
Concept Learning and Searching Over Networks
Using Java Agents for Meta-learning

|||-
THE JAM PROJECT

|||-
Application: FRAUD AND INTRUSION DETECTION
IN FINANCIAL INFORMATION SYSTEMS |||-

|||-

CMAD IV

Salvatore J. Stolfo
Department of Computer Science

Columbia University
|{



Electronic Commerce on the WEB provides New

Challenges

� More data and services are available everyday on the
WEB

� We seek a new way to search and LEARN FROM very
large and remote databases

� Electronic Commerce provides new opportunities for Elec-
tronic FRAUD

� We seek a new way to LEARN about FRAUD on the
WEB

� Proposal: Build an IMMUNOLOGICAL Capability for
the WEB to DETECT FRAUD

� Learn SELF (Good Transactions) from NON-SELF (Bad
Transactions)
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A New Information Extraction Paradigm

� Empower the User with Data Mining Tools to Learn Knowledge from
Data

� Agent Proxies that Learn Knowledge over Remote Data

� Agent Proxies that Learn Collective Knowledge over Remote Agents

� Agent Proxies Use Learned Knowledge to Search Other Data
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Terminology

� Data Mining: Scalable Machine Learning Applied to Verly Large Databases

� Learning Agent: A Machine Learning program launched to and applied at

a remote source of data

� Classi�er Agent: A derived program learned over some remote site of data,
labels or tags data with class labels

� Meta-Learning Agent: A Machine Learning program that Learns how to
combine a number of remote classi�er agents, the result is a single classi�er
agent
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Meta-learning: An Algorithm-independent Technique

for Scalable and Accurate Inductive Learning
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Florida Institute of Technology
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Learn and Integrate Classi�ers

� Large datasets are partitioned into subsets

� Distributed databases are inherently partitioned

� Collective knowledge is harvested from individual knowl-
edge sources

DB4

DB2

C1

C2

C3

C4

DB3

DB1

How to integrate
the classifiers?
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Integrating Classi�ers

� Integrating the concept descriptions languages (a logical
cross-bar switch)?

{ di�erent representations: probabilities, hyperplanes,
logical expressions

{ di�cult if not impossible to accurate map all represen-
tations into one standard

� Integrating the behavior of classi�ers (their predictions)?

{ algorithm/representation-independent

{ existing and new algorithms can be plugged in with
ease

{ voting and statistical techniques abound

{ meta-learning:

� arbitration: conicting predictions are resolved by
a learned arbiter

� combining/coalescing: learn a function over classi-
�ers' predictions
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SHARING REMOTE CLASSIFIERS

Classifier 2
Remote

Classifier 1
Remote

Classifier n
RemoteLocal

Classifier

Meta-level
Training

Data

Local
Meta-

classifier

SHARING KNOWLEDGE WITHOUT SHARING DATA
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Meta-learning: Arbiters and Combiners

Classifier 1

Classifier 2

Instance

Prediction 1

Prediction 2

Final

Prediction

Arbiter

Arbitration

Rule

Arbiter’s

Prediction

� The arbiter Resolves conicting predictions (disagreements)

Combiner

Classifier 1

Classifier 2

Instance

Prediction 1

Prediction 2

Final

Prediction

� The combiner makes a �nal prediction based on the base
predictions
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Hierarchical Meta-learning in Agent

Infrastructures

� Arbiter tree

A
12

A
34

A
14

T T T T
1 2 3 4

Classifiers

Training data subsets

Arbiters

C C C C
1 2 3 4

T

T T
3412

14

� Combiner tree
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Evaluation Studies

� Many issues exist and are addressed by various experi-
ments

� Main focus is on prediction accuracy

{ disjoint training and test sets

{ 10-fold cross validation

{ 2 to 64 data subsets

{ global classi�er (whole dataset or 1 data subset)

� \O�-the-shelf" learning algorithms

{ ID3 (Quinlan 86)

{ CART (Breiman et al. 84)

{ BAYES (Clark & Niblett 87)

{ WPEBLS (Cost & Salzberg 93)

� \O�-the-shelf" learning tasks

{ DNA splice junctions (3,190) (Towell et al. 90)

{ Protein coding regions (21,625) (Craven & Shavlik 93)

{ Protein secondary structures (20,000) (Qian & Sejnowski
88)
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Subsets and Sampling

� How do the # of subsets and subset size a�ect accuracy?

� Is random sampling of a subset su�cient?
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� Subsets can't be too small to generate reasonable classi-
�ers

� Random sampling is not su�cient; combining is necessary
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Arbiter Trees

� Is hierarchical meta-learning necessary?

� How do the order of the arbiter trees and training set size
limit a�ect the accuracy?

80

85

90

95

1 2 4 8 16 32 64

Ac
cu

ra
cy

 (%
)

Number of subsets

Splice Junctions (ID3)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

80

85

90

95

1 2 4 8 16 32 64

Ac
cu

ra
cy

 (%
)

Number of subsets

Splice Junctions (CART)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

60

65

70

75

1 2 4 8 16 32 64

Ac
cu

ra
cy

 (%
)

Number of subsets

Protein Coding Regions (ID3)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

60

65

70

75

1 2 4 8 16 32 64

Ac
cu

ra
cy

 (%
)

Number of subsets

Protein Coding Regions (CART)

binary
4-ary
8-ary

binary (max x2)
4-ary (max x2)
8-ary (max x2)

� Lower order trees are more accurate

� Doubling the arbiter training set size maintains accuracy
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Combiner Trees

� How does the combiner trees fare?

� Class-attribute-combiner strategy
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� Statistically signi�cant and consistent improvement in
the PCR dataset beyond the original accuracy
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Summary of Meta-learning Results

� Random sampling is not su�cient

� Existing voting and statistical combining techniques are
not su�cient

� \One-level" meta-learning outperforms the voting and
statistical techniques

� Hierarchical meta-learning can sustain high accuracy

� Meta-level training set size needs only to be twice the
subset size

� Proportional distribution of classes in the data subsets is
bene�cial

� Lower-order trees are more accurate than higher-order
trees

� Combiner trees can boost accuracy beyond the global
classi�er's

� Data replication does not improve accuracy
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An Illustration: Distributed DNA Sequence Databases

SITES 1 and 2:

DNA sequence # Nucleotide sequence
1 ...CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTCTGTTCCAAGGGCCTTCGAGCCAGTCTG...
2 ...GAGAGAGAGACCAGAAATAATCTTGCTTATGCTTTCCCTCAGCCAGTGTTTACCATTGCA...

DNA sequence # Nucleotide sequence
1 ...ACAGGCTTTTCACAGCCTCCAGCGAGGCATGTACTGATTCCAGGCCTCGGAGCCAGTCTG...
2 ...TAGCCGAGACAAAGGATAAGTCTTGATGTATGCTTACCACAGTCTAATGCTTCCCATACT...
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Sample SPLICE JUNCTION sequences at SITE 3

Junction p
�30 p

�29 p
�28...p�3 p

�2 p
�1 p1 p2 p3...p28 p29 p30

intron-exon (IE) C T ..TAATAACATTCTTAT A G G G ..ATCCATTCATGTGAAT A T
exon-intron (EI) G A ..GCCCGTCATAAAATC T G G T ..GAGACTCATGCCCAGC T C

neither (N) T A ..CTATCCACAGACAGT A G G A ..TGCCCGCCTCTGGGCA A A

16



An ID3 Decision Tree Learned Over SJ Data at SITE 3

p-1 = A:

| p2 = A: N

| p2 = C: N

| p2 = G: N

| p2 = T:

| | p5 = A: N

| | p5 = C: N

| | p5 = G:

| | | p1 = A: N

| | | p1 = C: N

| | | p1 = G: EI

| | | p1 = T: N

| | p5 = T: N

p-1 = C: N

p-1 = G:

| p2 = A:

| | p-2 = A:

| | | p-3 = A: N

| | | p-3 = C: IE

| | | p-3 = G: N

| | | p-3 = T: IE

| | p-2 = C: N

| | p-2 = G: N

| | p-2 = T: N

| p2 = C:

| | p-2 = A: IE

| | p-2 = C: N

| | p-2 = G: N

| | p-2 = T: N

A (logic-based) rule equivalent of the �rst branch at the top of the ID3 Decision tree is:
\If (X:p

�1 = A) and (X:p2 = A) then the center doesn't have a junction, i.e. X.Junction = N."
A rule equivalent to the second branch is:
\If (X:p

�1 = A) and (X:p2 = C) then the center doesn't have a junction, i.e. X.Junction = N."
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Sample Sequences To Be Extracted

Classi�er Agent Sent to SITE 1:

Select X.* From DNA-Sequence Where CID3�1(X:p�30::X:p30) = EI.

CID3�1 Meta- p
�30 p

�29...p�3 p
�2 p

�1 p1 p2 p3...p29
classi�er

EI EI A CCAAGAAGGGATCTATCACCTCTGTAC A G G T AAGAAAAATTACATAGATGAAGATCTG
EI EI T GGCGACTACGGCGCGGAGGCCCTGGAG A G G T GAGGACCCTGGTATCCCTGCTGCCAGT
N EI G GAGCTGCCAGACACGGAGGAGAGCCAT G A G T AAGTGGGCCCAGCTGAGGGTGGGCTGG
N N A TTCTACTTAGTAAACATAATTTCTTGT G C T A GATAACCAAATTAAGAAAACCAAAACA
N N A GGCTGCCTATCAGAAGGTGGTGGCTGG T G T G GCTGCTGCTCTGGCTCACAAGTACCAT
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A Sample Meta-Classi�er Learned From 4 Base Classi�ers

c-id3-1 = EI: EI

c-id3-1 = IE:

| p-3 = A: N

| p-3 = C: IE

| p-3 = G: N

| p-3 = T: IE

c-id3-1 = N:

| p1 = A: N

| p1 = C: N

| p1 = G:

| | p5 = A: N

| | p5 = C: N

| | p5 = G:

| | | p2 = A: N

| | | p2 = C: N

| | | p2 = G: N

| | | p2 = T: EI

| | p5 = T: N

| p1 = T: N
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A Host Meta-Learning Environment

� Partitioning and Distributing data,

� Invoking Di�erent Meta-Learning Strategies In Parallel,

� Pairing Classi�ers to Reduce Intermediate Training Sets for Meta-Learning,

� Filtering and Communication of Training and Testing Data Between Processors,
and,

� Instrumentation to Gather Statistics Used in Formulating or Designing Speci�c
Meta-Learning Architectures.

� LAUNCHINGOF ENCAPSULATEDLEARNINGANDMETA-LEARNINGAGENTS
OVER NETWORKS
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Future Research: The JAM PROJECT

� Specialized representations (new attributes/predicates)
and algorithms for meta-learning

� New meta-learning strategies and training-set composi-
tion rules

� Agent computing: collaboration with FSTC in �eld-testing
learning agents on the Internet:

� { Acquisition of TRANSACTION DATABASES with
FRAUD LABELS

{ Demonstration of Remote Learning and Meta-Learning
Agents

{ Exchange of Learned Classi�ers

{ Installation of Learned Classi�ers as SENTRIES to
warn of FRAUD
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JAM Prototype: One coordinator, multiple data

sites

� Coordinator

{ Dispatches agents to di�erent data sites

{ Multithreaded for concurrent service

{ Simple error recovery from data sites crashes

� Data Site

{ Accepts and executes agents

{ Agent Independent

� Agent: the ID3 machine learning algorithm

� Platform Independent (Java)

� Simple Graphical User Interface
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Data Schema and Stats for (Fraud) Transaction Data Sets

� Number of Attributes: 30 +�� (all numeric)

{ Many �elds are categorical (i.e.numbers represent a few discrete categories)

{ Developed over years to capture important information

� Size: Fixed 137 bytes per transaction

� Type of Information:

{ A (jumbled) account number (no real identi�ers)

{ Scores produced by a COTS authorization/detection system

{ Date/Time of transaction

{ Past payment information of the transactor

{ Amount of transaction

{ Geographic information: where the transaction was initiated, the location of
the merchant and transactor

{ Codes for validity and manner of entry of the transaction

{ An industry standard code for the type of merchant

{ A code for other recent \non-monetary" transaction types by transactor

{ The age of the account and the card

{ Other card/account information

{ Con�dential/Proprietary Fields (other potential indicators)

{ Fraud Label (0/1)

� .5MM records by each Bank:

{ sampling 50,000 per month

{ Span 11/95 - 10/96
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DETAILS of the JAM Project

VISIT with your favorite Browser:

� http://www.fstc.org - and click on Fraud Page

� http://www.cs.columbia.edu/~sal

� http://www.cs.columbia.edu/~sal/JAM/PROJECT

SUPPORTED BY:

� NYSSTF Polytechnic Univeristy CATT

� NSF CISE KMCS and DBES Programs

� DARPA ITO Intrusion Dection Program
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