

An application-oriented analysis of TCP/IP
in high speed LANsy


D. Sudheer K. Maly D. E. Keyes and C. M. Overstreet


Computer Science Department


Old Dominion University


Norfolk VA 23529-0162


yThis was partially supported by Synoptics Inc. The


views and conclusions contained in this document are those of


the authors, and should not be interpreted as representing Syn-


optics.


Abstract


In this paper we investigate the limitations of the nor-
mal implementation of TCP(UDP)/IP and describe
an application-oriented analysis in high-speed Local
Area Networks, such as ATMs.


We conducted tests to measure aberration in
Quality of Service of an application in terms of connec-
tion establishment time, throughput, and loss with re-
spect to block size. We report the e�ect of TCP window
size and the Silly Window Syndrome (SWS). Sugges-
tions are made to avoid the SWS and e�ectively control
TCP window size to increase throughput. Data losses
of nearly 27% are observed with a UDP application.
Knowledge of the status of the network can be used ef-
fectively by a host to reduce losses. We demonstrate
this point with the help of a simple rate control algo-
rithm at the user level in the UDP/IP environment.


Results obtained from the above experiments
are used to analyze a simulated Distributed Comput-
ing application. We study the e�ect of using a stan-
dard protocol suite (TCP/IP) for running this appli-
cation in a Solaris 2.3 operating system. We identify
problems occurring when an application sends large
amount of data in a bursty fashion and suggest pos-
sible solutions.


Key words: Quality of Service, Tra�c pat-
tern, Communication topology, Network topology.


1 Introduction


As the necessity for High Speed Network (HSN) in-
crease, de�ciencies in shared medium network proto-
cols become more apparent. Ethernet protocol col-


lapse at higher loads [1]. The asynchronous tra�c on
100-Mbps Fiber-Distributed Data Interface (FDDI) is
dependent on network con�guration and load [2]. In
DQDB (Distributed Queue Dual Bus), fairness prob-
lems at higher loads with respect to the location of the
node on the network is a well understood phenomenon
[3].


Many of the above mentioned problems disap-
pear when using switch-based network protocols which
have bandwidth dedicated to individual hosts such as
ATMs [4, 6]. By having �xed size cells and end-to-end
ow control and error control, it is possible for ATM to
scale to larger user community. Because of statistical
multiplexing [7], ATM is highly exible for di�erent
types of tra�c characteristics [5].


With the availability of exible and scalable
network protocol architectures, scrutiny now moves to
the higher level (end-to-end host) protocols. It is es-
sential to evaluate the dynamics of the higher-level
protocols in an HSN environment. A description of
the controlling parameters in these protocols and their
e�ect over longer periods of time on the connection is
the motivation behind this paper. A poor combination
of the control parameters can lead to abysmal perfor-
mance. Application developers unfamiliar with the in-
ternals of network protocols can obtain some rules of
thumb from this work.


To demonstrate the e�ect of the results we
obtained a Distributed Computing (DC) application
is used. By choosing a distributed computing environ-
ment, in a switch-based network scenario, it is easy to
emulate virtually any arbitrary communication topol-
ogy. But in doing so, we are entering into a di�erent
set of problems, in terms of network and machine de-
pendent behaviors, which is the topic of interest in this
paper.


We assume in this paper a distributed homo-
geneous host architecture (hence, communication to
computation ratio is constant) with homogeneous un-
derlying network paradigm. Also it is assumed in this







paper that computation and communication can be
overlapped.


In section 2, we discuss a typical DC appli-
cation, and how our simulated program can create
the required environment. Section 3 presents a brief
overview of the end-to-end parameters that e�ect the
performance of the application. We identify the idle
network case bottlenecks encountered on the host and
in the network and a simple solution to them in sec-
tion 4. Section 5 discusses e�ect of these results on a
DC application and conclusions are present in the last
section.


2 About simulated DC applica-
tions


NODE A NODE B


Computation line Communication line


Time


Time


Load


(a) Communication sequence in a DC application


(b) Load on the network for an application shown in (a)


iteration 1


iteration 2


Connection establishment 
time


t11


t12


t21


t22


t11+d t12+d


d : A positive integer after which it is measured


Figure 1: A typical DC application and its tra�c pat-
tern
Let us assume that two nodes NodeA and NodeB


are sharing the execution of a DC application (Fig.1).
Let NodeA and NodeB start their computation at
times t11 and t21 respectively. A connection es-
tablishment process takes place before communica-
tion/computation begins. Since hosts are homoge-
neous and hence have same computation to commu-
nication ratio, communication overlaps between iter-
ation from both the nodes as shown in Fig.1b. This
might increase the computation time. If the communi-
cation channel is not a bottleneck and the computation
involved in each iteration is long enough to complete
the communication between iterations (i.e, data neces-
sary at NodeA for iteration 2 is available before t12),


then we don't observe any stalls between iterations.
Rate control is inbuilt in our algorithm to avoid com-
munication process take priority (as explained in the
next section) over computation process.


The simulated application has a task running
on two nodes participating in this application. Each
of them will execute the following algorithm, with the
exception that one of them acting as a server will es-
tablish the connection between the two.


Algorithm :
Step1: Establish Connection with each other
Step2: Start computation and communication pro-
cesses
Step3: Findout the amount of time taken for compu-
tation
Step4: Use Step 3 information to �nd the rate of sub-
mission of data to transfer across the network
Step5: Goto step 2


In each task we have three processes. A pro-
cess to do computation, one to transfer data to its
peer on the other node, and another to receive data,
as shown in the state diagram in Fig.2. The state
diagrams are self-explanatory.


run


idle


Computation Process


transfersend


idle


Send Process


wait


recv


Receive Process


Figure 2: State diagram of the simulated DC applica-
tion


Here we are making an assumption that the
computational intensive process will take approxi-
mately the same order of time in the two consecutive
iterations. Our algorithm implementation is exible
enough to transmit data at intermediate steps and the
amount of data transmitted is con�gurable.


3 A brief overview of end-to-
end performance issues


The load on the network, the load on the node and
the end-system protocol suite behavior are the three
major factors that play role in the performance of
a client-server application. A Distributed Comput-
ing (DC) application, which is a combination of both
CPU-bound as well as communication related tasks,







can exploit knowledge of the above three factors. We
present a brief argument about the �rst two factors in
this section and study the e�ect of the protocol behav-
ior and the improvements one can obtain by knowing
more about the control parameters in detail in the next
two sections.


3.1 Load on the Network


Ethernet allows a DC algorithm designer to choose
any communication topology for a given problem. An
application broadcasting data among all the communi-
cating nodes will generate lot of data on the network.
To reduce protocol overhead and multiple transmis-
sion of messages, multicasting can be used. Although
raw bandwidth available on Ethernet is 10Mbps, it is
commonly observed that the throughput obtained in
an actively used Ethernet LAN is between 4-5Mbps.
Note that even lower-end architectures like SUN sparc
1 workstation can push data at 8Mbps and hence sat-
urate the network at high communication periods. By
using nodes from di�erent subnetworks one need to
pass through an additional bridge/router which reduce
the throughput to minimumof both the Ethernets and
an additional processing at the bridge at a given in-
stant of time.


Unlike Ethernet LAN, on FDDI network
bandwidth is generally not a limitation, but it is the
protocol operation that could be a bottleneck. Assume
a 4-node FDDI with alternative nodes communicating
with each other. Note that due to the nature of a to-
ken ring only one node can transfer at any given time
(until it is exhausted of data or token holding time
(THT) expires, whichever is the minimum). Hence
unwanted delays might be experienced at the other
nodes waiting for the transmitting node to relinquish
the token [2]. This decreases e�ective bandwidth. If
the delays are very high a node might loose the advan-
tage of overlapping communication and computation.
Though we have a high data rate medium which can
support global and ring like communication topolo-
gies, high delays will degrade the performance. Hence,
we should look for a network medium which produce
lesser delay by allowing each node to transmit at the
same time and providing high data rate channel. This
leads to switch-based networks like ATM LANs.


ATM is a 155/622Mbps switch-based point-
to-point network paradigm. Because of statistical mul-
tiplexing [7] delay incurred as discussed in the FDDI
case will be reduced. Also availability of high band-
width will eliminate stalls at hosts because of data
starvation for a DC application. ATM because of of
its scalability and exibility, can support any arbitrary
communication topology. But in ATM it is essential


to predict the tra�c pattern, converting this pattern
to network understandable QOS parameters, and con-
forming to the tolerance limits of the negotiated tra�c
characteristics. Deviating from the above character-
istics might lead to loss of data in the network and
hence increased retransmissions. Availability of fast
connection establishment, a clear network understand-
able tra�c pattern characterization and a good con-
nection management policies inside ATM network will
make ATM the best choice for a DC application.


3.2 Load on the nodes


Any computation intensive application can be char-
acterized by the amount of CPU time it consumes,
the memory that it occupies and the number page
faults occurred during the execution of the process.
Standard parallel computational libraries will let the
programmer specify the resource limitations to avoid
adverse performances of a poorly written code. For ex-
ample in PETSc [9] provide a call called PICall, which
can enforce resource limits on CPU time, elapsed time,
memory size, and page faults.


As we are using a DC application where both
computation and communication are important as-
pects, we mention some of the results that pertain
to the study of the interaction of computation and
communication processes on a node conducted in [8].
They found that the o�ered throughput on an idle
Ethernet LAN drops from 6Mbps to almost 1Mbps by
increasing the number of computation intensive pro-
cesses from 1 to 8. Because of UNIX scheduling policy,
the CPU intensive job will get lower priority to com-
munication intensive job. It is also observed that the
receive side of the communication process will slow
down as the scheduling of applications is such that
data is read from the socket bu�ers at a slower rate.
Also there is an increase in protocol processing delay
of about 10% on both the sending and receiving sides.
One has to keep these issues in mind while handling
a DC application. By an intelligent rate controlling
data transmission, we can avoid the problem of giving
high priority to communication intensive process.


3.3 Protocol suite behavior


We approach the problem of identifying the perfor-
mance bottlenecks in the protocol suite in terms of
standard user observable QOS parameters. Connec-
tion setup time is an important parameter in high
speed networks, as fast connection establishment pro-
cedures will release the burden of network from hold-
ing resources when the connection is idle. Apart from
this throughput, delay, delay jitter, and loss are impor-
tant factors during data transfer phase. Throughput







measurements reect the bandwidth usage of the ap-
plication over the channel. Delay and delay jitter will
give a measure of the protocol incorporated delays and
jitter which can be used as operating system QOS for
applications such as multimedia applications under no
load conditions. Loss of data will give us the mea-
sure of loss probability for high data rate application
on this testbed. For a DC application connection es-
tablishment time, throughput, and loss are the main
QOS parameters. As long as delay is with in an agree-
able upper bound, it would not be of interest in this
application.


We conduct experiments with a communica-
tion intensive application as a �rst step in no load con-
dition to enhance the behavior of the end-system com-
ponents. A clear understanding of these components
help as a basis for the study of real world applications.


4 Bottlenecks in TCP/IP and


their remedies


We conducted our experiments on an ATM LAN to
identify the bottlenecks of TCP/IP in high speed net-
works. We are using a 155Mbps �ber optic point to
point link between two SUN Sparc 10 workstations
running Solaris 2.3 Operating System. These two
Sparc 10s are connected by Synoptics LattisCell 10104
16x16 port switch which has an internal switching rate
of 2Gbps.


TCP-IP and UDP-IP are linked by a set of
incoming and outgoing queues. To prevent unwanted
delays in these queues, some limitations on the queue
lengths are enforced, which are called High Water
Mark (HWM) [10] and Low Water Marks (LWM). A
HWM is the maximum amount of data that can be
queued at the interface. Once HWM is reached lo-
cal pressure is applied to prevent data from being in-
jected into the accepting module anymore till LWM is
reached.
4.1 Connection Establishment time


Connection establishment time in the ATM environ-
ment is the time taken to setup the virtual connection
between the two communicating machines. Once this
connection is established, all the processes that are
communicatingwith each other on these two machines
will use this virtual connection. If the virtual connec-
tion is idle for certain amount of time (on Synoptics
implementation it is 10 minutes) then the virtual con-
nection is dissolved. In our case we assume that con-
nection is present all the time. Hence the connection
establishment time in fact will tell us the minimum
amount of time required for the protocol processing
on both the end-systems. In this plot [Fig.3] we are


interested in the upper and lower bound of the initial
delay (generally referred to as \latency").


0


5


10


15


20


25


30


35


40


45


50


0 2000 4000 6000 8000 10000


La
te


nc
y 


in
 m


se
c


Block size in bytes


TCP case
UDP case


Figure 3: Connection establishment time versus block
size


Fig.3 shows that there is a latency of 2-40
msec while using TCP and 2-27 msec while using UDP.
In one of our experiments we found that by changing
the window size with the �xed 5Kbytes block size the
latency variation is between 2-15 msec. As we feel that
this is within the a�ordable delay range for a DC ap-
plication, we will not consider this as a major factor
while testing the improvement in DC application in
the next section.


4.2 Throughput


0


20


40


60


80


100


0 2000 4000 6000 8000 10000


Th
ro


ug
hp


ut
 in


 M
bp


s


Block size in bytes


With SWS
Without SWS


With 32k window


Figure 4: Improvement in TCP throughput
Fig.4 gives the average throughput observed by vary-
ing block size. We observed a maximum throughput
of 30Mbps at block size of 8192bytes. Note the dip in
throughput for the block sizes of 3072 and 4096. This
is because of the phenomenon called \silly window syn-
drome (SWS)"[11]. It should be noted that by elimi-
nating the SWS and increasing the TCP window size
we have almost twofold improvement in throughput.
As the block size is increased the processing time per
block increases and hence the throughput decreases.


Throughput observed with UDP are high be-
cause of the lesser processing overhead of the proto-
col. This is also a good test to identify the bu�er
limitations and other overheads caused by the system.







Maximumthroughput observed on the receiving side is
70Mbps, but on the sending side it is almost 120Mbps.
This di�erence in throughput is because of the heavy
loss of data in the transit when there are uneven surges
in data transfer rates on the sending side. Fig.5 shows
that by incorporating a rate control algorithm which
submits data at regular intervals and by increasing
the HWM and LWM at UDP-IP interface, there is no
change in the obtained throughput. But as we see in
the below this reduces data loss in UDP drastically.


0


20


40


60


80


100


0 2000 4000 6000 8000 10000


Th
ro


ug
hp


ut
 in


 M
bp


s


Block size in bytes


No Flow Control
With Flow Control


With FC & 32k High water mark


Figure 5: UDP throughput after the modi�cations
A steady increase in throughput is observed


(Fig.5) till a block size of 8192bytes. This is because
of no processing nature of UDP. UDP submits packets
as it is to IP to segment them if necessary. On the
receiving side these segments are reassembled by IP
and are submitted to UDP. As the block size increases,
the bu�ers in the system deplete very fast and hence
UDP block until a fresh quota of bu�ers is available
[10]. Hence, there will be higher delays at the sender-
network interface.
4.3 Loss


Loss of data at high data rates on UDP is because
of the resource quench on the participating systems
and host-network interface rather than the network
limitation. Fig.6 presents the loss percentage versus
block size. Note that loss of as high as 27% is observed.


Since, all the above mentioned loss is occur-
ring inside IP, it is left unnoticed by UDP and hence
UDP cannot inform the user about the reason for the
loss of data. This again allows UDP to accept data
at faster rate from the user. We observed in the time
domain graphs of UDP this erratic patterns. To avoid
UDP from sending the data at high rates, we incorpo-
rated a ow control algorithm inside the user program
of UDP to send data at �xed rate depending on the
type of the network underneath. The algorithm we
implemented sends packet at regular intervals of the
allowed rate (in our case we experimented with the
assumption of 70Mbps bandwidth being allocated to
the application).


0


5


10


15


20


25


30


35


40


0 2000 4000 6000 8000 10000


Lo
ss


 o
f d


at
a 


in
 %


Block size in bytes


No Flow Control
With Flow Control


With FC & 32k High water mark


Figure 6: UDP loss at di�erent block sizes


0


10


20


30


40


50


60


70


80


0 2000 4000 6000 8000 10000


Th
ro


ug
hp


ut
 in


 M
bp


s


Block size in bytes


With SWS
Without SWS


32K TCP window


Figure 7: TCP throughput for DC application


This simple algorithm reduced the loss per-
centage to almost 15% from 27%. We do agree that
this method is not user transparent. Hence, if this
algorithm is incorporated inside the UDP protocol it-
self on per connection basis, we predict that the loss
percentage can be minimized.


5 Improvement in DC applica-
tion


With the simulated DC application we send 5Mbytes
of data from either of the nodes using send process
every second. This generates about 72 Mbps of data
on the network. At the same time a moderately com-
putational intensive process (which when run alone
occupies about 30% of CPU time) is run using com-
putation process. We measure the e�ect of the control
parameters as mentioned in the previous section on
this application.


A decrease in throughput by nearly 20% in all
the cases (Fig.7) shows the e�ect of sharing the CPU
by both computation and communication processes.
E�ect of SWS is reduced considerably because of the
breakup in data transfer, unlike in the previous case
where data is submitted continuously. In UDP case







0


10


20


30


40


50


60


70


80


0 2000 4000 6000 8000 10000


Th
ro


ug
hp


ut
 in


 M
bp


s


Block size in bytes


Without FC
With FC


32K HWM


Figure 8: UDP throughput for DC application


very little di�erence between the three cases is ob-
served (Fig.8) because of the decrease in loss of data.
Loss of data Fig.9 though approximately following the
previous pro�le is reduced because of the reduced com-
munication processing time.


0


5


10


15


20


25


30


35


40


0 2000 4000 6000 8000 10000


Lo
ss


 in
 %


Block size in bytes


Without FC
With FC


32K HWM


Figure 9: UDP loss in DC application


6 Conclusions


We analysed TCP-IP and UDP-IP with respect to
user observable QOS parameters, namely connection
establishment time, throughput, and loss. It can be
seen from the results we have in this environment that
TCP can be tuned to behave as less overhead protocol
as UDP. We also brought out the reasons behind loss
of data in case of UDP, and very low throughput in
case of TCP. We demonstrated how a simple rate con-
trol algorithm at the user level can reduce the loss by
nearly 10%. We presented how avoiding SWS and in-
creasing the window size can improve the throughput
in case of TCP.


A user with some knowledge of the application
can change the above discussed control parameters and
mould TCP or UDP to his needs. For example, a bulk
data transfer application which is less delay sensitive
can �x the point of operation where the throughput is
high in case of TCP/IP, and high throughput and less
loss in case of UDP/IP. A DC application can �x the


point of operation where the throughput is su�cient,
connection establishment time and loss are minimal.
We used DC application to demonstrate the results.


References


[1] Boggs, D.R., J.C. Mougl, and C.A.Kent [1988].
\Measured Capacity of an Ethernet Myths Real-
ity," Proc. ACM SIGCOMM'88, Stanford, Calif.,
Aug 1988, pp 222-234.


[2] Jain, R. [1990]. \Performance Analysis of FDDI
Token Ring Networks: E�ect of Parameters and
Guidelines for Setting TTRT," Proc. ACM SIG-
COMM'90, Philadelphia, Sept 1990, pp 264-275.


[3] Rao, Nageswara S.V., Maly, K., Olariu, S., Sud-
heer, D., Zhang, L., and Game, D. [1994]. \Av-
erage Waiting Time Pro�les of Uniform DQDB
Model," Proc. INFOCOMM'94, Toronto, June
1994, pp 1326-1335.


[4] Sykas, E. D, Vlakos, K. M, and Hillyard, M. J
[1991]. \Overview of ATM networks: functions
and procedures," Computer communications re-
view, Vol. 14, No. 10, Dec 1991, pp 615-626.


[5] Angnostou, M. E et al. [1991]. \Quality of service
requirements in ATM-based B-ISDNs," Computer
communications review, Vol 14, No. 4, May 1991,
pp 197-204.


[6] \ATM: User-Network Interface speci�cation -
version 3.0," The ATM-Forum, Prentice Hall
Publications limited - 1993.


[7] Sykas, E. D, Vlakos, K. M, and Anerousis,
N [1991]. \Performance evaluation of statistical
multiplexing schemes in ATM networks," Com-
puter communications review, Vol. 14, No. 7, Oct
1991.


[8] C. Papadopoulos, G. M. Parulkar, \Experimen-
tal evaluation of SUNOS IPC and TCP/IP pro-
tocol implementation", IEEE/ACM Transactions
on Networks Vol 1, no. 2, April 1993.


[9] William Gropp, and Barry Smith, \User Manual
for the Chameleon Parallel Programming Tools",
Argonne National Laboratory, June 1993.


[10] SunOS 5.1, STREAMS Programmer's Guide,
SunSoft Technical Manual.


[11] Clark, D.D. \Window and Acknowledgment Strat-
egy in TCP," RFC813.






