unify

them.  Otherwise the variable bindings are merged.  Next the condition expressions are conjuncted

by creating a new PredTree with “&&” as the operator and the condition expression VarConds as

the operands.  The merged variable bindings are now applied to the conjuncted variable conditions.

This is done in a similar manner to attribute substitution in predicate evaluation (Section 5.2.3), by

searching the PredTree for a variable reference and replacing it with a variable value.  Constant fold-

ing and variable extraction is then employed.  At this point, the combined variable conditions are

tested for satisifiability.  The result of this is the result of the unifiablity test as well.

5.2.5 Finding domain matches

The generic policy engine implementation provides the method check_with_system on LaSCO

instances to find policy violations.  The SystemGraph instance to check (created by the interface

layer) is an argument to this method.  The first step it takes is to searches for matches of the policy

domain to the system history.  Discussion of how the operation is different is when that method is

used to find only matches involving previously unseen events is preserved to the last subsection,

Section 5.2.5.3.
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5.2.5.1 Initial partial matches

Every policy edge is considered in the context of every system graph edge as a potential match.

Consider one such potential match.  The domain predicates on the edge and adjacent nodes are eval-

uated against the corresponding edge or node in the system graph.  The attributes used for predicate

evaluation for the edge are its parameter values.  For the nodes, their attributes at the time of the

event represented by the system edge are used.  Each of these predicate evaluations produces vari-

able conditions, and which are then merged.  At each step the variable conditions produced are test-

ed for satisifiability.  If the implementation finds it to be unsatisfiable, then the potential match is

discarded.  Otherwise, the variable conditions and the binding between the policy and system are

formed into a Match instance representing the partial match.  The overall result of this step is a set

of partial matches for every policy edge.

A similar mechanism is employed to find partial matches between isolated policy nodes and sys-

tem graph nodes at various times.  For each potentially satisfiable variable condition formed by a

binding a policy node to a system graph node at a time, a partial Match instance is created repre-

senting the match.  The result of this is a set of partial matches to each of the isolated policy nodes.

Sometimes the interface layer may know that only certain system graph nodes or edges might

match certain policy nodes or edges.  This knowledge may be passed as an argument to

check_with_system in the form of a hint.  The hint takes the form of a list of system edges for certain

policy edges and a list of system nodes for certain isolated policy nodes.  The policy engine takes

these hints as truth, and uses only the list members as the source of potential matches.

5.2.5.2 Growing full matches

From these partial matches, the implementation produces a set of full matches.  The general ap-

proach is to merge together the initial partial matches for the different semantic pieces of the policy

graph (as defined in Section 4.4.2, i.e., the edges and isolated nodes of the policy), until the entire

policy graph is covered.  At this point we have a complete match.  

To form a full match, one initial match from each semantic piece must be used.  For the match

to be legal their graph bindings must agree and their variable conditions must be unifiable.  This is

handled pairwise by the unification operation on partial matches (Section 4.5).  An addition to a par-

tial match is disregarded if the partial matches are not unifiable.

A depth first recursive algorithm is employed to investigate all possible full matches.  At each

recursive invocation, all initial matches to a new semantic piece are tried with the new accumulated
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match.  This branched is followed, recursing with it if the match succeeds.  This is displayed algo-

rithmically in Figure 5-2.

The order of the semantic pieces for which the initial matches are tried can make a large differ-

ence in the number of partial matches considered.  We wish to constrain the search as early as pos-

sible.  For this reason, the order is carefully considered before the search begins.  We describe this

by the order in which initial matches for the semantic pieces are added.  For reasons described be-

low, the search order is sorted primarily by reverse order of the size of the connected graph it is a

part of (keeping the pieces together for a connected graph) and secondarily by the number of initial

matches they have (smaller is earlier).

The first heuristic used in ordering the search come from the insight that graph topology creates

significant constraints on which partial matches can be added later.  Once a match is found for an

edge, the bound system node for each adjacent node is fixed.  This in turn restricts when system

edges can match adjacent  policy edges -- only those with the given system node might match.  Thus

the considered initial matches for policy edges adjacent to these nodes must have a certain system

node present.  This is likely to be a subset of the matches, and thus we save on following up further

in that direction.  If we add a semantic entity that is disconnected with our accumulated match, then

we achieve no topological constraint.

For this reason, we ensure that the set of semantic pieces of connected piece of the policy graph

are kept adjacent in the search order.  These sets are placed on the search order in reverse order of

set size.  Thus larger connected pieces are placed first, taking the most advantage of topological con-

// edgematches[e] the initial matches for edge e
// nodematches[n] the initial matches for isolated node n
// Order is a queue with policy semantic pieces, sorted to the proscribed search order

fullmatches= grow_match(<empty match>,Order)

list-of-matches grow_match(match accmatch,queue Order) {
if Order is empty {

return accmatch
}
pc= dequeue_first(Order)
if pc is an edge {

totry= edgematches[pc]
} else {

totry= nodematches[pc]
}
newmatches={}
for each initmatch on totry {

form a new match newmatch by combining accmatch and initmatch
if newmatch is legal {

newmatches= newmatches + grow_match(newmatch,Order)
}

}
return newmatches

}

Figure 5-2.  Algorithm employed to find all matches from initial matches.
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straints early.  We ensure that isolated policy nodes are placed at the end of the search order, as they

have the weakest constraints.

The question remains as how to order the search among the semantic pieces in a set.  The heu-

ristic we use for this is to sort them by the number of initial matches they have.  Placing the pieces

with the least number of initial matches earlier decreases the potential number of branches, some-

times to a high degree1.  This technique is also used to order the isolated nodes amongst themselves

at the end of the search order.

A feature of this generic policy engine used in specialized situations is that an interface layer can

request that certain sets of system edges be considered to be the same in terms of finding a match.

The meaning of this is that distinct matches should not be made for the edges in a given set.  If one

of the edges, e, in such a set {d,e}, has already been used in a match, then another match with the

same pieces except for d instead of e should not be formed.  However, d and e may be used in the

same match, and this is the only purpose of having them both in the system graph.  The edges that

are in the same set are identified by having the same value for a certain given attribute.

5.2.5.3 Finding new matches

This section considers how finding a match differs when check_with_system is asked to only find

new matches of a policy to a SystemGraph.  The expected use of this feature is when when additions

are made to a SystemGraph object repeatedly, with the call being made at certain points along the

way.  A new match in this context is one involving system edges and isolated node attributes that

have never before been present in the SystemGraph when the call was previously made.

A cache is maintained of initial matches of a policy edges and isolated nodes to system edges

and nodes, for a particular SystemGraph.  Since something that was in a SystemGraph previously

is assumed not to change, these initial matches remain valid indefinitely.  Thus, maintaining the

cache removes the need to find this again, once they have been found once.

1.  Consider a simple case where the are three members of the set, where two have 1 initial match and the 
other has 100.  If it is placed in the order suggested here, then there potentially 101 new partial matches 
formed, whereas if the 100 is placed first, there are 200.  One might also expect that the restrictions that led 
to fewer matches to start with may be stronger and possibly have stricter variable conditions resulting, which 
increases the chances of aborting a branch earlier.



60

The first step the implementation takes is to identify the new additions to the given System-

Graph.  SystemGraph contains a feature to make this efficient.  The initial matches for these addi-

tions are determined as described in Section 5.2.5.1.  These are added to the cache.

The next step is that full matches are grown that contain these new initial matches.  The proce-

dure described in Section 5.2.5.2 is varied only in how it is used.  The new initial matches are seg-

regated by which policy semantic piece (edge or isolated node) they are a match for.  The procedure

is used repeatedly with almost the complete set of initial matches.  Each iteration though, the full

set of initial matches for a particular semantic piece is replaced with the new initial matches for that

piece.  This is done once for each semantic piece.  The union of the new matches found for each

iteration is the set of new matches sought.  Through this methodology, only matches that contain a

new initial match (and therefore a new system node or edge) are built and discovered.

5.2.6 Checking the requirement

Once a domain match is found, then the policy requirement is evaluated on it.  The match has a

corresponding Match instance and set of required variable bindings.  For each policy edge, the edge

that it is bound to in the Match is located.  Its attributes and the variable bindings are used to evaluate

the policy edge’s requirement predicate.  (This evaluation is similar to predicate evaluation de-

scribed in Section 5.2.3, with variable values substituted for their names, attribute values for their

names, and constant folding to produce the boolean result.)  The adjacent nodes are also evaluated

with respect to the requirement predicate and the variable bindings.  (Recall that attribute names are

not allowed in node requirement predicates.)  This evaluation is also done for isolated nodes.  If any

of the requirement predicates evaluate to false, then the given Match violates the policy and this is

returned to the interface layer.
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6 LaSCO Implementation for Java

We have implemented LaSCO for Java, which is described in this section.  The toolkit consists

of a program to extract a schema from a Java program, a user interface to create and edit policies

for the program facilitated by a schema, and a compiler to add policy checks to the program.  The

components of this system and how they operate are depicted in Figure 6-1.  This shows the steps

supporting a user as he or she writes a security policy for a Java program and sees it through to link-

ing to a program.  The implementation is approximately 15,000 lines of code (mostly Perl [34]),

including the generic policy engine.  We summarize the functional aspects of the implementation

completed for this dissertation in Figure 6-2.  Note that some programs make use of more than one

of these, as depicted in Figure 6-3.

Figure 6-1.  Specifying and enforcing LaSCO policies on Java programs.
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The Java instance of the LaSCO system model is presented in Section 6.1.  Java schemas are de-

scribed briefly in Section 6.2 and the various parts of the toolkit in Sections 6.3 to 6.5.  Applying

LaSCO to Java and the effect of LaSCO policy checks on a Java program is discussed in Section 7.

6.1 Java system description

This section describes how Java programs can fit within the LaSCO system model for this imple-

mentation.

Figure 6-2.  Summary of the implementation for this dissertation, by function.

Function Summary

Annotated graph The AnnGraph, AnnEdge, AnnNode, and AnnElement classes implements a annotated 
graph and is the base of the LaSCO and SchemaGraph classes.  Built on the Graph::Node 
and Graph::Edge Perl modules.

Generic Policy Engine The LaSCO, Match, VarConds, Predicate, PredTree, PredParse, and SystemGraph classes 
implement a generic policy engine for LaSCO.  See Section 5.2.

Schema representation The SchemaGraph module represents a Java schema and schema graph.  See 
Section A.4.1.

Schema Extraction The extract_schema.pl script accepts Java source and produces schema and schema graph 
files.  See Section 6.3.

Java Parsing Parse Java source code into the Java representation.  See Section A.4.2.

Java representation About 75 classes in the ParseNode module to represent Java source code in a parse tree 
and to help navigate and analyze it.  See Section A.4.3.

Policy editing Graphical user interface to edit LaSCO policies in the context of a Java program schema.  
See Section 6.4.

Policy insertion Compiler to add code to enforce policies on Java source.  See Section 6.5.1.

Policy check run time
system

Run time system to enforce policies in a Java program.  See Section 6.5.2.

Java parsing

Figure 6-3.  Relationship among functional aspects of the implementation.  Arrows indicate 
the source making use of the destination.  Broken lines indicate an indirect relationship.

Generic Policy EngineJava representationSchema representation

Annotated graph

Schema extraction Policy editing Policy insertion

Policy checking
run time system
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The events in a Java program execution that are covered by the system description are method

invocations and constructor invocations (either through a class instance creation expression (i.e.,

“new”)).  For convenience these will collectively be called method invocations.  These are the events

in the system description, and the objects are the class instances in a program and the classes them-

selves.

Consider the section of code that contains the method invocations to be the source of the call.

Similarly, consider the destination of the method invocation to be the actual section of code that a

method call causes to execute.  Either end of the call might be instance code or static code.  For this

reason, there are two type of system objects:  ones representing instances and ones representing the

static aspects of the class (i.e., the class itself).

Now, if the code that contains the call is static (either it is part of a static method, a constructor

body, a static member initialization, or a static initializer), the LaSCO object that is the source of

the event is the one representing the class itself.  In the alternate case, where the code that contains

the call is associated with an class instance, the LaSCO object representing that instance is the source

of the event.  If the target of a method invocation is a static method (as is sometimes the case for

regular method invocation and as is always the case for constructor invocations), then the system

object representing the class that contains that method is the target of the event.  Otherwise, the sys-

tem object representing the class instance the method is invoked upon is that target of the event.

Figure 6-4 describes the attributes in the model for different object and events.  How variables

(including class members and formal parameters) are presented as LaSCO attribute values depends

Figure 6-4.  Attributes defined on objects and events in the Java system description for LaSCO.

Attributes for class objects
• type:  always “class”
• class:  the name of the class the object represents
• an attribute for each static member of the class, with

the declared name and the value at any given time

Attributes for instance objects
• type:  always “instance”
• class:  the name of the class of the instance that the

object represents
• an attribute for each member of the instance’s class,

with the declared name and the value on the
instance at any given time

Attributes common to all objects:
• classes: a set of the names of all the superclasses of

the class named in the class attribute plus class itself
• id: unique to an object, but opaque in value

Attributes common to all events:
• name:  the name of the method called
• time:  the time of the call
• arg1, arg2, …:  the argument in position 1, 2, …  in

the call, with the value of the actual parameter

Attributes for calls to static code:
• an attribute for each argument in the call, with the

names the same as their name as formal parameters
for the method being invoked (might be in a base
class) and with the value of the actual parameter

Attributes for calls to instance code:
• an attribute for each argument in the call, with the

names the same as their name as formal parameters
for the method in the class statically determined as a
base class of the target object (this will be the
method called unless the target object is of more
specific type and overrides the method) and with the
value of the actual parameter
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on its type.  All numeric primitive types and their corresponding classes in java.lang are viewed as

numbers.  The boolean type and the java.lang.Boolean are interpreted as booleans.  Strings are

viewed as strings.  All other objects are viewed as strings, with their value being defined as being

identical to the defined result of the method “toString” being called on the object.  (At present there

are no Java types that are converted into sets.)

6.2 Java Program Schemas

The concept of a Java schema has been developed to provide an abstract view of a Java program,

particularly with respect to the methods invoked, as these are the events of interest to a policy writer.

A visual depiction of a Java schema is provided by a Java schema graph, which includes an edge

for method invocation, between the classes involved.  More details on Java program schemas can

be found in Section A.3.

6.3 Schema extraction tool

This tool takes files representing a Java program and produces representations of its schema.

The input is a set of files containing Java compilation units, schemas, and schema graphs.  The out-

put is file representations of the corresponding schema as a  schema, a schema graph, or both.  Sche-

mas, schema graphs, and the file formats are described in Section 6.2 and Section A.3.  Details of

this implementation are described in Section A.4.

6.4 Graphical LaSCO policy editor  for Java

The policy editor for Java is a graphical user interface that facilitates writing LaSCO policies for

a Java program.  In addition to an editing pane for creating and manipulating LaSCO policies, a Java

schema graph may be displayed and used for a user’s reference and in an automated manner to fa-

cilitate policy construction.

A brief tour of the user interface is presented in Section 6.4.1.  Generic policies are introduced

in Section 6.4.2.  The major functions of the editor are presented in Section 6.4.3 and Section A.5

provides some implementation notes.
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6.4.1 User interface overview

A screen snapshot of the policy editor is shown in Figure 6-5.  The right side of the main window

Figure 6-5.  LaSCO policy editor interface main window screen snapshot.
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(Figure 6-6) is devoted to policy editing.  The largest area is where policy graphs are displayed and

manipulated.  Above that is an entry box for editing predicates.  Syntax coloring is employed here

Figure 6-6.  Right side of LaSCO policy editor interface main window screen snapshot.
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to ease viewing.  In the upper right corner there is a menu for interface features for the policy such

as saving and loading  policies from files, and causing the policy to be syntax checked.  A pull-down

menu towards the bottom on the left selects amongst the editing (interaction) modes available: add

node, add edge, edit domain predicate, edit requirement predicate, delete, and selection.  Mode-sen-

sitive text in the middle bottom on the left explains how to accomplish different tasks for each of

the modes.  In all modes, point-and-click style interaction is used for selecting nodes, edges, and

their predicates.
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The left side of the main window (Figure 6-7) is devoted to schema graph viewing.  The largest

Figure 6-7.  Left side of LaSCO policy editor interface main window screen snapshot.
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area is where the schema graph is displayed.  Scroll bars adjust the portion of the graph that is dis-

played, and the zoom in and out button below the viewing area adjusts the scale of the graph.  A file

to load a schema from for display can be selected after using the “Change Schema ...” button in the

lower left.  The center of the main window has buttons for accessing the policy/schema integration

features.

Details of the schema graph nodes and edges are available as separate information windows

(e.g., those in Figure 6-8).  Matches are displayed in a specialized match browsing window, which

Figure 6-8.  LaSCO policy editor interface class and method information window.
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depicts the policy (Figure 6-9), the system that matched it (Figure 6-10), match variable bindings,

Figure 6-9.  Policy display in the LaSCO policy editor interface match browser, screen snapshot.

Figure 6-10.  System display in the LaSCO policy editor interface match browser, screen snapshot.
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and how the policy predicates evaluated (Figure 6-11).

Keyboard accelerators are available for most of the menu and button items.

6.4.2 Generic policies

Generic policies may be loaded and created using the interface.  These are LaSCO policies with

place-holders in parts of their predicates.  This interface allows these place-holders to be filled in

when applied to a part of a schema graph.  This facilitates policy construction as generic policies

can be created, then filled in repeatedly in different contexts.  A library of generic  policies might

be provided for an end user to make use of for programs that they are enforcing security constraints

on, without that end user needing to go though the steps of formulating the policy structure.

Generic predicates contain template labels, which is an attribute name surrounded by angle

brackets (’<’ and ’>’).  When instantiated in a context where the named attribute has a defined value,

a template label is replaced by that value.  In this implementation, the substitution is textual, though

more sophisticated methods may be desirable.

Figure 6-11.  Policy substitution display in the LaSCO policy editor interface match browser, 
screen snapshot.
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6.4.3 Some editor functions

This section describes the major functions available through the user interface.  This is divided

into schema viewing functions, policy editing function, and schema and policy integrated functions.

6.4.3.1 Schema viewing functions

Load schema graph.  Schema graphs may be extracted from a Java source file, a schema file, or

a schema graph file.  This replaces any displayed schema graph in the viewing area.

View class information.  After clicking on a displayed schema graph node, an information win-

dow is displayed for the corresponding class, which shows the class name, its data fields, and their

types.

View method invocation information.  After clicking on a displayed schema graph edge, an in-

formation window is displayed for the corresponding method invocation, which shows the method

name, the class the invocation was located in, the class the method invoked is located in, its method

formal parameters, and their types.

Adjust schema view.  By using scrollbars, and the zoom in and out buttons, the perspective on

the schema may be altered for the user’s needs.

Node compression.  To save space or for more conceptual reasons, several nodes may be select-

ed and compressed into a representative supernode.  This supernode represents the original nodes

for selection, edge placement, and integrated functions.  If a subset of the nodes that make up the

supernode are selected, just their names are displayed.  Otherwise all the class names are displayed.

Edge compression.  To reduce visual complexity or for more conceptual reasons, the edges be-

tween a pair of nodes may be compressed into a representative superedge.  This superedge repre-

sents the full set of edges for selection and integrated function purposes.  If a subset of the edges

that make up the supernode are selected, just those method names are displayed.  Otherwise all the

method names are displayed.

6.4.3.2 Policy editing functions

Empty policy creation.  A new, empty, policy may be created, replacing the current one dis-

played.

Load a policy.  A policy or a generic policy may be loaded from a file to replace the current one.
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Insert a policy.  A policy or a generic policy may be inserted from a file adding to the current

one.  If the nodes have the same names when saved to a file, then they are considered the same and

merged.

Save a policy.  A policy or a generic policy may be saved to a file in the LaSCO file format.

Add a node.  A new node may be added to the policy.

Add an edge.  A new edge may be added to the policy between a selected pair of nodes.

Delete a node.  An indicated node may be deleted from the policy.  This causes the edges inci-

dent to it to also be deleted.

Delete an edge.  An indicated edge may be deleted from the policy.

Edit a predicate.  The domain or requirement predicate for a node or edge may be edited.  When

a node or edge is selected, one of its predicates may be displayed in the predicate editing area, de-

pending on the editing mode.  There it may be edited and applied to the policy.

Check syntax and type use in predicates.  A static analysis may be performed on the predicates

of selected nodes and edges.  Syntax checking ensures that a predicate is legally formed.  Type use

check on a predicate determine whether the type of the operands may be valid given the operator

throughout the predicate.  This is done to the extent possible, without type knowledge of the at-

tributes and given the polymorphic nature of some operands.  For example, a + “b”  would be re-

ported as invalid.  Any problems found by these checks are reported to the user.

6.4.3.3 Schema and policy integrated functions

Instantiate a generic policy.  Given the selected schema graph node or edge, instantiate the ge-

neric aspects of the predicates in the policy selection.  If a policy edge is selected, the predicates on

the nodes are also instantiated with the corresponding nodes in the schema graph selection.

Create domain constraints.  Nodes and edges may be inserted into the policy graph that would

lead to domain matches of the currently selected schema graph nodes and edges.  The domain pred-

icates for the new policy edges are of the form name=‹methodname›, and class=‹classname› for

new policy nodes.  The requirement predicates in both cases are true.

Check policy against the schema graph.  The current policy may be analyzed against the select-

ed part of the schema or the schema as a whole.  This is in simulation of the policy being applied at
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run time.  The extend to which this may be done is limited to what is known statically.  That is, the

value of class names, method names, and knowledge of which attributes are defined.

6.5 Policy compiler

The remaining part of  the LaSCO implementation for Java, the policy compiler, enforces LaSCO

policies on a Java program.  To do this, it consists of two distinct parts:  a static program modifier

(Section 6.5.1) and a run time policy interpretation system called JavaLaSCO (Section 6.5.2).  The

program modifier takes a Java program and adds calls to the JavaLaSCO.  At run time, these calls

to JavaLaSCO monitor the program for violations.  Section 6.5.3 describes some limitations in the

implementation.  More details about this implementation can be found in Section A.6.

6.5.1 Program modification

To instrument Java source code for policy checks, a script is run.  In addition to the policies to

enforce and the source files to enforce them on, the script also accepts as input schemas as a refer-

ence about classes.  In addition to modifying the source file for method invocations as described

below, certain initialization code is added to each source file with a “main” method.

This script processes one source file at a time and one method invocation and constructor invo-

cation at a time.  The basic information about the invocation is determined, such as method name,

source class, and destination class.  The implementation then makes an effort to find which policy

edges might match the invocation based on static knowledge.  A special method in the generic pol-

icy engine is used for this.

Assuming that any policy edges might match the call, the code surrounding the call is prepared

for a policy check.  To allow a check to be added, the method invocation must be a statement and

all actual parameters must be computed before that statement.  Consider the example in Figure 6-

Figure 6-12.  Example of method invocation promotion. The call to f is promoted to allow a check.

…

// want to promote f

z=(x*y+a.f(0,i,x+y))/y;

…

…

double tempVar1= x*y;

A tempVar2= a;

int tempVar3= i;

double tempVar4= x+y;

// check of call to f could go here

double tempVar5= tempVar2.f(0, tempVar3, tempVar4);

z=(tempVar1+tempVar5)/y;

…

⇒
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12.  The Java Language Specification [15] describes the proper order of execution of Java source in

great detail, and this constraint is adhered to in manipulating the code.

Next, a call a method of JavaLaSCO that checks new events is added just prior to the method

invocation.  The particular policy edges that might match the event is given as an argument as an

optimization.  Also passed is the argument values for invocation and the class member values for

the source and destination.  These are the attributes for the system event and system nodes corre-

sponding to the call.  Only the attributes that are of interest to any of the policy edges that might

match are passed on the call.

6.5.2 Run time policy checking

Policies are checked as a program executes by the JavaLaSCO run time policy checking system.

JavaLaSCO acts as the interface layer between the Java program being monitored and the generic

policy engine (Section 5.2).  The generic policy engine does all the work of interpreting policies;

JavaLaSCO stores the necessary data, calculates certain attribute values, and routes the invocation

being checked to the appropriate policy(ies).  All data associated with the interface is stored on in

Perl.  A system history is maintained in a SystemGraph for each policy.  Policies are represented by

the LaSCO class, which is used when checking the policy.

6.5.3 Implementation notes

The prototype implementation has a few limitations at present, in order to facilitate the imple-

mentation.  These include:

• Policies involving isolated nodes can’t be enforced.  This is since, at present, changes in

instance and static member data are not reported to JavaLaSCO.  In terms of monitoring, what

is needed is to look for changes in member data values.  Since Java doesn’t have pointers,

passes non-array parameters by reference, and since the attribute values needed can be inferred

easily from the policy, finding locations where relevant attributes change is not a challenge -- it

is an explicit assignment to the member.

• Calls from class member initialization expressions are not checked.   This is since the modifica-

tions to the program cannot be handled in exactly the same manner.  There is no place inside

the variable declaration to make the program changes needed to promote the method invocation

to a statement and to compute its actual parameters beforehand.  The best solution to deal with
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this seems to be to create a new method that is called instead of the original.  This new method

would call JavaLaSCO to check for violations before calling the original method and returning

the result.

• Threads and interfaces are ignored.  This was done to reduce the amount of development work

for the various operations performed on Java source code.  It seems that the only change neces-

sary to properly deal with threads is to force monitor semantics by using the “synchronized”

statements around policy checks and other parts of JavaLaSCO that make changes to state.  The

modifications made to a Java program never cross a “synchronized” boundary, so that is not an

issue.  Since interfaces have no run time implementation by Java, the harm in ignoring them is

limited to static analysis of a Java program.  The interface might contain a method declaration

or class data members that is sought after when analyzing the type of expressions, possibly

leading to a compile-time error for the modified code or to a method invocation being thought

of as possibly matching a policy edge when it can be statically reasoned that it cannot.

• When an overloaded method (one that is declared multiple times with different formal parame-

ters) is called, the particular one that would actually be called is not resolved at present; instead

a guess is made.  This might result in edge attributes being given the wrong labels (the parame-

ter names differ) or to an incorrect type being computed (if the return types differ).  To imple-

ment this correctly, we would need to add the logic described in the Java Language

Specification [15] to find which method declaration is (in the specification’s terms) applicable,

accessible, and most specific.

• Method invocation involving chained expressions (i.e., of the form ‹expression› (“.” ‹expres-

sion›)+ “.” ‹method-name› and (‹package-name› “.”)* ‹type› “.” ‹expression› (“.” ‹expres-

sion›)+ “.” ‹method-name›) are not resolved as to the class invoked.  To solve this, additional

logic would need to be added to follow the chain of expressions through to the eventual class

that results.

• When wrapping method calls, not all statically knowable information, e.g., literals as method

arguments and superclasses of a class, is employed in deciding which policy edges may match.

The only effect of this is that unnecessary checks (checks in a situation where it will always

fail) could sometimes be made of a method invocation against a policy edge at run time.

The implementation is generally verbose when attempting to handle situations beyond its abilities.

We analyze the application of LaSCO to Java in the next chapter.
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7 Analysis of Applying LaSCO to Java

In this section, the application of LaSCO to Java is analyzed.  Section 7.1 presents the setup of

various experiments run with LaSCO policies added to a Java program.  Sections 7.2 presents ex-

periments with one-edged policies, Section 7.3 those with two-edged policies, and Section 7.4 pol-

icies with two or more edges.  The analysis of the results are presented in these sections and the

main results summarized.  Section 7.5 takes a step back from the current implementation, consid-

ering the application of LaSCO to Java in general.

7.1 Experimental setup

These experiments were run on a Sparc Ultra 10 with a 333Mh UltraSparc2 processor and

256MB of real memory, running Solaris 7.  Java version 1.1, Perl version 5.005_61, and the August

20th, 1999 release of JPL were used.

Specially designed Java programs are used to explore different aspects of policy enforcement.

These programs are then modified using the policy compiler tool described in Section 6.5 to enforce

one or more specially designed policies.  The modified programs are executed and their run times

monitored.  Specifically, the amount of time Solaris credits to the user for the process execution (as

opposed to system time) is used as the run time for analysis purposes.  Due to the manner in which

Unix measures user time (sampling the executing process every 10 milliseconds), the amount of

user time reported for a process can vary from one execution to another, even for deterministic pro-

cesses such as were designed for these experiments.  Therefore, a particular modified program is

run multiple times and the mean used as an estimate of the actual time the program uses.  Since there

is a relatively greater range of variation in shorter running processes, these are generally run more

times than longer running processes.
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As a general note, the run times experienced in the experiments in this dissertation are particular

to the computer used, the Java compiler used, the LaSCO implementation, etc.  Thus in our analysis,

we do not focus on the precise time obtained as much as on relative times and other more portable

results.  Sometimes we make use of detailed knowledge of the implementation in the analysis.

7.2 One edge policies

The results in this section are from experiments applying LaSCO policies with exactly one edge

to a Java program.  The goal of these experiments was to determine the effect on run time of differ-

ent policies being applied.  The policies were chosen to explore this effect.  We summarize our main

results then present our experiments.

7.2.1 One edge policy main results

These are our main results of applying one edge LaSCO policies to Java programs:

Result 1.  When any policy edge is determined by the policy compiler to possibly match a particu-

lar method call, the time taken to make the method call increases greatly.

Result 2.  The start-up time of a program is somewhat slower if it has been modified with policy

checks.

Result 3.  The content of the predicates found in a policy domain and requirement affect the exe-

cution time of program with them compiled in.  Even predicates that are logically equivalent in

application can have significantly different run times.  There is cost associated with each object

or event attribute mentioned and with each variable mentioned.  Different operators have differ-

ent impact on run time.

Result 4.  For a single edge policy, the cost of checking a call remains unchanged regardless of

how many times it has been done before.

Result 5.  The average time taken to check a policy decreases when fewer invocations match it.

Result 6.  The overhead of enforcing multiple policies is a certain amount less than the cost of

enforcing the policies separately, i.e., there is a certain reduction in overhead for additional pol-

icies enforced.

All these results except Result 4 are equally valid for policies regardless of the number of edges

present.
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7.2.2 Round 1 of experiments: the cost of checking policies

The Java program shown in Figure 7-1 was used for the first round of experiments.  Note the

heavy use of method calls.  Experimental results are shown in Figure 7-2.

To get a basis for comparison, the Java program was run unmodified for different number of  it-

erations of the main loop and as either making static or instance calls.  For both static and instance

results, the average cost per call (which includes the per-iteration time in the main loop but not ex-

ecution outside of the main loop) was invariant with the number of calls made.  This cost did vary

between the static and instance calls, with instance calls taking over twice as long.

The policy attrs000 (Figure 7-3) was compiled into the Java program using the policy compiler

and the result compiled with the Java compiler.  The policy is specially designed to match the calls

in the main loop.  As before, the program was run with different numbers of iterations and different

static/instance settings.  The compiler adds initialization code to the main method as well as policy

class Ana {

static boolean static_run= true;

public static void main(String argv[]) {
Ana2 ana2= new Ana2();
for (int i=0; i < 750000; i++) {

if (static_run) {
Ana2.aux(i);

} else {
ana2.aux2(i);

}
}

}

}

Figure 7-1.  Java program for experiment round 1.  The number of iterations was varied as was 
the static_run variable.

class Ana2 {

Ana2() {
}
static void aux(int i) {

if (i % 10000 == 0) {
}

}
void aux2(int i) {

if (i % 10000 == 0) {
}

}

}

Figure 7-2.  Round 1 measurements. Cost per call calculations discount start-up time (the cost 
with 0 calls).

Num-
ber of
calls
(mil-

lions)

no policy applied

instance static

user 
time (s)

cost/
call (µs)

user 
time

cost/
call

0 0.24 0.25

500 57.62 0.115 26.895 0.053

750 86.57 0.115

1000 115.36 0.115 53.222 0.053

1500 172.81 0.115 79.387 0.053

Num-
ber of
calls

(thou-
sands)

attrs000 applied

instance static

user 
time (s)

cost/call 
(ms)

user 
time

cost/
call

0 0.98 0.93

25 114.56 5.74 133.32 5.38

50 276.17 5.50 259.84 5.18

75 417.49 5.55 392.65 5.22

Figure 7-3.  attrs000

name ≠ "Ana2"
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check code to calls in the loop.  Due to this and having to load in different libraries, there was a

small additional cost in starting the program modified (Result 2).

The most profound result (Result 1) is that, with the policy checks in place, it takes much longer

to make the method calls (up to a few milliseconds from a fraction of a microsecond).  This should

not be too surprising when comparing the amount of work performed.  In the unmodified case, the

cost is just making the call and a couple comparisons.  In the wrapped case, the call to the run time

system must be set up and made (including the transition from Java to Perl), the run time system

must record the new event in a SystemGraph, and the run time system must call the generic policy

engine to look for new matches to the policy and check the requirement.

 The cost per check (TPC) for both instance and static calls varied amongst themselves to a small

degree, but the static calls consistently took a little shorter on average.  This is since the hashcode

and class name needs to be calculated at run time in the instance case.  This is not entirely offset by

the need to get member modifiers in the static case.  Note that the Java-inherent difference in the

call is not significant here.  However, it is important to pay attention to whether static or instance

calls are being executed in the program.
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7.2.3 Round 2 of experiments: different predicates

Figure 7-4 presents the Java program for round 2.  The policies used are shown in Figure 7-5.

class Ana {

static boolean static_run= false;
int ii1=1;
int ii2=2;
int ii3=3;
static int si1=1;
static int si2=2;
static int si3=3;
double id1=1;
double id2=2;
static double sd1=1;
static double sd2=2;
String is1=”1”;
String is2=”2”;
static String ss1=”1”;
static String ss2=”2”;

public static void main(String argv[]) {
Ana2 ana2= new Ana2();
for (int i=0; i < 50000; i++) {

if (static_run) {
Ana2.aux(i,0,”0”,0);

} else {
ana2.aux2(i,0,”0”,0);

}
}

}

}

Figure 7-4.  Java program for experiment round 2.  The number of iterations was varied.

class Ana2 {

int ii1=1;
int ii2=2;
int ii3=3;
static int si1=1;
static int si2=2;
static int si3=3;
double id1=1;
double id2=2;
static double sd1=1;
static double sd2=2;
String is1=”1”;
String is2=”2”;
static String ss1=”1”;
static String ss2=”2”;

Ana2() {
}

static void aux(int i,double d,String s,long l) {
if (i % 10000 == 0) {
}

}
void aux2(int i,double d,String s,long l) {

if (i % 10000 == 0) {
}

}

}

Figure 7-5.  attrs303si and attrs303si-ops

si1=1 && 
sd1=1 && 
ss1="1"

ii1=1 && 
id1=1 && 
is1="1"

!(si1>1) &&
((sd1*2)=2 || 

ss1="1")

(ii1+3<=4) && 
(id1%2)=1 && 

("Ana2" ∈  classes)

name ≠ "Ana2"

name ≠ "Ana2"

si1=$I && 
sd1=$D && 

ss1=$S

ii1=$I && 
id1=$D && 

is1=$S

name ≠ "Ana2"

name ≠ "Ana2" 
&& d=0 && 

s="0" && l=0

si1=1 && 
sd1=1 && 
ss1="1"

si1=1 && 
sd1=1 && 
ss1="1"

name ≠ "Ana2"

attrs030 attrs303si

attrs303si-ops

attrs303si-vars

attrs303s
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The results are shown in Figure 7-6.  This round of experiments varies predicates of a single edge

policy in order to see the effect on the run time.  All the policies here have the same logical meaning

when applied the program; it always matches the call to aux2 inside the loop and is never violated.

The policy attrs000 is used as a base case for this, being as simple as can be while only matching

the intended method invocations.  Each policy modified program is run with 0 and 50,000 iterations.

Consider the run times of attrs030, attrs303si, and attrs303s with respect to that of attrs000.  Each

of these three cases takes longer than the base.  The increase in time taken is roughly proportional

to the number of attributes mentioned in any of the predicates.  (Result 3)  (It is not clear why having

three static attributes rather than instance ones mentioned on the target node’s domain predicates

should cause it to run a little faster.  The difference must be in Java or the reflection mechanism as

the checking code makes no explicit differentiation.)

Attrs303si-ops is a variation on attrs303si than incorporates operands other than “=” and “!=”.  Ad-

ditionally, the classes attribute on a object is mentioned, necessitating looking up that there are no

base classes for class Ana2.  This takes a little longer per call.  Attrs303si-vars is another variation

on attrs303si, but making use of 3 variables used twice each to compare source and destination at-

tributes.  This use has a significant time penalty as shown in the results and each variable use has

greater impact than the attribute uses earlier.

7.2.4 Round 3 of experiments: varying selectiveness of policy

The Java program for round 3 is shown in Figure 7-7.  For each iteration of the main loop, there

are 5 calls to method a, with second argument equal to 1 through 5.  Figure 7-8 describes the poli-

cies and shows the measured run times.  In this experiment, the program modified with the policy

is run with 0, 50, 100, 200, 300, 400, and 500 iterations.  The program compiled with any of these

policies checks all calls to a.

Figure 7-6.  Round 2 policy descriptions and measurements.

policy name user time (s) TPC (ms)

0 its 50,000 its

attrs000 0.93 639.16 12.76

attrs030 0.91 951.46 19.01

attrs303si 0.95 1347.76 26.94

attrs303s 0.92 1207.59 24.13

attrs303si-ops 0.91 1531.38 30.61

attrs303si-vars 0.92 2090.13 41.78
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Figure 7-9 shows the run times per policy check.  Note the consistency in the time taken per

check, which supports Result 4.

The policy a forms a match on every policy check, i.e., every call inside the loop, since the do-

main always matches.  The difference with a0 and a1 is that they have an additional subexpression

on the edge that arg2 equals 0 or 1, respectively.  The former occurs only once per loop iteration

(20% of the checks) and the later never matches.  As would be expected, the more often a match is

class Ana {

static boolean static_run= true;
static int num_its= 1000;
static int si1=1;
static int si2=2;
static int si3=3;
static double sd1=1;
static double sd2=2;
static String ss1=”1”;
static String ss2=”2”;

public static void main(String argv[]) {
Ana2 ana2= new Ana2();
for (int i=0; i < num_its; i++) {

if (static_run) {
Ana2.a(i,1);
Ana2.a(i,2);
Ana2.a(i,3);
Ana2.a(i,4);
Ana2.a(i,5);

} else {
ana2.b(i,1);
ana2.b(i,2);
ana2.b(i,3);
ana2.b(i,4);
ana2.b(i,5);

}
}

}

}

Figure 7-7.  Java program for experiment round 3, 4 and 5.  The num_its variable was varied.

class Ana2 {

int ii1=1;
int ii2=2;
int ii3=3;
double id1=1;
double id2=2;
String is1=”1”;
String is2=”2”;

Ana2() {
}

static void a(int i,int d) {
if (i % 10000 == 0) {
}

}

void b(int i,int d) {
if (i % 10000 == 0) {
}

}

}

Figure 7-8.  Round 3 measurements and policy descriptions.

policy
name

description of policy user time (s) with various number of iterations

0 50 100 200 300 400 500

a matches all calls 0.91 4.46 8.04 15.22 22.28 29.23 36.52

a0 matches no calls 0.94 3.37 5.78 10.64 15.48 20.39 25.21

a1 matches all arg2=1  calls 0.91 3.66 6.39 11.82 17.26 22.64 28.15

Figure 7-9.  Round 3 time per policy check.  There are 5 policy checks per iteration.

policy
name

TPC (ms) for various number of iterations

50 100 200 300 400 500

a 14.20 14.26 14.31 14.24 14.16 14.24

a0 9.72 9.69 9.70 9.70 9.73 9.71

a1 10.97 10.95 10.91 10.90 10.86 10.90
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formed, the longer it took to run on average, leading to Result 5.  It is apparent that there is a certain

time attributable to checking and creating initial matches and a certain amount to forming matches.

7.2.5 Round 4 of experiments:  different numbers of policies enforced

The Java program for round 4 is shown in Figure 7-7.  Policies a1, a2, a3, a4, and a5 are used in

this round.  The number in the policy name is the value of the second argument of a that the policy

requires.  Different size sets of policies are compiled into the program, which is run with 0, 500,

and 1000 iterations.  A1 through a5 are identical except for a single number.  Matches to these pol-

icies are equally occurring and make no difference in the execution time.  Thus these policies can

be assumed to take the same amount of time.  Consider the results shown in Figure 7-10.  The av-

erage TPC is considered.

The increase in TPC between enforcing a certain number of policies and one additional policy

remains nearly the same for all the sets.   However the increment is less than the initial, so enforcing

the additional policies had a cost savings, which is Result 6.  This is due to the fact that, even when

multiple policies are in force, only one call from the Java program to the policy checking mecha-

nism is needed.  Note also that the start up time increases only slightly with additional policies load-

ed.

7.3 Two edge policies

The goal of the experiments in this section is to explore the cost considerations in applying  LaS-

CO policies with exactly two edges to a Java program.  The particular two edge policies we use rep-

resent a range of possibilities.  We summarize our main results then present our experiments.

7.3.1 Two edge policy main results

These are our main results of applying two edge LaSCO policies to Java programs:

Figure 7-10.  Round 4 measurements and time per check.

names of
policies

enforced

user time (s) with various 
number of iterations

0 500 1000

a1 0.94 29.03 57.94

a1, a2 0.94 55.67 109.90

a1 to a3 0.95 81.62 161.88

a1 to a4 0.97 108.32 215.77

a1 to a5 0.96 134.41 268.33

names of
policies

enforced

TPC (ms) with various 
number of iterations

average 
TPC (ms)

500 1000

a1 11.23 11.40 11.32

a1, a2 21.89 21.79 21.84

a1 to a3 32.27 32.19 32.22

a1 to a4 42.94 42.96 42.95

a1 to a5 53.38 53.48 53.43
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Result 7.  For a policy applied to a program execution in which there is a large number of matches

formed in comparison to the number of policy edges being checked against a method invoca-

tion, the number of matches dominates the time per check.

Result 8.  The selectiveness of edges in a two edge policy can make a large difference in run time,

even if the selectiveness is not realized until run time.

Result 9.  The number of initial matches formed makes a significant difference in run time; if the

same number of complete matches are formed but with more initial matches, then the run time

will be higher.

Result 10.  The shape of a multi-edge policy makes only a small difference in its associated run

time per match.

Result 11.  The cost of checking multiple policy edges in a single call to JavaLaSCO is noticeably

lower than checking them in the different calls.

These can all be generalized to the case of more than two edges.

7.3.2 Round 5 of experiments:  two edge policy edge selectiveness

The Java program shown in Figure 7-7 was used for round 5.  Figure 7-11 describes the policies

used in this round and shows the run times measured for the various number of iterations of the main

Figure 7-11.  Round 5 run times and policy descriptions.

policy
name

description of policy user time (s) with various number of iterations

0 50 100 200 300 400 500

aa matches all pairs of calls 0.91 321.41 1285.03 5138.73 11646.59 20552.40 32431.18

aa1 matches all pairs of calls 
that includes one with 

arg2=1

0.91 87.53 343.25 1370.40 3092.00 5475.48 8558.51

aav matches all pairs of 
matches with same arg2

0.92 182.89 732.47 2956.58 6704.83 11932.28 18624.91

a1a1 matches all pairs of 
arg2=1  calls

0.94 25.09 90.58 353.49 805.91 1435.14 2264.58
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loop.    All policies check both policy edges for all calls to a.  Figure 7-12 shows run times per policy

check and per complete match.

As can be seen in the TPC table in Figure 7-12, the run times for the policies in this round these

are superlinear with respect to the number of checks.  This is since there is an increasing number of

matches formed with later checks.  For m events, the number of matches to a two edge policy can

be as high as m*(m-1).  This is indeed the case of the policy aa, which forms 5N*(5N-1) matches

for N iterations of the main loop.  This factor comes to dominate the cost of checking more than the

cost of checking an edge for initial matches and forming initial matches, which is linear with the

number of checks.  Consider the table in Figure 7-12 of cost per complete match (TPM) for the dif-

ferent policies and number of iterations.  This shows an approximately constant cost per complete

match, particularly when there is a large number of matches.  This is Result 7.

Aa1 is like aa, which matches for every pair of calls to a, except that a certain one of these calls

must be with second argument equal to 1.  This means there are about one fifth fewer matches for

the same number of checks.  This accounts for the lower TPC and higher TPM.    The situation is

similar for a1a1, which matches with every pair of calls to a with second argument 1.  This matches

in about 1/25 of the cases aa matches in.  Generally note how much less time it takes to enforce a1a1

and even aa1.  This is since the policy come into effect less often due to the policy edges being more

restrictive.  This is as opposed to aa, which very frequently comes into effect.  Thus reducing the

number of matches through more selective matching of events can make a large difference in exe-

cution time, which brings us Result 8.  A suggestion for a policy developer then is to have the policy

apply less often unless they are willing to pay the price.

Figure 7-12.  Round 5 time per policy check and per complete match.  There are 5 policy checks 
per iteration.

policy
name

TPC (ms) for various number of iterations

50 100 200 300 400 500

aa 1282.01 2568.24 5137.82 7763.79 10275.75 12972.11

aa1 346.49 684.68 1369.49 2060.72 2737.29 3423.04

aav 735.89 1436.10 2955.66 4469.27 4469.27 5965.68

a1a1 96.62 179.29 352.55 536.65 717.10 925.46

policy
name

# of matches per 
N iterations (MN)

TPM (ms) for various number of iterations

50 100 200 300 400 500

aa 5N*(5N-1) 5.15 5.15 5.14 5.18 5.14 5.19

aa1 N*(5N-1) 6.96 6.86 6.85 6.87 6.85 6.85

aav N*(5N-1) 14.78 14.66 14.79 14.91 14.92 14.91

a1a1 N*(N-1) 9.86 9.06 8.86 8.97 8.99 9.07
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In the policy aav, in which a policy matches wherever the are two calls with the same second

argument, every method invocation in the main loop causes an initial policy match to be formed for

both policy edges.  All pairs of these must be checked to see if a complete match is formed, which

happens one fifth of the time.  This explains why, while aa1 has the same number of matches as aav,

aav takes longer per match.  We generalize this to Result 9, that the number of initial matches

present is important in the run time.
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7.3.3 Round 6 of experiments: policies with different shapes

The Java program used in round 6 is shown in Figure 7-13 and Figure 7-14 shows the run time

class Ana {

static boolean chain= false;
static boolean parallel= false;
static boolean in= false;
static boolean out= false;
static boolean wide= true;
static int num_its= 250;
static int si1=1;
static int si2=2;
static int si3=3;
static double sd1=1;
static double sd2=2;
static String ss1=”1”;
static String ss2=”2”;

public static void main(String argv[]) {
for (int i=0; i < num_its; i++) {

Ana2.a(i,”Ana”);
if (Ana.wide) { Ana2.a(i,”Ana”); }
if (Ana.out) { Ana3.c(i,”Ana”); }
Ana2.call();
Ana4.call();

}
}

}

class Ana2 {

int ii1=1;
int ii2=2;
int ii3=3;
double id1=1;
double id2=2;
String is1=”1”;
String is2=”2”;

Figure 7-13.  Java program for experiment round 6.  Which of chain, parallel, in, out or wide 
was set to true and the num_its variable was varied.

Ana2() {
}
static void call() {

if (Ana.chain) { Ana3.c(0,”Ana2”); }
}
static void a(int i,String s) {
}
void b(int i,String s) {
}

}

class Ana3 {

int ii1=1;
int ii2=2;
int ii3=3;
double id1=1;
double id2=2;
String is1=”1”;
String is2=”2”;

Ana3() {
}
static void c(int i,String s) {
}
void d(int i,String s) {
}

}

class Ana4 {

static void call() {
if (Ana.parallel) { Ana3.c(0,”Ana4”); }
if (Ana.in) { Ana2.a(0,”Ana4”); }

}

}

Figure 7-14.  Round 6 measurements.

policy
name

user time (s) with various number of iterations

0 50 125 250 375 500

chain 0.92 17.35 99.99 394.43 887.07 1573.98

in 0.93 17.22 101.44 397.06 888.10 1593.58

out 0.93 17.10 100.24 395.84 887.29 1585.69

wide 0.93 51.85 323.18 1291.77 2881.55 5125.18

parallel 0.92 18.09 105.57 417.46 934.58 1660.24

policy
name

TPM (ms) for various number of iterations

50 125 250 375 500

chain 6.57 6.34 6.30 6.30 6.29

in 6.52 6.43 6.34 6.31 6.37

out 6.47 6.36 6.32 6.30 6.34

wide 5.14 5.18 5.17 5.13 5.13

parallel 6.87 6.70 6.66 6.64 6.64
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measurements.  Figure 7-15 depicts the various policies applied to the program.  The program vari-

able with the same name as the policy applied was set to true with the others false.  The number of

iterations of the main loop, N, was varied between 0, 50, 125, 250, 375, and 500.  Regardless of the

flag set, there are 2N calls checked in all cases.  These calls are either to a or to c.  These methods

may be regarded as identical as they have the same parameters, the same (empty) method body, and

are both static.  Except for wide, the policy compiler was able to statically resolve which one policy

edge should be checked for each method call.  In the wide case, both edges match on the same oc-

casions, so both edges are checked in all cases.

Supporting Result 7 from above, the TPM is fairly consistent across the number of iterations for

each policy, particularly with the larger number of iterations where the cost overhead per check is

less significant.  The number of matches is N2 except for wide, which is 2N*(2N-1).

The results from applying chain, in, out, and parallel are close despite the difference in policy

shapes.  There is a slight tendency for policies with more nodes present to run slightly slower, pre-

sumedly due to the increased number of predicates to evaluate.  (Result 10)

Wide runs decidedly more efficiently per match than does the other policies.  A part of the reason

is that there are fewer nodes in the policy.  However, based on scale of the difference found between

Figure 7-15.  Round 6 policies
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the different number of policy nodes above, this is only a fraction of the difference.  What seems

more responsible is that two different policy edges are being checked with the same call to the en-

forcement mechanism.  Thus we have Result 11.

7.4 Several edged policies

The goal of the experiments in this section is to explore the cost considerations in applying LaS-

CO policies with two or more edges to a Java program.  We summarize our main results then present

our experiments.

7.4.1 Several edged policy main results

These are our main results of applying LaSCO policies with two or more edges to Java programs:

Result 12.  When more system nodes (derived from more instances of classes) are present in an

executing system,  the result can be fewer matches and much faster policy checking.

Result 13.  The costs associated with checking policies can increase dramatically for more itera-

tions for policies with several edges, but this is not a general inevitability.  It depends on the

characteristics of the system (Result 12) and the selectiveness of the policy (Result 5 and

Result 8).

7.4.2 Round 7 of experiments: several edged policies

In this round, three slightly different programs were run, one with two run options.  Each of the

programs produces a chain of calls between different classes for some number of iterations.  The

depth of the chain is specified by the depth variable.  The same set of policies were applied in all
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cases, some of which are shown in Figure 7-16.  All the policies follow the same pattern as the

shown policies, with one edge matching a call to a method r on a certain class for each “r” in the

name.  When running a program with a certain policy applied, the depth variable is set to the number

of edges in the policy; this results in the precise number of calls in a chain to match the policy.  For

all the policies, each method called to any method named “r”, a policy check is in place, looking for

a match to a particular edge in the policy.  All  checks of a method invocation against a policy edge

result in an initial match.

Figure 7-16.  Some round 7 policies
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The program used in round 7a is shown in Figure 7-17 and the experimental results from apply-

ing policies to that program are shown in Figure 7-18.  The names of the different policies applied

and the different number of iterations they were run with are displayed there.  Note that due to the

construction of program, every call in every iteration after the first one causes an edge to be added

class Ana {

static int num_its= 20;
static int depth= 8;
static int si1=1;
static int si2=2;
static int si3=3;
static double sd1=1;
static double sd2=2;
static String ss1=”1”;
static String ss2=”2”;

public static void main(String argv[]) {
for (int i=0; i < num_its; i++) {

Ana2.r(depth);
}

}

}

class Ana2 {

Figure 7-17.  Java program for experiment round 7a.  The num_its and depth variables were 
varied.

static void r(int d) {
if (d < 1) return;
Ana3.r(d);

}

}

class Ana3 { static void r(int d) {
if (d <= 2) return;  Ana4.r(d);}}

class Ana4 { static void r(int d) {
if (d <= 3) return;  Ana5.r(d);}}

class Ana5 { static void r(int d) {
if (d <= 4) return;  Ana6.r(d);}}

class Ana6 { static void r(int d) {
if (d <= 5) return;  Ana7.r(d);}}

class Ana7 { static void r(int d) {
if (d <= 6) return;  Ana8.r(d);}}

class Ana8 { static void r(int d) {
if (d <= 7) return;  Ana9.r(d);}}

class Ana9 { static void r(int d) {
if (d <= 8) return;}}

Figure 7-18.  Round 7a measurements, number of matches, and time per match.

policy
name

user time (s) with various number of iterations

0 4 8 10 12 16 20 30 40 50

r-r 0.93 1.86 3.85 7.04 11.51 17.19

r-r-r 0.96 7.65 50.61 166.05 391.78 761.57

r-r-r-r 0.93 3.39 31.87 75.282 153.43 485.04 1175.63

r-r-r-r-r 0.95 10.79 285.63 858.272 2138.75 9235.89

r-r-r-r-r-r 0.95 43.38 2605.33

policy
name

number of matches for various number of iterations

4 8 10 12 16 20 30 40 50

r-r 100 400 900 1600 2500

r-r-r 1000 8000 27000 64000 125000

r-r-r-r 256 4096 10000 20736 65536 160000

r-r-r-r-r 1024 32768 100000 248832 1048576

r-r-r-r-r-r 4096 262144

policy
name

TPM (ms) with various number of iterations, N

4 8 10 12 16 20 30 40 50

r-r 9.33 7.29 6.79 6.61 6.51

r-r-r 6.68 6.21 6.11 6.11 6.08

r-r-r-r 9.62 7.56 7.44 7.35 7.39 7.34

r-r-r-r-r 9.60 8.69 8.57 8.59 8.81

r-r-r-r-r-r 10.36 9.93
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to the system graph alongside the previous one, i.e., it is placed between the same two system edges

as the same call in a previous iterations.  This is depicted in Figure 7-19.  This forms a worst case

in terms of the number of matches that result from chained calls with these policies.

Figure 7-19.  Example system graphs for round 7a, 7b, 7c, and 7d with r-r-r  after the 5th iteration.  
The edges are invocations of a method r.  The columns of nodes represent the class Ana and 

different instances of the classes Ana2, Ana3, and Ana4 (or for round 7a, the classes themselves), 
respectively.  Complete matches can be located by finding paths from the Ana node to Ana4 

nodes.

Round 7a: 125 matches
Round 7b: 43 matches

Round 7c: 15 matches Round 7d: 5 matches
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The program used in round 7b and 7c is shown in Figure 7-20.  For round 7b, it the buckets vari-

able is set to 2 and for round 7c it is set to 4.  The results from round 7b are shown in Figure 7-21.

import java.util.*;

class Ana {

static int num_its= 40;
static int depth= 4;
static int buckets= ‹buckets› ;
static Ana2 a2[]= new Ana2[ ‹buckets› ];
static Ana3 a3[]= new Ana3[ ‹buckets› ];
static Ana4 a4[]= new Ana4[ ‹buckets› ];
static Ana5 a5[]= new Ana5[ ‹buckets› ];
static Ana6 a6[]= new Ana6[ ‹buckets› ];
static Ana7 a7[]= new Ana7[ ‹buckets› ];
static Ana8 a8[]= new Ana8[ ‹buckets› ];
static Ana9 a9[]= new Ana9[ ‹buckets› ];
static Random randgen= new Random(0L);

public static void main(String argv[]) {
for (int k=0; k < Ana.buckets; k++) {

Ana.a2[k]= new Ana2();
Ana.a3[k]= new Ana3();
Ana.a4[k]= new Ana4();
Ana.a5[k]= new Ana5();
Ana.a6[k]= new Ana6();
Ana.a7[k]= new Ana7();
Ana.a8[k]= new Ana8();
Ana.a9[k]= new Ana9();

}
for (int i=0; i < num_its; i++) {

Ana.a2[Ana.getRand()].r(depth);

Figure 7-20.  Java program for experiment round 7b and 7c.  The num_its, depth and buckets 
variables were varied.

}
}
static int getRand() {

return (int)Math.floor(Ana.randgen.next-
Float()*Ana.buckets);
}
}

class Ana2 {
Ana2() {}
void r(int d) {

if (d < 1) return;
Ana.a3[Ana.getRand()].r(d);

}
}

class Ana3 { Ana3() {} void r(int d) {
if (d <= 2) return; Ana.a4[Ana.getRand()].r(d);}}
class Ana4 { Ana4() {} void r(int d) {
if (d <= 3) return; Ana.a5[Ana.getRand()].r(d);}}
class Ana5 { Ana5() {} void r(int d) {
if (d <= 4) return; Ana.a6[Ana.getRand()].r(d);}}
class Ana6 { Ana6() {} void r(int d) {
if (d <= 5) return; Ana.a7[Ana.getRand()].r(d);}}
class Ana7 { Ana7() {} void r(int d) {
if (d <= 6) return; Ana.a8[Ana.getRand()].r(d);}}
class Ana8 { Ana8() {} void r(int d) {
if (d <= 7) return; Ana.a9[Ana.getRand()].r(d);}}
class Ana9 { Ana9() {} void r(int d) {
if (d <= 8) return;}}

Figure 7-21.  Round 7b measurements, number of matches, and time per match.

policy
name

user time (s) with various number of iterations

0 10 20 30 40 50

r-r 0.95 1.75 3.20 5.60 8.69 12.80

r-r-r 0.95 3.65 18.31 54.44 123.90 238.64

r-r-r-r 0.95 15.11 191.01 974.18 3128.39 8848.40

r-r-r-r-r 0.96 151.15 3064.66 19530.88

r-r-r-r-r-r 1.15 566.89

policy
name

number of matches for various number of iterations, N TPM (ms) with various N

10 20 30 40 50 10 20 30 40 50

r-r 58 202 468 808 1282 13.81 11.14 9.94 9.58 9.24

r-r-r 268 2248 7140 16656 32500 10.07 7.72 7.49 7.38 7.31

r-r-r-r 1380 20408 107148 348064 824488 10.26 9.31 9.08 8.99 10.73

r-r-r-r-r 14792 259360 1652664 6758144 21151000 10.15 11.81 11.82

r-r-r-r-r-r 40040 2256876 25526000 154780480 546383312 14.13
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The results from round 7c are shown in Figure 7-22.  For these, the bucket size corresponds to the

number of instances created of all each class (except Ana).  See Figure 7-19.  Note that while which

instance to jump to for the next invocation is chosen randomly as a means to spread out the edges

in the graph, the execution is deterministic and repeatable due to the constant seed.

Figure 7-22.  Round 7c measurements, number of matches, and time per match.

policy
name

user time (s) with various number of iterations

0 10 20 30 40 50

r-r 1.13 1.89 3.33 5.59 8.52 12.33

r-r-r 1.15 3.11 11.67 29.32 66.18 127.01

r-r-r-r 1.15 7.10 58.61 281.58 862.86 1959.09

r-r-r-r-r 1.15 35.78 544.46 3151.41

r-r-r-r-r-r 1.15 56.28 2130.13

policy
name

number of matches for various number of iterationsTPM (ms) with various number of iterations

10 20 30 40 50 10 20 30 40 50

r-r 30 102 236 406 654 25.29 21.55 18.88 18.19 17.11

r-r-r 75 730 2005 4897 9648 26.07 14.40 14.05 13.28 13.05

r-r-r-r 226 3078 15987 50688 114522 26.33 18.67 17.54 17.00 17.10

r-r-r-r-r 1968 29272 161052 594420 1782768 17.60 18.56 19.56

r-r-r-r-r-r 2738 124513 1248415 5775560 18271876 20.13 17.10

class Ana {

static int num_its= 50;
static int depth= 5;
static int si1=1;
static int si2=2;
static int si3=3;
static double sd1=1;
static double sd2=2;
static String ss1="1";
static String ss2="2";

public static void main(String argv[]) {
for (int i=0; i < num_its; i++) {

Ana2 a=new Ana2();
a.r(depth);

}
}

}

class Ana2 {
Ana2() {}

Figure 7-23.  Java program for experiment round 7d.  The num_its and depth variables were 
varied.

void r(int d) {
if (d < 1) return;
Ana3 a=new Ana3();
a.r(d);

}
}

class Ana3 { Ana3() {} void r(int d)
{if (d <= 2) return; Ana4 a=new Ana4(); a.r(d);}}
class Ana4 { Ana4() {} void r(int d)
{if (d <= 3) return; Ana5 a=new Ana5(); a.r(d);}}
class Ana5 { Ana5() {} void r(int d)
{if (d <= 4) return; Ana6 a=new Ana6(); a.r(d);}}
class Ana6 { Ana6() {} void r(int d)
{if (d <= 5) return; Ana7 a=new Ana7(); a.r(d);}}
class Ana7 { Ana7() {} void r(int d)
{if (d <= 6) return; Ana8 a=new Ana8(); a.r(d);}}
class Ana8 { Ana8() {} void r(int d)
{if (d <= 7) return; Ana9 a=new Ana9(); a.r(d);}}
class Ana9 { Ana9() {} void r(int d)
{if (d <= 8) return;}}
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Round 7d uses the program in Figure 7-23 and Figure 7-24 shows its run times.  For this pro-

gram, there is a new class instance created for every call to r.  Only one match is formed per itera-

tion.

Compare the run times for the different policies from the different rounds with different number

of iterations.  There can be a large difference in the amount of time taken.  For example, consider r-

r-r-r  with 20 iterations.  For round 7a, it took 1175.63 seconds, 974.18 seconds in round 7b, 58.61

seconds in round 7c, and only 8.51 seconds in round 7d.  The difference is the number of matches:

160,000, 20,408, 3078, and 20, respectively.   As shown, the number of system nodes present can

have a large impact on the number of matches.  (Result 12)  We can further conclude that large

amount time that can be taken in checking policies with several edges is not inevitable, but depends

on the execution.  From prior results, we also know the selectiveness of policy edges can also help.

(Result 13)

7.5 Qualitative analysis

In this section, applying LaSCO to Java is considered from a point of view beyond the implemen-

tation described in this chapter.  In the following subsections, performance issues are discussed,

whether LaSCO can state useful policies for Java, the ease of writing policies, and LaSCO is com-

pared to the Java Security Architecture.

7.5.1 Performance

Whether LaSCO can be applied to Java in a practical setting might often depend on how much

of a performance impact checking policies has on an executing program.  As the quantitative anal-

ysis has shown, this is could be an issue.  However, the current implementation is hardly optimized.

It is written in Java, Perl, and JPL  The focus was on the convenience of development over the effi-

ciency of execution.  Some ideas that might make LaSCO policy checking more efficient are men-

tioned here:

Figure 7-24.  Round 7d measurements.

policy
name

user time (s) with various number of iterations

0 10 20 30 40 50

r-r 0.94 1.50 2.47 3.86 5.70 7.94

r-r-r 0.94 2.16 5.02 10.92 21.30 37.54

r-r-r-r 0.95 3.11 8.51 20.02 40.41 72.76

r-r-r-r-r 0.95 4.36 12.67 30.06 61.09 110.13

r-r-r-r-r-r 0.95 6.94 26.40 72.19 158.22 297.35
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• A large amount of savings can be had if a method is known at compile time to have no need to

be checked.  This is the case if the statically available information implies that no policy edge

will match regardless of state at run time.  So, an implementation can take advantage of this by

doing as much static analysis as possible.

• Building complete matches can be improved for policies with more than two semantic entities

by remembering all known partial matches, rather than just initial matches.  Thus to develop

new complete matches, new initial matches need only consider the stored ones, rather than try-

ing to build all possible complete matches.  (There is a trade-off here for increased memory

requirements.)

• Custom-generating code to check a particular policy or set of policies should improve run time

efficiency.

• Implement it in a language with more efficient execution and with more efficient data struc-

tures, e.g., C or C++ and import it into Java using the Java Native Interface.

Regardless, Java has a reputation for executing slowly as is, so it is not clear that performance-crit-

ical application would be written in it.

A more complete implementation of LaSCO for Java would be able to accept policies with iso-

lated nodes in them.  Section 6.5.3 described how this might be done.  A change in data members

might even be infrequent, reducing the overhead of checking.  When an portion of code executes

that contains a relevant member change, a snapshot of the relevant data members for the class or

instance must be added to the SystemGraph and this new instance checked against isolated policy

nodes that might match.  This is clearly less work than checking a method, so should run faster.

In general, when the overhead for checking policies becomes overwhelming, it is when there are

a large number of matches to follow up on.  Without changing the policy there is little that can be

done about that -- the policy says each of those cases must be checked.  If the policy can be rewritten

such that the domain matches less often, that would help.

The worst case number of matches of a certain policy to a certain system history is θ(|M||E||O||L|),

where |M| is the number of events, |E| is the number of edges in the policy graph, |O| is the number

of instances of objects, |L| is the number of isolated nodes in the policy graph.  This occurs if every

policy edge matches every event and every isolated policy node matches every object instance.
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7.5.2 Stating useful policies

For the setting in which one is wishing to add assertions about method invocations or object state

to their code or to check invariants, this is a straightforward matter in LaSCO.  The nodes represent

objects and the edges events.  Even those involving context (history or state) can be easily handled.

The situation is similar where a program is being run by persons not necessarily trusted, e.g, at a

kiosk.  Also consider an environment in which an implementation is being used by a group of per-

sons with different roles.  Here one might make assertions about role usage.  Provided the role is

denoted in object state, this can be handled.

In an environment where one is wishing to guard oneself against malicious code, it would seem

that one wants to guard access to a resource or a set of resources.  One can state policies in which

the methods or sources that may access a certain method or a certain resource can be delineated.  If

one has in mind a broader idea of access that is irrespective of the sequence of method calls, this

can handled as well.  The most convenient manner is to define the system model differently than is

done in Section 6.1.  One can have any event be the transitive closure of method invocations.  That

is, when A calls a method on B and B calls a method on C, then A is also accessing C by the later

invocation.  One might use such a system model if one was worried about information flow.

7.5.3 Ease of writing policies

Nodes and edges are a natural and common means of expressing classes and their relationship

through method calls.  LaSCO policies are a sort of template based on this, a natural extension of

this.  Through the user interface one can write policies using the the program to which they will be

applied as a guide and reference, creating the template from the instance.  Generic policy may also

be instantiated from a program and generic policies created and saved.  If the user prefers they can

also create policies using direct manipulation without reference to a program.

7.5.4 Comparison to the Java Security Architecture

Here, some of the key differences between LaSCO and policy based protection in the Java Secu-

rity Architecture for JDK version 1.2 [14] are discussed.  This architecture provides some primitives

such as signed code to the application developer.  It also provides access control services to classes

that employ it, such as the standard file and network I/O classes.  These access decisions are based

on policies -- sets of allowed permissions.  Permissions generally consist of a target and an action.

An access is allowed if the caller is allowed the action on the target.  Each of these permissions are

defined by the class employing the access control.
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One advantage that the Java Security Architecture has is that it can monitor and control activities

that LaSCO cannot.  For example there is no way to describe a restriction on what is allowed to cre-

ate a thread, at least in the system model described in Section 6.1 and the current implementation.

However, as [14] indicates, the Java Security Architecture (at least at present) does not provide

the correct mechanisms to provide access control within a system or application, since it does not

understand the internal semantics.  For example, its controls are not fine grained enough to prohibit

invocation of a method where such denial is based on parameters’ values or the history of events

and state.

There is a bit of work involved in applying the Java Security Architecture to a new system.  Ac-

tions and targets must be defined and access checks must be strategically placed.  If this is done

manually, it is subject to errors (with respect to an intended a higher level policy) and it does not

express the intended policy.  This could presumedly be conducted by a higher level mechanism sim-

ilar in function to the LaSCO complier for Java.  Permissions are similar to access control entries

and do not convey higher level intent.
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8 LaSCO Application to GrIDS

This chapter presents our application of LaSCO to networks as observed by the GrIDS intrusion

detection system.  This includes both the actual activity on the network and reports by data sources

and intrusion detection systems.  A GrIDS network is a good contrast with a Java program as an ap-

plication environment for LaSCO since it is distributed, has different types of objects and events and

a difference notion of state, and policies are enforced in a different manner.  A result of this study

is that policies and IDSs are mutually beneficial, but there are some design considerations for both

to keep in mind to enable policies to be enforced using IDSs.

We begin this chapter with a description of GrIDS (Section 8.1), present a LaSCO system descrip-

tion for a GrIDS network (Section 8.2), present a design for monitoring networks for policy viola-

tions using GrIDS (Section 8.4), give some example policies (Section 8.3), and conclude with few

observations about applying policies to IDSs (Section 8.5).

8.1 GrIDS

The Graph-based Intrusion Detection System (GrIDS) [8,32] is an intrusion detection system for

large networks.  GrIDS was designed at UC Davis to explore the issues involved in performing large

scale aggregation of traffic patterns.  It features a hierarchical decomposition of a protected organi-

zation and its networks.  GrIDS puts together reports of incidents and network traffic from various

sources into graphs, and is able to aggregate those graphs into simpler forms at the higher levels of

the hierarchy.  A prototype version of GrIDS has been implemented and is deployed at several orga-

nizations.
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8.1.1 Hierarchy of departments

GrIDS models an organization as a hierarchy of departments, such as the one depicted in

Figure 8-1.  Each department consists of a set of hosts and departments.  Viewed as a graph, this

forms a tree with hosts as the leaf nodes.  This hierarchy may be reconfigured while GrIDS operates.

Each department in the hierarchy has an aggregation engine, which builds and evaluates graphs of

activity within that department.  The hierarchy of departments is used to help GrIDS scale and to

manage how different parts of the network should be monitored.

8.1.2 Detecting intrusions

Intrusion detection systems that observe the activity on a single host or on a single network seg-

ment are limited in the scope of activity they observe.  As a result, they may not be able to observe

all the activity needed to determine that an attack, for example from a worm, is underway.  IDSs

that are not for a single host or network segment but that are centralized have scalability issues that

cause it to be limited in the scope of observed activity as a practical matter.  GrIDS addresses this

by decentralizing initial detection to low level departments, and summarizing this for higher depart-

ments.

So as to allow a department to decide what types of attacks to look for and to establish thresh-

olds, each department possess a set of rulesets.  A ruleset describes what type of activity to look for,

how to combine them, and when to send alerts.  Thus, a ruleset might be created for a department

to meet its needs.

8.1.3 GrIDS system overview

The software infrastructure for a department consists of two components: a graph engine and a

software manager.  The engines uses the departmental hierarchy as the means for aggregation of

graphs, as described in Section 8.1.4.  The software managers control software operation in their

Acme Widgets Inc.

Human Resources

Office of CFO

Financial

Payroll Audits Personnel Training

Figure 8-1.  A GrIDS hierarchy of departments.
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local department, and maintain that department's sense of the hierarchy around it (parent depart-

ments, child departments, and hosts directly contained in the department).

The whole GrIDS hierarchy requires an Organizational Hierarchy Server (OHS), which is the

only place guaranteed to have a complete view of the hierarchy.  It is used as a central place to guar-

antee the consistency of the hierarchy, and to implement such functions as locking a portion of a

hierarchy when a reconfiguration is underway.  In contrast, the software managers for individual de-

partments have only a local view of the parts of the hierarchy immediately adjacent to their depart-

ment.

Additionally, every host that runs GrIDS software (aside from user interfaces and the OHS) has

a module controller, which is responsible for starting and stopping the GrIDS modules on that host

and for configuring them.  Any piece of software (most commonly other intrusion detection systems

and state reporting programs) can serve as a GrIDS data source.  The reports from a data source take

the form of a graph that gets fed into the engine for the department to which it belongs.  A passive

network monitor is a standard GrIDS data source.

Finally, user interfaces acquire views of the hierarchy and use them to help users visualize it and

request changes to its structure and to manage what software is running in a department.  All chang-

es are performed as transactions on the hierarchy.  They are initiated by a user interface, but require

the involvement of instances of the GrIDS components.  In addition, the user interface may be used

to manage the rulesets for a department.  The user interface receives and displays alerts from the

engine in the department it monitors and may be used to query the engine regarding its current

graphs.

8.1.4 GrIDS engine

This section describes aspects of the GrIDS graph engine.  The engine takes basic activity reports

and converts them into graphs.  The overall purpose of the graph engine is to build graphs of net-

work activity and analyze them to see if they are suspicious.  The engine implements a set of

rulesets.  When a ruleset detects what it considers to be suspicious activity, it sends an alert message

to the user interfaces that are monitoring the engine.

8.1.4.1 Report processing and resulting communication

Reports come into the engine from either a child engine or from a GrIDS data source.  In either

case, the reports take the form of a graph consisting either of a single node or a single edge with
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adjacent nodes.  At the point the reports come in, it is passed through three buffering mechanisms

with different goals:

• one sorts reports (which could arrive out of order) by time,

• one removes redundant reports, and

• one renames edges for a particular engine's point of view.

All incoming reports are assumed to have a time attribute which represents the true time at which

the event to which they refer occurred.  After passing though the last buffer, the nodes in the report

represent either children of the engine’s department (either hosts or departments) or hosts external

to the department.

The reports are then given to each of the rulesets for processing (unless the report is targeted to

a particular ruleset).  A report might be accepted by a ruleset for incorporation or not.  An accepted

report might be merged with the graphs already maintained by that ruleset.  If one of the nodes in

an edge report was external to the department, at this point, that edge (in its new graph context) is

passed to the same ruleset in the parent engine (assuming there is one), with nodes representing chil-

dren renamed to the name of the department.  If the attributes of a graph have changed, the graph is

reported to the same ruleset in the parent engine in summary form, as a single node with the global

attributes of the graph as the node’s attributes.  (See [8] for more details of this.)  If a graph is idle

long enough, it times out.  Should a graph formed by a ruleset be determined to be suspicious by

the ruleset, it is sent to the user interface for the department as an alert, along with an alert string

and alert level.

Note that by using the approach of passing reduced graph to the parent engine (rather than the

whole graph), GrIDS is able to infer the suspicious nature of large graphs, while still reducing dras-

tically the amount of information which must be considered at the top of the hierarchy.  It is this that

makes GrIDS a scalable design.

8.1.4.2 GrIDS graphs

Graphs built in an engine, reports output from the engine, and reports to the engine consist of

nodes, edges, attributes of nodes, attributes of edges, and global attributes of the graph as a whole.

All attributes consists of a pair (name,value).  Names are identifiers, while attribute values may ei-

ther be scalars (interchangeably strings, numbers, or logical values), sets of scalars, or ordered lists
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of scalars.  Certain attributes on a graph in an engine are maintained by the engine implicitly.  These

are described in Figure 8-2.

A ruleset might produce a graph such as depicted in Figure 8-3.

8.1.4.3 Rulesets

The rulesets consist of several sections that are used for different tasks.  These are used in a par-

ticular order to process incoming reports and to aggregate graphs.  There are rules to filter incoming

reports to type wanted and rules to transform the attributes of a report into the attributes maintained

by the ruleset.  Certain rules decide whether a graph should combine with other graphs with which

it overlaps and how the overlapping attributes should be updated upon combining.  Finally, there

are rules to evaluate whether a graph warrants sending an alert  Each of the rules in the different

sections contain expressions on attributes and many update a particular attribute.

8.2 System description for GrIDS

In this section, we describe what a LaSCO system description for a network might look like,

when it is being used by GrIDS.  There is a natural correspondence, but there are a few challenges.

Global Attributes:
• gids:  a set of graph ids associated with this graph,

any of which can be used as a unique identifier.
• ruleset:  the name of the ruleset this graph is in.
• nnodes:  the total number of nodes in a graph.
• nedges:  the total number of edges in a graph.

Node Attributes:
• name:  the host or department the node represents.

Figure 8-2.  Graph auto-computed attributes

Edge Attributes:
• source:  the departments and host associated with

the source of this edge that are within this engine's
scope, in a list starting with the name of the source
node, and ending with the particular host.

• dest: same as source except pertaining to the desti-
nation side of the edge.

• id:  a string unique identifier for this edge.

Figure 8-3.  Example GrIDS graph.

name: v
rootkit_installed: 1 prot: rsh

time: 117
…

name: server
rootkit_installed: 0

prot: nfs
time: 130

…

name: t
rootkit_installed: 0

name: b
rootkit_installed: 0

prot: http
time: 42

…

name: w
rootkit_installed: 0

nnodes: 5
nedges: 3

…
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An active attempt is made to keep the description close to what is present in GrIDS in order to keep

the implementation simple.  Keeping it close would also make it simpler for the policy writer famil-

iar with GrIDS or just trying to learn GrIDS.

The objects in the system are hosts on a network.  Events correspond to the events described in

the network monitor chapter of the GrIDS design document [8].  In short, several events are reported

for each TCP connection or sequence of UDP packets.  These always contain a begin and an end

event.  The events that correspond to the middle of of a connection are particular to the protocol.

For telnet, they correspond to option negotiation, authentication, data, and reset.  If data sources oth-

er than the network monitor generate reports containing events, then each of the types of edges that

generates is also an event.  In any case, the event attributes are identical to those defined for that

type event (i.e., those that are found in the report).  The time attribute is standard on edges and rep-

resent seconds as Unix reckons time.  This is used for the required time attribute on edges.  The id

attribute is standard and unique.  (It would be nice to be able to have a certain attribute, call it

data_source, that is a string indicating the entity that generated the report.  However, at present, this

information is not available as part of the report, at least in any standard way.)

The attributes on nodes correspond to those reported by the data sources active for the corre-

sponding host.  For example, alert from the execution monitor.  The id and name attributes are both

always the fully qualified name of the host.  Unlike with objects and classes in the Java case, the

state of a host at a particular time is not directly observable in GrIDS.  That is, there is nothing that

can be done to actively check the state.  So, for each attribute, the last reported value before the end

of a second is the value at that time.  We could also introduce an attribute type which always has

value “host” to make the objects more self-descriptive.

8.3 Example Policies

  Two example policies for networks were presented in Figure 3-14 on page 26 and Figure 3-15

on page 26.  A policy that makes use of the special information found in GrIDS is presented in

Figure 8-4.  The policy says that if a host has been flagged as having RootKit installed on it and it

type=“host” && 
name=”server”

time=$T

prot != “nfs”

type=“host” && 
rootkit_installed type=“host”

Figure 8-4.  Policy graph for server compromised connection policy. 

time > $T
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connects to the host named “server” followed by another connection to another host, then the sec-

ond connect cannot use the NFS protocol.  The network activity described in Figure 8-3 would

match this policy and violate it.

8.4 Enforcing LaSCO on GrIDS

Enforcing LaSCO on a GrIDS hierarchy is a collaborative effort among the different aggregation

engines.  The cleanest manner in which to integrate this capability is to expand the capability of the

engine to enforce LaSCO policies natively, with the assistance of the generic policy engine

(Section 5.2).  Thus LaSCO policies would be peer to rulesets, receiving the same type of reports

and producing alerts with the policy is violated.  This section describes key aspects of how this ex-

tension would operate.

An alternate approach, in which LaSCO policies are translated into rulesets for enforcement has

also been considered.  That approach proved to be difficult, primarily due to the peculiar program-

matic approach that rulesets require.  Even with extensions to the ruleset, constructing a translation

for the general case was quite a challenge.

Contingent matches (defined below) maintain the state of how policies match what has been seen

thus far.  Each engine maintains a pool of these for each policy.  These are passed among engines

in a certain manner to detect all policy matches and violations.  Within a engine, processing for each

new report or new contingent match consists of two parts:  producing new contingent matches and

evaluating these new contingent matches.  Those steps are discussed in the following subsections.

Before that though, contingent matches are described and the idea of locality of policy nodes and

edges is introduced.

8.4.1 Contingent matches

The idea of a partial policy to system match (Section 4.5) is generalized to what is termed a con-

tingent match.  Contingent matches are partial matches that may contain contingent nodes whose

domain predicate has not yet been evaluated at certain time(s).  These nodes have an adjacent edge

that matched at each of those times.  However, not enough information was available about the node

to evaluate it.  Thus, the partial match’s validity is contingent upon the successful evaluation of the

contingent nodes at the given times.  A contingent match is never complete nor considered a partial

match until all the contingent nodes have been successfully evaluated.
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In terms of representation, a contingent match may be a partial match augmented with a set.  The

set is a group of contingent conditions.  A contingent condition is a tuple consisting of a policy edge

and which node of the edge (either the source or the destination)  needs to be evaluated (with respect

to the system node that is bound to that location).

Merging contingent matches is similar to merging partial matches.  However, a contingent con-

dition may (and should) be removed from either contingent match prior to merging the partial

matches if the policy edge has an event bound in the other match and does not list the same contin-

gent condition in its set.  (The requirement that policy edge needs to be bound to the same event and

that the variable conditions must be unifiable are taken care of when merging the partial matches.)

8.4.2 Locality of policy nodes and edges

Due to the way in which the GrIDS hierarchy is organized, reports about a certain host are only

sent to one engine.  Specifically, it is sent to the engine that contains the host.  Therefore, that is the

only place that has the full state attributes for the corresponding system object.  Here it is considered

a local host; elsewhere it is non-local.  The only thing known about the object state at the engines

in which it is non-local is its name (and therefore its id).  (As a side note, non-locality is why con-

tingent matches are needed.)

It is presumedly not uncommon for a policy to be referring to a particular host by name in one

or more of its node domain predicates.  In such cases, a policy node may be considered to inherit

the locality of the host it represents.  A policy node is termed local if it is known to match only local

hosts.  A policy node is termed non-local if it is known that it will never match local hosts.  If a

policy node is neither local nor non-local, it is termed a general node.

Policy edges may then also be classified in terms of their locality, based on the locality of the

nodes they are adjacent with.  A policy edge is local if both its adjacent nodes are local, and is non-

local if both its adjacent nodes are non-local.  If only one node adjacent a policy edge is local, then

the policy edge is termed to be half-local.  Otherwise, the policy edge is general.

8.4.3 Producing new contingent matches

New input into the engine is processed according to whether it is a report from a general data

source or a report of a contingent match from a lower level engine.  These are discussed separately

in the following subsections.



108

8.4.3.1 New activity reports

When a new activity report arrives from a data source, it is first sent through the buffers described

in Section 8.1.4.1.  For rulesets it is sent through all the buffers, as described there.  For processing

by policy enforcement, however, it is just passed through the time reordering buffer and the redun-

dant report elimination buffer.

After buffering, all the reports for a given second are considered together.  The new reports are

converted into system nodes and system edges of the form described in Section 8.2.  For edges, this

is a straightforward process.  For certain nodes, the values of the attributes for the time needs to be

derived.  These nodes are the ones that are on the new reports, either by itself or as an incident node

in an edge report.  To start the determination of attribute values, the ones from the last time instance

available are used.  The node is then updated with attributes mentioned in node reports for that node.

As an optimization, only those node and edge attribute mentioned in any policy need be recorded.

These system nodes and edges are added to a SystemGraph maintained for all policies collec-

tively, to represent local activity.  (Unlike in the Java case in which separate SystemGraphs are

maintained, there is little advantage to doing so in this case.  The difference here is that there is no

static foreknowledge of what edges a given event will match.  So there are no hints to pass to the

generic policy engine.  Since cached matches are used, there is little extra cost in having edges

around that didn’t match anything, when evaluating new activity.)

The generic policy engine would be extended to a degree to allow a call that reports back all the

contingent matches found between a policy and a SystemGraph.  These contingent matches are not

just the maximally sized ones, but include subsets of others, to include even initial matches.  How-

ever, contingent nodes are only established for non-local and general policy nodes; the local policy

nodes can always be evaluated.  Note that at most one end of a policy edge is contingent since if

both ends of a edge report were not local, it would not be found in the engine.  The particular option

used with this call would be to only report back the contingent matches including a new system edge

or an updated system node in the SystemGraph.  These new contingent matches are each associated

with one of the policies in effect.

8.4.3.2 New contingent match reports

When contingent matches are received by an engine, they are handed directly to the part of the

engine responsible for processing them.  Each is associated with a particular policy.  Let us consider

a particular contingent match that has arrived.  An attempt is made to combine (as described in
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Section 8.4.1) the contingent match with all the partial matches in the pool.  Those matches that suc-

ceed are the contingent matches for the next step.

Actually, there are ways to organize the pool of contingent matches so that they need not all be

compared with the incoming match -- some of the ones that will fail can be skipped.  A simple way

is, for each of the semantic entities of the policy, to keep the contingent matches indexed by the sys-

tem node or edge that matches, if any do.  Then to find the candidate contingent matches a set is

created for each of the established bindings to semantic entities in the new contingent match.  This

set corresponds to the contingent matches that have the same system node or edge plus those that

had no binding for that policy piece.  The intersection of these sets is the set of candidate contingent

matches sought after.  This process eliminates the contingent matches that disagree with the bind-

ings for the semantic entities.  There still can be disagreement for the incident nodes, with system

nodes being multiply used, and with the variable bindings.  There are likely ways to further index

the matches by these criteria as well.  It also seems like that there are results from database theory

on efficient ways to organize the data to avoid the need to take the intersection.  It is not clear how

worthwhile further optimizations are in actual use.

8.4.4 Evaluating new contingent matches

For each new contingent match with all local isolated policy nodes matched and all local and

half-local policy edges matched, further processing is done.  If the match is complete, then the re-

quirement is evaluated.  (Actually, to do this, any attributes found in the requirement need to be

passed along with the contingent match, as this information may not be local.  Alternately, the re-

quirement predicates may be evaluated early with just the attributes, and the result passed along.)

If the requirement is satisfied, then the match may be discarded since the policy was not violated.

If any of the requirement predicates evaluates to false, then the policy is reported to have been vio-

lated by sending an alert.  A graph describing the violation may be produced from the match.

However, if the contingent match is not complete, the contingent match is sent up to the engine

in the parent department, if any.  Furthermore, if all general semantic pieces have been matched in

the contingent match (i.e., only non-local semantic pieces remain), the match may be discarded

since there is no further growth than can be made in the local engine.

In any case, all of the new contingent matches except those that were discarded and incoming

match are added to the pool for later growth.
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8.5 Implementing policies using an IDS

The study of applying LaSCO to GrIDS has inspired several observations about both policies and

intrusion detection systems.

It is advantageous for an IDS to be able to enforce policies.  (Enforcement in this case typi-

cally means monitoring for policy violations and perhaps responding to them.)  Although a partic-

ular policy language might not be able to express all that is expressible in a particular IDS’s native

methods, policies represent restrictions in a more structured manner.  Besides being able to convey

the intention of the restriction more clearly, this can mean that the policy can be easier to write.  If

the policy is easier to write or if the policy (possibly used elsewhere) is already written in a policy

language, then the native means of writing policies might not need to be learned or used.  The desire

to state policies without having to write rulesets for GrIDS was what initially motivated LaSCO's de-

velopment.

There are benefits from enforcing policies with an IDS.  Despite the fact that IDSs typically

cannot directly prevent policy violations, certain benefits can be found in enforcing policies in this

manner.  Chief of these is that the IDS can provide information not typically available at the level

of the system, e.g., inferences that the IDS has made regarding suspicious activity on the system and

even knowledge that policies have been violated.  This information could be used in making a policy

decision.  For example, a policy might come into effect only “/bin/sh” has been found to be modi-

fied.  As described in Section 8.2, this information can be incorporated in LaSCO by attributed de-

fined on the system objects and events.  The advantage provided by GrIDS in particular to policies

is multiplied since GrIDS incorporates the output of other IDSs.  Another advantage to enforcing

policies with an IDS is that the IDS might already have the infrastructure in place to do the monitor-

ing and communication of system events.

An IDS needs to provide a practical means of expressing the policy in native terms.  The

IDS should either be able to accept expressions of policy directly, it should provide a target lan-

guage that is convenient to generate from policy specification, or it should allow modules to be pro-

vided for detection analysis.  This may be in addition to another native method of expression.

As discussed earlier, GrIDS rulesets are not particularly suitable for automated generation of se-

curity constraints (at least for those coming from an expressive a source as LaSCO policies).  (To be

fair, it was not designed to be; the ruleset language was intended to have its writer think in a certain

manner and to keep detection linear (e.g., no graph searches).)  Although GrIDS as originally con-
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ceived does not accept analysis modules, it was not a difficult extension to add LaSCO enforcement.

This was due to the modular design.

A policy language must be able to state policies for the target system.  In order for an IDS to

enforce a policy, the policy language used must be able to state policies for the system the IDS is

monitoring.  Moreover, it must be able to state it at a sufficient level of detail that it can be enforced.

For LaSCO and GrIDS, LaSCO was able to model the network that GrIDS observes, including the in-

formation provided by arbitrary data sources.

A policy language should be amenable to decomposition for IDS monitoring, especially if

the IDS is distributed.  In a distributed setting, all events that compose a certain application of pol-

icy may not be observed at the same location.  Thus, there must be a degree of coordinated analysis

in the general case.  In order for this to not involve sending all events to a central location, one must

be able to decompose the policy into individual parts to look for.  It is observed instances of these

parts that can be passed during the coordinated analysis.  Thus is should be possible to readily infer

the individual parts to monitor for from the the policy statement.  This is decomposition of policy.

If a policy language is amenable to decomposition, then it would be useful even in the non-distrib-

uted case if the IDS can use it for incremental analysis.

We find LaSCO to be quite amenable to decomposition.  From its formal semantics, we know

that the semantic pieces defined in Section 4.4.2 (i.e., policy edges and isolated nodes) are what

needs to be monitored for atomically (i.e., must be observed at the same instance and is the basic

element of composition).  A minor challenge in applying this to GrIDS was that the state attributes

for both ends of an event might not be centrally located, but introducing contingent matches ad-

dressed that.
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9 Comparisons with other work

When considered with respect to the desirable characteristics of a security policy language we

introduced in Section 1.3, LaSCO stands out among other policy languages and security statement

mechanisms.  It is the only known work to be strong on clarity, executability, and the precision with

which an intended policy may be expressed.  Furthermore, only a few other languages share user

friendliness as an attribute.  Those efforts that are not strong on clarity of course cannot be strong

in amenability for formal reasoning.  The attribute of being able to express policies for many differ-

ent systems and the attribute of being able to express policies at multiple levels of detail are strongly

related. 

The traditional decision model of access control in computers has access decisions based on the

subject, object, and privilege requested.  In an access matrix [23], what is allowed or denied is re-

corded for each of these triples individually.  This clearly does not convey intent and does not allow

for much expressiveness in policy decisions.  It is easier to understand a single policy than a set of

access rights.  For example, this does not allow for decisions based on the context of the system

(states of objects and other events that are occurring or have occurred) or policies restricting the

state of objects.  In access control lists and capability-based systems (see [11]), each triple need not

be specified, but it maps down to the same model and has the same expressiveness.  On the positive

side of this model, as it amounts to a table lookup, it can be readily enforced.  Additionally, the mod-

el is general and can be applied to many systems and perhaps to different levels of detail.  Some

extensions to this model have been proposed, such as BEE [25], which can refer to global attributes

in evaluating an access.  This allows more expressiveness, but falls short of LaSCO in terms of pre-

cision.  TAM [28] extends access matrices to model certain safety properties.  This increases its abil-

ity in terms of formal reasoning, with respect to the general model.  However the model is built on

system primitives without distinct semantics, which, as Woo and Lam [33] argue, is less clear.
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Deeds, developed by Edjlali, Acharya, and Chaudhary [12], is a history-based access control

mechanism for Java whose goal is to mediate accesses to critical resources by mobile code.  This

resembles the implementation of LaSCO for Java described in Chapter 6 in that they both insert code

into Java programs.  However, whereas their basis for access control decisions is the result of dy-

namically executing Java code provided by the user, LaSCO’s basis is formal policies.  We argue that

our approach better captures the intention of the policy writer, is more clear, is more friendly to in-

experienced users, and is more amenable to formal reasoning.  Clearly, their mechanism is tied to

Java programs and can only speak at the level of detail of a program.  The benefit to their approach

is immediate executability since the specifications are code and that it can express any intended pol-

icy (though not necessarily concisely).

Some policy languages are based on logic.  A clear benefit of an approach based on logic is the

unambiguity of meaning and potential amenity toward formal reasoning.  A general issue though is

how user friendly such languages are, especially to those without a strong logic background.  Woo

and Lam present an appealing approach in [32].  They encode authorization requirements in a policy

base, a structured set of statements in a particular logical language.  They use three strategies to keep

the overall specification succinct:  closure (sets of authorizations that are on or off together), default

(implicit rules), and inheritance (rules for translating authorization from a group to a user).  Imple-

mentability one of their goals and they can state policies for different systems.  Their approach aims

for management of sets of policies, whereas this has not been a focus of LaSCO thus far.  LaSCO has

been more focussed on being able to express more types of policies (Woo and Lam do not attempt

to express policies based on history such as those in Section 3.3.2) and to facilitating use of lan-

guage by humans.

Another policy language based on logic is the Authorization Specification Language (ASL) [16].

ASL introduces groups and roles in the access control model and, like Woo and Lam, provides rules

to express policy beyond a single access control policy.  These consist of different types of rule pred-

icates to express explicit authorizations, derived authorization, default subject-object authorization,

general access control rules, access performed, active roles, subject membership, type membership,

and integrity checks.  Though authorizations expressed resemble Prolog [8], there is clearly a learn-

ing curve.  There does not appear to be any way to express constraints on objects as we do in LaSCO,

as an object’s state at a given time is not modeled.  It seems the language can be applied to a variety

of systems.
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Cholvy and Cuppens [6] take a novel approach to expressing all the policies on a site.  They em-

ploy deontic logic, a logic that expresses obligations.  Through this, liveness properties can be stat-

ed, which is beyond the present capability of LaSCO.  An enlightening result from Schneider [29]

proves that without strong knowledge of the possible executions of a system, non-safety policies

cannot be enforced.  This leaves the question as to whether policies expressed in using [6] can in

general be enforced, especially in a system-independent manner.  To those familiar with logic ex-

pressing policies with this approach would seem to be straightforward (provided the right primitives

are present); it is less user friendly for other cases.  This approach rates highly on clarity, amenable

to reasoning (they demonstrate contradiction detection), the ability to express policies for multiple

systems, and the ability to express policies at different levels of detail.

Ponder [10], developed at the Imperial College, is a promising recent policy language for spec-

ifying security and management policies for distributed systems.  This declarative language is for

specifying different types of policies, grouping them into roles and relationships, and defining con-

figurations of roles and relationships as management structures.  Its scope is RBAC and general pur-

pose management policies.  Ponder is intended to be extensible and is platform-independent.  The

types of policies it includes are:  positive and negative authorization policies; refrain policies (log-

ically equivalent to negative authorization but enforced on the source); obligation policies; positive,

negative, and cascade delegation policies; conditional authorization policies; and filtered authoriza-

tion policies.  Its syntax is largely adopted from OCL [26] and efforts are made to keep it imple-

mentable.  It can be applied to different systems.  The language does not seem to be targeted to

casual users.  Formal semantics and formal reasoning mechanisms are not currently available

though it is a main goal and is planned for future work.

The Adage architecture [31], developed at the Open Group Research Institute, focuses on creat-

ing and deploying security policies stating access control on roles in a distributed environment.  The

developers argue that security products that a user cannot understand will not be used and focus on

usability through enabling the user to build policy from pieces that the user understands.  This em-

phasis towards user friendliness is shared with LaSCO.  As discussed in Section 3.3.4, LaSCO can

express any Adage policy and more.  Formal semantics have not been defined for Adage and some-

times the implication of a policy is not clear, which implies that it is does not fare well on the ame-

nability to formal reasoning desired characteristic.

The policy language presented in this dissertation took some inspiration from the Miró work of

Heydon, Tygar, Wing, et. al. at Carnegie Mellon University [20].  Using their constraint language,
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one can state allowable access control states and restricting file and group nesting for file systems.

They employ visual means, an annotated graph based on Harel’s hierarchical graphs [18], which

promotes user friendliness.  However, Miró can only express allowable states (a snapshot of a sys-

tem), whereas LaSCO states constraints based on events and object state.  A policy checker for the

language has been implemented [21], demonstrating its executability.  The approach seems general

but has only been applied to file systems.  Semantics have been defined for their language for rep-

resenting system snapshots [24] but not for their constraint language, hindering formal reasoning.

Object Oriented Domain and Type Enforcement (OO-DTE) [33] is a technology whose focus is

organizing, specifying, and enforcing access control in a distributed object environment such as

CORBA.  In the DTEL++ policy language’s support for distributed object systems, types are declared

and assigned to interface methods (possibly through inheritance) and domains (roles for processes)

are declared and assigned permissions (e.g., invoke and implement) over types.  This is enforced

using a run time mechanism.  Implementations of it exist for at least three different ORBs (plat-

forms), demonstrating its executability.  However, as indicated in [33], unlike LaSCO, the semantics

of the language are ambiguous and difficult to implement and OO-DTE can be difficult to use by a

human.  There does not appear to be a way change object domains at run time, which means that,

unlike LaSCO, OO-DTE cannot state policies that depend on the dynamic state of an object nor ap-

parently is there a way to make policy decisions based on historical context.

As contrasted with a policy, a system specification describes the bounds under which a system

should execute.  This captures more than what is important for security to be maintained; it can cap-

ture other system properties as well.  However, it does not capture the intention of the policy nor

does it express constraints in a system-independent manner.  A security policy may be used to help

express the desired security and so help derive a specification for a system.
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10 Conclusion

In this dissertation, we presented a formal policy language based on graphs.  This language may

be used to express policies for any system that can be modeled as objects that interact through

events.  The details of objects and events are described by their named attributes.  LaSCO policies

separate into two components:  the domain and and requirement.  The domain of a policy matches

when objects and events in a system’s execution correspond to nodes and edges in the policy graph,

given their domain predicate.  Predicates are expressions on the attributes of a object or event.  A

policy is violated if any predicate in the requirement section of the policy is not satisfied.  Variables

may be used to impose relationships between the objects and events matching a policy.  LaSCO may

express standard notions of systems safety such as Bell-LaPadula [3] and Chinese Wall [4].  In ad-

dition, custom policies maybe be created to fit the particular needs of a system.  In particular, poli-

cies that are dependent on system historical context and that restrict the state of objects may be

expressed.  We emphasize that customizability promotes security since the policy writer can express

the policy they want.

The formal operational semantics of the language were presented.  These map a set of formally

represented policies and a formally represented system execution into locations where a policy

matches, locations where a policy is violated, and whether an execution violates the set of policies.

We presented an architecture for implementing LaSCO policies on any system that LaSCO can write

policies for, consisting of a policy engine that is system-independent and an interface layer specific

to a system.  An implementation in Perl of the generic policy engine was described, allowing policy

violations to be checked incrementally against an executing system or against an entire system his-

tory at once.

Two detailed studies of applying LaSCO on particular systems were described in this disserta-

tion.  We modeled a Java program for use in LaSCO and implemented a policy enforcement mech-
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anism.  The enforcement mechanism introduces checks of policy that at run time use the generic

policy engine to prevent method invocations that would violate policy.   The policy writing aid in

this implementation is a GUI that facilitates writing policies, especially for a program for which an

abstract representation is presented in the interface.  Experiments were conducted and the use of

LaSCO on Java analyzed quantitatively and qualitatively.

The second study presented was in writing policies for networks as viewed from the GrIDS in-

trusion detection system.  In addition to normal network traffic, GrIDS also receives reports from

data sources such as host-based IDSs.  We model this using the LaSCO system model and present a

design for modifying GrIDS to enforce LaSCO policies.  This involves a modification to the GrIDS

aggregation engine, a key component in the distributed IDS.  Through this modification, LaSCO pol-

icies can be enforced natively through the generic policy engine, making use of the GrIDS hierarchy

to pass messages and find violations of policy that might be widespread.  Based on the experience

with this design (as well as with LaSCO and GrIDS), we described our conclusion that IDSs and pol-

icies are mutually beneficial.  We also observe that a few design decisions for IDSs and policy lan-

guages are important towards this:  an IDS needs to provide a practical means of expressing the

policy in native terms, a policy language must be able to state policies for the target system, and a

policy language should be amenable to decomposition for IDS monitoring, especially if the IDS is

distributed.

LaSCO has characteristics that establish its strength in a list of desirable properties of a security

policy language we described.  Through its formal semantics, policy statements in LaSCO are clear

and unambiguous.  As demonstrated by the implementation, LaSCO policies can be executed.  The

generality of the system model allows it to be used in different settings, avoiding someone having

to learn a new language or invent one (and its policy interpreter) for different systems.  That it can

characterize policy entities by the attributes of  object or event described, that it quantifies its appli-

cation over an entire system, and that it is able to make use of historical context promotes LaSCO’s

abilities to represent the precise policy the writer wanted.  LaSCO can state policies at the level of

detail appropriate for an application.  Its graphical basis and several other characteristics promote

its user friendliness in creating, modifying, and understanding policies represented in it, for both

casual and expert users.  Though not a deeply investigated area or research yet, LaSCO’s formal se-

mantics should support efforts at formally reasoning about LaSCO policies.

Future research directions for LaSCO include:
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• Formal reasoning with different goals may be conducted about policies specified in LaSCO.

The correctness and completeness of LaSCO policies may be analyzed.  There are potential

applications which compositional semantics other than the conjunction semantics presented in

this dissertation (e.g., disjunction and prioritization) are useful, so this is an area that may be

beneficial to pursue.  In an setting in which a policy is being translated from one level of

abstraction to another, it would be advantageous to be able to verify the correctness of the map-

ping.

• A formal characterization of the policies that LaSCO can express is an interesting area of

research.  It would be interesting to see what policies LaSCO can express either in the current

language or through extensions.  Extensions might allow, for example, policies of obligation to

be expressed directly.  The types of policies it should be able to express is an open issue.

• LaSCO can be implemented for GrIDS as described in Chapter 8.  This involves modifying the

GrIDS engine to interface it with the generic policy engine of Chapter 5.

• The policy editor might be generalized beyond its current implementation for Java.  This would

allow abstract views of other systems to be included.  An extension with the potential for great

benefit is one to allow the execution of a system be monitored and the policy applications that

take place in the execution to be visualized through animation.
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A Supplemental Implementation 
Details

This appendix provides details that are in addition to the description of the implementation of

LaSCO for Java presented in Chapter 6.

A.1 Predicate text format

This text format for LaSCO predicates is needed to represent predicates as an ASCII string, for

storage in a file (see the next section) and for other computer processing.  Figure A-1 depicts the

EBNF for the text format.  The unit for a predicate is ‹predicate›.

1. ‹predicate› : ‹pred-expr›

2. ‹pred-expr› : ‹literal› | ‹attr-ref› | ‹var-ref› | ’(’ ‹pred-expr› ’)’ | ’!’ ‹pred-expr› |
‹pred-expr› ‹binary-op› ‹pred-expr›

3. ‹binary-op› : ’&&’ | ’||’ | ’=’ | ’!=’ | ’<’ | ’>’ | ’<=’ | ’>=’ | ’in’ | ’pcont’ | ’cont’ |
'union’ | ’intersect’ | ’+’ | ’-’ | ’*’ | ’/’ | ’%’

4. ‹attr-ref› : ‹name›

5. ‹var-ref› : ’$’ ‹name›

6. ‹name› : [A-Za-z0-9_]+

7. ‹literal› : ‹boolean-lit› | ‹string-lit› | ‹numeric-lit›

8. ‹boolean-lit› : [Tt][Rr][Uu][Ee] | [Ff][Aa][Ll][Ss][Ee]

9. ‹string-lit› : ’"’ [^\n]* ’"’

10. ‹numeric-lit› : [0-9]+ | [0-9]+ ’.’ [0-9]+ | ’-’ [0-9]+ | ’-’ [0-9]+ ’.’ [0-9]+

Figure A-1.  EBNF of the predicate text format.
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A.2 LaSCO file format

The LaSCO file format is defined for the purposes of storing LaSCO policies in a file. Figure A-

2 depicts the EBNF for the file format, where ‹predicate› is as defined in Figure A-1.  The unit for a

file is ‹file›.

The first predicate is the domain predicate for the node or edge and the second predicate (if it

appears) if the requirement predicate.  If a predicate does not appear, its implicit value is 'True'.

Node names have no semantic meaning to the policy and are used solely for cross referencing pur-

poses within a policy.  <edge> must appear for each edge in the policy and <node> for each node

that has at least one predicate that is not 'True'.

A.3 Java program schemas details

This section provides detailed information about Java program schemas and schema graphs.

These were briefly introduced in Section 6.2.

A.3.1 Java schema

The information elements of a Java schema are listed here:

• the classes defined in a program, with:

• class data fields, types, and modifiers

• class methods and constructors, with:

• formal parameters and types

• return value type

• modifiers

• superclass name

1. ‹file› : (‹policy› “\n’)* ‹policy›

2. ‹policy› : (‹node› | ‹edge›) *

3. ‹node› : ‹node-name› ‹predicates› '\n'

4. ‹edge› : ‹node-name› '->' ‹node-name› ‹predicates› '\n'

5. ‹predicates› : | '\t' ‹predicate› | '\t' ‹predicate› '\t' ‹predicate›

6. ‹node-name› : [A-Za-z0-9_]+

Figure A-2.  EBNF of the LaSCO file format
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• the (possible) method invocations and object instantiations in the program, with the following

data items:

• the method name (same name as the class for constructors)

• the class whose method is being invoked

• the class and method that contain this invocation

• type import declarations

A file format is defined for a Java schema. It shares its syntax with a Java compilation unit, but

with only the above data elements present and with different semantics.  The method invocations

are placed within the method that contained the invocation, but at the top level. For that, the method

name is qualified with the class it is invoking and there are no arguments listed.

A.3.2 Java schema graph

A Java schema graph is a view of a subset of a Java schema as a graph.  The schema is sometimes

viewed in this form so as to provide a visual depiction of the schema, which facilitates human use.

The nodes of a schema graph denote classes the program.  Edges represent method invocations or

object instantiations identified in the program source, and originate on the calling class and termi-

nate on the called class.  Annotations on a node contain the fields declared and their types, and an-

notations on edges depict the formal parameters and types for the method invoked.

The EBNF of the schema graph file format is shown in Figure A-3.  Lines beginning with a “#”

are treated a comments and ignored, as are empty lines.  The first class name on an edge line is the

source of the method invocation and the second is the destination class.  The optional sequence

square braces in an attribute type indicates that number of dimensions in an array of the given type.

1. ‹file› : (‹node› | ‹edge›) *

2. ‹node› : ‹class-name› ‹attribute-info› '\n'

3. ‹edge› : ‹class-name› '->' ‹class-name› '\t' ‹method-name› ‹attribute-info› '\n'

4. ‹attribute-info› : ('\t' ‹attribute-name› ':' ‹attribute-type›)*

5. ‹class-name› : [A-Za-z0-9_]+

6. ‹attribute-name› : [A-Za-z0-9_]+

7. ‹attribute-type› : [A-Za-z0-9_]+ ( ’[’ ’]’ )*

Figure A-3.  EBNF of the schema graph file format



125

A.4 Schema extraction tool implementation details

The schema extraction too was introduced in Section 6.3.  This section describes more detail of

our implementation.  The main script “extract_schema.pl” is simple and leaves the core functionality

to the SchemaGraph class, described in the first subsection.  This script accepts file names and out-

put options on the command line.  For each given Java source file, it creates a new SchemaGraph

from the file and invokes methods on the SchemaGraph to create files in the specified formats.

Schema files given on the command line are uses as information about other classes.

“merge_schema_graphs.pl” takes a number of schema graphs in files and merges them together into

a single schema graph.

A.4.1 SchemaGraph class

SchemaGraph is a Perl module whose instances represent an abstract view of a Java program.

It possesses enough knowledge of a Java program to represent a schema and a schema graph.

Input for its Java program representation comes from source files, schema files, and schema

graph files.  (If the input is from a schema graph file, it naturally only has enough knowledge to rep-

resent a schema graph, and not a full schema.)  Input from Java source files and schema files are

parsed by the JavaParser class, described in the next section.  This produces a parse tree represen-

tation, from which the desired data is extracted and stored internally.  For the most part, it is as-

sumed by the implementation that a given source file is a legal compilation unit.

It should be noted that a only a limited method call analysis is performed on the method invoca-

tions in the source file.  There is no analysis as to whether a method invocation is ever reachable in

execution.  A reasonable effort is made to determine the class upon whose method is invoked.  Per

the Java Language Specification [15], this cannot always be determined prior to execution.  Other

Java source code input provided with the one that possessed the method invocation being analyzed

is used to help resolve the class executed.  If the right side of a method invocation is a qualified

name, the type of the variable or the class upon which the method is invoked is the class.  If the right

side contains an expression (i.e., the form is Primary.<Name>(...), using the Java specification ter-

minology), an effort is made to determine the result type, which is the class that is invoked. In case

the class could not be determined precisely, Object (the base class of all Java classes) is reported.
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A.4.2 JavaParser module

The JavaParser Perl module takes a string representing a Java compilation unit (e.g., from a

source file), and produces a parse tree representing all (semantically significant) aspects of the com-

pilation unit.  This module is generated by perl-byacc (a version of Berkeley YACC modified by

Rick Ohnemus) from a YACC-like specification, but for Perl rather than C.  The parse tree in an in-

stance of a tree produced by the ParseNode module, described in the next section.

A.4.3 ParseNode module

The ParseNode module is a collection of about 75 Perl classes that collectively can represent

Java source code in a parse tree.  Each of the tree nodes has the ParseNode class as base class, so

may each be referred to as a ParseNode.  The schema extraction mechanism uses a fraction of the

functionality available in these classes.  It uses it to build the tree, locate instances of certain ele-

ments in the tree, find the types of variables, and determine the result type of expressions.  This

module is are also used in the policy compiler (Section 6.5).

A.5 Graphical LaSCO policy editor for Java implementation notes

The policy being viewed is maintained using the LaSCO class, and the generic policy engine

(Section 5.2) is used for the integrated function mentioned last above.  The schema displayed is a

representation of an instance of the SchemaGraph class.  This class processes a Java source file if

it is given as input.

The graph layout tool DOT [18] is used for constructing the node and edge graph layout for both

the schema graph and the policy graph.  The layouts that DOT produces are not necessarily stable

across even minor changes to the graph and there is a noticeable delay while DOT lays out the

graph, so it is not used after every change to the graph.  A simple and unoptimized modification to

the layout is made in most cases instead.  DOT is called whenever a new graph is formed and on

demand from the user.

More details of how a LaSCO policy is statically checked against a schema graph

(Section 6.4.3.3) is now presented.  A system graph is created from the schema graph by repeatedly

inserting edges corresponding to method invocations from the schema graph.  It is repeatedly in-

serted since a method may be invoked any number of times.  However, we only need to insert it an

limited number of times given the size of the policy.  An upper bound on the number of inserts re-

quired is the maximum number of edges in a given direction between any two nodes in the policy
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graph.  The edges inserted take advantage of the LaSCO class match option (Section 5.2.5.2) to only

report a match with to a particular method invocation once, although it may appear multiple times

as edges in the system graph.  The id attribute on objects is given a value, and the time attribute on

events is artificially set to zero.  check_with_system is called on the LaSCO graph.  The matches of

the system to the policy domain and the matches that violate the policy are reported.

A.6 Policy compiler implementation

Details about the policy compiler implementation (Section 6.5) are presented here.

A.6.1 Program modification

To instrument source code for policy checks, the user invokes the program “wrap_invs.pl”.  This

accepts three type of inputs on the command line:

• java source files to be modified,

• LaSCO policies in the LaSCO file format (Section A.2), such as those produced by the LaSCO

policy editor (Section 6.4), to be enforced, and

• schema files, for use as reference about classes not in the source files.

LaSCO policies are represented using the LaSCO class.  Java source and schema files are represent-

ed using the various classes in the ParseNode module (Section A.4.3).  This module is used exten-

sively to query and manipulate the source code.

Wrap_invs.pl processes one source file at a time.  For each method invocation and constructor

invocation found in a given compilation unit, the following steps are taken:

1. The method name and class invoked are determined.  Depending on the form of method
invocation expression, this can involve calculating the result type of an expression.  In
cases such as this, the actual class of the object invoked might be different than the one
computed statically, but it is always has the computed class as a base class.  This does not
cause any particular difficulties.

2. Every edge on every provided policy is considered with respect to the method invocation.
Those that might match the given invocation are noted.  To determine this, a one edge Sys-
temGraph is constructed representing such an invocation (using the information known
statically) and is passed to a special function of the generic policy engine.  If no policy
edges might match the invocation, then processing of this call is terminated and the invo-
cation left unchanged.

3. The code surrounding the method invocation expression is modified (if needed) to permit
a policy check to be inserted prior to the invocation but after argument computation.  Spe-
cifically, the method invocation (which might be deeply buried in an expression) is pro-
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moted to be a statement.  Any actual parameters that need computation or whose values
might change as a result of a computation (anything except literal) are promoted to vari-
able assignment statements before the invocation.  Recall the example presented in
Figure 6-12.

4. A call to the run time system is added.  The method invocation is replaced with a block
containing the method invocation preceded by a call to JavaLaSCO.checkNewEvent.  This
call is necessarily preceded by statements that set up the arguments, including determining
the value of certain attributes of the source and destination and the event.  As this check is
limited to certain policy edges (determined in step 2), the attributes whose values are
passed are those mentioned in the corresponding place in any of those policy edges.  For
edges, a statically determined expression finds the value of their attributes and is inserted.
Nodes however, employ calls to JavaLaSCO.getObjInfoList and JavaLaSCO.getClassIn-
foList to determine their attribute values at run time.  Which one is used depends on the sit-
uation.  For source, JavaLaSCO.getClassInfoList is used from static code and
JavaLaSCO.getClassInfoList from instance code.  For the destination, the determining
factor is if the method called is static or instance.

For each class in every source file that contains a “main” method, some initialization statements

are added to that at the start.  This is done so that the policy checking will be set up properly regard-

less of what class is ran.  The initialization loads policies into the run time system from a string and

labels policy edges (see next section).

A.6.2 Run time policy checking

JavaLaSCO is called at run time to check policies against new events.  As the source of calls to

the run time system is written in Java and the policy checker is written in Perl, language-level inter-

facing is needed as well.  The Java-Perl Lingo1 (JPL) is used to bridge this gap.  JavaLaSCO.jpl

contains some methods written in Java and some in Perl.  Additional Perl routines are in JavaLaS-

1.  JPL is a new package by the developers of Perl.  In its present form, JPL source files are like Java source 
files where method bodies can optionally be written in Perl.  These methods are made available to Java 
through the Java Native Interface (JNI).
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CO.pm.  Some of the interesting methods of the JavaLaSCO class that are available to Java pro-

grams are described in Figure A-4.

To identify the policy edges that could match a particular invocation from Java, a label must be

assigned to the various policy edges (edges have no labels in the LaSCO file format and Java has no

pointers). The Java side calls label_policy_edge to assign a label.  The edge is identified by the pol-

icy name, source and destination label, and domain text.  All edges that are identified by those same

four items are identical as far as the locations in which they match, so are given the same label.

Certain JavaLaSCO methods require a list of attributes with values associated with them.  This

is represented in a certain format that was chosen for easy passing between Java and Perl.  This is

called an info list.  In Java it is an array of Strings and in Perl it is a list of scalars.  Information about

a particular attribute uses three adjacent elements of the list.  The first is the name of the attribute.

The second is either “str”, “num”, “bool”, or “set”, indicating whether the attribute value is a string,

number, boolean, or set, respectively.  The third element is the value of the attribute, encoded as a

string.  To obtain this value for nodes using the getObjInfoList and getClassInfoList methods, the

Java reflection mechanism is used.  Reflection is used to determine whether a certain class member

is defined and to access its value  It is also used to find the base classes of a given class.

As described in Figure Figure A-4., checkNewEvent adds a new event and checks it against pol-

icies.  The checking is conducted by the check_with_system method of the LaSCO class (see

Section 5.2.5).  As the policy edges that might match the new system edge are known, checkNew-

• init():  initializes the class data structures and loads
needed Perl modules

• add_policy(name,val): introduces a policy with the
given name to the class and initializes the system
history.  The second argument is either the text of
the policy or a file name.

• delete_policy(name): causes the policy with the
given name to be deleted

• clear_history(name): resets the history for the pol-
icy with the given name

• label_policy_edge(label,name,source,dest,pred):
give certain edges (those whose domain predicates
equal the text given by the last argument in the pol-
icy with the given name and with the given source
and destination) the given label

• getObjInfoList(object,wanted-attrs):  for each of
the given wanted attributes that are defined for the
object, add it to an info list which is returned.  This
includes static and instance class data members and
class, classes, and id.

Figure A-4.  Some methods JavaLaSCO.

• getClassInfoList(classname,wanted-attrs): for
each of the given wanted attributes that are defined
for the given class, add it to an info list which is
returned.  This includes static classes members and
other defined attributes.

• add_new_event(name,time,edgeinfo,srcinfo,des-
tinfo):  add a new event with given time and the
attributes in the given info lists to the history of the
policy with the given name

• checkAllHist(name): check the entire history for
the given policy against the policy and throw an
exception if it is violated

• checkNewEvent(labels,time,edgeinfo,srcinfo,des-
tinfo):  add a new event to history of the policies
whose edges are labeled by the given labels and
check the new event against the policies and throw
an exception if any policy is violated.  The first
argument can also be a policy name.
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Event takes advantage of this when calling check_with_system by passing that association as an

edge hint.


