Intrusion Detection in the Large: Distributed Detection of Distributed Attacks

Douglas B. Moran Artificial In telligence Center SRI International moran@ai.sri.com http://www.ai.sri.com/~moran/

CMAD IV (Monterey, 1996)

Distributed Attacks

Distributed Target

- Distributed System
 - Distributed File System
 - Database
 - Agent Systems
- Shared privilege

Distributed Source Distributed over time

Data Fusion Problem

- Loose clusters
- Massive overlap
- No hierarchy: flexible & dynamic organizations
 - task force
 - business process re-engineering
 - out-sourcing
- Task Model

Human Factors

Distributed Detection

Partial Evidence per Intrusion

Merge Evidence from Multiple Sites

- Matching incidents
- Reliability/Competence of reporter
- Terminological and procedural uncertainty and inconsistency

Sites Under Attack Directly Communicate

CMAD IV (Monterey, 1996)

Reporting Problems

- Confidentiality/Sanitize
- Security
- Feedback to cracker
- Under-reporting

Improved Reporting

- Create Automated Security Manual (shortage of human expertise)
- Catalogue of Known Intrusion Scenarios and Techniques
 - Confidentiality issue
- Customizable to Site
 - Better diagnosis
 - Reduced consistency

Goals of Project:

- Short-term Goal
 - Improved diagnosis
 - Assisted recovery
- Long-term Goal
 - Automated report generation
 - Multilevel reports
 - trustworthiness of recipient
 - current situation

AI Technology

Reactive (PRS)

- Event driven
- Automated manual
- Short horizon
- Look-ahead Planner (SIPE)
 - resource usage
 - info retrieval conflicts
- Common Representation Formalism

- Each Domain Requires its own Extensions and Customizations
- Intelligent, Adaptive
 Scheduler of Tasks (threads)

CMAD IV (Monterey, 1996)

PRS-CL

A Procedural Reasoning Reactive Execution System

TECHNOLOGY

APPLICATIONS

- Reasoning based upon predefined procedural knowledge
- Reactive and goal driven
- Real-time response
- Meta-level reasoning
- Multiple cooperating agents
- Interactive, menu-driven, graphical interface

- Space shuttle fault diagnosis
- Aircraft maintenance
- Air battle management
- Mobile robot control
- Communications network
 management
- Joint military operations
- Sonobuoy deployment

Design Issues

- Phased Response
 - Are there dependable cues
 - Limit: avoid becoming denial-of-service (computer or human)
- Building up Catalogue of Attack Scenarios
 - Reuse of attack components
 - Ease of specifying
- Ability to Identify
 - Variants

 New attacks using some known components
 CMAD IV (Monterey, 1996)

- Distributed Attack in small Cluster of Computers
- Single Platform Type

Scaling-Up

Filtering and Routing Info

- Little relevant structure in network
- Trust vs. need-to-know
- Incomplete Info
 - Too little for meaningful report
 - request info from "authorities"
 - reanalyze
 - Enough to report
 - clearing house
 - involved hosts
 - siblings

CMAEThresholds for above??

- Automatic Processing of Reports
- Determine what can reasonably be shared with whom

User in Loop vs. Uses at end of a pipe

User of security system is major knowledge source

- Often unavailable
- Mobile
- Different user interfaces
- Backup with automated reasoning system
- Collaboration of Humans and Automated Systems
- Agent-based Architecture

Al Center

PRS-CL Architecture

Execution Cycle

- 1.New information arrives that updates facts and goals
- 2. Acts are triggered by new facts or goals
- 3. A triggered Act is intended
- 4. An intended Act is selected
- 5. That intention is activated
- 6. An action is performed
- 7. New facts or goals are posted
- 8. Intentions are updated

