Concept Learning and Searching Over Networks Using Java Agents for Meta-learning

THE JAM PROJECT

Application: FRAUD AND INTRUSION DETECTION IN FINANCIAL INFORMATION SYSTEMS ———-

CMAD IV

Salvatore J. Stolfo Department of Computer Science Columbia University

Electronic Commerce on the WEB provides New Challenges

- More data and services are available everyday on the WEB
- We seek a new way to search and LEARN FROM very large and remote databases
- Electronic Commerce provides new opportunities for Electronic FRAUD
- We seek a new way to LEARN about FRAUD on the WEB
- Proposal: Build an IMMUNOLOGICAL Capability for the WEB to DETECT FRAUD
- Learn SELF (Good Transactions) from NON-SELF (Bad Transactions)

- \bullet Empower the User with $Data\ Mining$ Tools to Learn Knowledge from Data
- Agent Proxies that Learn Knowledge over Remote Data
- Agent Proxies that Learn Collective Knowledge over Remote Agents
- Agent Proxies Use Learned Knowledge to Search Other Data

- Data Mining: Scalable Machine Learning Applied to Verly Large Databases
- Learning Agent: A Machine Learning program launched to and applied at a remote source of data
- Classifier Agent: A derived program learned over some remote site of data, labels or tags data with class labels
- Meta-Learning Agent: A Machine Learning program that Learns how to combine a number of remote classifier agents, the result is a single classifier agent

Meta-learning: An Algorithm-independent Technique for Scalable and Accurate Inductive Learning

Salvatore J. Stolfo Department of Computer Science Columbia University and Philip Chan Florida Institute of Technology

- Large datasets are partitioned into subsets
- Distributed databases are inherently partitioned
- Collective knowledge is harvested from individual knowledge sources

- Integrating the *concept descriptions languages* (a logical cross-bar switch)?
 - different representations: probabilities, hyperplanes, logical expressions
 - difficult if not impossible to accurate map all representations into one standard
- Integrating the behavior of classifiers (their predictions)?
 - algorithm/representation-independent
 - $\mbox{ existing and new algorithms can be plugged in with ease$
 - voting and statistical techniques abound
 - meta-learning:
 - * arbitration: conflicting predictions are resolved by a learned arbiter
 - * combining/coalescing: learn a function over classifiers' predictions

SHARING KNOWLEDGE WITHOUT SHARING DATA

Meta-learning: Arbiters and Combiners

• The *arbiter* Resolves conflicting predictions (disagreements)

• The *combiner* makes a final prediction based on the base predictions

Hierarchical Meta-learning in Agent Infrastructures

• Arbiter tree

• Combiner tree

- Many issues exist and are addressed by various experiments
- Main focus is on prediction accuracy
 - disjoint training and test sets
 - 10-fold cross validation
 - $-\ 2$ to 64 data subsets
 - global classifier (whole dataset or 1 data subset)
- "Off-the-shelf" learning algorithms
 - ID3 (Quinlan 86)
 - CART (Breiman et al. 84)
 - BAYES (Clark & Niblett 87)
 - WPEBLS (Cost & Salzberg 93)
- "Off-the-shelf" learning tasks
 - DNA splice junctions (3,190) (Towell et al. 90)
 - Protein coding regions (21,625) (Craven & Shavlik 93)
 - Protein secondary structures (20,000) (Qian & Sejnowski 88)

- How do the # of subsets and subset size affect accuracy?
- Is random sampling of a subset sufficient?

- Subsets can't be too small to generate reasonable classifiers
- Random sampling is not sufficient; combining is necessary

- Is hierarchical meta-learning necessary?
- How do the order of the arbiter trees and training set size limit affect the accuracy?

- Lower order trees are more accurate
- Doubling the arbiter training set size maintains accuracy

Combiner Trees

- How does the combiner trees fare?
- Class-attribute-combiner strategy

• Statistically significant and consistent improvement in the PCR dataset beyond the original accuracy

- Random sampling is not sufficient
- Existing voting and statistical combining techniques are not sufficient
- "One-level" meta-learning outperforms the voting and statistical techniques
- Hierarchical meta-learning can sustain high accuracy
- Meta-level training set size needs only to be twice the subset size
- Proportional distribution of classes in the data subsets is beneficial
- Lower-order trees are more accurate than higher-order trees
- Combiner trees can boost accuracy beyond the global classifier's
- Data replication does not improve accuracy

SITES 1 and 2:

DNA sequence $\#$	Nucleotide sequence
1	$ {\tt CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTCTGTTCCAAGGGCCTTCGAGCCAGTCTG} {\tt CCAGCTGCATCACAGGGCCAGTCTG} {\tt CCAGCTGCATCACAGGGCCAGTCTG} {\tt CCAGCTGCATCACAGGGCCAGTCTG} {\tt CCAGCTGCATCACAGGGCCAGTCTG} {\tt CCAGCTGCATCACAGGGCCAGGCCAGTCTG} {\tt CCAGCTGCATCACAGGGCCTTCGAGCCAGTCTG} {\tt CCAGCTGCATCACAGGGCCTTCGAGCCAGTCTG} {\tt CCAGCTGCATCACAGGGCCTTCGAGCCAGTCTG} {\tt CCAGCTGCATCACAGGGCCTTCGAGCCAGTCTG} {\tt CCAGCTGCAGGCCATCGAGCCAGTCTG} {\tt CCAGCTGCAGGCCTTCGAGCCAGTCTG} {\tt CCAGCTGCAGGCCTTCGAGCCAGTCTG} {\tt CCAGCTGCAGGCCTTCGAGCCAGTCTG} {\tt CCAGCTGCAGGCCAGCGAGCAGGCAGGCAGGCAGGCCAGTCTG} {\tt CCAGGGCCTTCGAGCCAGTCTG} {\tt CCAGGGCCTTCGAGCCAGTCTG} {\tt CCAGGCCAGTCTG} {\tt CCAGGCCAGTCTG} {\tt CCAGGCCAGTCTG} {\tt CCAGCTGCAGCCAGTCTG} {\tt CCAGGCCAGCGCGTC} {\tt CCAGCTGCAGCCAGTCTG} {\tt CCAGGCCAGCCAGTCTG} {\tt CCAGCTGCAGCGCCTTCGAGCCAGTCTG} {\tt CCAGGCCAGCGCCTTCGAGCCAGTCTG} {\tt CCAGGGCCTTCGAGCCAGTCTG} {\tt CCAGCCAGTCTG} {\tt CCAGGGCCTTCGAGCCAGTCTG} {\tt CCAGCTG} {\tt CCAGCTGCCAGTCTG} {\tt CCAGCTGCCAGTCTG} {\tt CCAGCTGCCAGCCAGGCCAGTCTG} {\tt CCAGCTGCCAGCCAGTCTG} {\tt CCAGCTGCCAGTCTG} {\tt CCAGCTGCCAGTCTG} {\tt CCAGCTGCCAGTCTG} {\tt CCAGCTGCCAGTCTG} {\tt CCAGCTGCCAGTCTG} {\tt CCAGTCTGCCAGTCTG} {\tt CCAGTCTGCCAGTCTG} {\tt CCAGTCTGCCAGTCTG} {\tt CCAGTCTGCCAGTCTG} {\tt CCAGTCTGCCAGTCTG} {\tt CCAGTCTGCCAGTCTG} {\tt CCAGTCTGCCAGTCTGGAGTCTG} {\tt CCAGTCTGCCAGTCTGGAGTCTGGCCAGTCTGGAGTCTGGAGTCTGGAGTCTGGAGTCTGGAGTCTGGTCTGGAGTCTGGAGTCTGGTCTGGTCTGGAGTCTGGAGTCTGGAGTCTGGTCTGGTCTGGAGTCTGGAGTCTGGTCGAGTCTGGAGTCTGGAGTCGAGTCGAGTCTGGAGTCGAGTCTGGAGTCTGGAGTCGAGTCGAGTCGAGTCGAGTCGAGTCGAGTCGAGTCGAGTCGAGTCGAGTCGAGTCGAGTCGAGTCGAGTCGAGTGGTGGTCTGGAGTCTGGTGGTCTGGAGTCTGGTGGTGGTCTGGTGGTCTGGTGGTGGTGGTCTGGTGG$
2	$ {\tt GAGAGAGAGACCAGAAATAATCTTGCTTATGCTTTCCCTCAGCCAGTGTTTACCATTGCA}$

DNA sequence #	Nucleotide sequence
1	A CAGGCTTTTCACAGCCTCCAGCGAGGCATGTACTGATTCCAGGCCTCGGAGCCAGTCTG
2	TAGCCGAGACAAAGGATAAGTCTTGATGTATGCTTACCACAGTCTAATGCTTCCCATACT

Junction	<i>p</i> -30	p-29	<i>p</i> -28 <i>p</i> -3	<i>p</i> -2	<i>p</i> -1	p_1	p_2	p_3p_{28}	p_{29}	p_{30}
intron-exon (IE)	С	Т	TAATAACATTCTTAT	A	G	G	G	ATCCATTCATGTGAAT	Α	Т
exon-intron (EI)	G	А	GCCCGTCATAAAATC	Т	G	G	Т	GAGACTCATGCCCAGC	Т	С
neither (N)	Т	А	CTATCCACAGACAGT	Α	G	G	Α	TGCCCGCCTCTGGGCA	Α	Α

p-1 = A:p2 = A: N p2 = C: N $p_2 = G: N$ p2 = T: p5 = A: № p5 = C: № p5 = G: p1 = A: № p1 = C: № 1 | p1 = G: EI p1 = T: N p5 = T: N $p-1 = C: \mathbb{N}$ p-1 = G:p2 = A: | p-2 = A: p-3 = A: N p-3 = C: IE p−3 = G: N | p-3 = T: IE p-2 = C: N p-2 = G: ₪ p-2 = T: N 1 p2 = C:p-2 = A: IEp-2 = C: N p-2 = G : № p-2 = T: N

A (logic-based) rule equivalent of the first branch at the top of the ID3 Decision tree is: "If $(X.p_{-1} = A)$ and $(X.p_2 = A)$ then the center doesn't have a junction, i.e. X.Junction = N." A rule equivalent to the second branch is: "If $(X.p_{-1} = A) = h(X.p_{-1} = A)$ then the center doesn't have a junction, i.e. X.Junction = N."

"If $(X \cdot p_{-1} = A)$ and $(X \cdot p_2 = C)$ then the center doesn't have a junction, i.e. X.Junction = N."

Classifier Agent Sent to SITE 1:

Select X. * From DNA-Sequence Where $C_{ID3-1}(X.p_{-30}..X.p_{30}) = EI$.

C _{ID3-1}	Meta-	<i>p</i> -30	<i>p</i> -29 <i>p</i> -3	p_{-2}	<i>p</i> -1	p_1	p_2	p_3p_{29}
	classifier							
EI	EI	А	CCAAGAAGGGATCTATCACCTCTGTAC	Α	G	G	Т	AAGAAAAATTACATAGATGAAGATCTG
EI	EI	Т	GGCGACTACGGCGCGGAGGCCCTGGAG	Α	G	G	Т	GAGGACCCTGGTATCCCTGCTGCCAGT
Ν	EI	G	GAGCTGCCAGACACGGAGGAGAGCCAT	G	Α	G	Т	AAGTGGGCCCAGCTGAGGGTGGGCTGG
Ν	Ν	А	TTCTACTTAGTAAACATAATTTCTTGT	G	С	Т	Α	GATAACCAAATTAAGAAAACCAAAACA
Ν	Ν	А	GGCTGCCTATCAGAAGGTGGTGGCTGG	Т	G	Т	G	GCTGCTGCTCTGGCTCACAAGTACCAT

```
c-id3-1 = EI:
              ΕI
c-id3-1 = IE:
   p-3 = A:
             Ν
p-3 = C:
             ΙE
p-3 = G:
             Ν
p-3 = T:
             ΙE
c-id3-1 = N:
   p1 = A: N
   p1 = C:
            Ν
p1 = G:
p5 = A:
                N
       p5 = C:
    1
                N
       p5 = G:
    | p2 = A:
    Ν
    1
       | p2 = C:
                    Ν
    | p2 = G:
                    Ν
       | p2 = T:
                    ΕI
p5 = T:
               Ν
p1 = T: N
1
```

- Partitioning and Distributing data,
- Invoking Different Meta-Learning Strategies In Parallel,
- Pairing Classifiers to Reduce Intermediate Training Sets for Meta-Learning,
- Filtering and Communication of Training and Testing Data Between Processors, and,
- Instrumentation to Gather Statistics Used in Formulating or Designing Specific Meta-Learning Architectures.
- LAUNCHING OF ENCAPSULATED LEARNING AND META-LEARNING AGENTS OVER NETWORKS

Future Research: The JAM PROJECT

- Specialized representations (new attributes/predicates) and algorithms for meta-learning
- New meta-learning strategies and training-set composition rules
- Agent computing: collaboration with FSTC in field-testing learning agents on the Internet:
- – Acquisition of TRANSACTION DATABASES with FRAUD LABELS
 - Demonstration of Remote Learning and Meta-Learning Agents
 - Exchange of Learned Classifiers
 - Installation of Learned Classifiers as SENTRIES to warn of FRAUD

JAM Prototype: One coordinator, multiple data sites

- Coordinator
 - Dispatches agents to different data sites
 - Multithreaded for concurrent service
 - Simple error recovery from data sites crashes
- Data Site
 - Accepts and executes agents
 - Agent Independent
- Agent: the ID3 machine learning algorithm
- Platform Independent (Java)
- Simple Graphical User Interface

- Number of Attributes: $30 + -\Delta$ (all numeric)
 - Many fields are categorical (i.e.numbers represent a few discrete categories)
 - Developed over years to capture important information
- Size: Fixed 137 bytes per transaction
- Type of Information:
 - A (jumbled) account number (no real identifiers)
 - Scores produced by a COTS authorization/detection system
 - Date/Time of transaction
 - Past payment information of the transactor
 - Amount of transaction
 - Geographic information: where the transaction was initiated, the location of the merchant and transactor
 - Codes for validity and manner of entry of the transaction
 - An industry standard code for the type of merchant
 - A code for other recent "non-monetary" transaction types by transactor
 - The age of the account and the card
 - Other card/account information
 - Confidential/Proprietary Fields (other potential indicators)
 - Fraud Label (0/1)
- .5MM records by each Bank:
 - sampling 50,000 per month
 - Span 11/95 10/96

VISIT with your favorite Browser:

- http://www.fstc.org and click on Fraud Page
- http://www.cs.columbia.edu/ŝal
- $\bullet \ http://www.cs.columbia.edu/<math>\tilde{s}al/JAM/PROJECT$

SUPPORTED BY:

- NYSSTF Polytechnic University CATT
- NSF CISE KMCS and DBES Programs
- DARPA ITO Intrusion Dection Program