ATM Firewall Technology: Lessons for Intrusion Detection

Workshop on Computer Misuse and Anomaly Detection (CMAD) IV
Monterey, CA

November 12-14, 1996

Christoph L. Schuba

Purdue University
COAST Laboratory
1398 Department of Computer Sciences
West Lafayette, IN 47907-1398

schuba@cs.purdue.edu

Overview

Problems

ATM Firewall Technology

Lessons

Problems

Quality of Audit Data in Large Systems

- Level of detail vs. amount of data:
 - >compression, reduction/aggregation, deduction
- Context of data:
 - >users, connections, actions,...
- Value of data:
 - > authenticity, integrity
- E.g., IP, ATM addresses (low level access, e.g., /dev/ip)

Integration of Intrusion Detection and System Design

- Design of large scale distributed systems is hard
- Getting designers to include security is harder
- Adding intrusion detection support mechanisms is _____

ATM Firewall Technology

Goal

Develop Model for ATM Firewall Technology

Instantiation of Model (Implementation):

- Proof of concept
- Gaining practical experiences

Background and Definitions

Definition Firewall Technology:

Mechanism to help enforce access policies about communication traffic entering or leaving networks.

ATM Technology

- Developed for use in B-ISDN
- Switching of small fixed-length packets (cells)
- Pt-to-pt, pt-to-mpt communication
- Connection-oriented
- permanent connections: administrative mechanisms
- switched connections: connection establishment protocol
- Quality of service guarantees

IP over ATM

Interesting case for the purpose of this workshop session:

- ATM: spans local-wide area networks systems
- ATM: still room for standard improvement
- IP: legacy system baggage

Example

Assumptions

- Connection oriented character of communication
- Secure public key infrastructure, name service
- Secure binding between principals and keys
- Integrity of trusted computing base
- Strength of cryptographic algorithms

Reference Model

Novermber 13, 1996

Essential Elements

- Endpoint authentication
- Domain based call admission control
- Connection authentication (authenticity and integrity)
- Audit
- Centralized policy with distributed service and enforcement

Contributions

- Concept of firewall technology is viable in connectionoriented highspeed networks
- Five elements are essential for a reference model of firewall technology
- Few additions to signaling protocol and system are necessary and sufficient for implementation

Lessons

(Quality of Audit Data)

1.) Authenticity

- Lack of authenticity see ATM firewall architecture
- Context establishment problem security context
- Level of detail e.g., information elements

(Integration of ID and System Design)

2.) Functional Dependencies

Between authentication and access control

Between audit and all other security services!

Now, who acts accordingly?

3.) Prevention vs. Detection/Recovery

There should be no tension between *prevention* and *detection*

There should be an integrated approach, where

- Preventive mechanisms operate under the assumption that they will fail in certain circumstances
- Preventive mechanisms should provide as much help for detection mechanisms as possible

4.) Intrusion Detection List of Mechanisms

What basic *mechanisms* are necessary (e.g., audit; secure, reliable communication)?

Make certain this list becomes second nature for system designers.

5.) Motivation for Businesses

Leverage off advantages for other industries

- Telecommunication carriers want nonpudiable billing information
- Identical mechanisms required for billing and ID

Pay close attention to justifying our case not for the sake of ID alone, but also different business needs that can be fulfilled.