

FreeBSD Handbook
The FreeBSD Documentation Project

March 1998

Abstract

Welcome to FreeBSD! This handbook covers the installation and day to day use of
FreeBSD Release 2.2.6. This manual is a work in progress and is the work of many
individuals. Many sections do not yet exist and some of those that do exist need to be
updated. If you are interested in helping with this project, send email to the FreeBSD
documentation project mailing list

<freebsd-doc@FreeBSD.ORG> The latest version of this document is always
available from the FreeBSD World Wide Web server1 . It may also be downloaded in
plain text2 , postscript3 or HTML with HTTP or gzip’d from the FreeBSD FTP server4 .
or one of the numerous mirror sites (section 25.2, page 351). You may also want to
Search the Handbook5 .

1. <URL:http://www.FreeBSD.ORG/>

2. <URL:handbook.latin1>

3. <URL:handbook.ps>

4. <URL:ftp://ftp.FreeBSD.ORG/pub/FreeBSD/docs>

5. <URL:/search.html>

FreeBSD Handbook 1

FreeBSD Handbook 2

Part I

Getting Started

FreeBSD Handbook 3

1. Introduction
FreeBSD is a 4.4BSD-Lite based operating system for Intel architecture (x86) based PCs. For an
overview of FreeBSD, see FreeBSD in a nutshell (section 1.1, page 3). For a history of the project,
read a brief history of FreeBSD (section 1.2, page 5). To see a description of the latest release, read
about the current release (section 1.5, page 8). If you’re interested in contributing something to the
FreeBSD project (code, equipment, sacks of unmarked bills), please see about contributing to
FreeBSD (section 19., page 273).

1.1 FreeBSD in a Nutshell
FreeBSD is a state of the art operating system for personal computers based on the Intel CPU
architecture, which includes the 386, 486 and Pentium processors (both SX and DX versions).
Intel compatible CPUs from AMD and Cyrix are supported as well. FreeBSD provides you with
many advanced features previously available only on much more expensive computers. These
features include:

• Preemptive multitasking with dynamic priority adjustment to ensure smooth and fair shar-
ing of the computer between applications and users.

• Multiuser access means that many people can use a FreeBSD system simultaneously for a
variety of things. System peripherals such as printers and tape drives are also properly
SHARED BETWEEN ALL users on the system.

• Complete TCP/IP networking including SLIP, PPP, NFS and NIS support. This means that
your FreeBSD machine can inter-operate easily with other systems as well act as an enter-
prise server, providing vital functions such as NFS (remote file access) and e-mail services
or putting your organization on the Internet with WWW, ftp, routing and firewall (security)
services.

• Memory protection ensures that applications (or users) cannot interfere with each other.
One application crashing will not affect others in any way.

• FreeBSD is a 32-bit operating system and was designed as such from the ground up.

• The industry standard X Window System (X11R6) provides a graphical user interface (GUI)
for the cost of a common VGA card and monitor and comes with full sources.

• Binary compatibility with many programs built for SCO, BSDI, NetBSD, Linux and
386BSD.

• Hundreds of ready-to-run applications are available from the FreeBSD ports and packages
collection. Why search the net when you can find it all right here?

• Thousands of additional and easy-to-port applications available on the Internet. FreeBSD is
source code compatible with most popular commercial Unix systems and thus most appli-
cations require few, if any, changes to compile.

• Demand paged virtual memory and ‘merged VM/buffer cache’ design efficiently satisfies
applications with large appetites for memory while still maintaining interactive response to
other users.

• Shared libraries (the Unix equivalent of MS-Windows DLLs) provide for efficient use of
disk space and memory.

• A full compliment of C, C++ and Fortran development tools. Many additional languages
for advanced research and development are also available in the ports and packages collec-
tion.

• Source code for the entire system means you have the greatest degree of control over your
environment. Why be locked into a proprietary solution and at the mercy of your vendor
when you can have a truly Open System?

FreeBSD Handbook 4

• Extensive on-line documentation.

• And many more!

FreeBSD is based on the 4.4BSD-Lite release from Computer Systems Research Group (CSRG) at
the University of California at Berkeley, and carries on the distinguished tradition of BSD systems
development. In addition to the fine work provided by CSRG, the FreeBSD Project has put in
many thousands of hours in fine tuning the system for maximum performance and reliability in
real-life load situations. As many of the commercial giants struggle to field PC operating systems
with such features, performance and reliability, FreeBSD can offer them now!

The applications to which FreeBSD can be put are truly limited only by your own imagination.
From software development to factory automation, inventory control to azimuth correction of
remote satellite antennae; if it can be done with a commercial UNIX product then it is more than
likely that you can do it with FreeBSD, too! FreeBSD also benefits significantly from the literally
thousands of high quality applications developed by research centers and universities around the
world, often available at little to no cost. Commercial applications are also available and appear-
ing in greater numbers every day.

Because the source code for FreeBSD itself is generally available, the system can also be cus-
tomized to an almost unheard of degree for special applications or projects, and in ways not gen-
erally possible with operating systems from most major commercial vendors. Here is just a sam-
pling of some of the applications in which people are currently using FreeBSD:

• Internet Services: The robust TCP/IP networking built into FreeBSD makes it an ideal plat-
form for a variety of Internet services such as:

• FTP servers

• World Wide Web servers

• Gopher servers

• Electronic Mail servers

• USENET News

• Bulletin Board Systems

• And more...

You can easily start out small with an inexpensive 386 class PC and upgrade as your enter-
prise grows.

• Education: Are you a student of computer science or a related engineering field? There is
no better way of learning about operating systems, computer architecture and networking
than the hands on, under the hood experience that FreeBSD can provide. A number of
freely available CAD, mathematical and graphic design packages also make it highly useful
to those whose primary interest in a computer is to get other work done!

• Research: With source code for the entire system available, FreeBSD is an excellent platform
for research in operating systems as well as other branches of computer science. FreeBSD’s
freely available nature also makes it possible for remote groups to collaborate on ideas or
shared development without having to worry about special licensing agreements or limita-
tions on what may be discussed in open forums.

• Networking: Need a new router? A name server (DNS)? A firewall to keep people out of
your internal network? FreeBSD can easily turn that unused 386 or 486 PC sitting in the
corner into an advanced router with sophisticated packet filtering capabilities.

• X Window workstation: FreeBSD is a fine choice for an inexpensive X terminal solution,
either using the freely available XFree86 server or one of the excellent commercial servers

FreeBSD Handbook 5

provided by X Inside. Unlike an X terminal, FreeBSD allows many applications to be run
locally, if desired, thus relieving the burden on a central server. FreeBSD can even boot
"diskless", making individual workstations even cheaper and easier to administer.

• Software Development: The basic FreeBSD system comes with a full compliment of devel-
opment tools including the renowned GNU C/C++ compiler and debugger.

FreeBSD is available in both source and binary form on CDROM and via anonymous ftp. See
Obtaining FreeBSD (section 25., page 351) for more details.

1.2 A Brief History of FreeBSD
Contributed by Jordan K. Hubbard <jkh@FreeBSD.ORG>.

The FreeBSD project had its genesis in the early part of 1993, partially as an outgrowth of the
"Unofficial 386BSD Patchkit" by the patchkit’s last 3 coordinators: Nate Williams, Rod Grimes and
myself.

Our original goal was to produce an intermediate snapshot of 386BSD in order to fix a number of
problems with it that the patchkit mechanism just was not capable of solving. Some of you may
remember the early working title for the project being "386BSD 0.5" or "386BSD Interim" in refer-
ence to that fact.

386BSD was Bill Jolitz’s operating system, which had been up to that point suffering rather
severely from almost a year’s worth of neglect. As the patchkit swelled ever more uncomfortably
with each passing day, we were in unanimous agreement that something had to be done and
decided to try and assist Bill by providing this interim "cleanup" snapshot. Those plans came to a
rude halt when Bill Jolitz suddenly decided to withdraw his sanction from the project and with-
out any clear indication of what would be done instead.

It did not take us long to decide that the goal remained worthwhile, even without Bill’s support,
and so we adopted the name "FreeBSD", coined by David Greenman. Our initial objectives were
set after consulting with the system’s current users and, once it became clear that the project was
on the road to perhaps even becoming a reality, I contacted Walnut Creek CDROM with an eye
towards improving FreeBSD’s distribution channels for those many unfortunates without easy
access to the Internet. Walnut Creek CDROM not only supported the idea of distributing
FreeBSD on CD but went so far as to provide the project with a machine to work on and a fast
Internet connection. Without Walnut Creek CDROM’s almost unprecedented degree of faith in
what was, at the time, a completely unknown project, it is quite unlikely that FreeBSD would
have gotten as far, as fast, as it has today.

The first CDROM (and general net-wide) distribution was FreeBSD 1.0, released in December of
1993. This was based on the 4.3BSD-Lite ("Net/2") tape from U.C. Berkeley, with many compo-
nents also provided by 386BSD and the Free Software Foundation. It was a fairly reasonable suc-
cess for a first offering, and we followed it with the highly successful FreeBSD 1.1 release in May
of 1994.

Around this time, some rather unexpected storm clouds formed on the horizon as Novell and
U.C. Berkeley settled their long-running lawsuit over the legal status of the Berkeley Net/2 tape.
A condition of that settlement was U.C. Berkeley’s concession that large parts of Net/2 were
"encumbered" code and the property of Novell, who had in turn acquired it from AT&T some
time previously. What Berkeley got in return was Novell’s "blessing" that the 4.4BSD-Lite release,
when it was finally released, would be declared unencumbered and all existing Net/2 users
would be strongly encouraged to switch. This included FreeBSD, and the project was given until
the end of July 1994 to stop shipping its own Net/2 based product. Under the terms of that
agreement, the project was allowed one last release before the deadline, that release being
FreeBSD 1.1.5.1.

FreeBSD then set about the arduous task of literally re-inventing itself from a completely new and
rather incomplete set of 4.4BSD-Lite bits. The "Lite" releases were light in part because Berkeley’s

FreeBSD Handbook 6

CSRG had removed large chunks of code required for actually constructing a bootable running
system (due to various legal requirements) and the fact that the Intel port of 4.4 was highly
incomplete. It took the project until December of 1994 to make this transition, and in January of
1995 it released FreeBSD 2.0 to the net and on CDROM. Despite being still more than a little
rough around the edges, the release was a significant success and was followed by the more
robust and easier to install FreeBSD 2.0.5 release in June of 1995.

We released FreeBSD 2.1.5 in August of 1996, and it appeared to be popular enough among the
ISP and commercial communities that another release along the 2.1-stable branch was merited.
This was FreeBSD 2.1.7.1, released in February 1997 and capping the end of mainstream develop-
ment on 2.1-stable. Now in maintenance mode, only security enhancements and other critical
bug fixes will be done on this branch (RELENG_2_1_0).

FreeBSD 2.2 was branched from the development mainline ("-current") in November 1996 as the
RELENG_2_2 branch, and the first full release (2.2.1) was released in April, 1997. Further releases
along the 2.2 branch were done in the Summer and Fall of ’97, the latest being 2.2.6 which
appeared in late March of ’98. The first official 3.0 release will appear later in 1998.

Long term development projects for everything from SMP to DEC ALPHA support will continue
to take place in the 3.0-current branch and SNAPshot releases of 3.0 on CDROM (and, of course,
on the net).

1.3 FreeBSD Project Goals
Contributed by Jordan K. Hubbard <jkh@FreeBSD.ORG>.

The goals of the FreeBSD Project are to provide software that may be used for any purpose and
without strings attached. Many of us have a significant investment in the code (and project) and
would certainly not mind a little financial compensation now and then, but we’re definitely not
prepared to insist on it. We believe that our first and foremost "mission" is to provide code to any
and all comers, and for whatever purpose, so that the code gets the widest possible use and pro-
vides the widest possible benefit. This is, I believe, one of the most fundamental goals of Free
Software and one that we enthusiastically support.

That code in our source tree which falls under the GNU Public License (GPL) or GNU Library
Public License (GLPL) comes with slightly more strings attached, though at least on the side of
enforced access rather than the usual opposite. Due to the additional complexities that can
evolve in the commercial use of GPL software, we do, however, endeavor to replace such soft-
ware with submissions under the more relaxed BSD copyright whenever possible.

1.4 The FreeBSD Development Model
Contributed by Satoshi Asami <asami@FreeBSD.ORG>.

The development of FreeBSD is a very open and flexible process, FreeBSD being literally built
from the contributions of hundreds of people around the world, as can be seen from our list of
contributors (section 28., page 377). We are constantly on the lookout for new developers and
ideas, and those interested in becoming more closely involved with the project need simply con-
tact us at the FreeBSD technical discussions mailing list <freebsd-hackers@FreeBSD.ORG> .
Those who prefer to work more independently are also accommodated, and they are free to use
our FTP facilities at ftp.freebsd.org to distribute their own patches or work-in-progress sources.
The FreeBSD announcements mailing list <freebsd-announce@FreeBSD.ORG> is also avail-
able to those wishing to make other FreeBSD users aware of major areas of work.

Useful things to know about the FreeBSD project and its development process, whether working
independently or in close cooperation:

The CVS repository
"

FreeBSD Handbook 7

The central source tree for FreeBSD is maintained by CVS (Concurrent Version Sys-
tem), a freely available source code control tool which comes bundled with
FreeBSD. The primary CVS repository resides on a machine in Concord CA, USA
from where it is replicated to numerous mirror machines throughout the world.
The CVS tree, as well as the -current (section 18.1, page 254) and -stable (section 18.2,
page 256) trees which are checked out of it, can be easily replicated to your own
machine as well. Please refer to the Synchronizing your source tree (section 18.3, page
257) section for more information on doing this.

The committers list
"

The committers (section 28.2, page 377) are the people who have write access to the
CVS tree, and are thus authorized to make modifications to the FreeBSD source (the
term ‘‘committer’’ comes from the cvs(1) ‘‘commit ’’ command, which is used to
bring new changes into the CVS repository). The best way of making submissions
for review by the committers list is to use the send-pr(1) command, though if some-
thing appears to be jammed in the system then you may also reach them by sending
mail to committers@freebsd.org.

The FreeBSD core team
"

The FreeBSD core team (section 28.1, page 377) would be equivalent to the board of
directors if the FreeBSD Project were a company. The primary task of the core team
is to make sure the project, as a whole, is in good shape and is heading in the right
directions. Inviting dedicated and responsible developers to join our group of com-
mitters is one of the functions of the core team, as is the recruitment of new core
team members as others move on. Most current members of the core team started
as committers who’s addiction to the project got the better of them.

Some core team members also have specific areas of responsibility (section 28.4, page
381), meaning that they are committed to ensuring that some large portion of the
system works as advertised. Note that most members of the core team are volun-
teers when it comes to FreeBSD development and do not benefit from the project
financially, so "commitment" should also not be misconstrued as meaning "guaran-
teed support." The ‘‘board of directors’’ analogy above is not actually very accurate,
and it may be more suitable to say that these are the people who gave up their lives
in favor of FreeBSD against their better judgement! ;)

Outside contributors

Last, but definitely not least, the largest group of developers are the users them-
selves who provide feedback and bug-fixes to us on an almost constant basis. The
primary way of keeping in touch with FreeBSD’s more non-centralized develop-
ment is to subscribe to the FreeBSD technical discussions mailing list <freebsd-
hackers@FreeBSD.ORG> (see mailing list info (section 27.1, page 368)) where such
things are discussed.

The list (section 19.5, page 304) of those who have contributed something which
made its way into our source tree is a long and growing one, so why not join it by
contributing something back to FreeBSD today? :-)

Providing code is not the only way of contributing to the project; for a more com-
plete list of things that need doing, please refer to the how to contribute (section 19.,
page 273) section in this handbook.

In summary, our development model is organized as a loose set of concentric circles. The central-
ized model is designed for the convenience of the users of FreeBSD, who are thereby provided

FreeBSD Handbook 8

with an easy way of tracking one central code base, not to keep potential contributors out! Our
desire is to present a stable operating system with a large set of coherent application programs (sec-
tion 4., page 23) that the users can easily install and use, and this model works very well in
accomplishing that.

All we ask of those who would join us as FreeBSD developers is some of the same dedication its
current people have to its continued success!

1.5 About the Current Release
FreeBSD is a freely available, full source 4.4BSD-Lite based release for Intel i386/i486/Pen-
tium/PentiumPro/Pentium II (or compatible) based PC’s. It is based primarily on software from
U.C. Berkeley’s CSRG group, with some enhancements from NetBSD, OpenBSD, 386BSD, and the
Free Software Foundation.

Since our release of FreeBSD 2.0 in January of 95, the performance, feature set, and stability of
FreeBSD has improved dramatically. The largest change is a revamped virtual memory system
with a merged VM/file buffer cache that not only increases performance, but reduces FreeBSD’s
memory footprint, making a 5MB configuration a more acceptable minimum. Other enhance-
ments include full NIS client and server support, transaction TCP support, dial-on-demand PPP,
an improved SCSI subsystem, early ISDN support, support for FDDI and Fast Ethernet (100Mbit)
adapters, improved support for the Adaptec 2940 (WIDE and narrow) and many hundreds of
bug fixes.

We have also taken the comments and suggestions of many of our users to heart and have
attempted to provide what we hope is a more sane and easily understood installation process.
Your feedback on this (constantly evolving) process is especially welcome!

In addition to the base distributions, FreeBSD offers a new ported software collection with hun-
dreds of commonly sought-after programs. At the end of March 1998 there were more than 1300
ports! The list of ports ranges from http (WWW) servers, to games, languages, editors and almost
everything in between. The entire ports collection requires approximately 26MB of storage, all
ports being expressed as ‘‘deltas’’ to their original sources. This makes it much easier for us to
update ports, and greatly reduces the disk space demands made by the older 1.0 ports collection.
To compile a port, you simply change to the directory of the program you wish to install, type
‘‘make all’’ followed by ‘‘make install’’ after successful compilation and let the system do the rest.
The full original distribution for each port you build is retrieved dynamically off the CDROM or
a local ftp site, so you need only enough disk space to build the ports you want. (Almost) every
port is also provided as a pre-compiled "package" which can be installed with a simple command
(pkg_add) by those who do not wish to compile their own ports from source.

A number of additional documents which you may find very helpful in the process of installing
and using FreeBSD may now also be found in the /usr/share/doc directory on any machine run-
ning FreeBSD 2.1 or later. You may view the locally installed manuals with any HTML capable
browser using the following URLs:

The FreeBSD handbook

The FreeBSD FAQ

You can also visit the master (and most frequently updated) copies at http://www.freebsd.org.

The core of FreeBSD does not contain DES code which would inhibit its being exported outside
the United States. There is an add-on package to the core distribution, for use only in the United
States, that contains the programs that normally use DES. The auxiliary packages provided sepa-
rately can be used by anyone. A freely (from outside the U.S.) exportable European distribution
of DES for our non-U.S. users also exists and is described in the FreeBSD FAQ.

If password security for FreeBSD is all you need, and you have no requirement for copying
encrypted passwords from different hosts (Suns, DEC machines, etc) into FreeBSD password

FreeBSD Handbook 9

entries, then FreeBSD’s MD5 based security may be all you require! We feel that our default secu-
rity model is more than a match for DES, and without any messy export issues to deal with. If
you are outside (or even inside) the U.S., give it a try!

FreeBSD Handbook 10

2. Installing FreeBSD
So, you would like to try out FreeBSD on your system? This section is a quick-start guide for
what you need to do. FreeBSD can be installed from a variety of media including CD-ROM,
floppy disk, magnetic tape, an MS-DOS partition and, if you have a network connection, via
anonymous ftp or NFS.

Regardless of the installation media you choose, you can get started by creating the installation
disk as described below. Booting your computer into the FreeBSD installer, even if you aren’t
planning on installing FreeBSD right away, will provide important information about compatibil-
ity between FreeBSD and your hardware which may, in turn, dictate which installation options
are even possible. It can also provide early clues to any compatibility problems which could pre-
vent FreeBSD running on your system at all. If you plan on installing via anonymous FTP then
this installation disk is all you need to download (the installation will handle any further
required downloading itself).

For more information on obtaining the latest FreeBSD distributions, please see Obtaining FreeBSD
(section 25., page 351) in the Appendix.

So, to get the show on the road, follow these steps:

1.

Review the supported configurations (section 2.1, page 12) section of this installation guide
to be sure that your hardware is supported by FreeBSD. It may be helpful to make a list of
any special cards you have installed, such as SCSI controllers, Ethernet adapters or sound
cards. This list should include relevant configuration parameters such as interrupts (IRQ)
and IO port addresses.

2.

If you’re installing FreeBSD from CDROM media then you have several different installa-
tion options:

•

If the CD has been mastered with El Torrito boot support and your system supports
direct booting from CDROM (and many older systems do not), simply insert the CD
into the drive and boot directly from it.

•

If you’re running DOS and have the proper drivers to access your CD, run the
install.bat script provided on the CD. This will attempt to boot into the FreeBSD
installation straight from DOS (note: You must do this from actual DOS and not a Win-
dows DOS box). If you also want to install FreeBSD from your DOS partition (per-
haps because your CDROM drive is completely unsupported by FreeBSD) then run
the setup program first to copy the appropriate files from the CD to your DOS parti-
tion, afterwards running install.

•

If either of the two proceeding methods work then you can simply skip the rest of
this section, otherwise your final option is to create a boot floppy from the flop-
pies\boot.flp image - proceed to step 4 for instructions on how to do this.

3.

If you don’t have a CDROM distribution then simply download the installation boot disk
image6 file to your hard drive, being sure to tell your browser to save rather than display

6. <URL:ftp://ftp.FreeBSD.ORG/pub/FreeBSD/2.2.6-RELEASE/floppies/boot.flp>

FreeBSD Handbook 11

the file. Note: This disk image can only be used with 1.44 megabyte 3.5 inch floppy disks.

4.

Make the installation boot disk from the image file:

•

If you are using MS-DOS then download fdimage.exe7 or get it from tools\fdim-
age.exe on the CDROM and then run it like so:

E:\> tools\fdimage floppies\boot.flp a:

The fdimage program will format the A: drive and then copy the boot.flp image onto
it (assuming that you’re at the top level of a FreeBSD distribution and the floppy
images live in the floppies subdirectory, as is typically the case).

•

If you are using a UNIX system to create the floppy image:

% dd if=boot.flp of= disk device

where disk device is the /dev entry for the floppy drive. On FreeBSD systems, this is
/dev/rfd0 for the A: drive and /dev/rfd1 for the B: drive.

5.

With the installation disk in the A: drive, reboot your computer. You should get a boot
prompt something like this:

>> FreeBSD BOOT ...

Usage: [[[0:][wd](0,a)]/kernel][-abcCdhrsv]

Use 1:sd(0,a)kernel to boot sd0 if it is BIOS drive 1

Use ? for file list or press Enter for defaults

Boot:

If you do not type anything, FreeBSD will automatically boot with its default configuration
after a delay of about five seconds. As FreeBSD boots, it probes your computer to deter-
mine what hardware is installed. The results of this probing is displayed on the screen.

6.

When the booting process is finished, The main FreeBSD installation menu will be dis-
played.

If something goes wrong...

Due to limitations of the PC architecture, it is impossible for probing to be 100 percent reliable. In
the event that your hardware is incorrectly identified, or that the probing causes your computer
to lock up, first check the supported configurations (section 2.1, page 12) section of this installa-
tion guide to be sure that your hardware is indeed supported by FreeBSD.

If your hardware is supported, reset the computer and when the Boot: prompt comes up, type
-c. This puts FreeBSD into a configuration mode where you can supply hints about your hard-
ware. The FreeBSD kernel on the installation disk is configured assuming that most hardware
devices are in their factory default configuration in terms of IRQs, IO addresses and DMA

7. <URL:ftp://ftp.FreeBSD.ORG/pub/FreeBSD/tools/fdimage.exe>

FreeBSD Handbook 12

channels. If your hardware has been reconfigured, you will most likely need to use the -c option
at boot to tell FreeBSD where things are.

It is also possible that a probe for a device not present will cause a later probe for another device
that is present to fail. In that case, the probes for the conflicting driver(s) should be disabled.

In the configuration mode, you can:

• List the device drivers installed in the kernel.

• Disable device drivers for hardware not present in your system.

• Change the IRQ, DRQ, and IO port addresses used by a device driver.

While at the config> prompt, type help for more information on the available commands.
After adjusting the kernel to match how you have your hardware configured, type quit at the
config> prompt to continue booting with the new settings.

After FreeBSD has been installed, changes made in the configuration mode will be permanent so
you do not have to reconfigure every time you boot. Even so, it is likely that you will want to
build a custom kernel to optimize the performance of your system. See Kernel configuration (sec-
tion 5., page 35) for more information on creating custom kernels.

2.1 Supported Configurations
FreeBSD currently runs on a wide variety of ISA, VLB, EISA and PCI bus based PC’s, ranging
from 386sx to Pentium class machines (though the 386sx is not recommended). Support for
generic IDE or ESDI drive configurations, various SCSI controller, network and serial cards is also
provided.

A minimum of four megabytes of RAM is required to run FreeBSD. To run the X Window Sys-
tem, eight megabytes of RAM is the recommended minimum.

Following is a list of all disk controllers and Ethernet cards currently known to work with
FreeBSD. Other configurations may very well work, and we have simply not received any indi-
cation of this.

2.1.1 Disk Controllers

• WD1003 (any generic MFM/RLL)

• WD1007 (any generic IDE/ESDI)

• IDE

• ATA

• Adaptec 1505 ISA SCSI controller

• Adaptec 152x series ISA SCSI controllers

• Adaptec 1535 ISA SCSI controllers

• Adaptec 154x series ISA SCSI controllers

• Adaptec 174x series EISA SCSI controller in standard and enhanced mode.

• Adaptec 274x/284x/2940/2940U/3940 (Narrow/Wide/Twin) series EISA/VLB/PCI SCSI
controllers

• Adaptec AIC7850 on-board SCSI controllers

• Adaptec AIC-6360 based boards, which includes the AHA-152x and SoundBlaster SCSI
cards.

Note: You cannot boot from the SoundBlaster cards as they have no on-board BIOS, which

FreeBSD Handbook 13

is necessary for mapping the boot device into the system BIOS I/O vectors. They are per-
fectly usable for external tapes, CDROMs, etc, however. The same goes for any other
AIC-6x60 based card without a boot ROM. Some systems DO have a boot ROM, which is
generally indicated by some sort of message when the system is first powered up or reset.
Check your system/board documentation for more details.

• Buslogic 545S & 545c Note: that Buslogic was formerly known as "Bustek".

• Buslogic 445S/445c VLB SCSI controller

• Buslogic 742A/747S/747c EISA SCSI controller.

• Buslogic 946c PCI SCSI controller

• Buslogic 956c PCI SCSI controller

• NCR 53C810/53C815/53C825/53C860/53C875 PCI SCSI controller.

• NCR5380/NCR53400 (‘‘ProAudio Spectrum’’) SCSI controller.

• DTC 3290 EISA SCSI controller in 1542 emulation mode.

• UltraStor 14F/24F/34F SCSI controllers.

• Seagate ST01/02 SCSI controllers.

• Future Domain 8xx/950 series SCSI controllers.

• WD7000 SCSI controllers.

With all supported SCSI controllers, full support is provided for SCSI-I & SCSI-II peripherals,
including Disks, tape drives (including DAT) and CD ROM drives.

The following CD-ROM type systems are supported at this time:

• SoundBlaster SCSI and ProAudio Spectrum SCSI (cd)

• Mitsumi (all models) proprietary interface (mcd)

• Matsushita/Panasonic (Creative) CR-562/CR-563 proprietary interface (matcd)

• Sony proprietary interface (scd)

• ATAPI IDE interface (experimental and should be considered ALPHA quality!) (wcd)

2.1.2 Ethernet cards

• Allied-Telesis AT1700 and RE2000 cards

• SMC Elite 16 WD8013 Ethernet interface, and most other WD8003E, WD8003EBT,
WD8003W, WD8013W, WD8003S, WD8003SBT and WD8013EBT based clones. SMC Elite
Ultra and 9432TX based cards are also supported.

• DEC EtherWORKS III NICs (DE203, DE204, and DE205)

• DEC EtherWORKS II NICs (DE200, DE201, DE202, and DE422)

• DEC DC21040/DC21041/DC21140 based NICs:

• ASUS PCI-L101-TB

• Accton ENI1203

• Cogent EM960PCI

• Compex CPXPCI/32C

FreeBSD Handbook 14

• D-Link DE-530

• DEC DE435

• Danpex EN-9400P3

• JCIS Condor JC1260

• Kingston KNE100TX

• Linksys EtherPCI

• Mylex LNP101

• SMC EtherPower 10/100 (Model 9332)

• SMC EtherPower (Model 8432)

• SMC EtherPower (2)

• Zynx ZX314

• Zynx ZX342

• DEC FDDI (DEFPA/DEFEA) NICs

• Fujitsu FMV-181 and FMV-182

• Fujitsu MB86960A/MB86965A

• Intel EtherExpress

• Intel EtherExpress Pro/100B 100Mbit.

• Isolan AT 4141-0 (16 bit)

• Isolink 4110 (8 bit)

• Lucent WaveLAN wireless networking interface.

• Novell NE1000, NE2000, and NE2100 ethernet interface.

• 3Com 3C501 cards

• 3Com 3C503 Etherlink II

• 3Com 3c505 Etherlink/+

• 3Com 3C507 Etherlink 16/TP

• 3Com 3C509, 3C579, 3C589 (PCMCIA) Etherlink III

• 3Com 3C590, 3C595 Etherlink III

• 3Com 3C90x cards.

• HP PC Lan Plus (27247B and 27252A)

• Toshiba ethernet cards

• PCMCIA ethernet cards from IBM and National Semiconductor are also supported.

Note: FreeBSD does not currently support PnP (plug-n-play) features present on some ethernet
cards. If your card has PnP and is giving you problems, try disabling its PnP features.

2.1.3 Miscellaneous devices

• AST 4 port serial card using shared IRQ.

FreeBSD Handbook 15

• ARNET 8 port serial card using shared IRQ.

• BOCA IOAT66 6 port serial card using shared IRQ.

• BOCA 2016 16 port serial card using shared IRQ.

• Cyclades Cyclom-y Serial Board.

• STB 4 port card using shared IRQ.

• SDL Communications Riscom/8 Serial Board.

• SDL Communications RISCom/N2 and N2pci sync serial cards.

• Digiboard Sync/570i high-speed sync serial card.

• Decision-Computer Intl. "Eight-Serial" 8 port serial cards using shared IRQ.

• Adlib, SoundBlaster, SoundBlaster Pro, ProAudioSpectrum, Gravis UltraSound, Gravis
UltraSound MAX and Roland MPU-401 sound cards.

• Matrox Meteor video frame grabber.

• Creative Labs Video spigot frame grabber.

• Omnimedia Talisman frame grabber.

• Brooktree BT848 chip based frame grabbers.

• X-10 power controllers.

• PC joystick and speaker.

FreeBSD does not currently support IBM’s microchannel (MCA) bus.

2.2 Preparing for the Installation
There are a number of different methods by which FreeBSD can be installed. The following
describes what preparation needs to be done for each type.

2.2.1 Before installing from CDROM

If your CDROM is of an unsupported type, then please skip to MS-DOS Preparation (section 2.2.3,
page 16).

There is not a lot of preparatory work that needs to be done to successfully install from one of
Walnut Creek’s FreeBSD CDROMs (other CDROM distributions may work as well, though we
cannot say for certain as we have no hand or say in how they are created). You can either boot
into the CD installation directly from DOS using Walnut Creek’s supplied ‘‘install.bat’’ batch file
or you can make a boot floppy with the ‘‘makeflp.bat’’ command. [NOTE: If you are running
FreeBSD 2.1-RELEASE and have an IDE CDROM, use the inst ide.bat or atapiflp.bat batch files
instead].

For the easiest interface of all (from DOS), type ‘‘view’’. This will bring up a DOS menu utility
that leads you through all the available options.

If you are creating the boot floppy from a UNIX machine, see the beginning of this guide (section
2., page 10) for examples. of how to create the boot floppy.

Once you have booted from DOS or floppy, you should then be able to select CDROM as the
media type in the Media menu and load the entire distribution from CDROM. No other types of
installation media should be required.

After your system is fully installed and you have rebooted from the hard disk, you can mount the
CDROM at any time by typing: mount /cdrom

Before removing the CD again, also note that it is necessary to first type: umount /cdrom . Do

FreeBSD Handbook 16

not just remove it from the drive!

Special note: Before invoking the installation, be sure that
the CDROM is in the drive so that the install probe can find
it. This is also true if you wish the CDROM to be added to the
default system configuration automatically during the install
(whether or not you actually use it as the installation media).

Finally, if you would like people to be able to FTP install FreeBSD directly from the CDROM in
your machine, you will find it quite easy. After the machine is fully installed, you simply need to
add the following line to the password file (using the vipw command):

ftp:*:99:99::0:0:FTP:/cdrom:/nonexistent

Anyone with network connectivity to your machine (and permission to log into it) can now chose
a Media type of FTP and type in: ftp:// your machine after picking ‘‘Other’’ in the ftp sites menu.

2.2.2 Before installing from Floppy

If you must install from floppy disks, either due to unsupported hardware or simply because you
enjoy doing things the hard way, you must first prepare some floppies for the install.

You will need, at minimum, as many 1.44MB or 1.2MB floppies as it takes to hold all files in the
bin (binary distribution) directory. If you are preparing these floppies under DOS, then THESE
floppies *must* be formatted using the MS-DOS FORMAT command. If you are using Windows,
use the Windows File Manager format command.

Do not trust Factory Preformatted floppies! Format them again yourself, just to make sure. Many
problems reported by our users in the past have resulted from the use of improperly formatted
media, which is why I am taking such special care to mention it here!

If you are creating the floppies from another FreeBSD machine, a format is still not a bad idea
though you do not need to put a DOS filesystem on each floppy. You can use the ‘disklabel’ and
‘newfs’ commands to put a UFS filesystem on them instead, as the following sequence of com-
mands (for a 3.5" 1.44MB floppy disk) illustrates:

fdformat -f 1440 fd0.1440
disklabel -w -r fd0.1440 floppy3
newfs -t 2 -u 18 -l 1 -i 65536 /dev/rfd0

(Use "fd0.1200" and "floppy5" for 5.25" 1.2MB disks).

Then you can mount and write to them like any other file system.

After you have formatted the floppies, you will need to copy the files onto them. The distribution
files are split into chunks conveniently sized so that 5 of them will fit on a conventional 1.44MB
floppy. Go through all your floppies, packing as many files as will fit on each one, until you have
got all the distributions you want packed up in this fashion. Each distribution should go into a
subdirectory on the floppy, e.g.: a:\bin\bin.aa, a:\bin\bin.ab, and so on.

Once you come to the Media screen of the install, select ‘‘Floppy’’ and you will be prompted for
the rest.

2.2.3 Before installing from a MS-DOS partition

To prepare for installation from an MS-DOS partition, copy the files from the distribution into a
directory called C:\FREEBSD. The directory tree structure of the CDROM must be partially
reproduced within this directory so we suggest using the DOS xcopy command. For example, to
prepare for a minimal installation of FreeBSD:

C> MD C:\FREEBSD
C> XCOPY /S E:\BIN C:\FREEBSD\BIN\
C> XCOPY /S E:\MANPAGES C:\FREEBSD\MANPAGES\

FreeBSD Handbook 17

assuming that C: is where you have free space and E: is where your CDROM is mounted.

For as many ‘DISTS’ you wish to install from MS-DOS (and you have free space for), install each
one under C:\FREEBSD - the BIN dist is only the minimal requirement.

2.2.4 Before installing from QIC/SCSI Tape

Installing from tape is probably the easiest method, short of an on-line install using FTP or a
CDROM install. The installation program expects the files to be simply tar’ed onto the tape, so
after getting all of the files for distribution you are interested in, simply tar them onto the tape
with a command like:

cd /freebsd/distdir

tar cvf /dev/rwt0 (or /dev/rst0) dist1 .. dist2

When you go to do the installation, you should also make sure that you leave enough room in
some temporary directory (which you will be allowed to choose) to accommodate the full con-
tents of the tape you have created. Due to the non-random access nature of tapes, this method of
installation requires quite a bit of temporary storage. You should expect to require as much tem-
porary storage as you have stuff written on tape.

Note: When going to do the installation, the tape must be in
the drive before booting from the boot floppy. The installa-
tion probe may otherwise fail to find it.

2.2.5 Before installing over a network

You can do network installations over 3 types of communications links:

Serial port
SLIP or PPP

Parallel port
PLIP (laplink cable)

Ethernet
A standard ethernet controller (includes some PCMCIA).

SLIP support is rather primitive, and limited primarily to hard-wired links, such as a serial cable
running between a laptop computer and another computer. The link should be hard-wired as the
SLIP installation does not currently offer a dialing capability; that facility is provided with the
PPP utility, which should be used in preference to SLIP whenever possible.

If you are using a modem, then PPP is almost certainly your only choice. Make sure that you
have your service provider’s information handy as you will need to know it fairly soon in the
installation process. You will need to know how to dial your ISP using the ‘‘AT commands’’ spe-
cific to your modem, as the PPP dialer provides only a very simple terminal emulator. If you’re
using PAP or CHAP, you’ll need to type the necessary ‘‘set authname’’ and ‘‘set authkey’’ com-
mands before typing ‘‘term’’. Refer to the user-ppp handbook (section 15.1, page 208) and FAQ8

entries for further information. If you have problems, logging can be directed to the screen using
the command set log local

If a hard-wired connection to another FreeBSD (2.0R or later) machine is available, you might also
consider installing over a ‘‘laplink’’ parallel port cable. The data rate over the parallel port is
much higher than what is typically possible over a serial line (up to 50k/sec), thus resulting in a
quicker installation.

Finally, for the fastest possible network installation, an ethernet adaptor is always a good choice!
FreeBSD supports most common PC ethernet cards, a table of supported cards (and their required

8. <URL:../FAQ/userppp.html>

FreeBSD Handbook 18

settings) is provided in Supported Hardware (section 2.1, page 12). If you are using one of the
supported PCMCIA ethernet cards, also be sure that it is plugged in before the laptop is powered
on! FreeBSD does not, unfortunately, currently support hot insertion of PCMCIA cards during
installation.

You will also need to know your IP address on the network, the netmask value for your address
class, and the name of your machine. Your system administrator can tell you which values to use
for your particular network setup. If you will be referring to other hosts by name rather than IP
address, you will also need a name server and possibly the address of a gateway (if you are using
PPP, it is your provider’s IP address) to use in talking to it. If you do not know the answers to all
or most of these questions, then you should really probably talk to your system administrator first
before trying this type of installation.

Once you have a network link of some sort working, the installation can continue over NFS or
FTP.

2.2.5.1 Preparing for NFS installation

NFS installation is fairly straight-forward: Simply copy the FreeBSD distribution files you want
onto a server somewhere and then point the NFS media selection at it.

If this server supports only ‘‘privileged port’’ access (as is generally the default for Sun worksta-
tions), you will need to set this option in the Options menu before installation can proceed.

If you have a poor quality ethernet card which suffers from very slow transfer rates, you may also
wish to toggle the appropriate Options flag.

In order for NFS installation to work, the server must support subdir mounts, e.g., if your
FreeBSD 2.2.6 distribution directory lives on: ziggy:/usr/archive/stuff/FreeBSD Then ziggy will
have to allow the direct mounting of /usr/archive/stuff/FreeBSD, not just /usr or
/usr/archive/stuff.

In FreeBSD’s /etc/exports file, this is controlled by the ‘‘-alldirs ’’ option. Other NFS servers
may have different conventions. If you are getting ‘Permission Denied’ messages from the server
then it is likely that you do not have this enabled properly.

2.2.5.2 Preparing for FTP Installation

FTP installation may be done from any mirror site containing a reasonably up-to-date version of
FreeBSD 2.2.6. A full menu of reasonable choices from almost anywhere in the world is provided
by the FTP site menu.

If you are installing from some other FTP site not listed in this menu, or you are having troubles
getting your name server configured properly, you can also specify your own URL by selecting
the ‘‘Other’’ choice in that menu. A URL can also be a direct IP address, so the following would
work in the absence of a name server:

ftp://165.113.121.81/pub/FreeBSD/2.2.6-RELEASE

There are two FTP installation modes you can use:

FTP Active
For all FTP transfers, use ‘‘Active’’ mode. This will not work through firewalls, but
will often work with older ftp servers that do not support passive mode. If your
connection hangs with passive mode (the default), try active!

FTP Passive
For all FTP transfers, use ‘‘Passive’’ mode. This allows the user to pass through fire-
walls that do not allow incoming connections on random port addresses.

FreeBSD Handbook 19

Note: Active and passive modes are not the same as a ‘proxy’
connection, where a proxy FTP server is listening and forward-
ing FTP requests!

For a proxy FTP server, you should usually give name of the server you really want as a part of
the username, after an @-sign. The proxy server then ’fakes’ the real server. An example: Say
you want to install from ftp.freebsd.org, using the proxy FTP server foo.bar.com, listening on port
1234.

In this case, you go to the options menu, set the FTP username to ftp@ftp.freebsd.org, and the
password to your e-mail address. As your installation media, you specify FTP (or passive FTP, if
the proxy support it), and the URL

FreeBSD Handbook 20

2.4 MS-DOS User’s Questions and Answers
Many FreeBSD users wish to install FreeBSD on PCs inhabited by MS-DOS. Here are some com-
monly asked questions about installing FreeBSD on such systems.

Help! I have no space! Do I need to delete everything first?

If your machine is already running MS-DOS and has little or no free space available for FreeBSD’s
installation, all is not lost! You may find the FIPS utility, provided in the tools directory on the
FreeBSD CDROM or on the various FreeBSD ftp sites, to be quite useful.

FIPS allows you to split an existing MS-DOS partition into two pieces, preserving the original
partition and allowing you to install onto the second free piece. You first defragment your MS-
DOS partition, using the DOS 6.xx DEFRAG utility or the Norton Disk tools, then run FIPS. It
will prompt you for the rest of the information it needs. Afterwards, you can reboot and install
FreeBSD on the new free slice. See the Distributions menu for an estimation of how much free
space you will need for the kind of installation you want.

Can I use compressed MS-DOS filesystems from FreeBSD?

No. If you are using a utility such as Stacker(tm) or DoubleSpace(tm), FreeBSD will only be able
to use whatever portion of the filesystem you leave uncompressed. The rest of the filesystem will
show up as one large file (the stacked/dblspaced file!). Do not remove that file! You will proba-
bly regret it greatly!

It is probably better to create another uncompressed MS-DOS primary partition and use this for
communications between MS-DOS and FreeBSD.

Can I mount my MS-DOS extended partitions?

Yes. DOS extended partitions are mapped in at the end of the other ‘‘slices’’ in FreeBSD, e.g. your
D: drive might be /dev/sd0s5, your E: drive /dev/sd0s6, and so on. This example assumes, of
course, that your extended partition is on SCSI drive 0. For IDE drives, substitute ‘‘wd’’ for ‘‘sd’’
appropriately. You otherwise mount extended partitions exactly like you would mount any other
DOS drive, e.g.:

mount -t msdos /dev/sd0s5 /dos_d

Can I run MS-DOS binaries under FreeBSD?

BSDI has donated their DOS emulator to the BSD world and this has been ported to FreeBSD.

There is also a (technically) nice application available in the The Ports Collection (section 4., page
23) called pcemu which allows you to run many basic MS-DOS text-mode binaries by entirely
emulating an 8088 CPU.

FreeBSD Handbook 21

3. Unix Basics
3.1 The Online Manual
The most comprehensive documentation on FreeBSD is in the form of man pages. Nearly every
program on the system comes with a short reference manual explaining the basic operation and
various arguments. These manuals can be view with the man command. Use of the man com-
mand is simple:

man command

where command is the name of the command you wish to learn about. For example, to learn more
about ls command type:

% man ls

The online manual is divided up into numbered sections:

1. User commands

2. System calls and error numbers

3. Functions in the C libraries

4. Device drivers

5. File formats

6. Games and other diversions

7. Miscellaneous information

8. System maintenance and operation commands

in some cases, the same topic may appear in more than one section of the on-line manual. For
example, there is a chmod user command and a chmod() system call. In this case, you can tell the
man command which one you want by specifying the section:

% man 1 chmod

which will display the manual page for the user command chmod. References to a particular sec-
tion of the on-line manual are traditionally placed in parenthesis in written documentation, so
chmod(1) refers to the chmod user command and chmod(2) refers to the system call.

This is fine if you know the name of the command and simply wish to know how to use it, but
what if you cannot recall the command name? You can use man to search for keywords in the
command descriptions by using the -k switch:

% man -k mail

With this command you will be presented with a list of commands that have the keyword ‘mail’
in their descriptions. This is actually functionally equivalent to using the apropos command.

So, you are looking at all those fancy commands in /usr/bin but do not even have the faintest
idea what most of them actually do? Simply do a

% cd /usr/bin; man -f *

or

% cd /usr/bin; whatis *

FreeBSD Handbook 22

which does the same thing.

3.2 GNU Info Files
FreeBSD includes many applications and utile800u(Fr)1oduced byes th[(Fr)18(Softwa(Fr)18)-456(Foundicaties)]T0 -1(3.8 T0.02206 Tw
(FSF). (o)5078((o)-2(addicati toes m pages,es tse0u(Fr)1ograms cosamwith mo(Fr)18)-)-2(extensive hypertextch cumentles)]TT*
(called22)Tj
/317 1 T2.897195 0 TDinfo22)Tj
/F17 1 T1.837195 0 T0.031
0 TwfiFil
(whicc m be viewed with s t22)Tj
817 1 T15.737495 0 TDinfo22

FreeBSD Handbook 23

4. Installing Applications: The Por ts collection
Contributed by James Raynard <jraynard@freebsd.org> .

The FreeBSD Ports collection allows you to compile and install a very wide range of applications
with a minimum of effort.

For all the hype about open standards, getting a program to work on different versions of Unix
in the real world can be a tedious and tricky business, as anyone who has tried it will know. You
may be lucky enough to find that the program you want will compile cleanly on your system,
install itself in all the right places and run flawlessly ‘‘out of the box’’, but this is unfortunately
rather rare. With most programs, you will find yourself doing a fair bit of head-scratching, and
there are quite a few programs that will result in premature greying, or even chronic alopecia...

Some software distributions have attacked this problem by providing configuration scripts.
Some of these are very clever, but they have an unfortunate tendency to triumphantly announce
that your system is something you have never heard of and then ask you lots of questions that
sound like a final exam in system-level Unix programming (‘‘Does your system’s gethitlist func-
tion return a const pointer to a fromboz or a pointer to a const fromboz? Do you have Foonix
style unacceptable exception handling? And if not, why not?’’).

Fortunately, with the Ports collection, all the hard work involved has already been done, and you
can just type ’make install’ and get a working program.

4.1 Why Have a Por ts Collection?
The base FreeBSD system comes with a very wide range of tools and system utilities, but a lot of
popular programs are not in the base system, for good reasons:-

1. Programs that some people cannot live without and other people cannot stand, such as a
certain Lisp-based editor.

2. Programs which are too specialised to put in the base system (CAD, databases).

3. Programs which fall into the ‘‘I must have a look at that when I get a spare minute’’ cate-
gory, rather than system-critical ones (some languages, perhaps).

4. Programs that are far too much fun to be supplied with a serious operating system like
FreeBSD ;-)

5. However many programs you put in the base system, people will always want more, and
a line has to be drawn somewhere (otherwise FreeBSD distributions would become abso-
lutely enormous).

Obviously it would be unreasonable to expect everyone to port their favourite programs by hand
(not to mention a tremendous amount of duplicated work), so the FreeBSD Project came up with
an ingenious way of using standard tools that would automate the process.

Incidentally, this is an excellent illustration of how ‘‘the Unix way’’ works in practice by combin-
ing a set of simple but very flexible tools into something very powerful.

4.2 How Does the Por ts Collection Work?
Programs are typically distributed on the Internet as a tarball (section 4.7, page 29) consisting of a
Makefile and the source code for the program and usually some instructions (which are unfortu-
nately not always as instructive as they could be), with perhaps a configuration script.

The standard scenario is that you FTP down the tarball, extract it somewhere, glance through the
instructions, make any changes that seem necessary, run the configure script to set things up and
use the standard ‘make’ program to compile and install the program from the source.

FreeBSD ports still use the tarball mechanism, but use a skeleton (section 4.4, page 27) to hold the

FreeBSD Handbook 24

’knowledge’ of how to get the program working on FreeBSD, rather than expecting the user to be
able to work it out. They also supply their own customised Makefile (section 4.4.1, page 27), so
that almost every port can be built in the same way.

If you look at a port skeleton (either on your FreeBSD system or the FTP site) and expect to find
all sorts of pointy-headed rocket science lurking there, you may be disappointed by the one or
two rather unexciting-looking files and directories you find there. (We will discuss in a minute
how to go about Getting a port (section 4.3, page 25)).

‘‘How on earth can this do anything?’’ I hear you cry. ‘‘There is no source code there!’’

Fear not, gentle reader, all will become clear (hopefully). Let’s see what happens if we try and
install a port. I have chosen ‘ElectricFence’, a useful tool for developers, as the skeleton is more
straightforward than most.

Note if you are trying this at home, you will need to be root.

cd /usr/ports/devel/ElectricFence
make install
>> Checksum OK for ElectricFence-2.0.5.tar.gz.
===> Extracting for ElectricFence-2.0.5
===> Patching for ElectricFence-2.0.5
===> Applying FreeBSD patches for ElectricFence-2.0.5
===> Configuring for ElectricFence-2.0.5
===> Building for ElectricFence-2.0.5
[lots of compiler output...]
===> Installing for ElectricFence-2.0.5
===> Warning: your umask is "0002".

If this is not desired, set it to an appropriate value
and install this port again by ‘‘make reinstall’’.

install -c -o bin -g bin -m 444 /usr/ports/devel/ElectricFence/work/ElectricFence-2.0.5/libefence.a /usr /
install -c -o bin -g bin -m 444 /usr/ports/devel/ElectricFence/work/ElectricFence-2.0.5/libefence.3 /usr /
===> Compressing manual pages for ElectricFence-2.0.5
===> Registering installation for ElectricFence-2.0.5

To avoid confusing the issue, I have completely removed the build output.

If you tried this yourself, you may well have got something like this at the start:-

make install
>> ElectricFence-2.0.5.tar.gz doesn’t seem to exist on this system.
>> Attempting to fetch from ftp://ftp.doc.ic.ac.uk/Mirrors/sunsite.unc.edu/pub/Linux/devel/lang/c/.

The ‘make’ program has noticed that you did not have a local copy of the source code and tried
to FTP it down so it could get the job done. I already had the source handy in my example, so it
did not need to fetch it.

Let’s go through this and see what the ‘make’ program was doing.

1. Locate the source code tarball. (section 4.7, page 29) If it is not available locally, try to grab
it from an FTP site.

2. Run a checksum (section 4.7, page 29) test on the tarball to make sure it has not been tam-
pered with, accidentally truncated, downloaded in ASCII mode, struck by neutrinos while
in transit, etc.

3. Extract the tarball into a temporary work directory.

4. Apply any patches (section 4.7, page 29) needed to get the source to compile and run under
FreeBSD.

5. Run any configuration script required by the build process and correctly answer any ques-
tions it asks.

FreeBSD Handbook 25

6. (Finally!) Compile the code.

7. Install the program executable and other supporting files, man pages, etc. under the
/usr/local hierarchy, where they will not get mixed up with system programs. This also
makes sure that all the ports you install will go in the same place, instead of being flung all
over your system.

8. Register the installation in a database. This means that, if you do not like the program,
you can cleanly remove (section 4.7, page 31) all traces of it from your system.

Scroll up to the make output and see if you can match these steps to it. And if you were not
impressed before, you should be by now!

4.3 Getting a FreeBSD Por t
There are two ways of getting hold of the FreeBSD port for a program. One requires a FreeBSD
CDROM (section 4.3.1, page 25), the other involves using an Internet Connection. (section 4.3.2,
page 26)

4.3.1 Compiling por ts from CDROM

If you answered yes to the question ‘‘Do you want to link the ports collection to your CDROM’’
during the FreeBSD installation, the initial setting up will already have been done for you.

If not, make sure the FreeBSD CDROM is in the drive and mounted on, say, /cdrom. Then do

mkdir /usr/ports
cd /usr/ports
ln -s /cdrom/ports/distfiles distfiles

to enable the ports make mechanism to find the tarballs (it expects to find them in
/usr/ports/distfiles, which is why we sym-linked the CDROM’s tarball directory to that direc-
tory).

Now, suppose you want to install the gnats program from the databases directory. Here is how to
do it:-

cd /usr/ports
mkdir databases
cp -R /cdrom/ports/databases/gnats databases
cd databases/gnats
make install

Or if you are a serious database user and you want to compare all the ones available in the Ports
collection, do

cd /usr/ports
cp -R /cdrom/ports/databases .
cd databases
make install

(yes, that really is a dot on its own after the cp command and not a mistake. It is Unix-ese for ‘‘the
current directory’’)

and the ports make mechanism will automatically compile and install all the ports in the
databases directory for you!

If you do not like this method, here is a completely different way of doing it:-

Create a "link tree" to it using the lndir(1) command that comes with the XFree86 distribution.
Find a location with some free space, create a directory there and then cd to it. Then invoke the
lndir(1) command with the full pathname of the ‘‘ports’’ directory on the CDROM as the first
argument and . (the current directory) as the second. This might be, for example, something like:

lndir /cdrom/ports .

FreeBSD Handbook 26

Then you can build ports directly off the CDROM by building them in the link tree you have cre-
ated.

Note that there are some ports for which we cannot provide the original source in the CDROM
due to licensing limitations. In that case, you will need to look at the section on Compiling ports
using an Internet connection. (section 4.3.2, page 26)

4.3.2 Compiling por ts from the Internet

If you do not have a CDROM, or you want to make sure you get the very latest version of the
port you want, you will need to download the skeleton (section 4.4, page 27) for the port. Now this
might sound like rather a fiddly job full of pitfalls, but it is actually very easy.

The key to it is that the FreeBSD FTP server can create on-the-fly tarballs (section 4.7, page 29) for
you. Here is how it works, with the gnats program in the databases directory as an example (the
bits in square brackets are comments. Do not type them in if you are trying this yourself!):-

cd /usr/ports
mkdir databases
cd databases
ftp ftp.freebsd.org
[log in as ‘ftp’ and give your email address when asked for a
password. Remember to use binary (also known as image) mode!]
> cd /pub/FreeBSD/ports/databases
> get gnats.tar [tars up the gnats skeleton for us]
> quit
tar xf gnats.tar [extract the gnats skeleton]
cd gnats
make install [build and install gnats]

What happened here? We connected to the FTP server in the usual way and went to its databases
sub-directory. When we gave it the command ‘get gnats.tar’, the FTP server tarred (section 4.7,
page 29) up the gnats directory for us.

We then extracted the gnats skeleton and went into the gnats directory to build the port. As we
explained earlier (section 4.2, page 24), the make process noticed we did not have a copy of the
source locally, so it fetched one before extracting, patching and building it.

Let’s try something more ambitious now. Instead of getting a single port skeleton, let’s get a
whole sub-directory, for example all the database skeletons in the ports collection. It looks almost
the same:-

cd /usr/ports
ftp ftp.freebsd.org
[log in as ‘ftp’ and give your email address when asked for a
password. Remember to use binary (also known as image) mode!]
> cd /pub/FreeBSD/ports
> get databases.tar [tars up the databases directory for us]
> quit
tar xf databases.tar [extract all the database skeletons]
cd databases
make install [build and install all the database ports]

With half a dozen straightforward commands, we have now got a set of database programs on
our FreeBSD machine! All we did that was different from getting a single port skeleton and build-
ing it was that we got a whole directory at once, and compiled everything in it at once. Pretty
impressive, no?

If you expect to be installing many ports, it is probably worth downloading all the ports directo-
ries.

FreeBSD Handbook 27

4.4 Skeletons
A team of compulsive hackers who have forgotten to eat in a frantic attempt to make a deadline?
Something unpleasant lurking in the FreeBSD attic? No, a skeleton here is a minimal framework
that supplies everything needed to make the ports magic work.

4.4.1 Makefile

The most important component of a skeleton is the Makefile. This contains various statements
that specify how the port should be compiled and installed. Here is the Makefile for Elec-
tricFence:-

New ports collection makefile for: Electric Fence
Version required: 2.0.5
Date created: 13 November 1997
Whom: jraynard
#
$Id: ports.sgml,v 1.30 1998/04/28 04:53:27 mph Exp $
#

DISTNAME= ElectricFence-2.0.5
CATEGORIES= devel
MASTER_SITES= ${MASTER_SITE_SUNSITE}
MASTER_SITE_SUBDIR= devel/lang/c

MAINTAINER= jraynard@freebsd.org

MAN3= libefence.3

do-install:
${INSTALL_DATA} ${WRKSRC}/libefence.a ${PREFIX}/lib
${INSTALL_MAN} ${WRKSRC}/libefence.3 ${PREFIX}/man/man3

.include <bsd.port.mk>

The lines beginning with a ’#’ sign are comments for the benefit of human readers (as in most
Unix script files).

‘DISTNAME’ specifies the name of the tarball (section 4.7, page 29), but without the extension.

‘CATEGORIES’ states what kind of program this is. In this case, a utility for developers.

‘MASTER_SITES’ is the URL(s) of the master FTP site, which is used to retrieve the tarball (section
4.7, page 29) if it is not available on the local system. This is a site which is regarded as reputable,
and is normally the one from which the program is officially distributed (in so far as any software
is ’officially’ distributed on the Internet).

‘MAINTAINER’ is the email address of the person who is responsible for updating the skeleton
if, for example a new version of the program comes out.

Skipping over the next few lines for a minute, the line

.include <bsd.port.mk>

says that the other statements and commands needed for this port are in a standard file called
‘bsd.port.mk’. As these are the same for all ports, there is no point in duplicating them all over
the place, so they are kept in a single standard file.

This is probably not the place to go into a detailed examination of how Makefiles work; suffice it
to say that the line starting with ‘‘MAN3’’ ensures that the ElectricFence man page is compressed
after installation, to help conserve your precious disk space. The original port did not provide an
‘‘install’’ target, so the three lines from ‘‘do-install’’ ensure that the files produced by this port are
placed in the correct destination.

FreeBSD Handbook 28

4.4.2 The files directory

The file containing the checksum (section 4.7, page 29) for the port is called ’md5’, after the MD5
algorithm used for ports checksums. It lives in a directory with the slightly confusing name of
’files’.

This directory can also contain other miscellaneous files that are required by the port and do not
belong anywhere else.

4.4.3 The patches directory

This directory contains the patches (section 4.7, page 29) needed to make everything work prop-
erly under FreeBSD.

4.4.4 The pkg directory

This program contains three quite useful files:-

• COMMENT - a one-line description of the program.

• DESCR - a more detailed description.

• PLIST - a list of all the files that will be created when the program is installed.

4.5 What to do when a port does not work.
Oh. You can do one of four (4) things :

1. Fix it yourself. Technical details on how ports work can be found in Porting applications.
(section 19.2.5, page 279)

2. Gripe. This is done by e-mail *ONLY*! Send such e-mail to the FreeBSD ports mailing list
<freebsd-ports@FreeBSD.ORG>

FreeBSD Handbook 29

• Q. So why bother with ports then?

A. Several reasons:-

1. The licensing conditions on some software distributions require that they be dis-
tributed as source code, not binaries.

2. Some people do not trust binary distributions. At least with source code you can (in
theory) read through it and look for potential problems yourself.

3. If you have some local patches, you will need the source to add them yourself.

4. You might have opinions on how a program should be compiled that differ from the
person who did the package - some people have strong views on what optimisation
setting should be used, whether to build debug versions and then strip them or not,
etc. etc.

5. Some people like having code around, so they can read it if they get bored, hack
around with it, borrow from it (licence terms permitting, of course!) and so on.

6. If you ain’t got the source, it ain’t software! ;-)

• Q. What is a patch?

A. A patch is a small (usually) file that specifies how to go from one version of a file to
another. It contains text that says, in effect, things like ‘‘delete line 23’’, ‘‘add these two lines
after line 468’’ or ‘‘change line 197 to this’’. Also known as a ‘diff’, since it is generated by a
program of that name.

• Q. What is all this about tarballs?

A. It is a file ending in .tar or .tar.gz (with variations like .tar.Z, or even .tgz if you are trying
to squeeze the names into a DOS filesystem).

Basically, it is a directory tree that has been archived into a single file (.tar) and optionally
compressed (.gz). This technique was originally used for Tape ARchives (hence the name
‘tar’), but it is a widely used way of distributing program source code around the Internet.

You can see what files are in them, or even extract them yourself, by using the standard
Unix tar program, which comes with the base FreeBSD system, like this:-

tar tvzf foobar.tar.gz # View contents of foobar.tar.gz
tar xzvf foobar.tar.gz # Extract contents into the current directory
tar tvf foobar.tar # View contents of foobar.tar
tar xvf foobar.tar # Extract contents into the current directory

• Q. And a checksum?

A. It is a number generated by adding up all the data in the file you want to check. If any of
the characters change, the checksum will no longer be equal to the total, so a simple com-
parison will allow you to spot the difference. (In practice, it is done in a more complicated
way to spot problems like position-swapping, which will not show up with a simplistic
addition).

• Q. I did what you said for compiling ports from a CDROM (section 4.3.1, page 25) and it
worked great until I tried to install the kermit port:-

make install
>> cku190.tar.gz doesn’t seem to exist on this system.
>> Attempting to fetch from ftp://kermit.columbia.edu/kermit/archives/.

Why can it not be found? Have I got a dud CDROM?

FreeBSD Handbook 30

A. The licensing terms for kermit do not allow us to put the tarball for it on the CDROM, so
you will have to fetch it by hand - sorry! The reason why you got all those error messages
was because you were not connected to the Internet at the time. Once you have down-
loaded it from any of the sites above, you can re-start the process (try and choose the near-
est site to you, though, to save your time and the Internet’s bandwidth).

• Q. I did that, but when I tried to put it into /usr/ports/distfiles I got some error about not
having permission.

A. The ports mechanism looks for the tarball in /usr/ports/distfiles, but you will not be
able to copy anything there because it is sym-linked to the CDROM, which is read-only.
You can tell it to look somewhere else by doing

DISTDIR=/where/you/put/it make install

• Q. Does the ports scheme only work if you have everything in /usr/ports? My system
administrator says I must put everything under /u/people/guests/wurzburger, but it does
not seem to work.

A. You can use the PORTSDIR and PREFIX variables to tell the ports mechanism to use dif-
ferent directories. For instance,

make PORTSDIR=/u/people/guests/wurzburger/ports install

will compile the port in /u/people/guests/wurzburger/ports and install everything under
/usr/local.

make PREFIX=/u/people/guests/wurzburger/local install

will compile it in /usr/ports and install it in /u/people/guests/wurzburger/local.

And of course

make PORTSDIR=.../ports PREFIX=.../local install

will combine the two (it is too long to fit on the page if I write it in full, but I am sure you
get the idea).

If you do not fancy typing all that in every time you install a port (and to be honest, who
would?), it is a good idea to put these variables into your environment.

• Q. I do not have a FreeBSD CDROM, but I would like to have all the tarballs handy on my
system so I do not have to wait for a download every time I install a port. Is there an easy
way to get them all at once?

A. To get every single tarball for the ports collection, do

cd /usr/ports
make fetch

For all the tarballs for a single ports directory, do

cd /usr/ports/directory
make fetch

and for just one port - well, I think you have guessed already.

• Q. I know it is probably faster to fetch the tarballs from one of the FreeBSD mirror sites close
by. Is there any way to tell the port to fetch them from servers other than ones listed in the
MASTER_SITES?

A. Yes. If you know, for example, ftp.FreeBSD.ORG is much closer than sites listed in MAS-
TER_SITES, do as following example.

cd /usr/ports/directory
make MASTER_SITE_OVERRIDE=ftp://ftp.FreeBSD.ORG/pub/FreeBSD/distfiles/ fetch

FreeBSD Handbook 31

• Q. I want to know what files make is going to need before it tries to pull them down.

A. ’make fetch-list’ will display a list of the files needed for a port.

• Q. Is there any way to stop the port from compiling? I want to do some hacking on the
source before I install it, but it is a bit tiresome having to watch it and hit control-C every
time.

A. Doing ’make extract’ will stop it after it has fetched and extracted the source code.

• Q. I am trying to make my own port and I want to be able to stop it compiling until I have
had a chance to see if my patches worked properly. Is there something like ’make extract’,
but for patches?

A. Yep, ’make patch’ is what you want. You will probably find the PATCH_DEBUG option
useful as well. And by the way, thank you for your efforts!

• Q. I have heard that some compiler options can cause bugs. Is this true? How can I make
sure that I compile ports with the right settings?

A. Yes, with version 2.6.3 of gcc (the version shipped with FreeBSD 2.1.0 and 2.1.5), the -O2
option could result in buggy code unless you used the -fno-strength-reduce option as well.
(Most of the ports don’t use -O2). You should be able to specify the compiler options used by
something like

make CFLAGS=’-O2 -fno-strength-reduce’ install

or by editing /etc/make.conf, but unfortunately not all ports respect this. The surest way is
to do ’make configure’, then go into the source directory and inspect the Makefiles by hand,
but this can get tedious if the source has lots of sub-directories, each with their own Make-
files.

• Q. There are so many ports it is hard to find the one I want. Is there a list anywhere of what
ports are available?

A. Look in the INDEX file in /usr/ports. If you would like to search the ports collection for
a keyword, you can do that too. For example, you can find ports relevant to the LISP pro-
gramming language using:

cd /usr/ports
make search key=lisp

• Q. I went to install the ’foo’ port but the system suddenly stopped compiling it and starting
compiling the ’bar’ port. What’s going on?

A. The ’foo’ port needs something that is supplied with ’bar’ - for instance, if ’foo’ uses
graphics, ’bar’ might have a library with useful graphics processing routines. Or ’bar’ might
be a tool that is needed to compile the ’foo’ port.

• Q. I installed the grizzle program from the ports and frankly it is a complete waste of disk
space. I want to delete it but I do not know where it put all the files. Any clues?

A. No problem, just do

pkg_delete grizzle-6.5

• Q. Hang on a minute, you have to know the version number to use that command. You do
not seriously expect me to remember that, do you??

A. Not at all, you can find it out by doing

pkg_info -a | grep grizzle

And it will tell you:-

FreeBSD Handbook 32

Information for grizzle-6.5:
grizzle-6.5 - the combined piano tutorial, LOGO interpreter and shoot ’em up arcade game.

• Q. Talking of disk space, the ports directory seems to be taking up an awful lot of room. Is it
safe to go in there and delete things?

A. Yes, if you have installed the program and are fairly certain you will not need the source
again, there is no point in keeping it hanging around. The best way to do this is

cd /usr/ports
make clean

which will go through all the ports subdirectories and delete everything except the skele-
tons for each port.

• Q. I tried that and it still left all those tarballs or whatever you called them in the distfiles
directory. Can I delete those as well?

A. Yes, if you are sure you have finished with them, those can go as well.

• Q. I like having lots and lots of programs to play with. Is there any way of installing all the
ports in one go?

A. Just do

cd /usr/ports
make install

• Q. OK, I tried that, but I thought it would take a very long time so I went to bed and left it
to get on with it. When I looked at the computer this morning, it had only done three and a
half ports. Did something go wrong?

A. No, the problem is that some of the ports need to ask you questions that we cannot
answer for you (eg ‘‘Do you want to print on A4 or US letter sized paper?’’) and they need
to have someone on hand to answer them.

• Q. I really do not want to spend all day staring at the monitor. Any better ideas?

FreeBSD Handbook 33

advised not to follow this link...)

FreeBSD Handbook 34

Part II

System Administration

FreeBSD Handbook 35

5. Configuring the FreeBSD Kernel
Contributed by Jake Hamby <jehamby@lightside.com> .
6 October 1995.

This large section of the handbook discusses the basics of building your own custom kernel for
FreeBSD. This section is appropriate for both novice system administrators and those with
advanced Unix experience.

5.1 Why Build a Custom Kernel?
Building a custom kernel is one of the most important rites of passage every Unix system admin-
istrator must endure. This process, while time-consuming, will provide many benefits to your
FreeBSD system. Unlike the GENERIC kernel, which must support every possible SCSI and net-
work card, along with tons of other rarely used hardware support, a custom kernel only contains
support for your PC’s hardware. This has a number of benefits:

• It will take less time to boot because it does not have to spend time probing for hardware
which you do not have.

• A custom kernel often uses less memory, which is important because the kernel is the one
process which must always be present in memory, and so all of that unused code ties up
pages of RAM that your programs would otherwise be able to use. Therefore, on a system
with limited RAM, building a custom kernel is of critical importance.

• Finally, there are several kernel options which you can tune to fit your needs, and device
driver support for things like sound cards which you can include in your kernel but are not
present in the GENERIC kernel.

5.2 Building and Installing a Custom Kernel
First, let us take a quick tour of the kernel build directory. All directories mentioned will be rela-
tive to the main /usr/src/sys directory, which is also accessible through /sys . There are a
number of subdirectories here representing different parts of the kernel, but the most important,
for our purposes, are i386/conf , where you will edit your custom kernel configuration, and
compile , which is the staging area where your kernel will be built. Notice the logical organiza-
tion of the directory tree, with each supported device, filesystem, and option in its own subdirec-
tory. Also, anything inside the i386 directory deals with PC hardware only, while everything
outside the i386 directory is common to all platforms which FreeBSD could potentially be
ported to.

Note: If there is not a /usr/src/sys directory on your system,
then the kernel source has not been been installed. Follow the
instructions for installing packages to add this package to
your system.

Next, move to the i386/conf directory and copy the GENERIC configuration file to the name
you want to give your kernel. For example:

cd /usr/src/sys/i386/conf
cp GENERIC MYKERNEL

Traditionally, this name is in all capital letters and, if you are maintaining multiple FreeBSD
machines with different hardware, it is a good idea to name it after your machine’s hostname.
We will call it MYKERNEL for the purpose of this example.

Note: You must execute these and all of the following commands
under the root account or you will get ‘‘permission denied’’
errors.

FreeBSD Handbook 36

Now, edit MYKERNEL with your favorite text editor. If you are just starting out, the only editor
available will probably be vi , which is too complex to explain here, but is covered well in many
books in the bibliography (section 26., page 363). Feel free to change the comment lines at
the top to reflect your configuration or the changes you have made to differentiate it from
GENERIC.

If you have build a kernel under SunOS or some other BSD operating system, much of this file
will be very familiar to you. If you are coming from some other operating system such as DOS,
on the other hand, the GENERIC configuration file might seem overwhelming to you, so follow
the descriptions in the Configuration File (section 5.3, page 36) section slowly and carefully.

Note: If you are trying to upgrade your kernel from an older
version of FreeBSD, you will probably have to get a new version
of config(8) from the same place you got the new kernel
sources. It is located in /usr/src/usr.sbin, so you will need
to download those sources as well. Re-build and install it
before running the next commands.

When you are finished, type the following to compile and install your kernel:

/usr/sbin/config MYKERNEL
cd ../../compile/MYKERNEL
make depend
make
make install

The new kernel will be copied to the root directory as /kernel and the old kernel will be moved
to /kernel.old . Now, shutdown the system and reboot to use your kernel. In case something
goes wrong, there are some troubleshooting (section 5.5, page 48) instructions at the end of this
document. Be sure to read the section which explains how to recover in case your new kernel
does not boot (section 5.5, page 49).

Note: If you have added any new devices (such as sound cards)
you may have to add some device nodes (section 5.4, page 48) to
your /dev directory before you can use them.

5.3 The Configuration File
The general format of a configuration file is quite simple. Each line contains a keyword and one
or more arguments. For simplicity, most lines only contain one argument. Anything following a
is considered a comment and ignored. The following sections describe each keyword, generally
in the order they are listed in GENERIC, although some related keywords have been grouped
together in a single section (such as Networking) even though they are actually scattered
throughout the GENERIC file.

An exhaustive list of options and more detailed explanations of the device lines is present in the
LINT configuration file, located in the same directory as GENERIC. If you are in doubt as to the
purpose or necessity of a line, check first in LINT.

The kernel is currently being moved to a better organization of the option handling. Tradition-
ally, each option in the config file was simply converted into a -D switch for the CFLAGSline of
the kernel Makefile. Naturally, this caused a creeping optionism, with nobody really knowing
which option has been referenced in what files.

In the new scheme, every #ifdef that is intended to be dependent upon an option gets this
option out of an opt_ foo.h declaration file created in the compile directory by config . The list of
valid options for config lives in two files: options that do not depend on the architecture are
listed in /sys/conf/options , architecture-dependent ones in /sys/ arch/conf/options.arch,
with arch being for example i386 .

FreeBSD Handbook 37

5.3.1 Mandatory Keywords

These keywords are required in every kernel you build.

machine ‘‘i386’’

The first keyword is machine , which, since FreeBSD only runs on Intel 386 and
compatible chips, is i386.

Note: that any keyword which contains numbers used as
text must be enclosed in quotation marks, otherwise
config gets confused and thinks you mean the actual
number 386.

cpu ‘‘cpu_type’’

The next keyword is cpu , which includes support for each CPU supported by
FreeBSD. The possible values of cpu_type include:

• I386_CPU

• I486_CPU

• I586_CPU

• I686_CPU

and multiple instances of the cpu line may be present with different values of
cpu_type as are present in the GENERIC kernel. For a custom kernel, it is best to
specify only the cpu you have. If, for example, you have an Intel Pentium, use
I586_CPU for cpu_type.

ident machine_name

Next, we have ident , which is the identification of the kernel. You should change
this from GENERIC to whatever you named your kernel, in this example, MYKER-
NEL. The value you put in ident will print when you boot up the kernel, so it is
useful to give a kernel a different name if you want to keep it separate from your
usual kernel (if you want to build an experimental kernel, for example). Note that,
as with machine and cpu , enclose your kernel’s name in quotation marks if it
contains any numbers.

Since this name is passed to the C compiler as a -D switch, do not use names like
DEBUG, or something that could be confused with another machine or CPU name,
like vax .

maxusers number

This file sets the size of a number of important system tables. This number is sup-
posed to be roughly equal to the number of simultaneous users you expect to have
on your machine. However, under normal circumstances, you will want to set
maxusers to at least four, especially if you are using the X Window System or com-
piling software. The reason is that the most important table set by maxusers is the
maximum number of processes, which is set to 20 + 16 * maxusers , so if you
set maxusers to one, then you can only have 36 simultaneous processes, including
the 18 or so that the system starts up at boot time, and the 15 or so you will proba-
bly create when you start the X Window System. Even a simple task like reading a
man page will start up nine processes to filter, decompress, and view it. Setting
maxusers to 4 will allow you to have up to 84 simultaneous processes, which
should be enough for anyone. If, however, you see the dreaded ‘‘proc table full’’
error when trying to start another program, or are running a server with a large
number of simultaneous users (like Walnut Creek CDROM’s FTP site), you can

FreeBSD Handbook 38

always increase this number and rebuild.

Note: maxuser does not limit the number of users
which can log into your machine. It simply sets var-
ious table sizes to reasonable values considering the
maximum number of users you will likely have on your
system and how many processes each of them will be
running. One keyword which does limit the number of
simultaneous remote logins is pseudo-device pty 16
(section 5.3.10, page 47).

config kernel_name root on root_device

This line specifies the location and name of the kernel. Traditionally the kernel is
called vmunix but in FreeBSD, it is aptly named kernel . You should always use
kernel for kernel_name because changing it will render numerous system utilities
inoperative. The second part of the line specifies the disk and partition where the
root filesystem and kernel can be found. Typically this will be wd0 for systems with
non-SCSI drives, or sd0 for systems with SCSI drives.

5.3.2 General Options

These lines provide kernel support for various filesystems and other options.

options MATH_EMULATE

This line allows the kernel to simulate a math co-processor if your computer does
not have one (386 or 486SX). If you have a Pentium, a 486DX, or a 386 or 486SX
with a separate 387 or 487 chip, you can comment this line out.

Note: The normal math co-processor emulation routines
that come with FreeBSD are not very accurate. If you
do not have a math co-processor, and you need the
best accuracy, I recommend that you change this
option to GPL_MATH_EMULATE to use the superior GNU
math support, which is not included by default for
licensing reasons.

options ‘‘COMPAT_43’’

Compatibility with 4.3BSD. Leave this in; some programs will act strangely if you
comment this out.

options BOUNCE_BUFFERS

ISA devices and EISA devices operating in an ISA compatibility mode can only per-
form DMA (Direct Memory Access) to memory below 16 megabytes. This option
enables such devices to work in systems with more than 16 megabytes of memory.

options UCONSOLE

Allow users to grab the console, useful for X Windows. For example, you can create
a console xterm by typing xterm -C , which will display any ‘write’, ‘talk’, and
other messages you receive, as well as any console messages sent by the kernel.

options SYSVSHM

This option provides for System V shared memory. The most common use of this is
the XSHM extension in X Windows, which many graphics-intensive programs (such
as the movie player XAnim, and Linux DOOM) will automatically take advantage
of for extra speed. If you use the X Window System, you will definitely want to
include this.

FreeBSD Handbook 39

options SYSVSEM

Support for System V semaphores. Less commonly used but only adds a few hun-
dred bytes to the kernel.

options SYSVMSG

Support for System V messages. Again, only adds a few hundred bytes to the ker-
nel.

Note: The ipcs(1) command will tell will list any
processes using each of these System V facilities.

5.3.3 Filesystem Options

These options add support for various filesystems. You must include at least one of these to sup-
port the device you boot from; typically this will be FFS if you boot from a hard drive, or NFS if
you are booting a diskless workstation from Ethernet. You can include other commonly-used
filesystems in the kernel, but feel free to comment out support for filesystems you use less often
(perhaps the MS-DOS filesystem?), since they will be dynamically loaded from the Loadable Ker-
nel Module directory /lkm the first time you mount a partition of that type.

options FFS

The basic hard drive filesystem; leave it in if you boot from the hard disk.

options NFS

Network Filesystem. Unless you plan to mount partitions from a Unix file server
over Ethernet, you can comment this out.

options MSDOSFS

MS-DOS Filesystem. Unless you plan to mount a DOS formatted hard drive parti-
tion at boot time, you can safely comment this out. It will be automatically loaded
the first time you mount a DOS partition, as described above. Also, the excellent
mtools software (in the ports collection) allows you to access DOS floppies without
having to mount and unmount them (and does not require MSDOSFS at all).

options ‘‘CD9660’’

ISO 9660 filesystem for CD-ROMs. Comment it out if you do not have a CD-ROM
drive or only mount data CD’s occasionally (since it will be dynamically loaded the
first time you mount a data CD). Audio CD’s do not need this filesystem.

options PROCFS

Process filesystem. This is a pretend filesystem mounted on /proc which allows
programs like ps(1) to give you more information on what processes are running.

options MFS

Memory-mapped file system. This is basically a RAM disk for fast storage of tem-
porary files, useful if you have a lot of swap space that you want to take advantage
of. A perfect place to mount an MFS partition is on the /tmp directory, since many
programs store temporary data here. To mount an MFS RAM disk on /tmp , add
the following line to /etc/fstab and then reboot or type mount /tmp :

/dev/wd1s2b /tmp mfs rw 0 0

FreeBSD Handbook 40

Note: Replace the /dev/wd1s2b with the name of your
swap partition, which will be listed in your
/etc/fstab as follows:

/dev/wd1s2b none swap sw 0 0

Note: Also, the MFS filesystem can not be dynami-
cally loaded, so you must compile it into your kernel
if you want to experiment with it.

options "EXT2FS"

Linux’s native file system. With ext2fs support you are able to read and write to
Linux partitions. This is useful if you dual-boot FreeBSD and Linux and want to
share data between the two systems.

options QUOTA

Enable disk quotas. If you have a public access system, and do not want users to be
able to overflow the /home partition, you can establish disk quotas for each user.
Refer to the Disk Quotas (section 10., page 126) section for more information.

5.3.4 Basic Controllers and Devices

These sections describe the basic disk, tape, and CD-ROM controllers supported by FreeBSD.
There are separate sections for SCSI (section 5.3.5, page 41) controllers and network (section 5.3.8,
page 43) cards.

controller isa0

All PC’s supported by FreeBSD have one of these. If you have an IBM PS/2 (Micro
Channel Architecture), then you cannot run FreeBSD at this time.

controller pci0

Include this if you have a PCI motherboard. This enables auto-detection of PCI
cards and gatewaying from the PCI to the ISA bus.

controller fdc0

Floppy drive controller: fd0 is the ‘‘A:’’ floppy drive, and fd1 is the ‘‘B:’’ drive.
ft0 is a QIC-80 tape drive attached to the floppy controller. Comment out any
lines corresponding to devices you do not have.

Note: QIC-80 tape support requires a separate filter
program called ft(8), see the manual page for
details.

controller wdc0

This is the primary IDE controller. wd0 and wd1 are the master and slave hard
drive, respectively. wdc1 is a secondary IDE controller where you might have a
third or fourth hard drive, or an IDE CD-ROM. Comment out the lines which do
not apply (if you have a SCSI hard drive, you will probably want to comment out
all six lines, for example).

device wcd0
"

This device provides IDE CD-ROM support. Be sure to leave wdc0 uncommented,
and wdc1 if you have more than one IDE controller and your CD-ROM is on the
second one card. To use this, you must also include the line options ATAPI .

FreeBSD Handbook 41

device npx0 at isa? port ‘‘IO_NPX’’ irq 13 vector npxintr

npx0 is the interface to the floating point math unit in FreeBSD, either the hardware
co-processor or the software math emulator. It is NOT optional.

device wt0 at isa? port 0x300 bio irq 5 drq 1 vector wtintr

Wangtek and Archive QIC-02/QIC-36 tape drive support

Proprietary CD-ROM support

The following drivers are for the so-called proprietary CD-ROM drives. These drives
have their own controller card or might plug into a sound card such as the Sound-
Blaster 16. They are not IDE or SCSI. Most older single-speed and double-speed
CD-ROMs use these interfaces, while newer quad-speeds are likely to be IDE (sec-
tion 5.3.4, page 40) or SCSI (section 5.3.5, page 41).

device mcd0 at isa? port 0x300 bio irq 10 vector mcdintr

Mitsumi CD-ROM (LU002, LU005, FX001D).

device scd0 at isa? port 0x230 bio

Sony CD-ROM (CDU31, CDU33A).

controller matcd0 at isa? port ? bio

Matsushita/Panasonic CD-ROM (sold by Creative Labs for Sound-
Blaster).

5.3.5 SCSI Device Support

This section describes the various SCSI controllers and devices supported by FreeBSD.

SCSI Controllers

The next ten or so lines include support for different kinds of SCSI controllers.
Comment out all except for the one(s) you have:

controller bt0 at isa? port ‘‘IO_BT0’’ bio irq ? vector btintr

Most Buslogic controllers

controller uha0 at isa? port ‘‘IO_UHA0’’ bio irq ? drq 5 vector uhaintr

UltraStor 14F and 34F

controller ahc0

Adaptec 274x/284x/294x

controller ahb0 at isa? bio irq ? vector ahbintr

Adaptec 174x

controller aha0 at isa? port ‘‘IO_AHA0’’ bio irq ? drq 5 vector ahaintr

Adaptec 154x

controller aic0 at isa? port 0x340 bio irq 11 vector aicintr

Adaptec 152x and sound cards using Adaptec AIC-6360 (slow!)

controller nca0 at isa? port 0x1f88 bio irq 10 vector ncaintr

ProAudioSpectrum cards using NCR 5380 or Trantor T130

FreeBSD Handbook 42

controller sea0 at isa? bio irq 5 iomem 0xc8000 iosiz 0x2000 vector seaintr

Seagate ST01/02 8 bit controller (slow!)

controller wds0 at isa? port 0x350 bio irq 15 drq 6 vector wdsintr

Western Digital WD7000 controller

controller ncr0

NCR 53C810, 53C815, 53C825, 53C860, 53C875 PCI SCSI controller

options ‘‘SCSI_DELAY=15’’

This causes the kernel to pause 15 seconds before probing each SCSI device in your
system. If you only have IDE hard drives, you can ignore this, otherwise you will
probably want to lower this number, perhaps to 5 seconds, to speed up booting. Of
course if you do this, and FreeBSD has trouble recognizing your SCSI devices, you
will have to raise it back up.

controller scbus0

If you have any SCSI controllers, this line provides generic SCSI support. If you do
not have SCSI, you can comment this, and the following three lines, out.

device sd0

Support for SCSI hard drives.

device st0

Support for SCSI tape drives.

device cd0

Support for SCSI CD-ROM drives.

Note that the number 0 in the above entries is slightly misleading: all these devices
are automatically configured as they are found, regardless of how many of them are
hooked up to the SCSI bus(es), and which target IDs they have.

If you want to ‘‘wire down’’ specific target IDs to particular devices, refer to the
appropriate section of the LINT kernel config file.

5.3.6 Console, Bus Mouse, and X Server Support

You must choose one of these two console types, and, if you plan to use the X Window System
with the vt220 console, enable the XSERVER option and optionally, a bus mouse or PS/2 mouse
device.

device sc0 at isa? port ‘‘IO_KBD’ tty irq 1 vector scintr

sc0 is the default console driver, which resembles an SCO console. Since most full-
screen programs access the console through a terminal database library like termcap,
it should not matter much whether you use this or vt0 , the VT220 compatible con-
sole driver. When you log in, set your TERM variable to ‘‘scoansi’’ if full-screen
programs have trouble running under this console.

device vt0 at isa? port ‘‘IO_KBD’’ tty irq 1 vector pcrint

This is a VT220-compatible console driver, backwards compatible to VT100/102. It
works well on some laptops which have hardware incompatibilities with sc0 .
Also, set your TERM variable to ‘‘vt100’’ or ‘‘vt220’’ when you log in. This driver
might also prove useful when connecting to a large number of different machines
over the network, where the termcap or terminfo entries for the sc0 device are often
not available -- ‘‘vt100’’ should be available on virtually any platform.

FreeBSD Handbook 43

options ‘‘PCVT_FREEBSD=210’’

Required with the vt0 console driver.

options XSERVER

Only applicable with the vt0 console driver. This includes code
required to run the XFree86 X Window Server under the vt0 console
driver.

device mse0 at isa? port 0x23c tty irq 5 vector ms

Use this device if you have a Logitech or ATI InPort bus mouse card.

Note: If you have a serial mouse, ignore these two
lines, and instead, make sure the appropriate serial
(section 5.3.7, page 43) port is enabled (probably
COM1).

device psm0 at isa? port ‘‘IO_KBD’’ conflicts tty irq 12 vector psmintr

Use this device if your mouse plugs into the PS/2 mouse port.

5.3.7 Serial and Parallel Por ts

Nearly all systems have these. If you are attaching a printer to one of these ports, the Printing
(section 7., page 69) section of the handbook is very useful. If you are using modem, Dialup access
(section 14.3, page 194) provides extensive detail on serial port configuration for use with such
devices.

device sio0 at isa? port ‘‘IO_COM1’’ tty irq 4 vector siointr
"

sio0 through sio3 are the four serial ports referred to as COM1 through COM4 in
the MS-DOS world. Note that if you have an internal modem on COM4 and a serial
port at COM2 you will have to change the IRQ of the modem to 2 (for obscure tech-
nical reasons IRQ 2 = IRQ 9) in order to access it from FreeBSD. If you have a multi-
port serial card, check the manual page for sio(4) for more information on the
proper values for these lines. Some video cards (notably those based on S3 chips)
use IO addresses of the form 0x*2e8 , and since many cheap serial cards do not
fully decode the 16-bit IO address space, they clash with these cards, making the
COM4 port practically unavailable.

Each serial port is required to have a unique IRQ (unless you are using one of the
multiport cards where shared interrupts are supported), so the default IRQs for
COM3 and COM4 cannot be used.

device lpt0 at isa? port? tty irq 7 vector lptintr

lpt0 through lpt2 are the three printer ports you could conceivably have. Most
people just have one, though, so feel free to comment out the other two lines if you
do not have them.

5.3.8 Networking

FreeBSD, as with Unix in general, places a big emphasis on networking. Therefore, even if you do
not have an Ethernet card, pay attention to the mandatory options and the dial-up networking
support.

options INET
Networking support. Leave it in even if you do not plan to be connected to a net-
work. Most programs require at least loopback networking (i.e. making network
connections within your PC) so this is essentially mandatory.

FreeBSD Handbook 44

Ethernet cards

The next lines enable support for various Ethernet cards. If you do not have a net-
work card, you can comment out all of these lines. Otherwise, you will want to
leave in support for your particular Ethernet card(s):

device de0

Ethernet adapters based on Digital Equipment DC21040, DC21041 or
DC21140 chips

device fxp0

Intel EtherExpress Pro/100B

device vx0

3Com 3C590 and 3C595 (buggy)

device cx0 at isa? port 0x240 net irq 15 drq 7 vector cxintr

Cronyx/Sigma multiport sync/async (with Cisco or PPP framing)

device ed0 at isa? port 0x280 net irq 5 iomem 0xd8000 vector edintr

Western Digital and SMC 80xx and 8216; Novell NE1000 and NE2000;
3Com 3C503; HP PC Lan Plus (HP27247B and HP27252A)

device el0 at isa? port 0x300 net irq 9 vector elintr

3Com 3C501 (slow!)

device eg0 at isa? port 0x310 net irq 5 vector egintr

3Com 3C505

device ep0 at isa? port 0x300 net irq 10 vector epintr

3Com 3C509 (buggy)

device fe0 at isa? port 0x240 net irq ? vector feintr

Fujitsu MB86960A/MB86965A Ethernet

device fea0 at isa? net irq ? vector feaintr

DEC DEFEA EISA FDDI adapter

device ie0 at isa? port 0x360 net irq 7 iomem 0xd0000 vector ieintr

AT&T StarLAN 10 and EN100; 3Com 3C507; unknown NI5210

device ix0 at isa? port 0x300 net irq 10 iomem 0xd0000 iosiz 32768 vector ixintr

Intel EtherExpress 16

device le0 at isa? port 0x300 net irq 5 iomem 0xd0000 vector le_intr

Digital Equipment EtherWorks 2 and EtherWorks 3 (DEPCA, DE100,
DE101, DE200, DE201, DE202, DE203, DE204, DE205, DE422)

device lnc0 at isa? port 0x300 net irq 10 drq 0 vector lncintr

Lance/PCnet cards (Isolan, Novell NE2100, NE32-VL)

device ze0 at isa? port 0x300 net irq 5 iomem 0xd8000 vector zeintr

IBM/National Semiconductor PCMCIA ethernet controller.

FreeBSD Handbook 45

device zp0 at isa? port 0x300 net irq 10 iomem 0xd8000 vector zpintr

3Com PCMCIA Etherlink III

Note: With certain cards (notably the NE2000) you
will have to change the port and/or IRQ since there
is no ‘‘standard’’ location for these cards.

pseudo-device loop

loop is the generic loopback device for TCP/IP. If you telnet or FTP to localhost
(a.k.a. 127.0.0.1) it will come back at you through this pseudo-device. Manda-
tory.

pseudo-device ether

ether is only needed if you have an Ethernet card and includes generic Ethernet
protocol code.

pseudo-device sl number

sl is for SLIP (Serial Line Internet Protocol) support. This has been almost entirely
supplanted by PPP, which is easier to set up, better suited for modem-to-modem
connections, as well as more powerful. The number after sl specifies how many
simultaneous SLIP sessions to support. This handbook has more information on
setting up a SLIP client (section 15.3, page 226) or server (section 15.4, page 228).

pseudo-device ppp number

ppp is for kernel-mode PPP (Point-to-Point Protocol) support for dial-up Internet
connections. There is also version of PPP implemented as a user application that
uses the tun and offers more flexibility and features such as demand dialing. If you
still want to use this PPP driver, read the kernel-mode PPP (section 15.2, page 219)
section of the handbook. As with the sl device, number specifies how many simul-
taneous PPP connections to support.

pseudo-device tun number

tun is used by the user-mode PPP software. This program is easy to set up and
very fast. It also has special features such as automatic dial-on-demand. The num-
ber after tun specifies the number of simultaneous PPP sessions to support. See the
user-mode PPP (section 15.1, page 208) section of the handbook for more informa-
tion.

pseudo-device bpfilter number

Berkeley packet filter. This pseudo-device allows network interfaces to be placed in
promiscuous mode, capturing every packet on a broadcast network (e.g. an ether-
net). These packets can be captured to disk and/or examined with the tcp-
dump(1) program. Note that implementation of this capability can seriously com-
promise your overall network security. The number after bpfilter is the number of
interfaces that can be examined simultaneously. Optional, not recommended except
for those who are fully aware of the potential pitfalls. Not all network cards sup-
port this capability.

5.3.9 Sound cards

This is the first section containing lines that are not in the GENERIC kernel. To include sound
card support, you will have to copy the appropriate lines from the LINT kernel (which contains
support for every device) as follows:

FreeBSD Handbook 46

controller snd0

Generic sound driver code. Required for all of the following sound cards except
pca .

device pas0 at isa? port 0x388 irq 10 drq 6 vector pasintr

ProAudioSpectrum digital audio and MIDI.

device sb0 at isa? port 0x220 irq 7 conflicts drq 1 vector sbintr

SoundBlaster digital audio.

Note: If your SoundBlaster is on a different IRQ
(such as 5), change irq 7 to, for example, irq 5 and
remove the conflicts keyword. Also, you must add the
line: options ‘‘SBC_IRQ=5’’

device sbxvi0 at isa? drq 5

SoundBlaster 16 digital 16-bit audio.

Note: If your SB16 is on a different 16-bit DMA chan-
nel (such as 6 or 7), change the drq 5 keyword appro-
priately, and then add the line: options "SB16_DMA=6"

device sbmidi0 at isa? port 0x330

SoundBlaster 16 MIDI interface. If you have a SoundBlaster 16, you must include
this line, or the kernel will not compile.

device gus0 at isa? port 0x220 irq 10 drq 1 vector gusintr

Gravis Ultrasound.

device mss0 at isa? port 0x530 irq 10 drq 1 vector adintr

Microsoft Sound System.

device opl0 at isa? port 0x388 conflicts

AdLib FM-synthesis audio. Include this line for AdLib, SoundBlaster, and ProAu-
dioSpectrum users, if you want to play MIDI songs with a program such as
playmidi (in the ports collection).

device mpu0 at isa? port 0x330 irq 6 drq 0

Roland MPU-401 stand-alone card.

device uart0 at isa? port 0x330 irq 5 vector ‘‘m6850intr’’

Stand-alone 6850 UART for MIDI.

device pca0 at isa? port ‘‘IO_TIMER1’’ tty
"

Digital audio through PC speaker. This is going to be very poor sound quality and
quite CPU-intensive, so you have been warned (but it does not require a sound
card).

Note: There is some additional documentation in
/usr/src/sys/i386/isa/sound/sound.doc. Also, if you add any of
these devices, be sure to create the sound device nodes (sec-
tion 5.4, page 48).

FreeBSD Handbook 47

5.3.10 Pseudo-devices

Pseudo-device drivers are parts of the kernel that act like device drivers but do not correspond to
any actual hardware in the machine. The network-related (section 5.3.8, page 43) pseudo-devices
are in that section, while the remainder are here.

pseudo-device gzip

gzip allows you to run FreeBSD programs that have been compressed with gzip .
The programs in /stand are compressed so it is a good idea to have this option in
your kernel.

pseudo-device log

log is used for logging of kernel error messages. Mandatory.

pseudo-device pty number
"

pty is a ‘‘pseudo-terminal’’ or simulated login port. It is used by incoming telnet
and rlogin sessions, xterm, and some other applications such as emacs. The number
indicates the number of pty s to create. If you need more than GENERIC default of
16 simultaneous xterm windows and/or remote logins, be sure to increase this
number accordingly, up to a maximum of 64.

pseudo-device snp number

Snoop device. This pseudo-device allows one terminal session to watch another
using the watch(8) command. Note that implementation of this capability has
important security and privacy implications. The number after snp is the total num-
ber of simultaneous snoop sessions. Optional.

pseudo-device vn

Vnode driver. Allows a file to be treated as a device after being set up with the
vnconfig(8) command. This driver can be useful for manipulating floppy disk
images and using a file as a swap device (e.g. an MS Windows swap file). Optional.

pseudo-device ccd number

Concatenated disks. This pseudo-device allows you to concatenate multiple disk
partitions into one large ‘‘meta’’-disk. The number after ccd is the total number of
concatenated disks (not total number of disks that can be concatenated) that can be
created. (See ccd(4) and ccdconfig(8) man pages for more details.) Optional.

5.3.11 Joystick, PC Speaker, Miscellaneous

This section describes some miscellaneous hardware devices supported by FreeBSD. Note that
none of these lines are included in the GENERIC kernel, you will have to copy them from this
handbook or the LINT kernel (which contains support for every device):

device joy0 at isa? port ‘‘IO_GAME’’

PC joystick device.

pseudo-device speaker

Supports IBM BASIC-style noises through the PC speaker. Some fun programs
which use this are /usr/sbin/spkrtest , which is a shell script that plays some
simple songs, and /usr/games/piano which lets you play songs using the key-
board as a simple piano (this file only exists if you have installed the games pack-
age). Also, the excellent text role-playing game NetHack (in the ports collection)
can be configured to use this device to play songs when you play musical instru-
ments in the game.

FreeBSD Handbook 48

See also the pca0 (section 5.3.9, page 46) device.

5.4 Making Device Nodes
Almost every device in the kernel has a corresponding ‘‘node’’ entry in the /dev directory.
These nodes look like regular files, but are actually special entries into the kernel which programs
use to access the device. The shell script /dev/MAKEDEV , which is executed when you first
install the operating system, creates nearly all of the device nodes supported. However, it does
not create all of them, so when you add support for a new device, it pays to make sure that the
appropriate entries are in this directory, and if not, add them. Here is a simple example:

Suppose you add the IDE CD-ROM support to the kernel. The line to add is:

controller wcd0

This means that you should look for some entries that start with wcd0 in the /dev directory, pos-
sibly followed by a letter, such as ‘c’, or preceded by the letter ’r’, which means a ‘raw’ device. It
turns out that those files are not there, so I must change to the /dev directory and type:

sh MAKEDEV wcd0

When this script finishes, you will find that there are now wcd0c and rwcd0c entries in /dev so
you know that it executed correctly.

For sound cards, the command:

sh MAKEDEV snd0

creates the appropriate entries. Note: when creating device nodes for devices such as sound
cards, if other people have access to your machine, it may be desirable to protect the devices from
outside access by adding them to the /etc/fbtab file. See man fbtab for more information.

Follow this simple procedure for any other non-GENERIC devices which do not have entries.

Note: All SCSI controllers use the same set of /dev entries, so
you do not need to create these. Also, network cards and
SLIP/PPP pseudo-devices do not have entries in /dev at all, so
you do not have to worry about these either.

5.5 If Something Goes Wrong
There are four categories of trouble that can occur when building a custom kernel. They are:

Config command fails

If the config command fails when you give it your kernel description, you have
probably made a simple error somewhere. Fortunately, config will print the line
number that it had trouble with, so you can quickly skip to it with vi . For example,
if you see:

config: line 17: syntax error

you can skip to the problem in vi by typing ‘‘17G’’ in command mode. Make sure
the keyword is typed correctly, by comparing it to the GENERIC kernel or another
reference.

Make command fails

If the make command fails, it usually signals an error in your kernel description, but
not severe enough for config to catch it. Again, look over your configuration, and

FreeBSD Handbook 49

if you still cannot resolve the problem, send mail to the FreeBSD general questions
mailing list <freebsd-questions@FreeBSD.ORG> with your kernel configura-
tion, and it should be diagnosed very quickly.

Kernel will not boot
"

If your new kernel does not boot, or fails to recognize your devices, do not panic!
Fortunately, BSD has an excellent mechanism for recovering from incompatible ker-
nels. Simply type the name of the kernel you want to boot from (i.e. ‘‘kernel.old’’)
at the FreeBSD boot prompt instead of pressing return. When reconfiguring a ker-
nel, it is always a good idea to keep a kernel that is known to work on hand.

After booting with a good kernel you can check over your configuration file and try
to build it again. One helpful resource is the /var/log/messages file which
records, among other things, all of the kernel messages from every successful boot.
Also, the dmesg(8) command will print the kernel messages from the current boot.

Note: If you are having trouble building a kernel,
make sure to keep a GENERIC, or some other kernel
that is known to work on hand as a different name
that will not get erased on the next build. You can-
not rely on kernel.old because when installing a new
kernel, kernel.old is overwritten with the last
installed kernel which may be non-functional. Also,
as soon as possible, move the working kernel to the
proper ‘‘kernel’’ location or commands such as ps(1)
will not work properly. The proper command to
‘‘unlock’’ the kernel file that make installs (in
order to move another kernel back permanently) is:

chflags noschg /kernel

And, if you want to ‘‘lock’’ your new kernel into
place, or any file for that matter, so that it cannot
be moved or tampered with:

chflags schg /kernel

Kernel works, but ps does not work any more!
If you have installed a different version of the kernel from the one that the system
utilities have been built with, for example, an experimental ‘‘2.2.0’’ kernel on a
2.1.0-RELEASE system, many system-status commands like ps(1) and
vmstat(8) will not work any more. You must recompile the libkvm library as
well as these utilities. This is one reason it is not normally a good idea to use a dif-
ferent version of the kernel from the rest of the operating system.

FreeBSD Handbook 50

6. Security
6.1 DES, MD5, and Crypt
Contributed by Garrett Wollman <wollman@FreeBSD.ORG>
24 September 1995.

In order to protect the security of passwords on UN*X systems from being easily exposed, pass-
words have traditionally been scrambled in some way. Starting with Bell Labs’ Seventh Edition
Unix, passwords were encrypted using what the security people call a ‘‘one-way hash function’’.
That is to say, the password is transformed in such a way that the original password cannot be
regained except by brute-force searching the space of possible passwords. Unfortunately, the
only secure method that was available to the AT&T researchers at the time was based on DES, the
Data Encryption Standard. This causes only minimal difficulty for commercial vendors, but is a
serious problem for an operating system like FreeBSD where all the source code is freely avail-
able, because national governments in many places like to place restrictions on cross-border
transport of DES and other encryption software.

So, the FreeBSD team was faced with a dilemma: how could we provide compatibility with all
those UNIX systems out there while still not running afoul of the law? We decided to take a dual-
track approach: we would make distributions which contained only a non-regulated password
scrambler, and then provide as a separate add-on library the DES-based password hash. The
password-scrambling function was moved out of the C library to a separate library, called
‘libcrypt ’ because the name of the C function to implement it is ‘crypt ’. In FreeBSD 1.x and
some pre-release 2.0 snapshots, the non-regulated scrambler uses an insecure function written by
Nate Williams; in subsequent releases this was replaced by a mechanism using the RSA Data
Security, Inc., MD5 one-way hash function. Because neither of these functions involve encryp-
tion, they are believed to be exportable from the US and importable into many other countries.

Meanwhile, work was also underway on the DES-based password hash function. First, a version
of the ‘crypt ’ function which was written outside the US was imported, thus synchronizing the
US and non-US code. Then, the library was modified and split into two; the DES ‘libcrypt ’
contains only the code involved in performing the one-way password hash, and a separate ‘lib-
cipher ’ was created with the entry points to actually perform encryption. The code was parti-
tioned in this way to make it easier to get an export license for the compiled library.

6.1.1 Recognizing your ‘crypt’ mechanism

It is fairly easy to recognize whether a particular password string was created using the DES- or
MD5-based hash function. MD5 password strings always begin with the characters ‘1 ’. DES
password strings do not have any particular identifying characteristics, but they are shorter than
MD5 passwords, and are coded in a 64-character alphabet which does not include the ‘$’ charac-
ter, so a relatively short string which doesn’t begin with a dollar sign is very likely a DES pass-
word.

Determining which library is being used on your system is fairly easy for most programs, except
for those like ‘init ’ which are statically linked. (For those programs, the only way is to try them
on a known password and see if it works.) Programs which use ‘crypt ’ are linked against
‘libcrypt ’, which for each type of library is a symbolic link to the appropriate implementation.
For example, on a system using the DES versions:

$ cd /usr/lib
$ ls -l /usr/lib/libcrypt*
lrwxr-xr-x 1 bin bin 13 Sep 5 12:50 libcrypt.a -> libdescrypt.a
lrwxr-xr-x 1 bin bin 18 Sep 5 12:50 libcrypt.so.2.0 -> libdescrypt.so.2.0
lrwxr-xr-x 1 bin bin 15 Sep 5 12:50 libcrypt_p.a -> libdescrypt_p.a

On a system using the MD5-based libraries, the same links will be present, but the target will be
‘libscrypt ’ rather than ‘libdescrypt ’.

FreeBSD Handbook 51

6.2 S/Key
Contributed by Garrett Wollman <wollman@FreeBSD.ORG>
25 September 1995.

S/Key is a one-time password scheme based on a one-way hash function (in our version, this is
MD4 for compatibility; other versions have used MD5 and DES-MAC). S/Key has been a stan-
dard part of all FreeBSD distributions since version 1.1.5, and is also implemented on a large and
growing number of other systems. S/Key is a registered trademark of Bell Communications
Research, Inc.

There are three different sorts of passwords which we will talk about in the discussion below.
The first is your usual UNIX-style or Kerberos password; we will call this a ‘‘UNIX password’’.
The second sort is the one-time password which is generated by the S/Key ‘key ’ program and
accepted by the ‘keyinit ’ program and the login prompt; we will call this a ‘‘one-time pass-
word’’. The final sort of password is the secret password which you give to the ‘key ’ program
(and sometimes the ‘keyinit ’ program) which it uses to generate one-time passwords; we will
call it a ‘‘secret password’’ or just unqualified ‘‘password’’.

The secret password does not necessarily have anything to do with your UNIX password (while
they can be the same, this is not recommended). While UNIX passwords are limited to eight
characters in length, your S/Key secret password can be as long as you like; I use seven-word
phrases. In general, the S/Key system operates completely independently of the UNIX password
system.

There are in addition two other sorts of data involved in the S/Key system; one is called the
‘‘seed’’ or (confusingly) ‘‘key’’, and consists of two letters and five digits, and the other is the
‘‘iteration count’’ and is a number between 100 and 1. S/Key constructs a one-time password
from these components by concatenating the seed and the secret password, then applying a one-
way hash (the RSA Data Security, Inc., MD4 secure hash function) iteration-count times, and turn-
ing the result into six short English words. The ‘login ’ and ‘su ’ programs keep track of the last
one-time password used, and the user is authenticated if the hash of the user-provided password
is equal to the previous password. Because a one-way hash function is used, it is not possible to
generate future one-time passwords having overheard one which was successfully used; the iter-
ation count is decremented after each successful login to keep the user and login program in
sync. (When you get the iteration count down to 1, it is time to reinitialize S/Key.)

There are four programs involved in the S/Key system which we will discuss below. The ‘key ’
program accepts an iteration count, a seed, and a secret password, and generates a one-time pass-
word. The ‘keyinit ’ program is used to initialized S/Key, and to change passwords, iteration
counts, or seeds; it takes either a secret password, or an iteration count, seed, and one-time pass-
word. The ‘keyinfo ’ program examines the /etc/skeykeys file and prints out the invoking
user’s current iteration count and seed. Finally, the ‘login ’ and ‘su ’ programs contain the neces-
sary logic to accept S/Key one-time passwords for authentication. The ‘login ’ program is also
capable of disallowing the use of UNIX passwords on connections coming from specified
addresses.

There are four different sorts of operations we will cover. The first is using the ‘keyinit ’ pro-
gram over a secure connection to set up S/Key for the first time, or to change your password or
seed. The second operation is using the ‘keyinit ’ program over an insecure connection, in con-
junction with the ‘key ’ program over a secure connection, to do the same. The third is using the
‘key ’ program to log in over an insecure connection. The fourth is using the ‘key ’ program to
generate a number of keys which can be written down or printed out to carry with you when
going to some location without secure connections to anywhere (like at a conference).

FreeBSD Handbook 52

6.2.1 Secure connection initialization

To initialize S/Key, change your password, or change your seed while logged in over a secure
connection (e.g., on the console of a machine), use the ‘keyinit ’ command without any parame-
ters while logged in as yourself:

$ keyinit
Updating wollman:) these will not appear if you
Old key: ha73895) have not used S/Key before
Reminder - Only use this method if you are directly connected.
If you are using telnet or rlogin exit with no password and use keyinit -s.
Enter secret password:) I typed my pass phrase here
Again secret password:) I typed it again

ID wollman s/key is 99 ha73896) discussed below
SAG HAS FONT GOUT FATE BOOM)

There is a lot of information here. At the ‘Enter secret password:’ prompt, you should enter some
password or phrase (I use phrases of minimum seven words) which will be needed to generate
login keys. The line starting ‘ID’ gives the parameters of your particular S/Key instance: your
login name, the iteration count, and seed. When logging in with S/Key, the system will remem-
ber these parameters and present them back to you so you do not have to remember them. The
last line gives the particular one-time password which corresponds to those parameters and your
secret password; if you were to re-login immediately, this one-time password is the one you
would use.

6.2.2 Insecure connection initialization

To initialize S/Key or change your password or seed over an insecure connection, you will need
to already have a secure connection to some place where you can run the ‘key ’ program; this
might be in the form of a desk accessory on a Macintosh, or a shell prompt on a machine you
trust (we will show the latter). You will also need to make up an iteration count (100 is probably
a good value), and you may make up your own seed or use a randomly-generated one. Over on
the insecure connection (to the machine you are initializing), use the ‘keyinit -s ’ command:

$ keyinit -s
Updating wollman:
Old key: kh94741
Reminder you need the 6 English words from the skey command.
Enter sequence count from 1 to 9999: 100) I typed this
Enter new key [default kh94742]:
s/key 100 kh94742

To accept the default seed (which the ‘keyinit’ program confusingly calls a ‘key’), press return.
Then move over to your secure connection or S/Key desk accessory, and give it the same parame-
ters:

$ key 100 kh94742
Reminder - Do not use this program while logged in via telnet or rlogin.
Enter secret password:) I typed my secret password
HULL NAY YANG TREE TOUT VETO

Now switch back over to the insecure connection, and copy the one-time password generated by
‘key ’ over to the ‘keyinit ’ program:

s/key access password: HULL NAY YANG TREE TOUT VETO

ID wollman s/key is 100 kh94742
HULL NAY YANG TREE TOUT VETO

The rest of the description from the previous section applies here as well.

FreeBSD Handbook 53

6.2.3 Diversion: a login prompt

Before explaining how to generate one-time passwords, we should go over an S/Key login
prompt:

$ telnet himalia
Trying 18.26.0.186...
Connected to himalia.lcs.mit.edu.
Escape character is ’^]’.
s/key 92 hi52030
Password:

Note that, before prompting for a password, the login program prints out the iteration number
and seed which you will need in order to generate the appropriate key. You will also find a use-
ful feature (not shown here): if you press return at the password prompt, the login program will
turn echo on, so you can see what you are typing. This can be extremely useful if you are
attempting to type in an S/Key by hand, such as from a printout.

If this machine were configured to disallow UNIX passwords over a connection from my
machine, the prompt would have also included the annotation ‘(s/key required) ’, indicating
that only S/Key one-time passwords will be accepted.

6.2.4 Generating a single one-time password

Now, to generate the one-time password needed to answer this login prompt, we use a trusted
machine and the ‘key ’ program. (There are versions of the ‘key ’ program from DOS and Win-
dows machines, and there is an S/Key desk accessory for Macintosh computers as well.) The
command-line ‘key ’ program takes as its parameters the iteration count and seed; you can cut-
and-paste right from the login prompt starting at ‘‘key ’’ to the end of the line. Thus:

$ key 92 hi52030) pasted from previous section
Reminder - Do not use this program while logged in via telnet or rlogin.
Enter secret password:) I typed my secret password
ADEN BED WOLF HAW HOT STUN

And in the other window:

s/key 92 hi52030) from previous section
Password:

(turning echo on)
Password:ADEN BED WOLF HAW HOT STUN
Last login: Wed Jun 28 15:31:00 from halloran-eldar.l
[etc.]

This is the easiest mechanism if you have a trusted machine. There is a Java S/Key key applet,
The Java OTP Calculator9 , that you can download and run locally on any Java supporting
brower.

6.2.5 Generating multiple one-time passwords

Sometimes we have to go places where no trusted machines or connections are available. In this
case, it is possible to use the ‘key ’ command to generate a number of one-time passwords in the
same command; these can then be printed out. For example:

9. <URL:http://www.cs.umd.edu/˜harry/jotp/src.html>

FreeBSD Handbook 54

$ key -n 25 57 zz99999
Reminder - Do not use this program while logged in via telnet or rlogin.
Enter secret password:
33: WALT THY MALI DARN NIT HEAD
34: ASK RICE BEAU GINA DOUR STAG
[...]
56: AMOS BOWL LUG FAT CAIN INCH
57: GROW HAYS TUN DISH CAR BALM

The ‘-n 25 ’ requests twenty-five keys in sequence; the ‘57 ’ indicates the ending iteration number;
and the rest is as before. Note that these are printed out in reverse order of eventual use. If you
are really paranoid, you might want to write the results down by hand; otherwise you can cut-
and-paste into ‘lpr ’. Note that each line shows both the iteration count and the one-time pass-
word; you may still find it handy to scratch off passwords as you use them.

6.2.6 Restricting use of UNIX passwords

The configuration file /etc/skey.access can be used to configure restrictions on the use of
UNIX passwords based on the host name, user name, terminal port, or IP address of a login ses-
sion. The complete format of the file is documented in the skey.access(5) manual page; there are
also some security cautions there which should be read before depending on this file for security.

If there is no /etc/skey.access file (which is the default state as FreeBSD is shipped), then all
users will be allowed to use UNIX passwords. If the file exists, however, then all users will be
required to use S/Key unless explicitly permitted to do otherwise by configuration statements in
the skey.access file. In all cases, UNIX passwords are permitted on the console.

Here is a sample configuration file which illustrates the three most common sorts of configuration
statements:

permit internet 18.26.0.0 255.255.0.0
permit user jrl
permit port ttyd0

The first line (‘permit internet ’) allows users whose IP source address (which is vulnerable
to spoofing) matches the specified value and mask, to use UNIX passwords. This should not be
considered a security mechanism, but rather, a means to remind authorized users that they are
using an insecure network and need to use S/Key for authentication.

The second line (‘permit user ’) allows the specified user to use UNIX passwords at any time.
Generally speaking, this should only be used for people who are either unable to use the ‘key ’
program, like those with dumb terminals, or those who are uneducable.

The third line (‘permit port ’) allows all users logging in on the specified terminal line to use
UNIX passwords; this would be used for dial-ups.

6.3 Kerberos
Contributed by Mark Murray <markm@FreeBSD.ORG>(based on contribution by Mark Dapoz
<md@bsc.no>).

Kerberos is a network add-on system/protocol that allows users to authenticate themselves
through the services of a secure server. Services such as remote login, remote copy, secure inter-
system file copying and other high-risk tasks are made considerably safer and more controllable.

The following instructions can be used as a guide on how to set up Kerberos as distributed for
FreeBSD. However, you should refer to the relevant manual pages for a complete description.

In FreeBSD, the Kerberos is not that from the original 4.4BSD-Lite, distribution, but eBones,
which had been previously ported to FreeBSD 1.1.5.1, and was sourced from outside the
USA/Canada, and is thus available to system owners outside those countries.

For those needing to get a legal foreign distribution of this software, please DO NOT get it from a
USA or Canada site. You will get that site in big trouble! A legal copy of this is available from

FreeBSD Handbook 55

skeleton.mikom.csir.co.za , which is in South Africa.

6.3.1 Creating the initial database

This is done on the Kerberos server only. First make sure that you do not have any old Kerberos
databases around. You should change to the directory /etc/kerberosIV and check that only
the following files are present:

grunt# cd /etc/kerberosIV
grunt# ls
README krb.conf krb.realms

If any additional files (such as principal.* or master_key) exist, then use the kdb_destroy
command to destroy the old Kerberos database, of if Kerberos is not running, simply delete the
extra files with rm.

You should now edit the krb.conf and krb.realms files to define your Kerberos realm. In this
case the realm will be GRONDAR.ZA and the server is grunt.grondar.za. We edit or create the
krb.conf file:

grunt# cat krb.conf
GRONDAR.ZA
GRONDAR.ZA grunt.grondar.za admin server
CS.BERKELEY.EDU okeeffe.berkeley.edu
ATHENA.MIT.EDU kerberos.mit.edu
ATHENA.MIT.EDU kerberos-1.mit.edu
ATHENA.MIT.EDU kerberos-2.mit.edu
ATHENA.MIT.EDU kerberos-3.mit.edu
LCS.MIT.EDU kerberos.lcs.mit.edu
TELECOM.MIT.EDU bitsy.mit.edu
ARC.NASA.GOV trident.arc.nasa.gov

In this case, the other realms do not need to be there. They are here as an example of how a
machine may be made aware of multiple realms. You may wish to not include them for simplic-
ity.

The first line names the realm in which this system works. The other lines contain realm/host
entries. The first item on a line is a realm, and the second is a host in that realm that is acting as a
‘‘key distribution centre’’. The words ‘‘admin server’’ following a hosts name means that host
also provides an administrative database server. For further explanation of these terms, please
consult the Kerberos man pages.

Now we have to add grunt.grondar.za to the GRONDAR.ZA realm and also add an entry to put all
hosts in the .grondar.za domain in the GRONDAR.ZA realm. The krb.realms file would be
updated as follows:

grunt# cat krb.realms
grunt.grondar.za GRONDAR.ZA
.grondar.za GRONDAR.ZA
.berkeley.edu CS.BERKELEY.EDU
.MIT.EDU ATHENA.MIT.EDU
.mit.edu ATHENA.MIT.EDU

Again, the other realms do not need to be there. They are here as an example of how a machine
may be made aware of multiple realms. You may wish to remove them to simplify things.

The first line puts the specific system into the named realm. The rest of the lines show how to
default systems of a particular subdomain to a named realm.

Now we are ready to create the database. This only needs to run on the Kerberos server (or Key
Distribution Centre). Issue the kdb_init command to do this:

FreeBSD Handbook 56

grunt# kdb_init
Realm name [default ATHENA.MIT.EDU]: GRONDAR.ZA
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.

Enter Kerberos master key:

Now we have to save the key so that servers on the local machine can pick it up. Use the kstash
command to do this.

grunt# kstash

Enter Kerberos master key:

Current Kerberos master key version is 1.

Master key entered. BEWARE!

This saves the encrypted master password in /etc/kerberosIV/master_key .

6.3.2 Making it all run

Two principals need to be added to the database for each system that will be secured with Ker-
beros. Their names are kpasswd and rcmd These two principals are made for each system, with
the instance being the name of the individual system.

These daemons, kpasswd and rcmd allow other systems to change Kerberos passwords and run
commands like rcp , rlogin and rsh .

Now let’s add these entries:

FreeBSD Handbook 57

grunt# kdb_edit
Opening database...

Enter Kerberos master key:

Current Kerberos master key version is 1.

Master key entered. BEWARE!
Previous or default values are in [brackets] ,
enter return to leave the same, or new value.

Principal name: passwd
Instance: grunt

<Not found>, Create [y] ? y

Principal: passwd, Instance: grunt, kdc_key_ver: 1
New Password: <---- enter RANDOM here
Verifying password

New Password: <---- enter RANDOM here

Random password [y] ? y

Principal’s new key version = 1
Expiration date (enter yyyy-mm-dd) [2000-01-01] ?
Max ticket lifetime (*5 minutes) [255] ?
Attributes [0] ?
Edit O.K.
Principal name: rcmd
Instance: grunt

<Not found>, Create [y] ?

Principal: rcmd, Instance: grunt, kdc_key_ver: 1
New Password: <---- enter RANDOM here
Verifying password

New Password: <---- enter RANDOM here

Random password [y] ?

Principal’s new key version = 1
Expiration date (enter yyyy-mm-dd) [2000-01-01] ?
Max ticket lifetime (*5 minutes) [255] ?
Attributes [0] ?
Edit O.K.
Principal name: <---- null entry here will cause an exit

6.3.3 Creating the server file

We now have to extract all the instances which define the services on each machine. For this we
use the ext_srvtab command. This will create a file which must be copied or moved by secure
means to each Kerberos client’s /etc/kerberosIV directory. This file must be present on each
server and client, and is crucial to the operation of Kerberos.

grunt# ext_srvtab grunt

Enter Kerberos master key:

Current Kerberos master key version is 1.

Master key entered. BEWARE!
Generating ’grunt-new-srvtab’....

Now, this command only generates a temporary file which must be renamed to srvtab so that

FreeBSD Handbook 58

all the server can pick it up. Use the mvcommand to move it into place on the original system:

grunt# mv grunt-new-srvtab srvtab

If the file is for a client system, and the network is not deemed safe, then copy the
<client>-new-srvtab to removable media and transport it by secure physical means. Be sure
to rename it to srvtab in the client’s /etc/kerberosIV directory, and make sure it is mode
600:

grumble# mv grumble-new-srvtab srvtab
grumble# chmod 600 srvtab

6.3.4 Populating the database

We now have to add some user entries into the database. First let’s create an entry for the user
jane. Use the kdb_edit command to do this:

grunt# kdb_edit
Opening database...

Enter Kerberos master key:

Current Kerberos master key version is 1.

Master key entered. BEWARE!
Previous or default values are in [brackets] ,
enter return to leave the same, or new value.

Principal name: jane
Instance:

<Not found>, Create [y] ? y

Principal: jane, Instance: , kdc_key_ver: 1
New Password: <---- enter a secure password here
Verifying password

New Password: <---- re-enter the password here

Principal’s new key version = 1
Expiration date (enter yyyy-mm-dd) [2000-01-01] ?
Max ticket lifetime (*5 minutes) [255] ?
Attributes [0] ?
Edit O.K.
Principal name: <---- null entry here will cause an exit

6.3.5 Testing it all out

First we have to start the Kerberos daemons. NOTE that if you have correctly edited your
/etc/rc.conf then this will happen automatically when you reboot. This is only necessary on
the Kerberos server. Kerberos clients will automagically get what they need from the /etc/ker-
berosIV directory.

FreeBSD Handbook 59

grunt# kerberos &
grunt# Kerberos server starting

Sleep forever on error
Log file is /var/log/kerberos.log

Current Kerberos master key version is 1.

Master key entered. BEWARE!

Current Kerberos master key version is 1
Local realm: GRONDAR.ZA
grunt# kadmind -n &
grunt# KADM Server KADM0.0A initializing
Please do not use ’kill -9’ to kill this job, use a
regular kill instead

Current Kerberos master key version is 1.

Master key entered. BEWARE!

Now we can try using the kinit command to get a ticket for the id jane that we created above:

grunt$ kinit jane
MIT Project Athena (grunt.grondar.za)
Kerberos Initialization for "jane"
Password:

Try listing the tokens using klist to see if we really have them:

grunt$ klist
Ticket file: /tmp/tkt245
Principal: jane@GRONDAR.ZA

Issued Expires Principal
Apr 30 11:23:22 Apr 30 19:23:22 krbtgt.GRONDAR.ZA@GRONDAR.ZA

Now try changing the password using passwd to check if the kpasswd daemon can get autho-
rization to the Kerberos database:

grunt$ passwd
realm GRONDAR.ZA
Old password for jane:
New Password for jane:
Verifying password
New Password for jane:
Password changed.

6.3.6 Adding su privileges

Kerberos allows us to give each user who needs root privileges their own separate su password.
We could now add an id which is authorized to su to root. This is controlled by having an
instance of root associated with a principal. Using kdb_edit we can create the entry jane.root in
the Kerberos database:

FreeBSD Handbook 60

grunt# kdb_edit
Opening database...

Enter Kerberos master key:

Current Kerberos master key version is 1.

Master key entered. BEWARE!
Previous or default values are in [brackets] ,
enter return to leave the same, or new value.

Principal name: jane
Instance: root

<Not found>, Create [y] ? y

Principal: jane, Instance: root, kdc_key_ver: 1
New Password: <---- enter a SECURE password here
Verifying password

New Password: <---- re-enter the password here

Principal’s new key version = 1
Expiration date (enter yyyy-mm-dd) [2000-01-01] ?
Max ticket lifetime (*5 minutes) [255] ? 12 <--- Keep this short!
Attributes [0] ?
Edit O.K.
Principal name: <---- null entry here will cause an exit

Now try getting tokens for it to make sure it works:

grunt# kinit jane.root
MIT Project Athena (grunt.grondar.za)
Kerberos Initialization for "jane.root"
Password:

Now we need to add the user to root’s .klogin file:

grunt# cat /root/.klogin
jane.root@GRONDAR.ZA

Now try doing the su :

[jane@grunt 10407] su
Password:
grunt#

and take a look at what tokens we have:

grunt# klist
Ticket file: /tmp/tkt_root_245
Principal: jane.root@GRONDAR.ZA

Issued Expires Principal
May 2 20:43:12 May 3 04:43:12 krbtgt.GRONDAR.ZA@GRONDAR.ZA

6.3.7 Using other commands

In an earlier example, we created a principal called jane with an instance root . This was based
on a user with the same name as the principal, and this is a Kerberos default; that a <princi-
pal>.<instance> of the form <username>.root will allow that <username> to su to root if the neces-
sary entries are in the .klogin file in root ’s home directory:

grunt# cat /root/.klogin
jane.root@GRONDAR.ZA

Likewise, if a user has in their own home directory lines of the form:

FreeBSD Handbook 61

[jane@grunt 10543] cat ˜/.klogin
jane@GRONDAR.ZA
jack@GRONDAR.ZA

This allows anyone in the GRONDAR.ZA realm who has authenticated themselves to jane or jack
(via kinit , see above) access to rlogin to jane’s account or files on this system (grunt) via
rlogin , rsh or rcp .

For example, Jane now logs into another system, using Kerberos:

[jane@grumble 573] kinit
MIT Project Athena (grunt.grondar.za)
Password:
[jane@grumble 574] rlogin grunt
Last login: Mon May 1 21:14:47 from grumble
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserved.

FreeBSD BUILT-19950429 (GR386) #0: Sat Apr 29 17:50:09 SAT 1995

[jane@grunt 10567]

Or Jack logs into Jane’s account on the same machine (Jane having set up the .klogin file as
above, and the person in charge of Kerberos having set up principal jack with a null instance:

[jack@grumble 573] kinit
[jack@grumble 574] rlogin grunt -l jane
MIT Project Athena (grunt.grondar.za)
Password:
Last login: Mon May 1 21:16:55 from grumble
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserved.

FreeBSD BUILT-19950429 (GR386) #0: Sat Apr 29 17:50:09 SAT 1995

[jane@grunt 10578]

6.4 Firewalls
Contributed by Gary Palmer <gpalmer@FreeBSD.ORG> and Alex Nash <alex@freebsd.org> .

Firewalls are an area of increasing interest for people who are connected to the Internet, and are
even finding applications on private networks to provide enhanced security. This section will
hopefully explain what firewalls are, how to use them, and how to use the facilities provided in
the FreeBSD kernel to implement them.

Note : People often think that having a firewall between your
companies internal network and the ‘‘Big Bad Internet’’ will
solve all your security problems. It may help, but a poorly
setup firewall system is more of a security risk than not hav-
ing one at all. A firewall can only add another layer of secu-
rity to your systems, but they will not be able to stop a
really determined cracker from penetrating your internal net-
work. If you let internal security lapse because you believe
your firewall to be impenetrable, you have just made the crack-
ers job that bit easier.

6.4.1 What is a firewall?

There are currently two distinct types of firewalls in common use on the Internet today. The first
type is more properly called a packet filtering router, where the kernel on a multi-homed
machine chooses whether to forward or block packets based on a set of rules. The second type,
known as proxy servers, rely on daemons to provide authentication and to forward packets,

FreeBSD Handbook 62

possibly on a multi-homed machine which has kernel packet forwarding disabled.

Sometimes sites combine the two types of firewalls, so that only a certain machine (known as a
bastion host) is allowed to send packets through a packet filtering router onto an internal net-
work. Proxy services are run on the bastion host, which are generally more secure than normal
authentication mechanisms.

FreeBSD comes with a kernel packet filter (known as IPFW), which is what the rest of this section
will concentrate on. Proxy servers can be built on FreeBSD from third party software, but there is
such a variety of proxy servers available that it would be impossible to cover them in this docu-
ment.

6.4.1.1 Packet filtering routers

A router is a machine which forwards packets between two or more networks. A packet filtering
router has an extra piece of code in its kernel, which compares each packet to a list of rules before
deciding if it should be forwarded or not. Most modern IP routing software has packet filtering
code in it, which defaults to forwarding all packets. To enable the filters, you need to define a set
of rules for the filtering code, so that it can decide if the packet should be allowed to pass or not.

To decide if a packet should be passed on or not, the code looks through its set of rules for a rule
which matches the contents of this packets headers. Once a match is found, the rule action is

FreeBSD Handbook 63

forwarding.

As a result of the way that IPFW is designed, you can use IPFW on non-router machines to per-
form packet filtering on incoming and outgoing connections. This is a special case of the more
general use of IPFW, and the same commands and techniques should be used in this situation.

6.4.3 Enabling IPFW on FreeBSD

As the main part of the IPFW system lives in the kernel, you will need to add one or more options
to your kernel configuration file, depending on what facilities you want, and recompile your ker-
nel. See reconfiguring the kernel (section 5., page 35) for more details on how to recompile your ker-
nel.

There are currently three kernel configuration options relevant to IPFW:

options IPFIREWALL
Compiles into the kernel the code for packet filtering.

options IPFIREWALL_VERBOSE
Enables code to allow logging of packets through syslogd(8) . Without this
option, even if you specify that packets should be logged in the filter rules, nothing
will happen.

options IPFIREWALL_VERBOSE_LIMIT=10
Limits the number of packets logged through syslogd(8) on a per entry basis.
You may wish to use this option in hostile environments in which you want to log
firewall activity, but do not want to be open to a denial of service attack via syslog
flooding.

When a chain entry reaches the packet limit specified, logging is turned off for that
particular entry. To resume logging, you will need to reset the associated counter
using the ipfw(8) utility:

ipfw zero 4500

Where 4500 is the chain entry you wish to continue logging.

Previous versions of FreeBSD contained an IPFIREWALL_ACCToption. This is now obsolete as
the firewall code automatically includes accounting facilities.

6.4.4 Configuring IPFW

The configuration of the IPFW software is done through the ipfw(8) utility. The syntax for this
command looks quite complicated, but it is relatively simple once you understand its structure.

There are currently four different command categories used by the utility: addition/deletion, list-
ing, flushing, and clearing. Addition/deletion is used to build the rules that control how packets
are accepted, rejected, and logged. Listing is used to examine the contents of your rule set (other-
wise known as the chain) and packet counters (accounting). Flushing is used to remove all
entries from the chain. Clearing is used to zero out one or more accounting entries.

6.4.4.1 Altering the IPFW rules

The syntax for this form of the command is:

ipfw [-N] command [index]
action [log] protocol addresses
[options]

There is one valid flag when using this form of the command:

-N
Resolve addresses and service names in output.

The command given can be shortened to the shortest unique form. The valid commands are:

FreeBSD Handbook 64

add
Add an entry to the firewall/accounting rule list

delete
Delete an entry from the firewall/accounting rule list

Previous versions of IPFW used separate firewall and accounting entries. The present version
provides packet accounting with each firewall entry.

If an index value is supplied, it used to place the entry at a specific point in the chain. Other-
wise, the entry is placed at the end of the chain at an index 100 greater than the last chain entry
(this does not include the default policy, rule 65535, deny).

The log option causes matching rules to be output to the system console if the kernel was com-
piled with IPFIREWALL_VERBOSE.

Valid actions are:

reject
Drop the packet, and send an ICMP host or port unreachable (as appropriate)
packet to the source.

allow
Pass the packet on as normal. (aliases: pass and accept)

deny
Drop the packet. The source is not notified via an ICMP message (thus it appears
that the packet never arrived at the destination).

count
Update packet counters but do not allow/deny the packet based on this rule. The
search continues with the next chain entry.

Each action will be recognized by the shortest unambiguous prefix.

The protocols which can be specified are:

all
Matches any IP packet

icmp
Matches ICMP packets

tcp
Matches TCP packets

udp
Matches UDP packets

The address specification is:

from <address/mask >[port] to
<address/mask >[port] [via <interface >]

You can only specify port in conjunction with protocols which support ports (UDP and TCP).

The via is optional and may specify the IP address or domain name of a local IP interface, or an
interface name (e.g. ed0) to match only packets coming through this interface. Interface unit
numbers can be specified with an optional wildcard. For example, ppp* would match all kernel
PPP interfaces.

The syntax used to specify an <address/mask> is:

<address>

or

FreeBSD Handbook 65

<address>/mask-bits

or

<address>:mask-pattern

A valid hostname may be specified in place of the IP address. mask-bits is a decimal number
representing how many bits in the address mask should be set. e.g. specifying

192.216.222.1/24

will create a mask which will allow any address in a class C subnet (in this case, 192.216.222) to be
matched. mask-pattern is an IP address which will be logically AND’ed with the address
given. The keyword any may be used to specify ‘‘any IP address’’.

The port numbers to be blocked are specified as:

port[,port[,port[...]]]

to specify either a single port or a list of ports, or

port-port

to specify a range of ports. You may also combine a single range with a list, but the range must
always be specified first.

The options available are:

frag
Matches if the packet is not the first fragment of the datagram.

in
Matches if the packet is on the way in.

out
Matches if the packet is on the way out.

ipoptions spec
Matches if the IP header contains the comma separated list of options specified in
spec. The supported list of IP options are: ssrr (strict source route), lsrr (loose source
route), rr (record packet route), and ts (timestamp). The absence of a particular
option may be denoted with a leading ’!’.

established
Matches if the packet is part of an already established TCP connection (i.e. it has the
RST or ACK bits set). You can optimize the performance of the firewall by placing
established rules early in the chain.

setup
Matches if the packet is an attempt to establish a TCP connection (the SYN bit set is
set but the ACK bit is not).

tcpflags flags
Matches if the TCP header contains the comma separated list of flags. The sup-
ported flags are fin, syn, rst, psh, ack, and urg. The absence of a particular flag may
be indicated by a leading ’!’.

icmptypes types
Matches if the ICMP type is present in the list types. The list may be specified as any
combination of ranges and/or individual types separated by commas. Commonly
used ICMP types are: 0 echo reply (ping reply), 5 redirect, 8 echo request (ping
request), and 11 time exceeded (used to indicate TTL expiration as with

FreeBSD Handbook 66

traceroute(8)).

6.4.4.2 Listing the IPFW rules

The syntax for this form of the command is:

ipfw [-atN] l

There are three valid flags when using this form of the command:

-a
While listing, show counter values. This option is the only way to see accounting
counters.

-t
Display the last match times for each chain entry. The time listing is incompatible
with the input syntax used by the ipfw(8) utility.

-N
Attempt to resolve given addresses and service names.

6.4.4.3 Flushing the IPFW rules

The syntax for flushing the chain is:

ipfw flush

This causes all entries in the firewall chain to be removed except the fixed default policy enforced
by the kernel (index 65535). Use caution when flushing rules, the default deny policy will leave
your system cut off from the network until allow entries are added to the chain.

6.4.4.4 Clearing the IPFW packet counters

The syntax for clearing one or more packet counters is:

ipfw zero [index]

When used without an index argument, all packet counters are cleared. If an index is supplied, the
clearing operation only affects a specific chain entry.

6.4.5 Example commands for ipfw

This command will deny all packets from the host evil.crackers.org to the telnet port of the host
nice.people.org by being forwarded by the router:

ipfw add deny tcp from evil.crackers.org to nice.people.org 23

The next example denies and logs any TCP traffic from the entire crackers.org network (a class C)
to the nice.people.org machine (any port).

ipfw add deny log tcp from evil.crackers.org/24 to nice.people.org

If you do not want people sending X sessions to your internal network (a subnet of a class C), the
following command will do the necessary filtering:

ipfw add deny tcp from any to my.org/28 6000 setup

To see the accounting records:

ipfw -a list

or in the short form

ipfw -a l

You can also see the last time a chain entry was matched with

ipfw -at l

FreeBSD Handbook 67

6.4.6 Building a packet filtering firewall

Note: The following suggestions are just that: suggestions. The
requirements of each firewall are different and I cannot tell
you how to build a firewall to meet your particular require-
ments.

When initially setting up your firewall, unless you have a test bench setup where you can config-
ure your firewall host in a controlled environment, I strongly recommend you use the logging
version of the commands and enable logging in the kernel. This will allow you to quickly identify
problem areas and cure them without too much disruption. Even after the initial setup phase is
complete, I recommend using the logging for of ‘deny’ as it allows tracing of possible attacks and
also modification of the firewall rules if your requirements alter.

Note: If you use the logging versions of the accept command, it
can generate large amounts of log data as one log line will be
generated for every packet that passes through the firewall, so
large ftp/http transfers, etc, will really slow the system
down. It also increases the latencies on those packets as it
requires more work to be done by the kernel before the packet
can be passed on. syslogd with also start using up a lot more
processor time as it logs all the extra data to disk, and it
could quite easily fill the partition /var/log is located on.

As currently supplied, FreeBSD does not have the ability to load firewall rules at boot time. My
suggestion is to put a call to a shell script in the /etc/netstart script. Put the call early enough
in the netstart file so that the firewall is configured before any of the IP interfaces are configured.
This means that there is no window during which time your network is open.

The actual script used to load the rules is entirely up to you. There is currently no support in the
ipfw utility for loading multiple rules in the one command. The system I use is to use the com-
mand:

ipfw list

to write a list of the current rules out to a file, and then use a text editor to prepend ‘‘ipfw ’’
before all the lines. This will allow the script to be fed into /bin/sh and reload the rules into the
kernel. Perhaps not the most efficient way, but it works.

The next problem is what your firewall should actually DO! This is largely dependent on what
access to your network you want to allow from the outside, and how much access to the outside
world you want to allow from the inside. Some general rules are:

• Block all incoming access to ports below 1024 for TCP. This is where most of the security
sensitive services are, like finger, SMTP (mail) and telnet.

• Block all incoming UDP traffic. There are very few useful services that travel over UDP, and
what useful traffic there is is normally a security threat (e.g. Suns RPC and NFS protocols).
This has its disadvantages also, since UDP is a connectionless protocol, denying incoming
UDP traffic also blocks the replies to outgoing UDP traffic. This can cause a problem for
people (on the inside) using external archie (prospero) servers. If you want to allow access
to archie, you’ll have to allow packets coming from ports 191 and 1525 to any internal UDP
port through the firewall. ntp is another service you may consider allowing through, which
comes from port 123.

• Block traffic to port 6000 from the outside. Port 6000 is the port used for access to X11
servers, and can be a security threat (especially if people are in the habit of doing xhost +
on their workstations). X11 can actually use a range of ports starting at 6000, the upper limit
being how many X displays you can run on the machine. The upper limit as defined by RFC
1700 (Assigned Numbers) is 6063.

FreeBSD Handbook 68

• Check what ports any internal servers use (e.g. SQL servers, etc). It is probably a good idea
to block those as well, as they normally fall outside the 1-1024 range specified above.

Another checklist for firewall configuration is available from CERT at
ftp://ftp.cert.org/pub/tech tips/packet filtering

As I said above, these are only guidelines. You will have to decide what filter rules you want to use
on your firewall yourself. I cannot accept ANY responsibility if someone breaks into your net-
work, even if you follow the advice given above.

FreeBSD Handbook 69

7. Printing
Contributed by Sean Kelly <kelly@fsl.noaa.gov>
30 September 1995

In order to use printers with FreeBSD, you will need to set them up to work with the Berkeley
line printer spooling system, also known as the LPD spooling system. It is the standard printer
control system in FreeBSD. This section introduces the LPD spooling system, often simply called
LPD.

If you are already familiar with LPD or another printer spooling system, you may wish to skip to
section Setting up the spooling system (section 7.3, page 69).

7.1 What the Spooler Does
LPD controls everything about a host’s printers. It is responsible for a number of things:

• It controls access to attached printers and printers attached to other hosts on the network.

• It enables users to submit files to be printed; these submissions are known as jobs.

• It prevents multiple users from accessing a printer at the same time by maintaining a queue
for each printer.

• It can print header pages (also known as banner or burst pages) so users can easily find jobs
they have printed in a stack of printouts.

• It takes care of communications parameters for printers connected on serial ports.

• It can send jobs over the network to another LPD spooler on another host.

• It can run special filters to format jobs to be printed for various printer languages or printer
capabilities.

• It can account for printer usage.

Through a configuration file, and by providing the special filter programs, you can enable the
LPD system to do all or some subset of the above for a great variety of printer hardware.

7.2 Why You Should Use the Spooler
If you are the sole user of your system, you may be wondering why you should bother with the
spooler when you do not need access control, header pages, or printer accounting. While it is
possible to enable direct access to a printer, you should use the spooler anyway since

• LPD prints jobs in the background; you do not have to wait for data to be copied to the
printer.

• LPD can conveniently run a job to be printed through filters to add date/time headers or
convert a special file format (such as a TeX DVI file) into a format the printer will under-
stand. You will not have to do these steps manually.

• Many free and commercial programs that provide a print feature usually expect to talk to
the spooler on your system. By setting up the spooling system, you will more easily sup-
port other software you may later add or already have.

7.3 Setting Up the Spooling System
To use printers with the LPD spooling system, you will need to set up both your printer hard-
ware and the LPD software. This document describes two levels of setup:

• See section Simple Printer Setup (section 7.4, page 70) to learn how to connect a printer, tell
LPD how to communicate with it, and print plain text files to the printer.

FreeBSD Handbook 70

• See section Advanced Printer Setup (section 7.6, page 89) to find out how to print a variety of
special file formats, to print header pages, to print across a network, to control access to
printers, and to do printer accounting.

7.4 Simple Printer Setup
This section tells how to configure printer hardware and the LPD software to use the printer. It
teaches the basics:

• Section Hardware Setup (section 7.4.1, page 70) gives some hints on connecting the printer
to a port on your computer.

• Section Software Setup (section 7.4.2, page 71) shows how to setup the LPD spooler con-
figuration file /etc/printcap .

If you are setting up a printer that uses a network protocol to accept data to print instead of a
serial or parallel interface, see Printers With Networked Data Stream Interaces (section 7.6.3.2, page
107).

Although this section is called ‘‘Simple Printer Setup,’’ it is actually fairly complex. Getting the
printer to work with your computer and the LPD spooler is the hardest part. The advanced
options like header pages and accounting are fairly easy once you get the printer working.

7.4.1 Hardware Setup

This section tells about the various ways you can connect a printer to your PC. It talks about the
kinds of ports and cables, and also the kernel configuration you may need to enable FreeBSD to
speak to the printer.

If you have already connected your printer and have successfully printed with it under another
operating system, you can probably skip to section Software Setup (section 7.4.2, page 71).

7.4.1.1 Por ts and Cables

Nearly all printers you can get for a PC today support one or both of the following interfaces:

• Serial interfaces use a serial port on your computer to send data to the printer. Serial inter-
faces are common in the computer industry and cables are readily available and also easy to
construct. Serial interfaces sometimes need special cables and might require you to config-
ure somewhat complex communications options.

• Parallel interfaces use a parallel port on your computer to send data to the printer. Parallel
interfaces are common in the PC market. Cables are readily available but more difficult to
construct by hand. There are usually no communications options with parallel interfaces,
making their configuration exceedingly simple.

Parallel interfaces are sometimes known as ‘‘Centronics’’ interfaces, named after the con-
nector type on the printer.

In general, serial interfaces are slower than parallel interfaces. Parallel interfaces usually offer
just one-way communication (computer to printer) while serial gives you two-way. Many newer
parallel ports can also receive data from the printer, but only few printers need to send data back
to the computer. And FreeBSD does not support two-way parallel communication yet.

Usually, the only time you need two-way communication with the printer is if the printer speaks
PostScript. PostScript printers can be very verbose. In fact, PostScript jobs are actually programs
sent to the printer; they need not produce paper at all and may return results directly to the com-
puter. PostScript also uses two-way communication to tell the computer about problems, such as
errors in the PostScript program or paper jams. Your users may be appreciative of such informa-
tion. Furthermore, the best way to do effective accounting with a PostScript printer requires two-
way communication: you ask the printer for its page count (how many pages it has printed in its
lifetime), then send the user’s job, then ask again for its page count. Subtract the two values and

FreeBSD Handbook 71

you know how much paper to charge the user.

So, which interface should you use?

• If you need two-way communication, use a serial port. FreeBSD does not yet support two-
way communication over a parallel port.

• If you do not need two-way communication and can pick parallel or serial, prefer the paral-
lel interface. It keeps a serial port free for other peripherals---such as a terminal or a
modem---and is faster most of the time. It is also easier to configure.

• Finally, use whatever works.

7.4.1.2 Parallel Por ts

To hook up a printer using a parallel interface, connect the Centronics cable between the printer
and the computer. The instructions that came with the printer, the computer, or both should give
you complete guidance.

Remember which parallel port you used on the computer. The first parallel port is /dev/lpt0 to
FreeBSD; the second is /dev/lpt1, and so on.

7.4.1.3 Serial Ports

To hook up a printer using a serial interface, connect the proper serial cable between the printer
and the computer. The instructions that came with the printer, the computer, or both should give
you complete guidance.

If you are unsure what the ‘‘proper serial cable’’ is, you may wish to try one of the following
alternatives:

• A modem cable connects each pin of the connector on one end of the cable straight through
to its corresponding pin of the connector on the other end. This type of cable is also known
as a DTE-to-DCE cable.

• A null-modem cable connects some pins straight through, swaps others (send data to receive
data, for example), and shorts some internally in each connector hood. This type of cable is
also known as a DTE-to-DTE cable.

• A serial printer cable, required for some unusual printers, is like the null modem cable, but
sends some signals to their counterparts instead of being internally shorted.

You should also set up the communications parameters for the printer, usually through front-
panel controls or DIP switches on the printer. Choose the highest bps (bits per second, some-
times baud rate) rate that both your computer and the printer can support. Choose 7 or 8 data
bits; none, even, or odd parity; and 1 or 2 stop bits. Also choose a flow control protocol: either
none, or XON/XOFF (also known as in-band or software) flow control. Remember these settings
for the software configuration that follows.

7.4.2 Software Setup

This section describes the software setup necessary to print with the LPD spooling system in
FreeBSD.

Here is an outline of the steps involved:

1. Configure your kernel, if necessary, for the port you are using for the printer; section Kernel
Configuration (section 7.4.2.1, page 72) tells you what you need to do.

2. Set the communications mode for the parallel port, if you are using a parallel port; section
Setting the Communication Mode for the Parallel Port (section 7.4.2.1.2, page 73) gives
details.

FreeBSD Handbook 72

3. Test if the operating system can send data to the printer. Section Checking Printer Commu-
nications (section 7.4.2.1.3, page 74) gives some suggestions on how to do this.

4. Set up LPD for the printer by modifying the file /etc/printcap . Section The /etc/printcap
File (section 7.4.2.2, page 75) shows you how.

7.4.2.1 Kernel Configuration

The operating system kernel is compiled to work with a specific set of devices. The serial or par-
allel interface for your printer is a part of that set. Therefore, it might be necessary to add support
for an additional serial or parallel port if your kernel is not already configured for one.

To find out if the kernel you are currently using supports a serial interface, type

dmesg grep sio N

where N is the number of the serial port, starting from zero. If you see output similar to the fol-
lowing

sio2 at 0x3e8-0x3ef irq 5 on isa
sio2: type 16550A

then the kernel supports the port.

To find out if the kernel supports a parallel interface, type

dmesg grep lpt N

where N is the number of the parallel port, starting from zero. If you see output similar to the fol-
lowing

lpt0 at 0x378-0x37f on isa

then the kernel supports the port.

You might have to reconfigure your kernel in order for the operating system to recognize and use
the parallel or serial port you are using for the printer.

To add support for a serial port, see the section on kernel configuration. To add support for a par-
allel port, see that section and the section that follows.

7.4.2.1.1 Adding /dev Entr ies for the Por ts

"

Even though the kernel may support communication along a serial or parallel port, you will still
need a software interface through which programs running on the system can send and receive
data. That is what entries in the /dev directory are for.

To add a /dev entry for a port:

1. Become root with the su command. Enter the root password when prompted.

2. Change to the /dev directory:

cd /dev

3. Type

./MAKEDEV port

where port is the device entry for the port you want to make. Use lpt0 for the first

FreeBSD Handbook 73

parallel port, lpt1 for the second, and so on; use ttyd0 for the first serial port, ttyd1 for
the second, and so on.

4. Type

ls -l port

to make sure the device entry got created.

7.4.2.1.2 Setting the Communication Mode for the Parallel Por t

"

When you are using the parallel interface, you can choose whether FreeBSD should use inter-
rupt-driven or polled communication with the printer.

• The interrupt-driven method is the default with the GENERIC kernel. With this method, the
operating system uses an IRQ line to determine when the printer is ready for data.

• The polled method directs the operating system to repeatedly ask the printer if it is ready for
more data. When it responds ready, the kernel sends more data.

The interrupt-driven method is somewhat faster but uses up a precious IRQ line. You should use
whichever one works.

You can set the communications mode in two ways: by configuring the kernel or by using the lpt-
control

program.

To set the communications mode by configuring the kernel:

1. Edit your kernel configuration file. Look for or add an lpt0 entry. If you are setting up
the second parallel port, use lpt1 instead. Use lpt2 for the third port, and so on.

• If you want interrupt-driven mode, add the irq specifier:

device lpt0 at isa? port? tty irq N vector lptintr

where N is the IRQ number for your computer’s parallel port.

• If you want polled mode, do not add the irq specifier:

device lpt0 at isa? port? tty vector lptintr

2. Save the file. Then configure, build, and install the kernel, then reboot. See kernel configu-
ration (section 5., page 35) for more details.

To set the communications mode with lptcontrol:

• Type

lptcontrol -i -u N

to set interrupt-driven mode for lpt N.

• Type

lptcontrol -p -u N

to set polled-mode for lpt N.

You could put these commands in your /etc/rc.local file to set the mode each time your sys-
tem boots. See lptcontrol(8) for more information.

FreeBSD Handbook 74

7.4.2.1.3 Checking Printer Communications

Before proceeding to configure the spooling system, you should make sure the operating system
can successfully send data to your printer. It is a lot easier to debug printer communication and
the spooling system separately.

To test the printer, we will send some text to it. For printers that can immediately print characters
sent to them, the program lptest is perfect: it generates all 96 printable ASCII characters in 96
lines.

For a PostScript (or other language-based) printer, we will need a more sophisticated test. A
small PostScript program, such as the following, will suffice:

%!PS
100 100 moveto 300 300 lineto stroke
310 310 moveto
/Helvetica findfont 12 scalefont setfont
(Is this thing working?) show
showpage

Note: When this document refers to a printer language, I am assuming a language like PostScript,
and not Hewlett Packard’s PCL. Although PCL has great functionality, you can intermingle plain
text with its escape sequences. PostScript cannot directly print plain text, and that is the kind of
printer language for which we must make special accommodations.

7.4.2.1.3.1 Checking a Parallel Printer This section tells you how to check if FreeBSD can com-
municate with a printer connected to a parallel port.

To test a printer on a parallel port:

1. Become root with su.

2. Send data to the printer.

• If the printer can print plain text, then use lptest. Type:

lptest > /dev/lpt N

where N is the number of the parallel port, starting from zero.

• If the printer understands PostScript or other printer language, then send a small
program to the printer. Type

cat > /dev/lpt N

Then, line by line, type the program carefully as you cannot edit a line once you have
pressed RETURN or ENTER. When you have finished entering the program, press
CONTROL+D, or whatever your end of file key is.

Alternatively, you can put the program in a file and type

cat file > /dev/lpt N

where file is the name of the file containing the program you want to send to the
printer.

You should see something print. Do not worry if the text does not look right; we will fix such
things later.

FreeBSD Handbook 75

7.4.2.1.3.2 Checking a Serial Printer This section tells you how to check if FreeBSD can commu-
nicate with a printer on a serial port.

To test a printer on a serial port:

1. Become root with su.

2. Edit the file /etc/remote . Add the following entry:

printer:dv=/dev/ port :br# bps-rate :pa= parity

where port is the device entry for the serial port (ttyd0 , ttyd1 , etc.), bps-rate is the bits-
per-second rate at which the printer communicates, and parity is the parity required by the
printer (either even , odd , none , or zero).

Here is a sample entry for a printer connected via a serial line to the third serial port at
19200 bps with no parity:

printer:dv=/dev/ttyd2:br#19200:pa=none

3. Connect to the printer with tip. Type:

tip printer

If this step does not work, edit the file /etc/remote again and try using /dev/cuaa N
instead of /dev/ttyd N.

4. Send data to the printer.

• If the printer can print plain text, then use lptest. Type:

˜$lptest

• If the printer understands PostScript or other printer language, then send a small
program to the printer. Type the program, line by line, very carefully as backspacing

FreeBSD Handbook 76

/usr/share/misc/termcap and /etc/remote . For complete information about the format,
see the cgetent(3).

The simple spooler configuration consists of the following steps:

1. Pick a name (and a few convenient aliases) for the printer, and put them in the
/etc/printcap file; see Naming the Printer (section 7.4.2.2.1, page 76).

2. Turn off header pages (which are on by default) by inserting the sh capability; see Sup-
pressing Header Pages (section 7.4.2.2.2, page 77).

3. Make a spooling directory, and specify its location with the sd capability; see Making the
Spooling Directory (section 7.4.2.2.3, page 77).

4. Set the /dev entry to use for the printer, and note it in /etc/printcap with the lp capa-
bility; see Identifying the Printer Device (section 7.4.2.2.4, page 78). Also, if the printer is on
a serial port, set up the communication parameters with the fs , fc , xs , and xc capabili-
ties; see Configuring Spooler Communications Parameters (section 7.4.2.2.5, page 78).

5. Install a plain text input filter; see Installing the Text Filter (section 7.4.2.2.6, page 79)

6. Test the setup by printing something with the lpr command; see Trying It
Out (section 7.4.2.2.7, page 80) and Tr oubleshooting (section 7.4.2.2.8, page 80).

Note: Language-based printers, such as PostScript printers, cannot directly print plain text. The
simple setup outlined above and described in the following sections assumes that if you are
installing such a printer you will print only files that the printer can understand.

Users often expect that they can print plain text to any of the printers installed on your system.
Programs that interface to LPD to do their printing usually make the same assumption. If you
are installing such a printer and want to be able to print jobs in the printer language and print
plain text jobs, you are strongly urged to add an additional step to the simple setup outlined
above: install an automatic plain-text--to--PostScript (or other printer language) conversion pro-
gram. Section Accommodating Plain Text Jobs on PostScript Printers (section 7.6.1.2, page 92) tells
how to do this.

7.4.2.2.1 Naming the Printer

The first (easy) step is to pick a name for your printer. It really does not matter whether you
choose functional or whimsical names since you can also provide a number aliases for the printer.

At least one of the printers specified in the /etc/printcap should have the alias lp . This is the
default printer’s name. If users do not have the PRINTER environment variable nor specify a
printer name on the command line of any of the LPD commands, then lp will be the default
printer they get to use.

Also, it is common practice to make the last alias for a printer be a full description of the printer,
including make and model.

Once you have picked a name and some common aliases, put them in the /etc/printcap file.
The name of the printer should start in the leftmost column. Separate each alias with a vertical
bar and put a colon after the last alias.

In the following example, we start with a skeletal /etc/printcap that defines two printers (a
Diablo 630 line printer and a Panasonic KX-P4455 PostScript laser printer):

#
/etc/printcap for host rose
#
rattan|line|diablo|lp|Diablo 630 Line Printer:

bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:

In this example, the first printer is named rattan and has as aliases line , diablo , lp , and

FreeBSD Handbook 77

Diablo 630 Line Printer . Since it has the alias lp , it is also the default printer. The second
is named bamboo, and has as aliases ps , PS, S, panasonic , and Panasonic KX-P4455
PostScript v51.4 .

7.4.2.2.2 Suppressing Header Pages

The LPD spooling system will by default print a header page for each job. The header page con-
tains the user name who requested the job, the host from which the job came, and the name of the
job, in nice large letters. Unfortunately, all this extra text gets in the way of debugging the simple
printer setup, so we will suppress header pages.

To suppress header pages, add the sh capability to the entry for the printer in /etc/printcap .
Here is the example /etc/printcap with sh added:

#
/etc/printcap for host rose - no header pages anywhere
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\

:sh:

bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:

Note how we used the correct format: the first line starts in the leftmost column, and subsequent
lines are indented with a single TAB. Every line in an entry except the last ends in a backslash
character.

7.4.2.2.3 Making the Spooling Directory

The next step in the simple spooler setup is to make a spooling directory, a directory where print
jobs reside until they are printed, and where a number of other spooler support files live.

Because of the variable nature of spooling directories, it is customary to put these directories
under /var/spool . It is not necessary to backup the contents of spooling directories, either.
Recreating them is as simple as running mkdir.

It is also customary to make the directory with a name that is identical to the name of the printer,
as shown below:

mkdir /var/spool/ printer-name

However, if you have a lot of printers on your network, you might want to put the spooling
directories under a single directory that you reserve just for printing with LPD. We will do this
for our two example printers rattan and bamboo:

mkdir /var/spool/lpd
mkdir /var/spool/lpd/rattan
mkdir /var/spool/lpd/bamboo

Note: If you are concerned about the privacy of jobs that users print, you might want to protect
the spooling directory so it is not publicly accessible. Spooling directories should be owned and
be readable, writable, and searchable by user daemon and group daemon, and no one else. We
will do this for our example printers:

chown daemon.daemon /var/spool/lpd/rattan
chown daemon.daemon /var/spool/lpd/bamboo
chmod 770 /var/spool/lpd/rattan
chmod 770 /var/spool/lpd/bamboo

Finally, you need to tell LPD about these directories using the /etc/printcap file. You specify
the pathname of the spooling directory with the sd capability:

FreeBSD Handbook 78

#
/etc/printcap for host rose - added spooling directories
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\

:sh:sd=/var/spool/lpd/rattan:

bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:

Note that the name of the printer starts in the first column but all other entries describing the
printer should be indented with a tab and each line escaped with a backslash.

If you do not specify a spooling directory with sd , the spooling system will use
/var/spool/lpd as a default.

7.4.2.2.4 Identifying the Printer Device

In section Adding /dev Entries for the Ports (section 7.4.2.1.1, page 72), we identified which entry
in the /dev directory FreeBSD will use to communicate with the printer. Now, we tell LPD that
information. When the spooling system has a job to print, it will open the specified device on
behalf of the filter program (which is responsible for passing data to the printer).

List the /dev entry pathname in the /etc/printcap file using the lp capability.

In our running example, let us assume that rattan is on the first parallel port, and bamboo is on
a sixth serial port; here are the additions to /etc/printcap :

#
/etc/printcap for host rose - identified what devices to use
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\

:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:

bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:\
:lp=/dev/ttyd5:

If you do not specify the lp capability for a printer in your /etc/printcap file, LPD uses
/dev/lp as a default. /dev/lp currently does not exist in FreeBSD.

If the printer you are installing is connected to a parallel port, skip to the section Installing the
Text Filter (section 7.4.2.2.6, page 79). Otherwise, be sure to follow the instructions in the next sec-
tion.

7.4.2.2.5 Configuring Spooler Communication

Parameters"

For printers on serial ports, LPD can set up the bps rate, parity, and other serial communication
parameters on behalf of the filter program that sends data to the printer. This is advantageous
since

• It lets you try different communication parameters by simply editing the /etc/printcap
file; you do not have to recompile the filter program.

• It enables the spooling system to use the same filter program for multiple printers which
may have different serial communication settings.

The following /etc/printcap capabilities control serial communication parameters of the
device listed in the lp capability:

br# bps-rate
Sets the communications speed of the device to bps-rate, where bps-rate can be 50, 75,
110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, or 38400 bits-per-

FreeBSD Handbook 79

second.

fc# clear-bits
Clears the flag bits clear-bits in the sgttyb structure after opening the device.

fs# set-bits
Sets the flag bits set-bits in the sgttyb structure.

xc# clear-bits
Clears local mode bits clear-bits after opening the device.

xs# set-bits
Sets local mode bits set-bits.

For more information on the bits for the fc , fs , xc , and xs capabilities, see the file
/usr/include/sys/ioctl_compat.h .

When LPD opens the device specified by the lp capability, it reads the flag bits in the sgttyb
structure; it clears any bits in the fc capability, then sets bits in the fs capability, then applies the
resultant setting. It does the same for the local mode bits as well.

Let us add to our example printer on the sixth serial port. We will set the bps rate to 38400. For
the flag bits, we will set the TANDEM, ANYP, LITOUT, FLUSHO, and PASS8 flags. For the local
mode bits, we will set the LITOUT and PASS8 flags:

bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:\
:lp=/dev/ttyd5:fs#0x82000c1:xs#0x820:

7.4.2.2.6 Installing the Text Filter

We are now ready to tell LPD what text filter to use to send jobs to the printer. A text filter, also
known as an input filter, is a program that LPD runs when it has a job to print. When LPD runs
the text filter for a printer, it sets the filter’s standard input to the job to print, and its standard
output to the printer device specified with the lp capability. The filter is expected to read the job
from standard input, perform any necessary translation for the printer, and write the results to
standard output, which will get printed. For more information on the text filter, see section Filters
(section 7.6.1.1, page 90).

For our simple printer setup, the text filter can be a small shell script that just executes /bin/cat
to send the job to the printer. FreeBSD comes with another filter called lpf that handles
backspacing and underlining for printers that might not deal with such character streams well.
And, of course, you can use any other filter program you want. The filter lpf is described in
detail in section lpf: a Text Filter (section 7.6.1.6, page 100).

First, let us make the shell script /usr/local/libexec/if-simple be a simple text filter. Put
the following text into that file with your favorite text editor:

#!/bin/sh
#
if-simple - Simple text input filter for lpd
Installed in /usr/local/libexec/if-simple
#
Simply copies stdin to stdout. Ignores all filter arguments.

/bin/cat && exit 0
exit 2

Make the file executable:

chmod 555 /usr/local/libexec/if-simple

And then tell LPD to use it by specifying it with the if capability in /etc/printcap . We will
add it to the two printers we have so far in the example /etc/printcap :

FreeBSD Handbook 80

#
/etc/printcap for host rose - added text filter
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\

:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:

bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:\
:if=/usr/local/libexec/if-simple:

7.4.2.2.7 Trying It Out

You have reached the end of the simple LPD setup. Unfortunately, congratulations are not quite
yet in order, since we still have to test the setup and correct any problems. To test the setup, try
printing something. To print with the LPD system, you use the command lpr, which submits a
job for printing.

You can combine lpr with the lptest program, introduced in section Checking Printer Communica-
tions (section 7.4.2.1.3, page 74) to generate some test text.

To test the simple LPD setup:

Type:

lptest 20 5 | lpr -P printer-name

where printer-name is a the name of a printer (or an alias) specified in /etc/printcap . To test
the default printer, type lpr without any -P argument. Again, if you are testing a printer that
expects PostScript, send a PostScript program in that language instead of using lptest. You can
do so by putting the program in a file and typing lpr file.

For a PostScript printer, you should get the results of the program. If you are using lptest, then
your results should look like the following:

!"#$%&’()*+,-./01234
"#$%&’()*+,-./012345
#$%&’()*+,-./0123456
$%&’()*+,-./01234567
%&’()*+,-./012345678

To further test the printer, try downloading larger programs (for language-based printers) or run-
ning

lptest with different arguments. For example, lptest 80 60 will produce 60 lines of 80 charac-
ters each.

If the printer did not work, see the next section, Tr oubleshooting (section 7.4.2.2.8, page 80).

7.4.2.2.8 Troubleshooting

After performing the simple test with lptest, you might have gotten one of the following results
instead of the correct printout:

It worked, after awhile; or, it did not eject a full sheet.
The printer printed the above, but it sat for awhile and did nothing. In fact, you
might have needed to press a PRINT REMAINING or FORM FEED button on the
printer to get any results to appear.

If this is the case, the printer was probably waiting to see if there was any more data
for your job before it printed anything. To fix this problem, you can have the text
filter send a FORM FEED character (or whatever is necessary) to the printer. This is
usually sufficient to have the printer immediately print any text remaining in its

FreeBSD Handbook 81

internal buffer. It is also useful to make sure each print job ends on a full sheet, so
the next job does not start somewhere on the middle of the last page of the previous
job.

The following replacement for the shell script /usr/local/libexec/if-simple
prints a form feed after it sends the job to the printer:

#!/bin/sh
#
if-simple - Simple text input filter for lpd
Installed in /usr/local/libexec/if-simple
#
Simply copies stdin to stdout. Ignores all filter arguments.
Writes a form feed character (\f) after printing job.

/bin/cat && printf "\f" && exit 0
exit 2

It produced the ‘‘staircase effect.’’
You got the following on paper:

!"#$%&’()*+,-./01234
"#$%&’()*+,-./012345

#$%&’()*+,-./0123456

You have become another victim of the staircase effect, caused by conflicting interpre-
tations of what characters should indicate a new-line. UNIX-style operating sys-
tems use a single character: ASCII code 10, the line feed (LF). MS-DOS, OS/2, and
others uses a pair of characters, ASCII code 10 and ASCII code 13 (the carriage
return or CR). Many printers use the MS-DOS convention for representing new-
lines.

When you print with FreeBSD, your text used just the line feed character. The
printer, upon seeing a line feed character, advanced the paper one line, but main-
tained the same horizontal position on the page for the next character to print. That
is what the carriage return is for: to move the location of the next character to print
to the left edge of the paper.

Here is what FreeBSD wants your printer to do:

Printer received CR Printer prints CR
Printer received LF Printer prints CR + LF

Here are some ways to achieve this:

• Use the printer’s configuration switches or control panel to alter its interpreta-
tion of these characters. Check your printer’s manual to find out how to do
this.

Note: If you boot your system into other operating systems besides FreeBSD,
you may have to reconfigure the printer to use a an interpretation for CR and
LF characters that those other operating systems use. You might prefer one of
the other solutions, below.

• Have FreeBSD’s serial line driver automatically convert LF to CR+LF. Of
course, this works with printers on serial ports only. To enable this feature, set
the CRMOD bit in fs capability in the /etc/printcap file for the printer.

• Send an escape code to the printer to have it temporarily treat LF characters dif-
ferently. Consult your printer’s manual for escape codes that your printer
might support. When you find the proper escape code, modify the text filter
to send the code first, then send the print job.

FreeBSD Handbook 82

Here is an example text filter for printers that understand the Hewlett-
Packard PCL escape codes. This filter makes the printer treat LF characters as
a LF and CR; then it sends the job; then it sends a form feed to eject the last
page of the job. It should work with nearly all Hewlett Packard printers.

#!/bin/sh
#
hpif - Simple text input filter for lpd for HP-PCL based printers
Installed in /usr/local/libexec/hpif
#
Simply copies stdin to stdout. Ignores all filter arguments.
Tells printer to treat LF as CR+LF. Writes a form feed character
after printing job.

printf "\033&k2G" && cat && printf "\f" && exit 0
exit 2

Here is an example /etc/printcap from a host called orchid. It has a single
printer attached to its first parallel port, a Hewlett Packard LaserJet 3Si named
teak . It is using the above script as its text filter:

#
/etc/printcap for host orchid
#
teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\

:lp=/dev/lpt0:sh:sd=/var/spool/lpd/teak:mx#0:\
:if=/usr/local/libexec/hpif:

It overprinted each line.
The printer never advanced a line. All of the lines of text were printed on top of
each other on one line.

This problem is the ‘‘opposite’’ of the staircase effect, described above, and is much
rarer. Somewhere, the LF characters that FreeBSD uses to end a line are being
treated as CR characters to return the print location to the left edge of the paper, but
not also down a line.

Use the printer’s configuration switches or control panel to enforce the following
interpretation of LF and CR characters:

Printer received CR Printer prints CR
Printer received LF Printer prints CR + LF

The printer lost characters.
While printing, the printer did not print a few characters in each line. The problem
might have gotten worse as the printer ran, losing more and more characters.

The problem is that the printer cannot keep up with the speed at which the com-
puter sends data over a serial line. (This problem should not occur with printers on
parallel ports.) There are two ways to overcome the problem:

• If the printer supports XON/XOFF flow control, have FreeBSD use it by speci-
fying the TANDEM bit in the fs capability.

• If the printer supports carrier flow control, specify the MDMBUF bit in the fs
capability. Make sure the cable connecting the printer to the computer is cor-
rectly wired for carrier flow control.

• If the printer does not support any flow control, use some combination of the
NLDELAY, TBDELAY, CRDELAY, VTDELAY, and BSDELAY bits in the fs
capability to add appropriate delays to the stream of data sent to the printer.

It printed garbage.
The printer printed what appeared to be random garbage, but not the desired text.

FreeBSD Handbook 83

This is usually another symptom of incorrect communications parameters with a
serial printer. Double-check the bps rate in the br capability, and the parity bits in
the fs and fc capabilities; make sure the printer is using the same settings as speci-
fied in the /etc/printcap file.

Nothing happened.
If nothing happened, the problem is probably within FreeBSD and not the hard-
ware. Add the log file (lf) capability to the entry for the printer you are debugging
in the /etc/printcap file. For example, here is the entry for rattan , with the lf
capability:

rattan|line|diablo|lp|Diablo 630 Line Printer:\
:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:\
:lf=/var/log/rattan.log

Then, try printing again. Check the log file (in our example, /var/log/rat-
tan.log) to see any error messages that might appear. Based on the messages you
see, try to correct the problem.

If you do not specify a lf capability, LPD uses /dev/console as a default.

7.5 Using Printers
This section tells you how to use printers you have setup with FreeBSD. Here is an overview of
the user-level commands:

lpr
Print jobs

lpq
Check printer queues

lprm
Remove jobs from a printer’s queue

There is also an administrative command, lpc, described in the section Administrating the LPD
Spooler (section 7.5.5, page 88), used to control printers and their queues.

All three of the commands lpr, lprm, and lpq accept an option ‘‘-P printer-name’’ to specify on
which printer/queue to operate, as listed in the /etc/printcap file. This enables you to sub-
mit, remove, and check on jobs for various printers. If you do not use the -P option, then these
commands use the printer specified in the PRINTER environment variable. Finally, if you do not
have a PRINTER environment variable, these commands default to the printer named lp .

Hereafter, the terminology default printer means the printer named in the PRINTER environment
variable, or the printer named lp when there is no PRINTER environment variable.

7.5.1 Printing Jobs

To print files, type

lpr filename...

This prints each of the listed files to the default printer. If you list no files, lpr reads data to print
from standard input. For example, this command prints some important system files:

lpr /etc/host.conf /etc/hosts.equiv

To select a specific printer, type

FreeBSD Handbook 84

lpr -P printer-name filename...

This example prints a long listing of the current directory to the printer named rattan :

ls -l | lpr -P rattan

Because no files were listed for the lpr command, lpr read the data to print from standard input,
which was the output of the ls -l command.

The lpr command can also accept a wide variety of options to control formatting, apply file con-
versions, generate multiple copies, and so forth. For more information, see the section Printing
Options (section 7.5.4, page 86).

7.5.2 Checking Jobs

When you print with lpr, the data you wish to print is put together in a package called a print job,
which is sent to the LPD spooling system. Each printer has a queue of jobs, and your job waits in
that queue along with other jobs from yourself and from other users. The printer prints those jobs
in a first-come, first-served order.

To display the queue for the default printer, type lpq. For a specific printer, use the -P option.
For example, the command

lpq -P bamboo

shows the queue for the printer named bamboo. Here is an example of the output of the lpq
command:

bamboo is ready and printing
Rank Owner Job Files Total Size
active kelly 9 /etc/host.conf, /etc/hosts.equiv 88 bytes
2nd kelly 10 (standard input) 1635 bytes
3rd mary 11 ... 78519 bytes

This shows three jobs in the queue for bamboo. The first job, submitted by user kelly, got
assigned job number 9. Every job for a printer gets a unique job number. Most of the time you can
ignore the job number, but you will need it if you want to cancel the job; see section Removing Jobs
(section 7.5.3, page 85) for details.

Job number nine consists of two files; multiple files given on the lpr command line are treated as
part of a single job. It is the currently active job (note the word active under the ‘‘Rank’’ col-
umn), which means the printer should be currently printing that job. The second job consists of
data passed as the standard input to the

lpr command. The third job came from user mary; it is a much larger job. The pathname of the
files she’s trying to print is too long to fit, so the lpq command just shows three dots.

The very first line of the output from lpq is also useful: it tells what the printer is currently doing
(or at least what LPD thinks the printer is doing).

The lpq command also support a -l option to generate a detailed long listing. Here is an example
of lpq -l :

FreeBSD Handbook 85

waiting for bamboo to become ready (offline ?)

kelly: 1st [job 009rose]
/etc/host.conf 73 bytes
/etc/hosts.equiv 15 bytes

kelly: 2nd [job 010rose]
(standard input) 1635 bytes

mary: 3rd [job 011rose]
/home/orchid/mary/research/venus/alpha-regio/mapping 78519 bytes

7.5.3 Removing Jobs

If you change your mind about printing a job, you can remove the job from the queue with the
lprm command. Often, you can even use lprm to remove an active job, but some or all of the job
might still get printed.

To remove a job from the default printer, first use lpq to find the job number. Then type

lprm job-number

To remove the job from a specific printer, add the -P option. The following command removes
job number 10 from the queue for the printer bamboo:

lprm -P bamboo 10

The lprm command has a few shortcuts:

lprm -
Removes all jobs (for the default printer) belonging to you.

lprm user
Removes all jobs (for the default printer) belonging to user. The superuser can
remove other users’ jobs; you can remove only your own jobs.

lprm
With no job number, user name, or ‘‘- ’’ appearing on the command line, lprm
removes the currently active job on the default printer, if it belongs to you. The
superuser can remove any active job.

Just use the -P option with the above shortcuts to operate on a specific printer instead of the
default. For example, the following command removes all jobs for the current user in the queue
for the printer named rattan :

lprm -P rattan -

Note: If you are working in a networked environment,

lprm will let you remove jobs only from the host from which the jobs were submitted, even if the
same printer is available from other hosts. The following command sequence demonstrates this:

rose% lpr -P rattan myfile
rose% rlogin orchid
orchid% lpq -P rattan
Rank Owner Job Files Total Size
active seeyan 12 ... 49123 bytes
2nd kelly 13 myfile 12 bytes
orchid% lprm -P rattan 13
rose: Permission denied
orchid% logout
rose% lprm -P rattan 13
dfA013rose dequeued
cfA013rose dequeued
rose%

FreeBSD Handbook 86

7.5.4 Beyond Plain Text: Printing Options

The lpr command supports a number of options that control formatting text, converting graphic
and other file formats, producing multiple copies, handling of the job, and more. This section
describes the options.

7.5.4.1 Formatting and Conversion Options

The following lpr options control formatting of the files in the job. Use these options if the job
does not contain plain text or if you want plain text formatted through the pr utility.

For example, the following command prints a DVI file (from the TeX typesetting system) named
fish-report.dvi to the printer named bamboo:

lpr -P bamboo -d fish-report.dvi

These options apply to every file in the job, so you cannot mix (say) DVI and ditroff files together
in a job. Instead, submit the files as separate jobs, using a different conversion option for each
job.

Note: All of these options except -p and -T require conversion filters installed for the destination
printer. For example, the -d option requires the DVI conversion filter. Section Conversion Fil-
ters (section 7.6.1.4, page 94) gives details.

-c
Print cifplot files.

-d
Print DVI files.

-f
Print FORTRAN text files.

-g
Print plot data.

-i number
Indent the output by number columns; if you omit number, indent by 8 columns.
This option works only with certain conversion filters.

Note: Do not put any space between the -i and the number.

-l
Print literal text data, including control characters.

-n
Print ditroff (device independent troff) data.

-p
Format plain text with pr before printing. See pr(1) for more information.

-T title
Use title on the pr header instead of the file name. This option has effect only when
used with the -p option.

-t
Print troff data.

-v
Print raster data.

Here is an example: this command prints a nicely formatted version of the ls manual page on the
default printer:

zcat /usr/share/man/man1/ls.1.gz | troff -t -man | lpr -t

FreeBSD Handbook 87

The zcat command uncompresses the source of the

ls manual page and passes it to the troff command, which formats that source and makes GNU
troff output and passes it to lpr, which submits the job to the LPD spooler. Because we used the
-t option to

lpr, the spooler will convert the GNU troff output into a format the default printer can under-
stand when it prints the job.

7.5.4.2 Job Handling Options

The following options to lpr tell LPD to handle the job specially:

-# copies
Produce a number of copies of each file in the job instead of just one copy. An
administrator may disable this option to reduce printer wear-and-tear and encour-
age photocopier usage. See section Restricting Multiple Copies (section 7.6.4.1, page
108).

This example prints three copies of parser.c followed by three copies of
parser.h to the default printer:

lpr -#3 parser.c parser.h

-m
Send mail after completing the print job. With this option, the LPD system will
send mail to your account when it finishes handling your job. In its message, it will
tell you if the job completed successfully or if there was an error, and (often) what
the error was.

-s
Do not copy the files to the spooling directory, but make symbolic links to them
instead.

If you are printing a large job, you probably want to use this option. It saves space
in the spooling directory (your job might overflow the free space on the filesystem
where the spooling directory resides). It saves time as well since LPD will not have
to copy each and every byte of your job to the spooling directory.

There is a drawback, though: since LPD will refer to the original files directly, you
cannot modify or remove them until they have been printed.

Note: If you are printing to a remote printer, LPD will eventually have to copy files
from the local host to the remote host, so the -s option will save space only on the
local spooling directory, not the remote. It is still useful, though.

-r
Remove the files in the job after copying them to the spooling directory, or after
printing them with the -s option. Be careful with this option!

7.5.4.3 Header Pa ge Options

These options to lpr adjust the text that normally appears on a job’s header page. If header pages
are suppressed for the destination printer, these options have no effect. See section Header Pages
(section 7.6.2, page 100) for information about setting up header pages.

-C text
Replace the hostname on the header page with text. The hostname is normally the
name of the host from which the job was submitted.

-J text
Replace the job name on the header page with text. The job name is normally the
name of the first file of the job, or ‘‘stdin’’ if you are printing standard input.

FreeBSD Handbook 88

-h
Do not print any header page. Note: At some sites, this option may have no effect
due to the way header pages are generated. See Header Pages (section 7.6.2, page
100) for details.

7.5.5 Administrating Printers

As an administrator for your printers, you have had to install, set up, and test them. Using the
lpc command, you can interact with your printers in yet more ways. With

lpc, you can

• Start and stop the printers

• Enable and disable their queues

• Rearrange the order of the jobs in each queue.

First, a note about terminology: if a printer is stopped, it will not print anything in its queue.
Users can still submit jobs, which will wait in the queue until the printer is started or the queue is
cleared.

If a queue is disabled, no user (except root) can submit jobs for the printer. An enabled queue
allows jobs to be submitted. A printer can be started for a disabled queue, in which case it will
continue to print jobs in the queue until the queue is empty.

In general, you have to have root privileges to use the

lpc command. Ordinary users can use the lpc command to get printer status and to restart a
hung printer only.

Here is a summary of the lpc commands. Most of the commands takes a printer-name argument
to tell on which printer to operate. You can use all for the printer-name to mean all printers
listed in /etc/printcap .

abort printer-name
Cancel the current job and stop the printer. Users can still submit jobs if the queue’s
enabled.

clean printer-name
Remove old files from the printer’s spooling directory. Occasionally, the files that
make up a job are not properly removed by LPD, particularly if there have been
errors during printing or a lot of administrative activity. This command finds files
that do not belong in the spooling directory and removes them.

disable printer-name
Disable queuing of new jobs. If the printer’s started, it will continue to print any
jobs remaining in the queue. The superuser (root) can always submit jobs, even to a
disabled queue.

This command is useful while you are testing a new printer or filter installation: dis-
able the queue and submit jobs as root. Other users will not be able to submit jobs
until you complete your testing and re-enable the queue with the enable com-
mand.

down printer-name message...
Take a printer down. Equivalent to disable followed by stop . The message
appears as the printer’s status whenever a user checks the printer’s queue with lpq
or status with lpc status .

enable printer-name
Enable the queue for a printer. Users can submit jobs but the printer will not print
anything until it is started.

FreeBSD Handbook 89

help command-name
Print help on the command command-name. With no command-name, print a sum-
mary of the commands available.

restart printer-name
Start the printer. Ordinary users can use this command if some extraordinary cir-
cumstance hangs LPD, but they cannot start a printer stopped with either the stop
or down commands. The restart command is equivalent to abort followed by
start .

start printer-name
Start the printer. The printer will print jobs in its queue.

stop printer-name
Stop the printer. The printer will finish the current job and will not print anything
else in its queue. Even though the printer is stopped, users can still submit jobs to
an enabled queue.

topq printer-name job-or-username...
Rearrange the queue for printer-name by placing the jobs with the listed job numbers
or the jobs belonging to username at the top of the queue. For this command, you
cannot use all as the printer-name.

up printer-name
Bring a printer up; the opposite of the down command. Equivalent to start fol-
lowed by enable .

lpc accepts the above commands on the command line. If you do not enter any commands, lpc
enters an interactive mode, where you can enter commands until you type exit , quit , or end-
of-file.

7.6 Advanced Printer Setup
This section describes filters for printing specially formatted files, header pages, printing across
networks, and restricting and accounting for printer usage.

7.6.1 Filters

Although LPD handles network protocols, queuing, access control, and other aspects of printing,
most of the real work happens in the filters. Filters are programs that communicate with the
printer and handle its device dependencies and special requirements. In the simple printer setup,
we installed a plain text filter---an extremely simple one that should work with most printers
(section Installing the Text Filter (section 7.4.2.2.6, page 79)).

However, in order to take advantage of format conversion, printer accounting, specific printer
quirks, and so on, you should understand how filters work. It will ultimately be the filter’s
responsibility to handle these aspects. And the bad news is that most of the time you have to pro-
vide filters yourself. The good news is that many are generally available; when they are not, they
are usually easy to write.

Also, FreeBSD comes with one, /usr/libexec/lpr/lpf , that works with many printers that
can print plain text. (It handles backspacing and tabs in the file, and does accounting, but that is
about all it does.) There are also several filters and filter components in the FreeBSD ports collec-
tion.

Here is what you will find in this section:

• Section How Filters Work (section 7.6.1.1, page 90), tries to give an overview of a filter’s role
in the printing process. You should read this section to get an understanding of what is
happening ‘‘under the hood’’ when LPD uses filters. This knowledge could help you antici-
pate and debug problems you might encounter as you install more and more filters on each
of your printers.

FreeBSD Handbook 90

• LPD expects every printer to be able to print plain text by default. This presents a problem
for PostScript (or other language-based printers) which cannot directly print plain text. Sec-
tion Accommodating Plain Text Jobs on PostScript Printers (section 7.6.1.2, page 92) tells
you what you should do to overcome this problem. I recommend reading this section if
you have a PostScript printer.

• PostScript is a popular output format for many programs. Even some people (myself
included) write PostScript code directly. But PostScript printers are expensive. Section Sim-
ulating PostScript on Non-PostScript Printers (section 7.6.1.3, page 93) tells how you can fur-
ther modify a printer’s text filter to accept and print PostScript data on a non-PostScript
printer. I recommend reading this section if you do not have a PostScript printer.

• Section Conversion Filters (section 7.6.1.4, page 94) tells about a way you can automate the
conversion of specific file formats, such as graphic or typesetting data, into formats your
printer can understand. After reading this section, you should be able to set up your print-
ers such that users can type lpr -t to print troff data, or lpr -d to print TeX DVI data, or
lpr -v to print raster image data, and so forth. I recommend reading this section.

• Section Output Filters (section 7.6.1.5, page 99) tells all about a not often used feature of
LPD: output filters. Unless you are printing header pages (see Header Pages (section 7.6.2,
page 100)), you can probably skip that section altogether.

• Section lpf: a Text Filter (section 7.6.1.6, page 100) describes lpf , a fairly complete if simple
text filter for line printers (and laser printers that act like line printers) that comes with
FreeBSD. If you need a quick way to get printer accounting working for plain text, or if you
have a printer which emits smoke when it sees backspace characters, you should definitely
consider lpf .

7.6.1.1 How Filters Work

As mentioned before, a filter is an executable program started by LPD to handle the device-
dependent part of communicating with the printer.

When LPD wants to print a file in a job, it starts a filter program. It sets the filter’s standard input
to the file to print, its standard output to the printer, and its standard error to the error logging
file (specified in the lf capability in /etc/printcap , or /dev/console by default).

Which filter LPD starts and the filter’s arguments depend on what is listed in the /etc/print-
cap file and what arguments the user specified for the job on the

lpr command line. For example, if the user typed lpr -t , LPD would start the troff filter, listed
in the tf capability for the destination printer. If the user wanted to print plain text, it would
start the if filter (this is mostly true: see Output Filters (section 7.6.1.5, page 99) for details).

There are three kinds of filters you can specify in /etc/printcap :

• The text filter, confusingly called the input filter in LPD documentation, handles regular text
printing. Think of it as the default filter. LPD expects every printer to be able to print plain
text by default, and it is the text filter’s job to make sure backspaces, tabs, or other special
characters do not confuse the printer.

If you are in an environment where you have to account for printer usage, the text filter
must also account for pages printed, usually by counting the number of lines printed and
comparing that to the number of lines per page the printer supports.

The text filter is started with the following argument list:

[-c] -w width -l length -i indent -n login -h host acct-file

where

FreeBSD Handbook 91

-c
appears if the job’s submitted with lpr -l

width
is the value from the pw (page width) capability specified in /etc/printcap ,
default 132

length
is the value from the pl (page length) capability, default 66

indent
is the amount of the indentation from lpr -i , default 0

login
is the account name of the user printing the file

host
is the host name from which the job was submitted

acct-file
is the name of the accounting file from the af capability.

• A conversion filter converts a specific file format into one the printer can render onto paper.
For example, ditroff typesetting data cannot be directly printed, but you can install a con-
version filter for ditroff files to convert the ditroff data into a form the printer can digest and
print. Section Conversion Filters (section 7.6.1.4, page 94) tells all about them. Conversion
filters also need to do accounting, if you need printer accounting.

Conversion filters are started with the following arguments:

-x pixel-width -y pixel-height -n login -h host acct-file

where pixel-width is the value from the px capability (default 0) and pixel-height is the value
from the py capability (default 0).

• The output filter is used only if there is no text filter, or if header pages are enabled. In my
experience, output filters are rarely used. Section Output Filters (section 7.6.1.5, page 99)
describe them. There are only two arguments to an output filter:

-w width -l length

which are identical to the text filters -w and -l arguments.

Filters should also exit with the following exit status:

exit 0
If the filter printed the file successfully.

exit 1
If the filter failed to print the file but wants LPD to try to print the file again. LPD
will restart a filter if it exits with this status.

exit 2
If the filter failed to print the file and does not want LPD to try again. LPD will
throw out the file.

The text filter that comes with the FreeBSD release, /usr/libexec/lpr/lpf , takes advantage
of the page width and length arguments to determine when to send a form feed and how to
account for printer usage. It uses the login, host, and accounting file arguments to make the
accounting entries.

If you are shopping for filters, see if they are LPD-compatible. If they are, they must support the

FreeBSD Handbook 92

argument lists described above. If you plan on writing filters for general use, then have them
support the same argument lists and exit codes.

7.6.1.2 Accommodating Plain Text Jobs on PostScript Printers

"

If you are the only user of your computer and PostScript (or other language-based) printer, and
you promise to never send plain text to your printer and to never use features of various pro-
grams that will want to send plain text to your printer, then you do not need to worry about this
section at all.

But, if you would like to send both PostScript and plain text jobs to the printer, then you are
urged to augment your printer setup. To do so, we have the text filter detect if the arriving job is
plain text or PostScript. All PostScript jobs must start with %! (for other printer languages, see
your printer documentation). If those are the first two characters in the job, we have PostScript,
and can pass the rest of the job directly. If those are not the first two characters in the file, then
the filter will convert the text into PostScript and print the result.

How do we do this?

If you have got a serial printer, a great way to do it is to install lprps . lprps is a PostScript
printer filter which performs two-way communication with the printer. It updates the printer’s
status file with verbose information from the printer, so users and administrators can see exactly
what the state of the printer is (such as ‘‘toner low’’ or ‘‘paper jam’’). But more importantly, it
includes a program called psif which detects whether the incoming job is plain text and calls
textps (another program that comes with lprps) to convert it to PostScript. It then uses lprps
to send the job to the printer.

lprps is part of the FreeBSD ports collection (see The Ports Collection (section 4., page 23)). You
can fetch, build and install it yourself, of course. After installing lprps , just specify the path-
name to the psif program that is part of lprps . If you installed lprps from the ports collec-
tion, use the following in the serial PostScript printer’s entry in /etc/printcap :

:if=/usr/local/libexec/psif:

You should also specify the rw capability; that tells LPD to open the printer in read-write mode.

If you have a parallel PostScript printer (and therefore cannot use two-way communication with
the printer, which lprps needs), you can use the following shell script as the text filter:

FreeBSD Handbook 93

#!/bin/sh
#
psif - Print PostScript or plain text on a PostScript printer
Script version; NOT the version that comes with lprps
Installed in /usr/local/libexec/psif
#

read first_line
first_two_chars=‘expr "$first_line" : ’\(..\)’‘

if ["$first_two_chars" = "%!"]; then
#
PostScript job, print it.
#
echo $first_line && cat && printf "\004" && exit 0
exit 2

else
#
Plain text, convert it, then print it.
#
(echo $first_line; cat) | /usr/local/bin/textps && printf "\004" && exit 0
exit 2

fi

In the above script, textps is a program we installed separately to convert plain text to
PostScript. You can use any text-to-PostScript program you wish. The FreeBSD ports collection
(see The Ports Collection (section 4., page 23)) includes a full featured text-to-PostScript program
called a2ps that you might want to investigate.

7.6.1.3 Simulating PostScript on Non-PostScript Printers

"

PostScript is the de facto standard for high quality typesetting and printing. PostScript is, how-
ever, an expensive standard. Thankfully, Alladin Enterprises has a free PostScript work-alike
called Ghostscript that runs with FreeBSD. Ghostscript can read most PostScript files and can ren-
der their pages onto a variety of devices, including many brands of non-PostScript printers. By
installing Ghostscript and using a special text filter for your printer, you can make your non-
PostScript printer act like a real PostScript printer.

Ghostscript should be in the FreeBSD ports collection, if you would like to install it from there.
You can fetch, build, and install it quite easily yourself, as well.

To simulate PostScript, we have the text filter detect if it is printing a PostScript file. If it is not,
then the filter will pass the file directly to the printer; otherwise, it will use Ghostscript to first
convert the file into a format the printer will understand.

Here is an example: the following script is a text filter for Hewlett Packard DeskJet 500 printers.
For other printers, substitute the -sDEVICE argument to the

gs (Ghostscript) command. (Type gs -h to get a list of devices the current installation of
Ghostscript supports.)

FreeBSD Handbook 94

#!/bin/sh
#
ifhp - Print Ghostscript-simulated PostScript on a DeskJet 500
Installed in /usr/local/libexec/hpif

#
Treat LF as CR+LF:
#
printf "\033&k2G" || exit 2

#
Read first two characters of the file
#
read first_line
first_two_chars=‘expr "$first_line" : ’\(..\)’‘

if ["$first_two_chars" = "%!"]; then
#
It is PostScript; use Ghostscript to scan-convert and print it
#
/usr/local/bin/gs -dSAFER -dNOPAUSE -q -sDEVICE=djet500 -sOutputFile=- - \

&& exit 0

else
#
Plain text or HP/PCL, so just print it directly; print a form
at the end to eject the last page.
#
echo $first_line && cat && printf "\f" && exit 0

fi

exit 2

Finally, you need to notify LPD of the filter via the if capability:

:if=/usr/local/libexec/hpif:

That is it. You can type lpr plain.text and lpr whatever.ps and both should print suc-
cessfully.

7.6.1.4 Conversion Filters

After completing the simple setup described in Simple Printer Setup (section 7.4, page 70), the first
thing you will probably want to do is install conversion filters for your favorite file formats
(besides plain ASCII text).

7.6.1.4.1 Why Install Conversion Filters?

Conversion filters make printing various kinds of files easy. As an example, suppose we do a lot
of work with the TeX typesetting system, and we have a PostScript printer. Every time we gener-
ate a DVI file from TeX, we cannot print it directly until we convert the DVI file into PostScript.
The command sequence goes like this:

dvips seaweed-analysis.dvi
lpr seaweed-analysis.ps

By installing a conversion filter for DVI files, we can skip the hand conversion step each time by
having LPD do it for us. Now, each time we get a DVI file, we are just one step away from print-
ing it:

lpr -d seaweed-analysis.dvi

We got LPD to do the DVI file conversion for us by specifying the -d option. Section Formatting

FreeBSD Handbook 95

and Conversion Options (section 7.5.4.1, page 86) lists the conversion options.

For each of the conversion options you want a printer to support, install a conversion filter and
specify its pathname in /etc/printcap . A conversion filter is like the text filter for the simple
printer setup (see section Installing the Text Filter (section 7.4.2.2.6, page 79)) except that instead of
printing plain text, the filter converts the file into a format the printer can understand.

7.6.1.4.2 Which Conversions Filters Should I Install?

"

You should install the conversion filters you expect to use. If you print a lot of DVI data, then a
DVI conversion filter is in order. If you have got plenty of troff to print out, then you probably
want a troff filter.

The following table summarizes the filters that LPD works with, their capability entries for the
/etc/printcap file, and how to invoke them with the lpr command:

/etc/printcap
File type Capability lpr option
------------ ------------- ----------
cifplot cf -c
DVI df -d
plot gf -g
ditroff nf -n
FORTRAN text rf -f
troff tf -t
raster vf -v
plain text if none, -p, or -l

In our example, using lpr -d means the printer needs a df capability in its entry in
/etc/printcap .

Despite what others might contend, formats like FORTRAN text and plot are probably obsolete.
At your site, you can give new meanings to these or any of the formatting options just by
installing custom filters. For example, suppose you would like to directly print Printerleaf files
(files from the Interleaf desktop publishing program), but will never print plot files. You could
install a Printerleaf conversion filter under the gf capability and then educate your users that
lpr -g mean ‘‘print Printerleaf files.’’

7.6.1.4.3 Installing Conversion Filters

Since conversion filters are programs you install outside of the base FreeBSD installation, they
should probably go under /usr/local . The directory /usr/local/libexec is a popular
location, since they are specialized programs that only LPD will run; regular users should not
ever need to run them.

To enable a conversion filter, specify its pathname under the appropriate capability for the desti-
nation printer in /etc/printcap .

In our example, we will add the DVI conversion filter to the entry for the printer named bamboo.
Here is the example /etc/printcap file again, with the new df capability for the printer bam-
boo

FreeBSD Handbook 96

#
/etc/printcap for host rose - added df filter for bamboo
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\

:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:

bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\
:if=/usr/local/libexec/psif:\
:df=/usr/local/libexec/psdf:

The DVI filter is a shell script named /usr/local/libexec/psdf . Here is that script:

#!bin/sh
#
psdf - DVI to PostScript printer filter
Installed in /usr/local/libexec/psdf
#
Invoked by lpd when user runs lpr -d
#
exec /usr/local/bin/dvips -f | /usr/local/libexec/lprps "$@"

This script runs dvips in filter mode (the -f argument) on standard input, which is the job to
print. It then starts the PostScript printer filter lprps (see section Accommodating Plain Text Jobs
on PostScript Printers (section 7.6.1.2, page 92)) with the arguments LPD passed to this script.
lprps will use those arguments to account for the pages printed.

7.6.1.4.4 More Conversion Filter Examples

Since there is no fixed set of steps to install conversion filters, let me instead provide more exam-
ples. Use these as guidance to making your own filters. Use them directly, if appropriate.

This example script is a raster (well, GIF file, actually) conversion filter for a Hewlett Packard
LaserJet III-Si printer:

#!/bin/sh
#
hpvf - Convert GIF files into HP/PCL, then print
Installed in /usr/local/libexec/hpvf

PATH=/usr/X11R6/bin:$PATH; export PATH

giftopnm | ppmtopgm | pgmtopbm | pbmtolj -resolution 300 \
&& exit 0 \
|| exit 2

It works by converting the GIF file into a portable anymap, converting that into a portable
graymap, converting that into a portable bitmap, and converting that into LaserJet/PCL-compati-
ble data.

Here is the /etc/printcap file with an entry for a printer using the above filter:

#
/etc/printcap for host orchid
#
teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\

:lp=/dev/lpt0:sh:sd=/var/spool/lpd/teak:mx#0:\
:if=/usr/local/libexec/hpif:\
:vf=/usr/local/libexec/hpvf:

The following script is a conversion filter for troff data from the groff typesetting system for the

FreeBSD Handbook 97

PostScript printer named bamboo:

#!/bin/sh
#
pstf - Convert groff’s troff data into PS, then print.
Installed in /usr/local/libexec/pstf
#
exec grops | /usr/local/libexec/lprps "$@"

The above script makes use of lprps again to handle the communication with the printer. If the
printer were on a parallel port, we would use this script instead:

#!/bin/sh
#
pstf - Convert groff’s troff data into PS, then print.
Installed in /usr/local/libexec/pstf
#
exec grops

That is it. Here is the entry we need to add to /etc/printcap to enable the filter:

:tf=/usr/local/libexec/pstf:

Here is an example that might make old hands at FORTRAN blush. It is a FORTRAN-text filter
for any printer that can directly print plain text. We will install it for the printer teak :

#!/bin/sh
#
hprf - FORTRAN text filter for LaserJet 3si:
Installed in /usr/local/libexec/hprf
#

printf "\033&k2G" && fpr && printf "\f" && exit 0
exit 2

And we will add this line to the /etc/printcap for the printer teak to enable this filter:

:rf=/usr/local/libexec/hprf:

Here is one final, somewhat complex example. We will add a DVI filter to the LaserJet printer
teak introduced earlier. First, the easy part: updating /etc/printcap with the location of the
DVI filter:

:df=/usr/local/libexec/hpdf:

Now, for the hard part: making the filter. For that, we need a DVI-to-LaserJet/PCL conversion
program. The FreeBSD ports collection (see The Ports Collection (section 4., page 23)) has one:
dvi2xx is the name of the package. Installing this package gives us the program we need, dvilj2p,
which converts DVI into LaserJet IIp, LaserJet III, and LaserJet 2000 compatible codes.

dvilj2p makes the filter hpdf quite complex since dvilj2p cannot read from standard input. It
wants to work with a filename. What is worse, the filename has to end in .dvi so using
/dev/fd/0 for standard input is problematic. We can get around that problem by linking (sym-
bolically) a temporary file name (one that ends in .dvi) to /dev/fd/0 , thereby forcing dvilj2p to
read from standard input.

The only other fly in the ointment is the fact that we cannot use /tmp for the temporary link.
Symbolic links are owned by user and group bin . The filter runs as user daemon. And the /tmp
directory has the sticky bit set. The filter can create the link, but it will not be able clean up when
done and remove it since the link will belong to a different user.

Instead, the filter will make the symbolic link in the current working directory, which is the spool-
ing directory (specified by the sd capability in /etc/printcap). This is a perfect place for fil-
ters to do their work, especially since there is (sometimes) more free disk space in the spooling

FreeBSD Handbook 98

directory than under /tmp .

Here, finally, is the filter:

#!/bin/sh
#
hpdf - Print DVI data on HP/PCL printer
Installed in /usr/local/libexec/hpdf

PATH=/usr/local/bin:$PATH; export PATH

#
Define a function to clean up our temporary files. These exist
in the current directory, which will be the spooling directory
for the printer.
#
cleanup() {

rm -f hpdf$$.dvi
}

#
Define a function to handle fatal errors: print the given message
and exit 2. Exiting with 2 tells LPD to do not try to reprint the
job.
#
fatal() {

echo "$@" 1>&2
cleanup
exit 2

}

#
If user removes the job, LPD will send SIGINT, so trap SIGINT
(and a few other signals) to clean up after ourselves.
#
trap cleanup 1 2 15

#
Make sure we are not colliding with any existing files.
#
cleanup

#
Link the DVI input file to standard input (the file to print).
#
ln -s /dev/fd/0 hpdf$$.dvi || fatal "Cannot symlink /dev/fd/0"

#
Make LF = CR+LF
#
printf "\033&k2G" || fatal "Cannot initialize printer"

#
Convert and print. Return value from dvilj2p does not seem to be
reliable, so we ignore it.
#
dvilj2p -M1 -q -e- dfhp$$.dvi

#
Clean up and exit
#
cleanup
exit 0

FreeBSD Handbook 99

7.6.1.4.5 Automated Conversion: An Alternative To Conversion Filters

"

All these conversion filters accomplish a lot for your printing environment, but at the cost forcing
the user to specify (on the lpr command line) which one to use. If your users are not particularly
computer literate, having to specify a filter option will become annoying. What is worse, though,
is that an incorrectly specified filter option may run a filter on the wrong type of file and cause
your printer to spew out hundreds of sheets of paper.

Rather than install conversion filters at all, you might want to try having the text filter (since it is
the default filter) detect the type of file it has been asked to print and then automatically run the
right conversion filter. Tools such as file can be of help here. Of course, it will be hard to deter-
mine the differences between some file types---and, of course, you can still provide conversion fil-
ters just for them.

The FreeBSD ports collection has a text filter that performs automatic conversion called apsfilter.
It can detect plain text, PostScript, and DVI files, run the proper conversions, and print.

7.6.1.5 Output Filters

The LPD spooling system supports one other type of filter that we have not yet explored: an out-
put filter. An output filter is intended for printing plain text only, like the text filter, but with
many simplifications. If you are using an output filter but no text filter, then

• LPD starts an output filter once for the entire job instead of once for each file in the job.

• LPD does not make any provision to identify the start or the end of files within the job for
the output filter.

• LPD does not pass the user’s login or host to the filter, so it is not intended to do accounting.
In fact, it gets only two arguments:

-w width -l length

where width is from the pw capability and length is from the pl capability for the printer in
question.

Do not be seduced by an output filter’s simplicity. If you would like each file in a job to start on a
different page an output filter will not work. Use a text filter (also known as an input filter); see
section Installing the Text Filter (section 7.4.2.2.6, page 79). Furthermore, an output filter is actu-
ally more complex in that it has to examine the byte stream being sent to it for special flag charac-
ters and must send signals to itself on behalf of LPD.

However, an output filter is necessary if you want header pages and need to send escape
sequences or other initialization strings to be able to print the header page. (But it is also futile if
you want to charge header pages to the requesting user’s account, since LPD does not give any
user or host information to the output filter.)

On a single printer, LPD allows both an output filter and text or other filters. In such cases, LPD
will start the output filter to print the header page (see section Header Pages (section 7.6.2, page
100)) only. LPD then expects the output filter to stop itself by sending two bytes to the filter:
ASCII 031 followed by ASCII 001. When an output filter sees these two bytes (031, 001), it should
stop by sending SIGSTOP to itself. When LPD’s done running other filters, it will restart the out-
put filter by sending SIGCONT to it.

If there is an output filter but no text filter and LPD is working on a plain text job, LPD uses the
output filter to do the job. As stated before, the output filter will print each file of the job in
sequence with no intervening form feeds or other paper advancement, and this is probably not
what you want. In almost all cases, you need a text filter.

The program lpf , which we introduced earlier as a text filter, can also run as an output filter. If

FreeBSD Handbook 100

you need a quick-and-dirty output filter but do not want to write the byte detection and signal
sending code, try lpf . You can also wrap lpf in a shell script to handle any initialization codes
the printer might require.

7.6.1.6 lpf: a Text Filter

The program /usr/libexec/lpr/lpf that comes with FreeBSD binary distribution is a text
filter (input filter) that can indent output (job submitted with lpr -i), allow literal characters to
pass (job submitted with lpr -l), adjust the printing position for backspaces and tabs in the job,
and account for pages printed. It can also act like an output filter.

lpf is suitable for many printing environments. And although it has no capability to send ini-
tialization sequences to a printer, it is easy to write a shell script to do the needed initialization
and then execute lpf .

In order for lpf to do page accounting correctly, it needs correct values filled in for the pw and pl
capabilities in the /etc/printcap file. It uses these values to determine how much text can fit
on a page and how many pages were in a user’s job. For more information on printer accounting,
see Accounting for Printer Usage (section 7.6.5, page 112).

7.6.2 Header Pa ges

If you have lots of users, all of them using various printers, then you probably want to consider
header pages as a necessary evil.

Header pages, also known as banner or burst pages identify to whom jobs belong after they are
printed. They are usually printed in large, bold letters, perhaps with decorative borders, so that
in a stack of printouts they stand out from the real documents that comprise users’ jobs. They
enable users to locate their jobs quickly. The obvious drawback to a header page is that it is yet
one more sheet that has to be printed for every job, their ephemeral usefulness lasting not more
than a few minutes, ultimately finding themselves in a recycling bin or rubbish heap. (Note that
header pages go with each job, not each file in a job, so the paper waste might not be that bad.)

The LPD system can provide header pages automatically for your printouts if your printer can
directly print plain text. If you have a PostScript printer, you will need an external program to
generate the header page; see Header Pages on PostScript Printers (section 7.6.2.4, page 103).

7.6.2.1 Enabling Header Pag es

In the Simple Printer Setup (section 7.4, page 70), we turned off header pages by specifying sh
(meaning ‘‘suppress header’’) in the /etc/printcap file. To enable header pages for a printer,
just remove the sh capability.

Sounds too easy, right?

You are right. You might have to provide an output filter to send initialization strings to the
printer. Here is an example output filter for Hewlett Packard PCL-compatible printers:

#!/bin/sh
#
hpof - Output filter for Hewlett Packard PCL-compatible printers
Installed in /usr/local/libexec/hpof

printf "\033&k2G" || exit 2
exec /usr/libexec/lpr/lpf

Specify the path to the output filter in the of capability. See Output Filters (section 7.6.1.5, page
99) for more information.

Here is an example /etc/printcap file for the printer teak that we introduced earlier; we
enabled header pages and added the above output filter:

FreeBSD Handbook 101

#
/etc/printcap for host orchid
#
teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\

:lp=/dev/lpt0:sd=/var/spool/lpd/teak:mx#0:\
:if=/usr/local/libexec/hpif:\
:vf=/usr/local/libexec/hpvf:\
:of=/usr/local/libexec/hpof:

Now, when users print jobs to teak , they get a header page with each job. If users want to spend
time searching for their printouts, they can suppress header pages by submitting the job with lpr
-h ; see Header Page Options (section 7.5.4.3, page 87) for more lpr options.

Note: LPD prints a form feed character after the header page. If your printer uses a different
character or sequence of characters to eject a page, specify them with the ff capability in
/etc/printcap .

7.6.2.2 Controlling Header Pag es

By enabling header pages, LPD will produce a long header, a full page of large letters identifying
the user, host, and job. Here is an example (kelly printed the job named outline from host rose):

FreeBSD Handbook 102

k ll ll
k l l
k l l
k k eeee l l y y
k k e e l l y y
k k eeeeee l l y y
kk k e l l y y
k k e e l l y yy
k k eeee lll lll yyy y

y
y y

yyyy

ll
t l i
t l

oooo u u ttttt l ii n nnn eeee
o o u u t l i nn n e e
o o u u t l i n n eeeeee
o o u u t l i n n e
o o u uu t t l i n n e e

oooo uuu u tt lll ii i n n eeee

r rrr oooo ssss eeee
rr r o o s s e e
r o o ss eeeeee
r o o ss e
r o o s s e e
r oooo ssss eeee

Job: outline
Date: Sun Sep 17 11:04:58 1995

LPD appends a form feed after this text so the job starts on a new page (unless you have sf (sup-
press form feeds) in the destination printer’s entry in /etc/printcap).

If you prefer, LPD can make a short header; specify sb (short banner) in the /etc/printcap file.
The header page will look like this:

rose:kelly Job: outline Date: Sun Sep 17 11:07:51 1995

Also by default, LPD prints the header page first, then the job. To reverse that, specify hl (header
last) in /etc/printcap .

7.6.2.3 Accounting for Header Pag es

Using LPD’s built-in header pages enforces a particular paradigm when it comes to printer
accounting: header pages must be free of charge.

Why?

FreeBSD Handbook 103

Because the output filter is the only external program that will have control when the header
page is printed that could do accounting, and it is not provided with any user or host information
or an accounting file, so it has no idea whom to charge for printer use. It is also not enough to
just ‘‘add one page’’ to the text filter or any of the conversion filters (which do have user and host
information) since users can suppress header pages with lpr -h . They could still be charged for
header pages they did not print. Basically, lpr -h will be the preferred option of environmen-
tally-minded users, but you cannot offer any incentive to use it.

It is still not enough to have each of the filters generate their own header pages (thereby being able
to charge for them). If users wanted the option of suppressing the header pages with lpr -h ,
they will still get them and be charged for them since LPD does not pass any knowledge of the -h
option to any of the filters.

So, what are your options?

You can

• Accept LPD’s paradigm and make header pages free.

• Install an alternative to LPD, such as LPDng or PLP. Section Alternatives to the Standard
Spooler (section 7.7, page 115) tells more about other spooling software you can substitute
for LPD.

• Write a smart output filter. Normally, an output filter is not meant to do anything more than
initialize a printer or do some simple character conversion. It is suited for header pages and
plain text jobs (when there is no text (input) filter).

But, if there is a text filter for the plain text jobs, then LPD will start the output filter only for
the header pages. And the output filter can parse the header page text that LPD generates
to determine what user and host to charge for the header page. The only other problem
with this method is that the output filter still does not know what accounting file to use (it
is not passed the name of the file from the af capability), but if you have a well-known
accounting file, you can hard-code that into the output filter.

To facilitate the parsing step, use the sh (short header) capability in /etc/printcap .

Then again, all that might be too much trouble, and users will certainly appreciate the more
generous system administrator who makes header pages free.

7.6.2.4 Header Pa ges on PostScript Printers

As described above, LPD can generate a plain text header page suitable for many printers. Of
course, PostScript cannot directly print plain text, so the header page feature of LPD is use-
less---or mostly so.

One obvious way to get header pages is to have every conversion filter and the text filter generate
the header page. The filters should should use the user and host arguments to generate a suitable
header page. The drawback of this method is that users will always get a header page, even if
they submit jobs with lpr -h .

Let us explore this method. The following script takes three arguments (user login name, host
name, and job name) and makes a simple PostScript header page:

FreeBSD Handbook 104

#!/bin/sh
#
make-ps-header - make a PostScript header page on stdout
Installed in /usr/local/libexec/make-ps-header
#

#
These are PostScript units (72 to the inch). Modify for A4 or
whatever size paper you are using:
#
page_width=612
page_height=792
border=72

#
Check arguments
#
if [$# -ne 3]; then

echo "Usage: ‘basename $0‘ <user> <host> <job>" 1>&2
exit 1

fi

#
Save these, mostly for readability in the PostScript, below.
#
user=$1
host=$2
job=$3
date=‘date‘

#
Send the PostScript code to stdout.
#
exec cat <<EOF
%!PS

%
% Make sure we do not interfere with user’s job that will follow
%
save

%
% Make a thick, unpleasant border around the edge of the paper.
%
$border $border moveto
$page_width $border 2 mul sub 0 rlineto
0 $page_height $border 2 mul sub rlineto
currentscreen 3 -1 roll pop 100 3 1 roll setscreen
$border 2 mul $page_width sub 0 rlineto closepath
0.8 setgray 10 setlinewidth stroke 0 setgray

%
% Display user’s login name, nice and large and prominent
%
/Helvetica-Bold findfont 64 scalefont setfont
$page_width ($user) stringwidth pop sub 2 div $page_height 200 sub moveto
($user) show

%
% Now show the boring particulars
%
/Helvetica findfont 14 scalefont setfont
/y 200 def
[(Job:) (Host:) (Date:)] {

200 y moveto show /y y 18 sub def
} forall

FreeBSD Handbook 105

/Helvetica-Bold findfont 14 scalefont setfont
/y 200 def
[($job) ($host) ($date)] {

270 y moveto show /y y 18 sub def
} forall

%
% That is it
%
restore
showpage
EOF

Now, each of the conversion filters and the text filter can call this script to first generate the
header page, and then print the user’s job. Here is the DVI conversion filter from earlier in this
document, modified to make a header page:

#!/bin/sh
#
psdf - DVI to PostScript printer filter
Installed in /usr/local/libexec/psdf
#
Invoked by lpd when user runs lpr -d
#

orig_args="$@"

fail() {
echo "$@" 1>&2
exit 2

}

while getopts "x:y:n:h:" option; do
case $option in

x|y) ;; # Ignore
n) login=$OPTARG ;;
h) host=$OPTARG ;;
*) echo "LPD started ‘basename $0‘ wrong." 1>&2

exit 2
;;

esac
done

["$login"] || fail "No login name"
["$host"] || fail "No host name"

(/usr/local/libexec/make-ps-header $login $host "DVI File"
/usr/local/bin/dvips -f) | eval /usr/local/libexec/lprps $orig_args

Notice how the filter has to parse the argument list in order to determine the user and host name.
The parsing for the other conversion filters is identical. The text filter takes a slightly different set
of arguments, though (see section How Filters Work (section 7.6.1.1, page 90)).

As we have mentioned before, the above scheme, though fairly simple, disables the ‘‘suppress
header page’’ option (the -h option) to lpr . If users wanted to save a tree (or a few pennies, if
you charge for header pages), they would not be able to do so, since every filter’s going to print a
header page with every job.

To allow users to shut off header pages on a per-job basis, you will need to use the trick intro-
duced in section Accounting for Header Pages (section 7.6.2.3, page 102): write an output filter that
parses the LPD-generated header page and produces a PostScript version. If the user submits the
job with lpr -h , then LPD will not generate a header page, and neither will your output filter.
Otherwise, your output filter will read the text from LPD and send the appropriate header page

FreeBSD Handbook 106

PostScript code to the printer.

If you have a PostScript printer on a serial line, you can make use of lprps , which comes with an
output filter, psof , which does the above. Note that psof does not charge for header pages.

7.6.3 Networked Printing

FreeBSD supports networked printing: sending jobs to remote printers. Networked printing
generally refers to two different things:

• Accessing a printer attached to a remote host. You install a printer that has a conventional
serial or parallel interface on one host. Then, you set up LPD to enable access to the printer
from other hosts on the network. Section Printers Installed on Remote Hosts (section 7.6.3.1,
page 106) tells how to do this.

• Accessing a printer attached directly to a network. The printer has a network interface in
addition (or in place of) a more conventional serial or parallel interface. Such a printer
might work as follows:

• It might understand the LPD protocol and can even queue jobs from remote hosts. In
this case, it acts just like a regular host running LPD. Follow the same procedure in
section Printers Installed on Remote Hosts (section 7.6.3.1, page 106) to set up such a
printer.

• It might support a data stream network connection. In this case, you ‘‘attach’’ the
printer to one host on the network by making that host responsible for spooling jobs
and sending them to the printer. Section Printers with Networked Data Stream Inter-
faces (section 7.6.3.2, page 107) gives some suggestions on installing such printers.

7.6.3.1 Printers Installed on Remote Hosts

The LPD spooling system has built-in support for sending jobs to other hosts also running LPD
(or are compatible with LPD). This feature enables you to install a printer on one host and make
it accessible from other hosts. It also works with printers that have network interfaces that
understand the LPD protocol.

To enable this kind of remote printing, first install a printer on one host, the printer host, using the
simple printer setup described in Simple Printer Setup (section 7.4, page 70). Do any advanced
setup in Advanced Printer Setup (section 7.6, page 89) that you need. Make sure to test the printer
and see if it works with the features of LPD you have enabled.

If you are using a printer with a network interface that is compatible with LPD, then the printer
host in the discussion below is the printer itself, and the printer name is the name you configured
for the printer. See the documentation that accompanied your printer and/or printer-network
interface.

Then, on the other hosts you want to have access to the printer, make an entry in their
/etc/printcap files with the following:

1. Name the entry anything you want. For simplicity, though, you probably want to use the
same name and aliases as on the printer host.

2. Leave the lp capability blank, explicitly (:lp=:).

3. Make a spooling directory and specify its location in the sd capability. LPD will store jobs
here before they get sent to the printer host.

4. Place the name of the printer host in the rm capability.

5. Place the printer name on the printer host in the rp capability.

That is it. You do not need to list conversion filters, page dimensions, or anything else in the
/etc/printcap file.

FreeBSD Handbook 107

Here is an example. The host rose has two printers, bamboo and rattan . We will enable users
on the host orchid to print to those printers. Here is the /etc/printcap file for orchid (back
from section Enabling Header Pages (section 7.6.2.1, page 100)). It already had the entry for the
printer teak ; we have added entries for the two printers on the host rose:

#
/etc/printcap for host orchid - added (remote) printers on rose
#

#
teak is local; it is connected directly to orchid:
#
teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\

:lp=/dev/lpt0:sd=/var/spool/lpd/teak:mx#0:\
:if=/usr/local/libexec/ifhp:\
:vf=/usr/local/libexec/vfhp:\
:of=/usr/local/libexec/ofhp:

#
rattan is connected to rose; send jobs for rattan to rose:
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\

:lp=:rm=rose:rp=rattan:sd=/var/spool/lpd/rattan:

#
bamboo is connected to rose as well:
#
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\

:lp=:rm=rose:rp=bamboo:sd=/var/spool/lpd/bamboo:

Then, we just need to make spooling directories on orchid:

mkdir -p /var/spool/lpd/rattan /var/spool/lpd/bamboo
chmod 770 /var/spool/lpd/rattan /var/spool/lpd/bamboo
chown daemon.daemon /var/spool/lpd/rattan /var/spool/lpd/bamboo

Now, users on orchid can print to rattan and bamboo. If, for example, a user on orchid typed

lpr -P bamboo -d sushi-review.dvi

the LPD system on orchid would copy the job to the spooling directory /var/spool/lpd/bam-
boo and note that it was a DVI job. As soon as the host rose has room in its bamboo spooling
directory, the two LPDs would transfer the file to rose. The file would wait in rose’s queue until it
was finally printed. It would be converted from DVI to PostScript (since bamboo is a PostScript
printer) on rose.

7.6.3.2 Printers with Networked Data Stream Interfaces

Often, when you buy a network interface card for a printer, you can get two versions: one which
emulates a spooler (the more expensive version), or one which just lets you send data to it as if
you were using a serial or parallel port (the cheaper version). This section tells how to use the
cheaper version. For the more expensive one, see the previous section Printers Installed on
Remote Hosts (section 7.6.3.1, page 106).

The format of the /etc/printcap file lets you specify what serial or parallel interface to use,
and (if you are using a serial interface), what baud rate, whether to use flow control, delays for
tabs, conversion of newlines, and more. But there is no way to specify a connection to a printer
that is listening on a TCP/IP or other network port.

To send data to a networked printer, you need to develop a communications program that can be
called by the text and conversion filters. Here is one such example: the script netprint takes all
data on standard input and sends it to a network-attached printer. We specify the hostname of
the printer as the first argument and the port number to which to connect as the second argument

FreeBSD Handbook 108

to netprint . Note that this supports one-way communication only (FreeBSD to printer); many
network printers support two-way communication, and you might want to take advantage of
that (to get printer status, perform accounting, etc.).

#!/usr/bin/perl
#
netprint - Text filter for printer attached to network
Installed in /usr/local/libexec/netprint
#

$#ARGV eq 1 || die "Usage: $0 <printer-hostname> <port-number>";

$printer_host = $ARGV[0];
$printer_port = $ARGV[1];

require ’sys/socket.ph’;

($ignore, $ignore, $protocol) = getprotobyname(’tcp’);
($ignore, $ignore, $ignore, $ignore, $address)

= gethostbyname($printer_host);

$sockaddr = pack(’S n a4 x8’, &AF_INET, $printer_port, $address);

socket(PRINTER, &PF_INET, &SOCK_STREAM, $protocol)
|| die "Can’t create TCP/IP stream socket: $!";

connect(PRINTER, $sockaddr) || die "Can’t contact $printer_host: $!";
while (<STDIN>) { print PRINTER; }
exit 0;

We can then use this script in various filters. Suppose we had a Diablo 750-N line printer con-
nected to the network. The printer accepts data to print on port number 5100. The host name of
the printer is scrivener. Here is the text filter for the printer:

#!/bin/sh
#
diablo-if-net - Text filter for Diablo printer ‘scrivener’ listening
on port 5100. Installed in /usr/local/libexec/diablo-if-net
#

exec /usr/libexec/lpr/lpf "$@" | /usr/local/libexec/netprint scrivener 5100

7.6.4 Restricting Printer Usage

This section gives information on restricting printer usage. The LPD system lets you control who
can access a printer, both locally or remotely, whether they can print multiple copies, how large
their jobs can be, and how large the printer queues can get.

7.6.4.1 Restricting Multiple Copies

The LPD system makes it easy for users to print multiple copies of a file. Users can print jobs
with lpr -#5 (for example) and get five copies of each file in the job. Whether this is a good
thing is up to you.

If you feel multiple copies cause unnecessary wear and tear on your printers, you can disable the
-# option to lpr by adding the sc capability to the /etc/printcap file. When users submit jobs
with the -# option, they will see

lpr: multiple copies are not allowed

Note that if you have set up access to a printer remotely (see section Printers Installed on Remote
Hosts (section 7.6.3.1, page 106)), you need the sc capability on the remote /etc/printcap files
as well, or else users will still be able to submit multiple-copy jobs by using another host.

Here is an example. This is the /etc/printcap file for the host rose. The printer rattan is
quite hearty, so we will allow multiple copies, but the laser printer bamboo’s a bit more delicate,

FreeBSD Handbook 109

so we will disable multiple copies by adding the sc capability:

#
/etc/printcap for host rose - restrict multiple copies on bamboo
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\

:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:

bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:sc:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\
:if=/usr/local/libexec/psif:\
:df=/usr/local/libexec/psdf:

Now, we also need to add the sc capability on the host orchid’s /etc/printcap (and while we
are at it, let us disable multiple copies for the printer teak):

#
/etc/printcap for host orchid - no multiple copies for local
printer teak or remote printer bamboo

teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\
:lp=/dev/lpt0:sd=/var/spool/lpd/teak:mx#0:sc:\
:if=/usr/local/libexec/ifhp:\
:vf=/usr/local/libexec/vfhp:\
:of=/usr/local/libexec/ofhp:

rattan|line|diablo|lp|Diablo 630 Line Printer:\
:lp=:rm=rose:rp=rattan:sd=/var/spool/lpd/rattan:

bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:lp=:rm=rose:rp=bamboo:sd=/var/spool/lpd/bamboo:sc:

By using the sc capability, we prevent the use of lpr -# , but that still does not prevent users
from running lpr multiple times, or from submitting the same file multiple times in one job like
this:

lpr forsale.sign forsale.sign forsale.sign forsale.sign forsale.sign

There are many ways to prevent this abuse (including ignoring it) which you are free to explore.

7.6.4.2 Restricting Access To Printers

You can control who can print to what printers by using the UNIX group mechanism and the rg
capability in /etc/printcap . Just place the users you want to have access to a printer in a cer-
tain group, and then name that group in the rg capability.

Users outside the group (including root) will be greeted with

lpr: Not a member of the restricted group

if they try to print to the controlled printer.

As with the sc (suppress multiple copies) capability, you need to specify rg on remote hosts that
also have access to your printers, if you feel it is appropriate (see section Printers Installed on
Remote Hosts (section 7.6.3.1, page 106)).

For example, we will let anyone access the printer rattan , but only those in group artists can
use bamboo. Here is the familiar /etc/printcap for host rose:

FreeBSD Handbook 110

#
/etc/printcap for host rose - restricted group for bamboo
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\

:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:

bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:sc:rg=artists:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\
:if=/usr/local/libexec/psif:\
:df=/usr/local/libexec/psdf:

Let us leave the other example /etc/printcap file (for the host orchid) alone. Of course, any-
one on orchid can print to bamboo. It might be the case that we only allow certain logins on
orchid anyway, and want them to have access to the printer. Or not.

Note: there can be only one restricted group per printer.

7.6.4.3 Controlling Sizes of Jobs Submitted

If you have many users accessing the printers, you probably need to put an upper limit on the
sizes of the files users can submit to print. After all, there is only so much free space on the
filesystem that houses the spooling directories, and you also need to make sure there is room for
the jobs of other users.

LPD enables you to limit the maximum byte size a file in a job can be with the mx capability. The
units are in BUFSIZ blocks, which are 1024 bytes. If you put a zero for this capability, there will
be no limit on file size. Note that the limit applies to files in a job, and not the total job size.

LPD will not refuse a file that is larger than the limit you place on a printer. Instead, it will queue
as much of the file up to the limit, which will then get printed. The rest will be discarded.
Whether this is correct behavior is up for debate.

Let us add limits to our example printers rattan and bamboo. Since those artists’ PostScript
files tend to be large, we will limit them to five megabytes. We will put no limit on the plain text
line printer:

#
/etc/printcap for host rose
#

#
No limit on job size:
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\

:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:

#
Limit of five megabytes:
#
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\

:sh:sd=/var/spool/lpd/bamboo:sc:rg=artists:mx#5000:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\
:if=/usr/local/libexec/psif:\
:df=/usr/local/libexec/psdf:

Again, the limits apply to the local users only. If you have set up access to your printers
remotely, remote users will not get those limits. You will need to specify the mx capability in the
remote /etc/printcap files as well. See section Printers Installed on Remote Hosts (section

FreeBSD Handbook 111

7.6.3.1, page 106) for more information on remote printing.

There is another specialized way to limit job sizes from remote printers; see section Restricting
Jobs from Remote Printers (section 7.6.4.4, page 111).

7.6.4.4 Restricting Jobs from Remote Printers

The LPD spooling system provides several ways to restrict print jobs submitted from remote
hosts:

Host restrictions
You can control from which remote hosts a local LPD accepts requests with the files
/etc/hosts.equiv and /etc/hosts.lpd . LPD checks to see if an incoming
request is from a host listed in either one of these files. If not, LPD refuses the
request.

The format of these files is simple: one host name per line. Note that the file
/etc/hosts.equiv is also used by the ruserok(3) protocol, and affects programs
like rsh and rcp, so be careful.

For example, here is the /etc/hosts.lpd file on the host rose:

orchid
violet
madrigal.fishbaum.de

This means rose will accept requests from the hosts orchid, violet, and madri-
gal.fishbaum.de. If any other host tries to access rose’s LPD, LPD will refuse them.

Size restrictions
You can control how much free space there needs to remain on the filesystem where
a spooling directory resides. Make a file called minfree in the spooling directory
for the local printer. Insert in that file a number representing how many disk blocks
(512 bytes) of free space there has to be for a remote job to be accepted.

This lets you insure that remote users will not fill your filesystem. You can also use
it to give a certain priority to local users: they will be able to queue jobs long after
the free disk space has fallen below the amount specified in the minfree file.

For example, let us add a minfree file for the printer bamboo. We examine
/etc/printcap to find the spooling directory for this printer; here is bamboo’s
entry:

bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:sc:rg=artists:mx#5000:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:mx#5000:\
:if=/usr/local/libexec/psif:\
:df=/usr/local/libexec/psdf:

The spooling directory is the given in the sd capability. We will make three
megabytes (which is 6144 disk blocks) the amount of free disk space that must exist
on the filesystem for LPD to accept remote jobs:

echo 6144 > /var/spool/lpd/bamboo/minfree

User restrictions
You can control which remote users can print to local printers by specifying the rs
capability in /etc/printcap . When rs appears in the entry for a locally-attached
printer, LPD will accept jobs from remote hosts if the user submitting the job also
has an account of the same login name on the local host. Otherwise, LPD refuses
the job.

This capability is particularly useful in an environment where there are (for

FreeBSD Handbook 112

example) different departments sharing a network, and some users transcend
departmental boundaries. By giving them accounts on your systems, they can use
your printers from their own departmental systems. If you would rather allow
them to use only your printers and not your compute resources, you can give them
‘‘token’’ accounts, with no home directory and a useless shell like
/usr/bin/false .

7.6.5 Accounting for Printer Usage

So, you need to charge for printouts. And why not? Paper and ink cost money. And then there
are maintenance costs---printers are loaded with moving parts and tend to break down. You
have examined your printers, usage patterns, and maintenance fees and have come up with a
per-page (or per-foot, per-meter, or per-whatever) cost. Now, how do you actually start account-
ing for printouts?

Well, the bad news is the LPD spooling system does not provide much help in this department.
Accounting is highly dependent on the kind of printer in use, the formats being printed, and your
requirements in charging for printer usage.

To implement accounting, you have to modify a printer’s text filter (to charge for plain text jobs)
and the conversion filters (to charge for other file formats), to count pages or query the printer for
pages printed. You cannot get away with using the simple output filter, since it cannot do
accounting. See section Filters (section 7.6.1, page 89).

Generally, there are two ways to do accounting:

• Periodic accounting is the more common way, possibly because it is easier. Whenever some-
one prints a job, the filter logs the user, host, and number of pages to an accounting file.
Every month, semester, year, or whatever time period you prefer, you collect the accounting
files for the various printers, tally up the pages printed by users, and charge for usage.
Then you truncate all the logging files, starting with a clean slate for the next period.

• Timely accounting is less common, probably because it is more difficult. This method has the
filters charge users for printouts as soon as they use the printers. Like disk quotas, the
accounting is immediate. You can prevent users from printing when their account goes in
the red, and might provide a way for users to check and adjust their ‘‘print quotas.’’ But this
method requires some database code to track users and their quotas.

The LPD spooling system supports both methods easily: since you have to provide the filters
(well, most of the time), you also have to provide the accounting code. But there is a bright side:
you have enormous flexibility in your accounting methods. For example, you choose whether to
use periodic or timely accounting. You choose what information to log: user names, host names,
job types, pages printed, square footage of paper used, how long the job took to print, and so
forth. And you do so by modifying the filters to save this information.

7.6.5.1 Quick and Dirty Printer Accounting

FreeBSD comes with two programs that can get you set up with simple periodic accounting right
away. They are the text filter lpf , described in section lpf: a Text Filter (section 7.6.1.6, page 100),
and

pac, a program to gather and total entries from printer accounting files.

As mentioned in the section on filters (Filters (section 7.6.1.1, page 90)), LPD starts the text and the
conversion filters with the name of the accounting file to use on the filter command line. The fil-
ters can use this argument to know where to write an accounting file entry. The name of this file
comes from the af capability in /etc/printcap , and if not specified as an absolute path, is rela-
tive to the spooling directory.

LPD starts lpf with page width and length arguments (from the pw and pl capabilities). lpf
uses these arguments to determine how much paper will be used. After sending the file to the
printer, it then writes an accounting entry in the accounting file. The entries look like this:

FreeBSD Handbook 113

2.00 rose:andy
3.00 rose:kelly
3.00 orchid:mary
5.00 orchid:mary
2.00 orchid:zhang

You should use a separate accounting file for each printer, as lpf has no file locking logic built
into it, and two lpf s might corrupt each other’s entries if they were to write to the same file at
the same time. A easy way to insure a separate accounting file for each printer is to use af=acct
in /etc/printcap . Then, each accounting file will be in the spooling directory for a printer, in a
file named acct .

When you are ready to charge users for printouts, run the

pac program. Just change to the spooling directory for the printer you want to collect on and
type pac. You will get a dollar-centric summary like the following:

Login pages/feet runs price
orchid:kelly 5.00 1 $ 0.10
orchid:mary 31.00 3 $ 0.62
orchid:zhang 9.00 1 $ 0.18
rose:andy 2.00 1 $ 0.04
rose:kelly 177.00 104 $ 3.54
rose:mary 87.00 32 $ 1.74
rose:root 26.00 12 $ 0.52

total 337.00 154 $ 6.74

These are the arguments pac expects:

-P printer
Which printer to summarize. This option works only if there is an absolute path in
the af capability in /etc/printcap .

-c
Sort the output by cost instead of alphabetically by user name.

-m
Ignore host name in the accounting files. With this option, user smith on host alpha
is the same user smith on host gamma. Without, they are different users.

-p price
Compute charges with price dollars per page or per foot instead of the price from
the pc capability in /etc/printcap , or two cents (the default). You can specify
price as a floating point number.

-r
Reverse the sort order.

-s
Make an accounting summary file and truncate the accounting file.

names...
Print accounting information for the given user names only.

In the default summary that pac produces, you see the number of pages printed by each user
from various hosts. If, at your site, host does not matter (because users can use any host), run
pac -m , to produce the following summary:

FreeBSD Handbook 114

Login pages/feet runs price
andy 2.00 1 $ 0.04
kelly 182.00 105 $ 3.64
mary 118.00 35 $ 2.36
root 26.00 12 $ 0.52
zhang 9.00 1 $ 0.18

total 337.00 154 $ 6.74

To compute the dollar amount due, pac uses the pc capability in the /etc/printcap file
(default of 200, or 2 cents per page). Specify, in hundredths of cents, the price per page or per foot
you want to charge for printouts in this capability. You can override this value when you run pac
with the -p option. The units for the -p option are in dollars, though, not hundredths of cents.
For example,

pac -p1.50

makes each page cost one dollar and fifty cents. You can really rake in the profits by using this
option.

Finally, running pac -s will save the summary information in a summary accounting file, which
is named the same as the printer’s accounting file, but with _sum appended to the name. It then
truncates the accounting file. When you run pac again, it rereads the summary file to get starting
totals, then adds information from the regular accounting file.

7.6.5.2 How Can You Count Pag es Printed?

In order to perform even remotely accurate accounting, you need to be able to determine how
much paper a job uses. This is the essential problem of printer accounting.

For plain text jobs, the problem’s not that hard to solve: you count how many lines are in a job
and compare it to how many lines per page your printer supports. Do not forget to take into
account backspaces in the file which overprint lines, or long logical lines that wrap onto one or
more additional physical lines.

The text filter lpf (introduced in lpf: a Text Filter (section 7.6.1.6, page 100)) takes into account
these things when it does accounting. If you are writing a text filter which needs to do account-
ing, you might want to examine lpf ’s source code.

How do you handle other file formats, though?

Well, for DVI-to-LaserJet or DVI-to-PostScript conversion, you can have your filter parse the diag-
nostic output of

dvilj or dvips and look to see how many pages were converted. You might be able to do similar
things with other file formats and conversion programs.

But these methods suffer from the fact that the printer may not actually print all those pages. For
example, it could jam, run out of toner, or explode---and the user would still get charged.

So, what can you do?

There is only one sure way to do accurate accounting. Get a printer that can tell you how much
paper it uses, and attach it via a serial line or a network connection. Nearly all PostScript printers
support this notion. Other makes and models do as well (networked Imagen laser printers, for
example). Modify the filters for these printers to get the page usage after they print each job and
have them log accounting information based on that value only. There is no line counting nor
error-prone file examination required.

Of course, you can always be generous and make all printouts free.

FreeBSD Handbook 115

7.7 Alternatives to the Standard Spooler
If you have been reading straight through this manual, by now you have learned just about
everything there is to know about the LPD spooling system that comes with FreeBSD. You can
probably appreciate many of its shortcomings, which naturally leads to the question: ‘‘What other
spooling systems are out there (and work with FreeBSD)?’’

Unfortunately, I have located only two alternatives---and they are almost identical to each other!
They are:

PLP, the Portable Line Printer Spooler System
PLP was based on software developed by Patrick Powell and then maintained by an
Internet-wide group of developers. The main site for the software is at
ftp://ftp.iona.ie/pub/plp. There is also a web page.

It is quite similar to the BSD LPD spooler, but boasts a host of features, including:

• Better network support, including built-in support for networked printers,
NIS-maintained printcaps, and NFS-mounted spooling directories

• Sophisticated queue management, allowing multiple printers on a queue,
transfer of jobs between queues, and queue redirection

• Remote printer control functions

• Prioritization of jobs

• Expansive security and access options

LPRng
LPRng, which purportedly means ‘‘LPR: the Next Generation’’ is a complete rewrite
of PLP. Patrick Powell and Justin Mason (the principal maintainer of PLP) collabo-
rated to make LPRng. The main site for LPRng is ftp://dick-
ory.sdsu.edu/pub/LPRng.

7.8 Acknowledgments
I would like to thank the following people who have assisted in the development of this docu-
ment:

Daniel Eischen <deischen@iworks.interworks.org>
For providing a plethora of HP filter programs for perusal.

Jake Hamby
<jehamby@lightside.com> " For the Ghostscript-to-HP filter.

My wife, Mary Kelly <urquhart@argyre.colorado.edu>
For allowing me to spend more time with FreeBSD than with her.

FreeBSD Handbook 116

8. Disks
Contributed by David O’Brien <obrien@FreeBSD.ORG>
26 April 1998

Lets say we want to add a new SCSI disk to a machine that currently only has a single drive. First
turn off the computer and install the drive in the computer following the instructions of the com-
puter, controller, and drive manufacturer. Due the wide variations of procedures to do this, the
details are beyond the scope of this document.

Login as user root. After you’ve installed the drive, inspect /var/run/dmesg.boot to ensure
the new disk was found. Continuing with our example, the newly added drive will be sd1 and
we want to mount it on /1 . (if you are adding an IDE drive substitute wd for sd)

Because FreeBSD runs on IBM-PC compatible computers, it must take into account the PC BIOS
partitions. These are different from the traditional BSD partitions. A PC disk has up to four BIOS
partition entries. If the disk is going to be truly dedicated to FreeBSD, you can use the dedicated
mode. Otherwise, FreeBSD will have to live with in one of the PC BIOS partitions. FreeBSD calls
the PC BIOS partitions, slices so as not to confuse them with traditional BSD partitions. You may
also use slices on a disk that is dedicated to FreeBSD, but used in a computer that also has
another operating system installed. This is to not confuse the fdisk utility of the other operating
system.

In the slice case the drive will be added as /dev/sd1s1e . This is read as: SCSI disk, unit num-
ber 1 (second SCSI disk), slice 1 (PC BIOS partition 1), and e BSD partition. In the dedicated case,
the drive will be added simply as /dev/sd1e .

8.1 Using sysinstall
You may use /stand/sysinstall to partition and label a new disk using its easy to use
menus. Either login as user root or use the su command. Run /stand/sysinstall and enter
the Configure menu. With in the FreeBSD Configuration Menu , scroll down and select the
Partition item. Next you should be presented with a list of hard drives installed in your system.
If you do not see sd1 listed, you need to recheck your physical installation and dmesg output in
the file /var/run/dmesg.boot .

Select sd1 to enter the FDISK Partition Editor . Choose A to use the entire disk for
FreeBSD. When asked if you want to ‘‘remain cooperative with any future possible operating
systems’’, answer YES. Write the changes to the disk using W. Now exit the FDISK editor using
q. Next you will be asked about the Master Boot Record. Since you are adding a disk to an
already running system, choose None.

Next enter the Disk Label Editor. This is where you will create the traditional BSD partitions. A
disk can have up to eight partitions, labeled a-h. A few of the partition labels have special uses.
The a partition is used for the root partition (/). Thus only your system disk (e.g, the disk you
boot from) should have an a partition. The b partition is used for swap partitions, and you may
have many disks with swap partitions. The c partition addresses the entire disk in dedicated
mode, or the entire FreeBSD slice in slice mode. The other partitions are for general use.

Sysinstall’s Label editor favors the e partition for non-root, non-swap partitions. With in the
Label editor, create a single file system using C. When prompted if this will be a FS (file system)
or swap, choose ‘‘FS’’ and give a mount point (e.g, /mnt). When adding a disk in post-install
mode, Sysinstall will not create entries in /etc/fstab for you, so the mount point you specify
isn’t important.

You are now ready to write the new label to the disk and create a file system on it. Do this by hit-
ting W. Ignore any errors from Sysinstall that it could not mount the new partition. Exit the
Label Editor and Sysinstall completely.

The last step is to edit /etc/fstab to add an entry for your new disk.

FreeBSD Handbook 117

8.2 Using command line utilities
8.2.1 * Using Slices

8.2.2 Dedicated

If you will not be sharing the new drive with another operating system, you may use the dedicated
mode. Remember this mode can confuse Microsoft operating systems; however, no damage will
be done by them. IBM’s OS/2 however, will "appropriate" any partition it finds which it doesn’t
understand.

dd if=/dev/zero of=/dev/rsd1 bs=1k count=1
disklabel -Brw sd1 auto
disklabel -e sd1 # create the ‘e’ partition
newfs -d0 /dev/rsd1e
mkdir -p /1
vi /etc/fstab # add an entry for /dev/sd1e
mount /1

An alternate method is:

dd if=/dev/zero of=/dev/rsd1 count=2
disklabel /dev/rsd1 | disklabel -BrR sd1 /dev/stdin
newfs /dev/rsd1e
mkdir -p /1
vi /etc/fstab # add an entry for /dev/sd1e
mount /1

8.3 * Non-traditional Drives
8.3.1 * Zip Drives

8.3.2 * Jazz Drives

8.3.3 * Sequest Drives

FreeBSD Handbook 118

9. Backups
Issues of hardware compatibility are among the most troublesome in the computer industry
today and FreeBSD is by no means immune to trouble. In this respect, FreeBSD’s advantage of
being able to run on inexpensive commodity PC hardware is also its liability when it comes to
support for the amazing variety of components on the market. While it would be impossible to
provide a exhaustive listing of hardware that FreeBSD supports, this section serves as a catalog of
the device drivers included with FreeBSD and the hardware each drivers supports. Where possi-
ble and appropriate, notes about specific products are included. You may also want to refer to the
kernel configuration file (section 5.3, page 36) section in this handbook for a list of supported
devices.

As FreeBSD is a volunteer project without a funded testing department, we depend on you, the
user, for much of the information contained in this catalog. If you have direct experience of hard-
ware that does or does not work with FreeBSD, please let us know by sending e-mail to the
FreeBSD documentation project mailing list <freebsd-doc@FreeBSD.ORG> . Questions about
supported hardware should be directed to the FreeBSD general questions mailing list
<freebsd-questions@FreeBSD.ORG> (see Mailing Lists (section 27.1, page 368) for more
information). When submitting information or asking a question, please remember to specify
exactly what version of FreeBSD you are using and include as many details of your hardware as
possible.

9.1 * What about backups to floppies?

9.2 Tape Media
The major tape media are the 4mm, 8mm, QIC, mini-cartridge and DLT.

9.2.1 4mm (DDS: Digital Data Storage)

"

4mm tapes are replacing QIC as the workstation backup media of choice. This trend accelerated
greatly when Conner purchased Archive, a leading manufacturer of QIC drives, and then
stopped production of QIC drives. 4mm drives are small and quiet but do not have the reputa-
tion for reliability that is enjoyed by 8mm drives. The cartridges are less expensive and smaller (3
x 2 x 0.5 inches, 76 x 51 x 12 mm) than 8mm cartridges. 4mm, like 8mm, has comparatively short
head life for the same reason, both use helical scan.

Data thruput on these drives starts ˜150kB/s, peaking at ˜500kB/s. Data capacity starts at 1.3 GB
and ends at 2.0 GB. Hardware compression, available with most of these drives, approximately
doubles the capacity. Multi-drive tape library units can have 6 drives in a single cabinet with
automatic tape changing. Library capacities reach 240 GB.

4mm drives, like 8mm drives, use helical-scan. All the benefits and drawbacks of helical-scan
apply to both 4mm and 8mm drives.

Tapes should be retired from use after 2,000 passes or 100 full backups.

9.2.2 8mm (Exabyte)

"

8mm tapes are the most common SCSI tape drives; they are the best choice of exchanging tapes.
Nearly every site has an exabyte 2 GB 8mm tape drive. 8mm drives are reliable, convenient and
quiet. Cartridges are inexpensive and small (4.8 x 3.3 x 0.6 inches; 122 x 84 x 15 mm). One down-
side of 8mm tape is relatively short head and tape life due to the high rate of relative motion of
the tape across the heads.

Data thruput ranges from ˜250kB/s to ˜500kB/s. Data sizes start at 300 MB and go up to 7 GB.
Hardware compression, available with most of these drives, approximately doubles the capacity.

FreeBSD Handbook 119

These drives are available as single units or multi-drive tape libraries with 6 drives and 120 tapes
in a single cabinet. Tapes are changed automatically by the unit. Library capacities reach 840+
GB.

Data is recorded onto the tape using helical-scan, the heads are positioned at an angle to the
media (approximately 6 degrees). The tape wraps around 270 degrees of the spool that holds the
heads. The spool spins while the tape slides over the spool. The result is a high density of data
and closely packed tracks that angle across the tape from one edge to the other.

9.2.3 QIC

QIC-150 tapes and drives are, perhaps, the most common tape drive and media around. QIC
tape drives are the least expensive "serious" backup drives. The downside is the cost of media.
QIC tapes are expensive compared to 8mm or 4mm tapes, up to 5 times the price per GB data
storage. But, if your needs can be satisfied with a half-dozen tapes, QIC may be the correct
choice. QIC is the most common tape drive. Every site has a QIC drive of some density or
another. Therein lies the rub, QIC has a large number of densities on physically similar (some-
times identical) tapes. QIC drives are not quiet. These drives audibly seek before they begin to
record data and are clearly audible whenever reading, writing or seeking. QIC tapes measure (6
x 4 x 0.7 inches; 15.2 x 10.2 x 1.7 mm). Mini-cartridges (section 9.2.4, page 119), which also use 1/4"
wide tape are discussed separately. Tape libraries and changers are not available.

Data thruput ranges from ˜150kB/s to ˜500kB/s. Data capacity ranges from 40 MB to 15 GB.
Hardware compression is available on many of the newer QIC drives. QIC drives are less fre-
quently installed; they are being supplanted by DAT drives.

Data is recorded onto the tape in tracks. The tracks run along the long axis of the tape media
from one end to the other. The number of tracks, and therefore the width of a track, varies with
the tape’s capacity. Most if not all newer drives provide backward-compatibility at least for read-
ing (but often also for writing). QIC has a good reputation regarding the safety of the data (the
mechanics are simpler and more robust than for helical scan drives).

Tapes should be retired from use after 5,000 backups.

9.2.4 * Mini-Car tridge

9.2.5 DLT

DLT has the fastest data transfer rate of all the drive types listed here. The 1/2" (12.5mm) tape is
contained in a single spool cartridge (4 x 4 x 1 inches; 100 x 100 x 25 mm). The cartridge has a
swinging gate along one entire side of the cartridge. The drive mechanism opens this gate to
extract the tape leader. The tape leader has an oval hole in it which the drive uses to "hook" the
tape. The take-up spool is located inside the tape drive. All the other tape cartridges listed here
(9 track tapes are the only exception) have both the supply and take-up spools located inside the
tape cartridge itself.

Data thruput is approximately 1.5MB/s, three times the thruput of 4mm, 8mm, or QIC tape
drives. Data capacities range from 10GB to 20GB for a single drive. Drives are available in both
multi-tape changers and multi-tape, multi-drive tape libraries containing from 5 to 900 tapes over
1 to 20 drives, providing from 50GB to 9TB of storage.

Data is recorded onto the tape in tracks parallel to the direction of travel (just like QIC tapes).
Two tracks are written at once. Read/write head lifetimes are relatively long; once the tape stops
moving, there is no relative motion between the heads and the tape.

9.2.6 Using a new tape for the first time

The first time that you try to read or write a new, completely blank tape, the operation will fail.
The console messages should be similar to:

st0(ncr1:4:0): NOT READY asc:4,1
st0(ncr1:4:0): Logical unit is in process of becoming ready

FreeBSD Handbook 120

The tape does not contain an Identifier Block (block number 0). All QIC tape drives since the
adoption of QIC-525 standard write an Identifier Block to the tape. There are two solutions:

mt fsf 1 causes the tape drive to write an Identifier Block to the tape.

Use the front panel button to eject the tape.

Re-insert the tape and dump(8) data to the tape.

dump(8) will report DUMP: End of tape detected and the console will show: HARDWARE
FAILURE info:280 asc:80,96

rewind the tape using: mt rewind

Subsequent tape operations are successful.

9.3 Backup Programs
The three major programs are dump(8) , tar(1) , and cpio(1) .

9.3.1 Dump and Restore

dump(8) and restore(8) are the traditional Unix backup programs. They operate on the drive
as a collection of disk blocks, below the abstractions of files, links and directories that are created
by the filesystems. dump(8) backs up devices, entire filesystems, not parts of a filesystem and
not directory trees that span more than one filesystem, using either soft links ln(1) or mounting
one filesystem onto another. dump(8) does not write files and directories to tape, but rather
writes the data blocks that are the building blocks of files and directories. dump(8) has quirks
that remain from its early days in Version 6 of ATT Unix (circa 1975). The default parameters are
suitable for 9-track tapes (6250 bpi), not the high-density media available today (up to 62,182
ftpi). These defaults must be overridden on the command line to utilize the capacity of current
tape drives.

rdump(8) and rrestore(8) backup data across the network to a tape drive attached to
another computer. Both programs rely upon rcmd(3) and ruserok(3) to access the remote
tape drive. Therefore, the user performing the backup must have rhosts access to the remote
computer. The arguments to rdump(8) and rrestore(8) must suitable to use on the remote
computer. (e.g. When rdump ’ing from a FreeBSD computer to an Exabyte tape drive connected
to a Sun called komodo, use: /sbin/rdump 0dsbfu 54000 13000 126
komodo:/dev/nrst8 /dev/rsd0a 2>&1) Beware: there are security implications to allowing
rhosts commands. Evaluate your situation carefully.

9.3.2 Tar

tar(1) also dates back to Version 6 of ATT Unix (circa 1975). tar(1) operates in cooperation
with the filesystem; tar(1) writes files and directories to tape. tar(1) does not support the full
range of options that are available from cpio(1) , but tar(1) does not require the unusual com-
mand pipeline that cpio(1) uses.

Most versions of tar(1) do not support backups across the network. The GNU version of
tar(1) , which FreeBSD utilizes, supports remote devices using the same syntax as rdump . To
tar(1) to an Exabyte tape drive connected to a Sun called komodo, use: /usr/bin/tar cf
komodo:/dev/nrst8 . 2>&1 . For versions without remote device support, you can use a
pipeline and rsh(1) to send the data to a remote tape drive. (XXX add an example command)

9.3.3 Cpio

cpio(1) is the original Unix file interchange tape program for magnetic media. cpio(1) has
options (among many others) to perform byte-swapping, write a number of different archives
format, and pipe the data to other programs. This last feature makes cpio(1) and excellent
choice for installation media. cpio(1) does not know how to walk the directory tree and a list
of files must be provided thru STDIN.

FreeBSD Handbook 121

cpio(1) does not support backups across the network. You can use a pipeline and rsh(1) to
send the data to a remote tape drive. (XXX add an example command)

9.3.4 Pax

pax(1) is IEEE/POSIX’s answer to tar and cpio . Over the years the various versions of tar
and cpio have gotten slightly incompatible. So rather than fight it out to fully standardize them,
POSIX created a new archive utility. pax attempts to read and write many of the various cpio
and tar formats, plus new formats of its own. Its command set more resembles cpio than tar .

9.3.5 Amanda

Amanda (Advanced Maryland Network Disk Archiver) is a client/server backup system, rather
than a single program. An Amanda server will backup to a single tape drive any number of com-
puters that have Amanda clients and network communications with the Amanda server. A com-
mon problem at locations with a number of large disks is the length of time required to backup to
data directly to tape exceeds the amount of time available for the task. Amanda solves this prob-
lem. Amanda can use a "holding disk" to backup several filesystems at the same time. Amanda
creates "archive sets": a group of tapes used over a period of time to create full backups of all the
filesystems listed in Amanda’s configuration file. The "archive set" also contains nightly incre-
mental (or differential) backups of all the filesystems. Restoring a damaged filesystem requires
the most recent full backup and the incremental backups.

The configuration file provides fine control backups and the network traffic that Amanda gener-
ates. Amanda will use any of the above backup programs to write the data to tape. Amanda is
available as either a port or a package, it is not installed by default.

9.3.6 Do nothing

"Do nothing" is not a computer program, but it is the most widely used backup strategy. There
are no initial costs. There is no backup schedule to follow. Just say no. If something happens to
your data, grin and bear it!

If your time and your data is worth little to nothing, then "Do nothing" is the most suitable
backup program for your computer. But beware, Unix is a useful tool, you may find that within
six months you have a collection of files that are valuable to you.

"Do nothing" is the correct backup method for /usr/obj and other directory trees that can be
exactly recreated by your computer. An example is the files that comprise these handbook pages-
they have been generated from SGMLinput files. Creating backups of these HTMLfiles is not nec-
essary. The SGMLsource files are backed up regularly.

9.3.7 Which Backup Program is Best?

dump(8) Period. Elizabeth D. Zwicky torture tested all the backup programs discussed here. The
clear choice for preserving all your data and all the peculiarities of Unix filesystems is dump(8) .
Elizabeth created filesystems containing a large variety of unusual conditions (and some not so
unusual ones) and tested each program by do a backup and restore of that filesystems. The pecu-
liarities included: files with holes, files with holes and a block of nulls, files with funny characters
in their names, unreadable and unwritable files, devices, files that change size during the backup,
files that are created/deleted during the backup and more. She presented the results at LISA V in
Oct. 1991.

9.3.8 Emergency Restore Procedure

9.3.8.1 Before the Disaster

There are only four steps that you need to perform in preparation for any disaster that may occur.

First, print the disklabel from each of your disks (e.g. disklabel sd0 | lpr), your filesys-
tem table (/etc/fstab) and all boot messages, two copies of each.

FreeBSD Handbook 122

Second, determine the boot and fixit floppies (boot.flp and fixit.flp) have all your devices. The
easiest way to check is to reboot your machine with the boot floppy in the floppy drive and check
the boot messages. If all your devices are listed and functional, skip on to step three.

Otherwise, you have to create two custom bootable floppies which has a kernel that can mount
your all of your disks and access your tape drive. These floppies must contain: fdisk(8) ,
disklabel(8) , newfs(8) , mount(8) , and whichever backup program you use. These pro-
grams must be statically linked. If you use dump(8) , the floppy must contain restore(8) .

Third, create backup tapes regularly. Any changes that you make after your last backup may be
irretrievably lost. Write-protect the backup tapes.

Fourth, test the floppies (either boot.flp and fixit.flp or the two custom bootable floppies you
made in step two.) and backup tapes. Make notes of the procedure. Store these notes with the
bootable floppy, the printouts and the backup tapes. You will be so distraught when restoring
that the notes may prevent you from destroying your backup tapes (How? In place of tar xvf
/dev/rst0 , you might accidently type

tar cvf /dev/rst0 and over-write your backup tape).

For an added measure of security, make bootable floppies and two backup tapes each time. Store
one of each at a remote location. A remote location is NOT the basement of the same office build-
ing. A number of firms in the World Trade Center learned this lesson the hard way. A remote
location should be physically separated from your computers and disk drives by a significant dis-
tance.

An example script for creating a bootable floppy:

#!/bin/sh
#
create a restore floppy
#
format the floppy
#
PATH=/bin:/sbin:/usr/sbin:/usr/bin

fdformat -q fd0
if [$? -ne 0]
then

echo "Bad floppy, please use a new one"
exit 1

fi

place boot blocks on the floppy
#
disklabel -w -B -b /usr/mdec/fdboot -s /usr/mdec/bootfd /dev/rfd0c fd1440

#
newfs the one and only partition
#
newfs -t 2 -u 18 -l 1 -c 40 -i 5120 -m 5 -o space /dev/rfd0a

#
mount the new floppy
#
mount /dev/fd0a /mnt

#
create required directories
#
mkdir /mnt/dev
mkdir /mnt/bin
mkdir /mnt/sbin
mkdir /mnt/etc
mkdir /mnt/root

FreeBSD Handbook 123

mkdir /mnt/mnt # for the root partition
mkdir /mnt/tmp
mkdir /mnt/var

#
populate the directories
#
if [! -x /sys/compile/MINI/kernel]
then

cat << EOM
The MINI kernel does not exist, please create one.
Here is an example config file:
#
MINI -- A kernel to get FreeBSD on onto a disk.
#
machine "i386"
cpu "I486_CPU"
ident MINI
maxusers 5

options INET # needed for _tcp _icmpstat _ipstat
_udpstat _tcpstat _udb

options FFS #Berkeley Fast File System
options FAT_CURSOR #block cursor in syscons or pccons
options SCSI_DELAY=15 #Be pessimistic about Joe SCSI device
options NCONS=2 #1 virtual consoles
options USERCONFIG #Allow user configuration with -c XXX

config kernel root on sd0 swap on sd0 and sd1 dumps on sd0

controller isa0
controller pci0

controller fdc0 at isa? port "IO_FD1" bio irq 6 drq 2 vector fdintr
disk fd0 at fdc0 drive 0

controller ncr0

controller scbus0

device sc0 at isa? port "IO_KBD" tty irq 1 vector scintr
device npx0 at isa? port "IO_NPX" irq 13 vector npxintr

device sd0
device sd1
device sd2

device st0

pseudo-device loop # required by INET
pseudo-device gzip # Exec gzipped a.out’s
EOM

exit 1
fi

cp -f /sys/compile/MINI/kernel /mnt

gzip -c -best /sbin/init > /mnt/sbin/init
gzip -c -best /sbin/fsck > /mnt/sbin/fsck
gzip -c -best /sbin/mount > /mnt/sbin/mount
gzip -c -best /sbin/halt > /mnt/sbin/halt
gzip -c -best /sbin/restore > /mnt/sbin/restore

gzip -c -best /bin/sh > /mnt/bin/sh
gzip -c -best /bin/sync > /mnt/bin/sync

FreeBSD Handbook 124

cp /root/.profile /mnt/root

cp -f /dev/MAKEDEV /mnt/dev
chmod 755 /mnt/dev/MAKEDEV

chmod 500 /mnt/sbin/init
chmod 555 /mnt/sbin/fsck /mnt/sbin/mount /mnt/sbin/halt
chmod 555 /mnt/bin/sh /mnt/bin/sync
chmod 6555 /mnt/sbin/restore

#
create the devices nodes
#
cd /mnt/dev
./MAKEDEV std
./MAKEDEV sd0
./MAKEDEV sd1
./MAKEDEV sd2
./MAKEDEV st0
./MAKEDEV pty0
cd /

#
create minimum filesystem table
#
cat > /mnt/etc/fstab <<EOM
/dev/fd0a / ufs rw 1 1
EOM

#
create minimum passwd file
#
cat > /mnt/etc/passwd <<EOM
root:*:0:0:Charlie &:/root:/bin/sh
EOM

cat > /mnt/etc/master.passwd <<EOM
root::0:0::0:0:Charlie &:/root:/bin/sh
EOM

chmod 600 /mnt/etc/master.passwd
chmod 644 /mnt/etc/passwd
/usr/sbin/pwd_mkdb -d/mnt/etc /mnt/etc/master.passwd

#
umount the floppy and inform the user
#
/sbin/umount /mnt

9.3.8.2 After the Disaster

The key question is: did your hardware survive? You have been doing regular backups so there
is no need to worry about the software.

If the hardware has been damaged. First, replace those parts that have been damaged.

If your hardware is okay, check your floppies. If you are using a custom boot floppy, boot single-
user (type "-s" at the "boot:" prompt). Skip the following paragraph.

If you are using the boot.flp and fixit.flp floppies, keep reading. Insert the boot.flp floppy in the
first floppy drive and boot the computer. The original install menu will be displayed on the
screen. Select the "Fixit--Repair mode with CDROM or floppy." option. Insert the fixit.flp when
prompted. restore and the other programs that you need are located in /mnt2/stand .

Recover each filesystem separately.

Try to mount(8) (e.g. mount /dev/sd0a /mnt) the root partition of your first disk. If the

FreeBSD Handbook 125

disklabel was damaged, use disklabel(8) to re-partition and label the disk to match the label
that your printed and saved. Use newfs(8) to re-create the filesystems. Re-mount the root par-
tition of the floppy read-write ("mount -u -o rw /mnt "). Use your backup program and
backup tapes to recover the data for this filesystem (e.g. restore vrf /dev/st0). Unmount
the filesystem (e.g. umount /mnt) Repeat for each filesystem that was damaged.

Once your system is running, backup your data onto new tapes. Whatever caused the crash or
data loss may strike again. An another hour spent now, may save you from further distress later.

9.3.8.3 * I did not prepare for the Disaster, What Now?

FreeBSD Handbook 126

10. Disk Quotas
Contributed by Mike Pritchard <mpp@FreeBSD.ORG>.
26 February 1996

Quotas are an optional feature of the operating system that allow you to limit the amount of disk
space and/or the number of files a user, or members of a group, may allocate on a per-file system
basis. This is used most often on timesharing systems where it is desirable to limit the amount of
resources any one user or group of users may allocate. This will prevent one user from consum-
ing all of the available disk space.

10.1 Configuring Your System to Enable Disk Quotas
Before attempting to use disk quotas it is necessary to make sure that quotas are configured in
your kernel. This is done by adding the following line to your kernel configuration file:

options QUOTA

The stock GENERIC kernel does not have this enabled by default, so you will have to configure,
build and install a custom kernel in order to use disk quotas. Please refer to the Configuring the
FreeBSD Kernel (section 5., page 35) section for more information on kernel configuration.

Next you will need to enable disk quotas in /etc/sysconfig . This is done by changing the
line:

quotas=NO

to:

quotas=YES

If you are running FreeBSD 2.2.2 or later, the configuration file will be /etc/rc.conf instead
and the variable name changed to

check_quotas=YES

Finally you will need to edit /etc/fstab to enable disk quotas on a per-file system basis. This
is where you can either enable user or group quotas or both for all of your file systems.

To enable per-user quotas on a file system, add the userquota option to the options field in the
/etc/fstab entry for the file system you want to to enable quotas on. For example:

/dev/sd1s2g /home ufs rw,userquota 1 2

Similarly, to enable group quotas, use the groupquota option instead of the userquota key-
word. To enable both user and group quotas, change the entry as follows:

/dev/sd1s2g /home ufs rw,userquota,groupquota 1 2

By default the quota files are stored in the root directory of the file system with the names
quota.user and quota.group for user and group quotas respectively. See man fstab for
more information. Even though that man page says that you can specify an alternate location for
the quota files, this is not recommended since all of the various quota utilities do not seem to han-
dle this properly.

At this point you should reboot your system with your new kernel. /etc/rc will automatically
run the appropriate commands to create the initial quota files for all of the quotas you enabled in
/etc/fstab , so there is no need to manually create any zero length quota files.

In the normal course of operations you should not be required to run the quotacheck , quo-
taon , or quotaoff commands manually. However, you may want to read their man pages just
to be familiar with their operation.

FreeBSD Handbook 127

10.2 Setting Quota Limits
Once you have configured your system to enable quotas, verify that they really are enabled. An
easy way to do this is to run quota -v . You should see a one line summary of disk usage and
current quota limits for each file system that quotas are enabled on.

You are now ready to start assigning quota limits with the edquota command.

You have several options on how to enforce limits on the amount of disk space a user or group
may allocate, and how many files they may create. You may limit allocations based on disk space
(block quotas) or number of files (inode quotas) or a combination of both. Each of these limits are
further broken down into two categories: hard and soft limits.

A hard limit may not be exceeded. Once a user reaches their hard limit they may not make any
further allocations on the file system in question. For example, if the user has a hard limit of 500
blocks on a file system and is currently using 490 blocks, the user can only allocate an additional
10 blocks. Attempting to allocate an additional 11 blocks will fail.

Soft limits on the other hand can be exceeded for a limited amount of time. This period of time is
known as the grace period, which is one week by default. If a user stays over his or her soft limit
longer than their grace period, the soft limit will turn into a hard limit and no further allocations
will be allowed. When the user drops back below the soft limit, the grace period will be reset.

The following is an example of what you might see when you run then edquota command.
When the edquota command is invoked, you are placed into the editor specified by the EDITOR
environment variable, or in the vi editor if the EDITORvariable is not set, to allow you to edit the
quota limits.

edquota -u test
Quotas for user test:
/usr: blocks in use: 65, limits (soft = 50, hard = 75)

inodes in use: 7, limits (soft = 50, hard = 60)
/usr/var: blocks in use: 0, limits (soft = 50, hard = 75)

inodes in use: 0, limits (soft = 50, hard = 60)

You will normally see two lines for each file system that has quotas enabled. One line for the
block limits, and one line for inode limits. Simply change the value you want updated to modify
the quota limit. For example, to raise this users block limit from a soft limit of 50 and a hard limit
of 75 to a soft limit of 500 and a hard limit of 600, change:

/usr: blocks in use: 65, limits (soft = 50, hard = 75)

to:

/usr: blocks in use: 65, limits (soft = 500, hard = 600)

The new quota limits will be in place when you exit the editor.

Sometimes it is desirable to set quota limits on a range of uids. This can be done by use of the -p
option on the edquota command. First, assign the desired quota limit to a user, and then run
edquota -p protouser startuid-enduid . For example, if user test has the desired
quota limits, the following command can be used to duplicate those quota limits for uids 10,000
through 19,999:

edquota -p test 10000-19999

The ability to specify uid ranges was added to the system after 2.1 was released. If you need this
feature on a 2.1 system, you will need to obtain a newer copy of edquota.

See man edquota for more detailed information.

FreeBSD Handbook 128

10.3 Checking Quota Limits and Disk Usage
You can use either the quota or the repquota commands to check quota limits and disk usage.
The quota command can be used to check individual user and group quotas and disk usage.
Only the super-user may examine quotas and usage for other users, or for groups that they are
not a member of. The repquota command can be used to get a summary of all quotas and disk
usage for file systems with quotas enabled.

The following is some sample output from the quota -v command for a user that has quota lim-
its on two file systems.

Disk quotas for user test (uid 1002):
Filesystem blocks quota limit grace files quota limit grace

/usr 65* 50 75 5days 7 50 60
/usr/var 0 50 75 0 50 60

On the /usr file system in the above example this user is currently 15 blocks over their soft limit
of 50 blocks and has 5 days of their grace period left. Note the asterisk (*) which indicates that
the user is currently over their quota limit.

Normally file systems that the user is not using any disk space on will not show up in the output
from the quota command, even if they have a quota limit assigned for that file system. The -v
option will display those file systems, such as the /usr/var file system in the above example.

10.4 * Quotas over NFS
This section is still under development.

FreeBSD Handbook 129

11. The X Window System
Pending the completion of this section, please refer to documentation supplied by the The
XFree86 Project, Inc10 .

10. <URL:http://www.xfree86.org/>

FreeBSD Handbook 130

12. PC Hardware compatibility
Issues of hardware compatibility are among the most troublesome in the computer industry
today and FreeBSD is by no means immune to trouble. In this respect, FreeBSD’s advantage of
being able to run on inexpensive commodity PC hardware is also its liability when it comes to
support for the amazing variety of components on the market. While it would be impossible to
provide a exhaustive listing of hardware that FreeBSD supports, this section serves as a catalog of
the device drivers included with FreeBSD and the hardware each drivers supports. Where possi-
ble and appropriate, notes about specific products are included. You may also want to refer to the
kernel configuration file (section 5.3, page 36) section in this handbook for a list of supported
devices.

As FreeBSD is a volunteer project without a funded testing department, we depend on you, the
user, for much of the information contained in this catalog. If you have direct experience of hard-
ware that does or does not work with FreeBSD, please let us know by sending e-mail to the
FreeBSD documentation project mailing list <freebsd-doc@FreeBSD.ORG> . Questions about
supported hardware should be directed to the FreeBSD general questions mailing list
<freebsd-questions@FreeBSD.ORG> (see Mailing Lists (section 27.1, page 368) for more
information). When submitting information or asking a question, please remember to specify
exactly what version of FreeBSD you are using and include as many details of your hardware as
possible.

12.1 Resources on the Internet
The following links have proven useful in selecting hardware. Though some of what you see
won’t necessarily be specific (or even applicable) to FreeBSD, most of the hardware information
out there is OS independent. Please check with the FreeBSD hardware guide to make sure that
your chosen configuration is supported before making any purchases.

• The Pentium Systems Hardware Performance Guide

12.2 Sample Configurations
The following list of sample hardware configurations by no means constitutes an endorsement of
a given hardware vendor or product by The FreeBSD Project. This information is provided only as
a public service and merely catalogs some of the experiences that various individuals have had
with different hardware combinations. Your mileage may vary. Slippery when wet. Beware of
dog.

12.2.1 Jordan’s Picks

I have had fairly good luck building workstation and server configurations with the following
components. I can’t guarantee that you will too, nor that any of the companies here will remain
"best buys" forever. I will try, when I can, to keep this list up-to-date but cannot obviously guar-
antee that it will be at any given time.

12.2.1.1 Motherboards

For Pentium Pro (P6) systems, I’m quite fond of the Tyan S1668 dual-processor motherboard. It
makes a dandy little single or dual processor system (which is supported in FreeBSD 3.0) and the
price of the Pentium Pro 180/256K chip has fallen to truly affordable levels. The Pentium Pro
remains my favorite processor solution server systems (Megahertz ratings aren’t everything).

For the Pentium II, I’m rather partial to the ASUS P2l97-S motherboard with the on-board
Adaptec SCSI WIDE controller.

For Pentium machines, the ASUS P55T2P4 motherboard appears to be a good choice for mid-to-
high range Pentium server and workstation systems. You might also wish to investigate ASUS’s
486SP3G offering if it’s a 486-class motherboard you’re looking for (Note: These have become
increasingly hard to get as ASUS apparently no longer manufactures them).

FreeBSD Handbook 131

Those wishing to build more fault-tolerant systems should also be sure to use Parity memory or,
for truly 24/7 applications, ECC memory. Note that ECC memory does involve a slight perfor-
mance trade-off (which may or may not be noticeable depending on your application) but buys
you significantly increased fault-tolerance to memory errors.

12.2.1.2 Disk Controllers

This one is a bit trickier, and while I used to recommend the Buslogic controllers unilaterally for
everything from ISA to PCI, now I tend to lean towards the Adaptec 1542CF for ISA, Buslogic
Bt747c for EISA and Adaptec 2940UW for PCI.

The NCR/Symbios cards for PCI have also worked well for me, though you need to make sure
that your motherboard supports the BIOS-less model if you’re using one of those (if your card
has nothing which looks even vaguely like a ROM chip on it, you’ve probably got one which
expects its BIOS to be on your motherboard).

If you should find that you need more than one SCSI controller in a PCI machine, you may wish
to consider conserving your scarce PCI bus resources by buying the Adaptec 3940 card, which
puts two SCSI controllers (and internal busses) in a single slot.

12.2.1.3 Disk drives

In this particular game of Russian roulette, I’ll make few specific recommendations except to say
"SCSI over IDE whenever you can afford it." Even in small desktop configurations, SCSI often
makes more sense since it allows you to easily migrate drives from server to desktop as falling
drive prices make it economical to do so. If you have more than one machine to administer then
think of it not simply as storage, think of it as a food chain!

I do not currently see SCSI WIDE drives as a necessary expense unless you’re putting together an
NFS or NEWS server that will be doing a lot of multiuser disk I/O.

12.2.1.4 CDROM drives

My SCSI preferences extend to SCSI CDROM drives as well, and while the Toshiba XM-3501B
(also released in a caddy-less model called the XM-5401B) drive has always performed well for
me, I’m now a great fan of the Plextor PX-12CS drive. It’s a 12 speed drive with excellent perfor-
mance and reliability.

Generally speaking, most SCSI CDROM drives I’ve seen have been of pretty solid construction
and you probably won’t go wrong with an HP or NEC SCSI CDROM drive either. SCSI CDROM
prices also appear to have dropped considerably in the last few months and are now quite com-
petitive with IDE CDROMs while remaining a technically superior solution. I now see no reason
whatsoever to settle for an IDE CDROM drive if given a choice between the two.

12.2.1.5 CD Recordable (WORM) drives

At the time of this writing, FreeBSD supports 3 types of CDR drives (though I believe they all
ultimately come from Phillips anyway): The Phillips CDD 522 (Acts like a Plasmon), the PLAS-
MON RF4100 and the HP 6020i. I myself use the HP 6020i for burning CDROMs (with 2.2-cur-
rent - it does not work with 2.1.5 or earlier releases of the SCSI code) and it works very well. See
/usr/share/examples/worm on your 2.2 system for example scripts used to created ISO9660
filesystem images (with RockRidge extensions) and burn them onto an HP6020i CDR.

12.2.1.6 Tape drives

I’ve had pretty good luck with both 8mm drives from Exabyte and 4mm (DAT) drives from HP.

For backup purposes, I’d have to give the higher recommendation to the Exabyte due to the more
robust nature (and higher storage capacity) of 8mm tape.

FreeBSD Handbook 132

12.2.1.7 Video Cards

If you can also afford to buy a commercial X server for US$99 from Xi Graphics, Inc. (formerly X
Inside, Inc) then I can heartily recommend the Matrox Millenium card. Note that support for this
card is also excellent with the XFree86 server, which is now at version 3.3.2.

You also certainly can’t go wrong with one of Number 9’s cards - their S3 Vision 868 and 968
based cards (the 9FX series) also being quite fast and very well supported by XFree86’s S3 server.

12.2.1.8 Monitors

I have had very good luck with the Sony Multiscan 17seII monitors, as have I with the Viewsonic
offering in the same (Trinitron) tube. For larger than 17", all I can recommend at the time of this
writing is to not spend any less than U.S. $2,500 for a 21" monitor or $1,700 for a 20" monitor if
that’s what you really need. There are good monitors available in the >=20" range and there are
also cheap monitors in the >=20" range. Unfortunately, very few are both cheap and good!

12.2.1.9 Networking

I can recommend the SMC Ultra 16 controller for any ISA application and the SMC EtherPower
or Compex ENET32 cards for any serious PCI based networking. Both of the PCI cards are based
around DEC’s DC21041 Ethernet controller chip and other cards using it, such as the Zynx ZX342
or DEC DE435, will generally work as well. For 100Mbit networking, either the SMC
SMC9332DST 10/100MB or Intel EtherExpress Pro/100B cards will do a fine job, the Intel Ether-
Express generally getting my vote.

If what you’re looking for is, on the other hand, the cheapest possible solution which will still
work reasonably well, then almost any NE2000 clone is a good choice.

12.2.1.10 Serial

If you’re looking for high-speed serial networking solutions, then Digi International makes the
SYNC/570 series, with drivers now in FreeBSD-current. Emerging Technologies also manufac-
tures a board with T1/E1 capabilities, using software they provide. I have no direct experience
using either product, however.

Multiport card options are somewhat more numerous, though it has to be said that FreeBSD’s
support for Cyclades’s products is probably the tightest, primarily as a result of that company’s
commitment to making sure that we are adequately supplied with evaluation boards and techni-
cal specs. I’ve heard that the Cyclom-16Ye offers the best price/performance, though I’ve not
checked the prices lately. Other multiport cards I’ve heard good things about are the BOCA and
AST cards, and Stallion Technologies apparently offers an unofficial driver for their cards at
this location.

12.2.1.11 Audio

I currently use a Creative Labs AWE32 though just about anything from Creative Labs will gener-
ally work these days. This is not to say that other types of sound cards don’t also work, simply
that I have little experience with them (I was a former GUS fan, but Gravis’s soundcard situation
has been dire for some time).

12.2.1.12 Video

For video capture, there are two good choices - any card based on the Brooktree BT848 chip, such
as the Hauppage or WinTV boards, will work very nicely with FreeBSD. Another board which
works for me is the Matrox Meteor card. FreeBSD also supports the older video spigot card from
Creative Labs, but those are getting somewhat difficult to find. Note that the Meteor frame grab-
ber card will not work with motherboards based on the 440FX chipset! See the motherboard refer-
ence (section 12.2.1.1, page 130) section for details. In such cases, it’s better to go with a BT848
based board.

FreeBSD Handbook 133

12.3 Core/Processing
12.3.1 Motherboards, busses, and chipsets

12.3.1.1 * ISA

12.3.1.2 * EISA

12.3.1.3 * VLB

12.3.1.4 PCI

Contributed by David O’Brien <obrien@FreeBSD.ORG> from postings by Rodney Grimes
<rgrimes@FreeBSD.ORG> .

25 April 1995.

Continuing updates by Jordan K. Hubbard <jkh@FreeBSD.ORG>.
Last update on 26 August 1996.

Of the Intel PCI chip sets, the following list describes various types of known-brokenness and the
degree of breakage, listed from worst to best.

Mercury:
Cache coherency problems, especially if there are ISA bus masters behind the ISA to
PCI bridge chip. Hardware flaw, only known work around is to turn the cache off.

Saturn-I (ie, 82424ZX at rev 0, 1 or 2):
Write back cache coherency problems. Hardware flaw, only known work around is
to set the external cache to write-through mode. Upgrade to Saturn-II.

Saturn-II (ie, 82424ZX at rev 3 or 4):
Works fine, but many MB manufactures leave out the external dirty bit SRAM
needed for write back operation. Work arounds are either run it in write through
mode, or get the dirty bit SRAM installed. (I have these for the ASUS
PCI/I-486SP3G rev 1.6 and later boards).

Neptune:
Can not run more than 2 bus master devices. Admitted Intel design flaw.
Workarounds include do not run more than 2 bus masters, special hardware design
to replace the PCI bus arbiter (appears on Intel Altair board and several other Intel
server group MB’s). And of course Intel’s official answer, move to the Triton chip
set, we ‘‘fixed it there’’.

Triton (ie, 430FX):
No known cache coherency or bus master problems, chip set does not implement
parity checking. Workaround for parity issue. Use Triton-II based motherboards if
you have the choice.

Triton-II (ie, 430HX):
All reports on motherboards using this chipset have been favorable so far. No
known problems.

Orion:
Early versions of this chipset suffered from a PCI write-posting bug which can
cause noticeable performance degradation in applications where large amounts of
PCI bus traffic is involved. B0 stepping or later revisions of the chipset fixed this
problem.

440FX:
This Pentium Pro support chipset seems to work well, and does not suffer from any
of the early Orion chipset problems. It also supports a wider variety of memory,

FreeBSD Handbook 134

including ECC and parity. The only known problem with it is that the Matrox
Meteor frame grabber card doesn’t like it.

12.3.2 CPUs/FPUs

Contributed by Satoshi Asami <asami@FreeBSD.ORG>.
26 December 1997.

12.3.2.1 P6 class (Pentium Pro/Pentium II)

Both the Pentium Pro and Pentium II work fine with FreeBSD. In fact, our main ftp site
ftp.freebsd.org (also known as "ftp.cdrom.com ", world’s largest ftp site) runs FreeBSD on a
Pentium Pro. Configurations details are available for interested parties.

12.3.2.2 Pentium class

The Intel Pentium (P54C), Pentium MMX (P55C), AMD K6 and Cyrix/IBM 6x86MX processors
are all reported to work with FreeBSD. I will not go into details of which processor is faster than
what, there are zillions of web sites on the Internet that tells you one way or another. :)

Note that various CPUs have different voltage/cooling requirements. Make sure your mother-
board can supply the exact voltage needed by the CPU. For instance, many recent MMX chips
require split voltage (e.g., 2.9V core, 3.3V I/O). Also, some AMD and Cyrix/IBM chips run hotter
than Intel chips. In that case, make sure you have good heatsink/fans (you can get the list of cer-
tified parts from their web pages).

12.3.2.2.1 Clock speeds

Contributed by Rodney Grimes <rgrimes@FreeBSD.ORG> .
1 October 1996.

Updated by Satoshi Asami <asami@FreeBSD.ORG>.
27 December 1997.

Pentium class machines use different clock speeds for the various parts of the system. These
being the speed of the CPU, external memory bus, and the PCI bus. It is not always true that a
"faster" processor will make a system faster than a "slower" one, due to the various clock speeds
used. Below is a table showing the differences:

Rated External Clock External to PCI Bus
CPU and Memory Bus Internal Clock Clock
MHz MHz** Multiplier MHz

60 60 1.0 30
66 66 1.0 33
75 50 1.5 25
90 60 1.5 30
100 50* 2 25
100 66 1.5 33
120 60 2 30
133 66 2 33
150 60 2.5 30 (Intel, AMD)
150 75 2 37.5 (Cyrix/IBM 6x86MX)
166 66 2.5 33
180 60 3 30
200 66 3 33
233 66 3.5 33

* The Pentium 100 can be run at either 50MHz external clock with
a multiplier of 2 or at 66MHz and a multiplier of 1.5.

** 66 MHz may actually be 66.667 MHz, but don’t assume so.

As can be seen the best parts to be using are the 100, 133, 166, 200 and 233, with the exception that
at a multiplier of 3 or more the CPU starves for memory.

FreeBSD Handbook 135

12.3.2.2.2 The AMD K6 Bug

In 1997, there have been reports of the AMD K6 seg faulting during heavy compilation. That
problem has been fixed in 3Q ’97. According to reports, K6 chips with date mark "9733" or larger
(i.e., manufactured in the 33rd week of ’97 or later) do not have this bug.

12.3.2.3 * 486 class

12.3.2.4 * 386 class

12.3.2.5 286 class

Sorry, FreeBSD does not run on 80286 machines. It is nearly impossible to run today’s large full-
featured UNIXes on such hardware.

12.3.3 * Memor y

The minimum amount of memory you must have to install FreeBSD is 5 MB. Once your system
is up and running you can build a custom kernel (section 5.2, page 35) that will use less memory. If
you use the boot4.flp you can get away with having only 4 MB.

12.3.4 * BIOS

12.4 Input/Output Devices
12.4.1 * Video cards

12.4.2 * Sound cards

12.4.3 Serial por ts and multipor t cards

12.4.3.1 The UART: What it is and how it works

Copyright © 1996 Frank Durda IV <uhclem@FreeBSD.ORG>, All Rights Reserved.

13 January 1996.

The Universal Asynchronous Receiver/Transmitter (UART) controller is the key component of
the serial communications subsystem of a computer. The UART takes bytes of data and transmits
the individual bits in a sequential fashion. At the destination, a second UART re-assembles the
bits into complete bytes.

Serial transmission is commonly used with modems and for non-networked communication
between computers, terminals and other devices.

There are two primary forms of serial transmission: Synchronous and Asynchronous. Depending
on the modes that are supported by the hardware, the name of the communication sub-system
will usually include a "A" if it supports Asynchronous communications, and a "S" if it supports
Synchronous communications. Both forms are described below.

Some common acronyms are:

UART Universal Asynchronous Receiver/Transmitter

USART Universal Synchronous-Asynchronous Receiver/Transmitter

12.4.3.1.1 Synchronous Ser ial Tr ansmission

Synchronous serial transmission requires that the sender and receiver share a clock with one
another, or that the sender provide a strobe or other timing signal so that the receiver knows
when to "read" the next bit of the data. In most forms of serial Synchronous communication, if
there is no data available at a given instant to transmit, a fill character must be sent instead so that
data is always being transmitted. Synchronous communication is usually more efficient because

FreeBSD Handbook 136

only data bits are transmitted between sender and receiver, and synchronous communication can
be more more costly if extra wiring and circuits are required to share a clock signal between the
sender and receiver.

A form of Synchronous transmission is used with printers and fixed disk devices in that the data
is sent on one set of wires while a clock or strobe is sent on a different wire. Printers and fixed
disk devices are not normally serial devices because most fixed disk interface standards send an
entire word of data for each clock or strobe signal by using a separate wire for each bit of the
word. In the PC industry, these are known as Parallel devices.

The standard serial communications hardware in the PC does not support Synchronous opera-
tions. This mode is described here for comparison purposes only.

12.4.3.1.2 Asynchronous Ser ial Tr ansmission

Asynchronous transmission allows data to be transmitted without the sender having to send a
clock signal to the receiver. Instead, the sender and receiver must agree on timing parameters in
advance and special bits are added to each word which are used to synchronize the sending and
receiving units.

When a word is given to the UART for Asynchronous transmissions, a bit called the "Start Bit" is
added to the beginning of each word that is to be transmitted. The Start Bit is used to alert the
receiver that a word of data is about to be sent, and to force the clock in the receiver into synchro-
nization with the clock in the transmitter. These two clocks must be accurate enough to not have
the frequency drift by more than 10% during the transmission of the remaining bits in the word.
(This requirement was set in the days of mechanical teleprinters and is easily met by modern
electronic equipment.)

After the Start Bit, the individual bits of the word of data are sent, with the Least Significant Bit
(LSB) being sent first. Each bit in the transmission is transmitted for exactly the same amount of
time as all of the other bits, and the receiver "looks" at the wire at approximately halfway through
the period assigned to each bit to determine if the bit is a "1" or a "0". For example, if it takes two
seconds to send each bit, the receiver will examine the signal to determine if it is a "1" or a "0"
after one second has passed, then it will wait two seconds and then examine the value of the next
bit, and so on.

The sender does not know when the receiver has "looked" at the value of the bit. The sender only
knows when the clock says to begin transmitting the next bit of the word.

When the entire data word has been sent, the transmitter may add a Parity Bit that the transmit-
ter generates. The Parity Bit may be used by the receiver to perform simple error checking. Then
at least one Stop Bit is sent by the transmitter.

When the receiver has received all of the bits in the data word, it may check for the Parity Bits
(both sender and receiver must agree on whether a Parity Bit is to be used), and then the receiver
looks for a Stop Bit. If the Stop Bit does not appear when it is supposed to, the UART considers
the entire word to be garbled and will report a Framing Error to the host processor when the data
word is read. The usual cause of a Framing Error is that the sender and receiver clocks were not
running at the same speed, or that the signal was interrupted.

Regardless of whether the data was received correctly or not, the UART automatically discards
the Start, Parity and Stop bits. If the sender and receiver are configured identically, these bits are
not passed to the host.

If another word is ready for transmission, the Start Bit for the new word can be sent as soon as the
Stop Bit for the previous word has been sent.

Because asynchronous data is "self synchronizing", if there is no data to transmit, the transmis-
sion line can be idle.

FreeBSD Handbook 137

12.4.3.1.3 Other UART Functions

In addition to the basic job of converting data from parallel to serial for transmission and from
serial to parallel on reception, a UART will usually provide additional circuits for signals that can
be used to indicate the state of the transmission media, and to regulate the flow of data in the
event that the remote device is not prepared to accept more data. For example, when the device
connected to the UART is a modem, the modem may report the presence of a carrier on the
phone line while the computer may be able to instruct the modem to reset itself or to not take
calls by asserting or deasserting one more more of these extra signals. The function of each of
these additional signals is defined in the EIA RS232-C standard.

12.4.3.1.4 The RS232-C and V.24 Standards

In most computer systems, the UART is connected to circuitry that generates signals that comply
with the EIA RS232-C specification. There is also a CCITT standard named V.24 that mirrors the
specifications included in RS232-C.

12.4.3.1.4.1 RS232-C Bit Assignments (Marks and Spaces) In RS232-C, a value of "1" is called a
"Mark" and a value of "0" is called a "Space". When a communication line is idle, the line is said
to be "Marking", or transmitting continuous "1" values.

The Start bit always has a value of "0" (a Space). The Stop Bit always has a value of "1" (a Mark).
This means that there will always be a Mark (1) to Space (0) transition on the line at the start of
every word, even when multiple word are transmitted back to back. This guarantees that sender
and receiver can resynchronize their clocks regardless of the content of the data bits that are being
transmitted.

The idle time between Stop and Start bits does not have to be an exact multiple (including zero)
of the bit rate of the communication link, but most UARTs are designed this way for simplicity.

In RS232-C, the "Marking" signal (a "1") is represented by a voltage between -2 VDC and -12
VDC, and a "Spacing" signal (a "0") is represented by a voltage between 0 and +12 VDC. The
transmitter is supposed to send +12 VDC or -12 VDC, and the receiver is supposed to allow for
some voltage loss in long cables. Some transmitters in low power devices (like portable comput-
ers) sometimes use only +5 VDC and -5 VDC, but these values are still acceptable to a RS232-C
receiver, provided that the cable lengths are short.

12.4.3.1.4.2 RS232-C Break Signal RS232-C also specifies a signal called a "Break", which is
caused by sending continuous Spacing values (no Start or Stop bits). When there is no electricity
present on the data circuit, the line is considered to be sending "Break".

The "Break" signal must be of a duration longer than the time it takes to send a complete byte
plus Start, Stop and Parity bits. Most UARTs can distinguish between a Framing Error and a
Break, but if the UART cannot do this, the Framing Error detection can be used to identify Breaks.

In the days of teleprinters, when numerous printers around the country were wired in series
(such as news services), any unit could cause a "Break" by temporarily opening the entire circuit
so that no current flowed. This was used to allow a location with urgent news to interrupt some
other location that was currently sending information.

In modern systems there are two types of Break signals. If the Break is longer than 1.6 seconds, it
is considered a "Modem Break", and some modems can be programmed to terminate the conver-
sation and go on-hook or enter the modems’ command mode when the modem detects this sig-
nal. If the Break is smaller than 1.6 seconds, it signifies a Data Break and it is up to the remote
computer to respond to this signal. Sometimes this form of Break is used as an Attention or Inter-
rupt signal and sometimes is accepted as a substitute for the ASCII CONTROL-C character.

Marks and Spaces are also equivalent to "Holes" and "No Holes" in paper tape systems.

Note that Breaks cannot be generated from paper tape or from any other byte value, since bytes
are always sent with Start and Stop bit. The UART is usually capable of generating the

FreeBSD Handbook 138

continuous Spacing signal in response to a special command from the host processor.

12.4.3.1.4.3 RS232-C DTE and DCE Devices The RS232-C specification defines two types of
equipment: the Data Terminal Equipment (DTE) and the Data Carrier Equipment (DCE). Usu-
ally, the DTE device is the terminal (or computer), and the DCE is a modem. Across the phone
line at the other end of a conversation, the receiving modem is also a DCE device and the com-
puter that is connected to that modem is a DTE device. The DCE device receives signals on the
pins that the DTE device transmits on, and vice versa.

When two devices that are both DTE or both DCE must be connected together without a modem
or a similar media translater between them, a NULL modem must be used. The NULL modem
electrically re-arranges the cabling so that the transmitter output is connected to the receiver
input on the other device, and vice versa. Similar translations are performed on all of the control
signals so that each device will see what it thinks are DCE (or DTE) signals from the other device.

The number of signals generated by the DTE and DCE devices are not symmetrical. The DTE
device generates fewer signals for the DCE device than the DTE device receives from the DCE.

12.4.3.1.4.4 RS232-C Pin Assignments The EIA RS232-C specification (and the ITU equivalent,
V.24) calls for a twenty-five pin connector (usually a DB25) and defines the purpose of most of
the pins in that connector.

In the IBM Personal Computer and similar systems, a subset of RS232-C signals are provided via
nine pin connectors (DB9). The signals that are not included on the PC connector deal mainly
with synchronous operation, and this transmission mode is not supported by the UART that IBM
selected for use in the IBM PC.

Depending on the computer manufacturer, a DB25, a DB9, or both types of connector may be
used for RS232-C communications. (The IBM PC also uses a DB25 connector for the parallel
printer interface which causes some confusion.)

Below is a table of the RS232-C signal assignments in the DB25 and DB9 connectors.

DB25 DB9 EIA CCITT Common Signal Description
RS232-C IBM PC Circuit Circuit Name Source
Pin Pin Symbol Symbol

1 - AA 101 PG/FG --- Frame/Protective Ground
2 3 BA 103 TD DTE Transmit Data
3 2 BB 104 RD DCE Receive Data
4 7 CA 105 RTS DTE Request to Send
5 8 CB 106 CTS DCE Clear to Send
6 6 CC 107 DSR DCE Data Set Ready
7 5 AV 102 SG/GND --- Signal Ground
8 1 CF 109 DCD/CD DCE Data Carrier Detect
9 - - - - - Reserved for Test
10 - - - - - Reserved for Test
11 - - - - - Unassigned
12 - CI 122 SRLSD DCE Sec. Recv. Line Signal Detector
13 - SCB 121 SCTS DCE Secondary Clear To Send
14 - SBA 118 STD DTE Secondary Transmit Data
15 - DB 114 TSET DCE Trans. Sig. Element Timing
16 - SBB 119 SRD DCE Secondary Received Data
17 - DD 115 RSET DCE Receiver Signal Element Timing
18 - - 141 LOOP DTE Local Loopback
19 - SCA 120 SRS DTE Secondary Request to Send
20 4 CD 108.2 DTR DTE Data Terminal Ready
21 - - - RDL DTE Remote Digital Loopback
22 9 CE 125 RI DCE Ring Indicator
23 - CH 111 DSRS DTE Data Signal Rate Selector
24 - DA 113 TSET DTE Trans. Sig. Element Timing
25 - - 142 - DCE Test Mode

FreeBSD Handbook 139

12.4.3.1.5 Bits, Baud and Symbols

Baud is a measurement of transmission speed in asynchronous communication. Because of
advances in modem communication technology, this term is frequently misused when describing
the data rates in newer devices.

Traditionally, a Baud Rate represents the number of bits that are actually being sent over the
media, not the amount of data that is actually moved from one DTE device to the other. The
Baud count includes the overhead bits Start, Stop and Parity that are generated by the sending
UART and removed by the receiving UART. This means that seven-bit words of data actually
take 10 bits to be completely transmitted. Therefore, a modem capable of moving 300 bits per
second from one place to another can normally only move 30 7-bit words if Parity is used and one
Start and Stop bit are present.

If 8-bit data words are used and Parity bits are also used, the data rate falls to 27.27 words per
second, because it now takes 11 bits to send the eight-bit words, and the modem still only sends
300 bits per second.

The formula for converting bytes per second into a baud rate and vice versa was simple until
error-correcting modems came along. These modems receive the serial stream of bits from the
UART in the host computer (even when internal modems are used the data is still frequently seri-
alized) and converts the bits back into bytes. These bytes are then combined into packets and
sent over the phone line using a Synchronous transmission method. This means that the Stop,
Start, and Parity bits added by the UART in the DTE (the computer) were removed by the
modem before transmission by the sending modem. When these bytes are received by the remote
modem, the remote modem adds Start, Stop and Parity bits to the words, converts them to a
serial format and then sends them to the receiving UART in the remote computer, who then strips
the Start, Stop and Parity bits.

The reason all these extra conversions are done is so that the two modems can perform error cor-
rection, which means that the receiving modem is able to ask the sending modem to resend a
block of data that was not received with the correct checksum. This checking is handled by the
modems, and the DTE devices are usually unaware that the process is occurring.

By striping the Start, Stop and Parity bits, the additional bits of data that the two modems must
share between themselves to perform error-correction are mostly concealed from the effective
transmission rate seen by the sending and receiving DTE equipment. For example, if a modem
sends ten 7-bit words to another modem without including the Start, Stop and Parity bits, the
sending modem will be able to add 30 bits of its own information that the receiving modem can
use to do error-correction without impacting the transmission speed of the real data.

The use of the term Baud is further confused by modems that perform compression. A single
8-bit word passed over the telephone line might represent a dozen words that were transmitted
to the sending modem. The receiving modem will expand the data back to its original content
and pass that data to the receiving DTE.

Modern modems also include buffers that allow the rate that bits move across the phone line
(DCE to DCE) to be a different speed than the speed that the bits move between the DTE and
DCE on both ends of the conversation. Normally the speed between the DTE and DCE is higher
than the DCE to DCE speed because of the use of compression by the modems.

Because the number of bits needed to describe a byte varied during the trip between the two
machines plus the differing bits-per-seconds speeds that are used present on the DTE-DCE and
DCE-DCE links, the usage of the term Baud to describe the overall communication speed causes
problems and can misrepresent the true transmission speed. So Bits Per Second (bps) is the cor-
rect term to use to describe the transmission rate seen at the DCE to DCE interface and Baud or
Bits Per Second are acceptable terms to use when a connection is made between two systems with
a wired connection, or if a modem is in use that is not performing error-correction or compres-
sion.

FreeBSD Handbook 140

Modern high speed modems (2400, 9600, 14,400, and 19,200bps) in reality still operate at or below
2400 baud, or more accurately, 2400 Symbols per second. High speed modem are able to encode
more bits of data into each Symbol using a technique called Constellation Stuffing, which is why
the effective bits per second rate of the modem is higher, but the modem continues to operate
within the limited audio bandwidth that the telephone system provides. Modems operating at
28,800 and higher speeds have variable Symbol rates, but the technique is the same.

12.4.3.1.6 The IBM Personal Computer UART

Starting with the original IBM Personal Computer, IBM selected the National Semiconductor
INS8250 UART for use in the IBM PC Parallel/Serial Adapter. Subsequent generations of com-
patible computers from IBM and other vendors continued to use the INS8250 or improved ver-
sions of the National Semiconductor UART family.

12.4.3.1.6.1 National Semiconductor UART Family Tree There have been several versions and
subsequent generations of the INS8250 UART. Each major version is described below.

INS8250 -> INS8250B
\

\
\-> INS8250A -> INS82C50A

\
\

\-> NS16450 -> NS16C450
\

\
\-> NS16550 -> NS16550A -> PC16550D

INS8250
This part was used in the original IBM PC and IBM PC/XT. The original name for
this part was the INS8250 ACE (Asynchronous Communications Element) and it is
made from NMOS technology.

The 8250 uses eight I/O ports and has a one-byte send and a one-byte receive
buffer. This original UART has several race conditions and other flaws. The origi-
nal IBM BIOS includes code to work around these flaws, but this made the BIOS
dependent on the flaws being present, so subsequent parts like the 8250A, 16450 or
16550 could not be used in the original IBM PC or IBM PC/XT.

INS8250-B
This is the slower speed of the INS8250 made from NMOS technology. It contains
the same problems as the original INS8250.

INS8250A
An improved version of the INS8250 using XMOS technology with various func-
tional flaws corrected. The INS8250A was used initially in PC clone computers by
vendors who used "clean" BIOS designs. Because of the corrections in the chip, this
part could not be used with a BIOS compatible with the INS8250 or INS8250B.

INS82C50A
This is a CMOS version (low power consumption) of the INS8250A and has similar
functional characteristics.

NS16450
Same as NS8250A with improvements so it can be used with faster CPU bus
designs. IBM used this part in the IBM AT and updated the IBM BIOS to no longer
rely on the bugs in the INS8250.

NS16C450
This is a CMOS version (low power consumption) of the NS16450.

FreeBSD Handbook 141

NS16550
Same as NS16450 with a 16-byte send and receive buffer but the buffer design was
flawed and could not be reliably be used.

NS16550A
Same as NS16550 with the buffer flaws corrected. The 16550A and its successors
have become the most popular UART design in the PC industry, mainly due it its
ability to reliably handle higher data rates on operating systems with sluggish inter-
rupt response times.

NS16C552
This component consists of two NS16C550A CMOS UARTs in a single package.

PC16550D
Same as NS16550A with subtle flaws corrected. This is revision D of the 16550 fam-
ily and is the latest design available from National Semiconductor.

12.4.3.1.6.2 The NS16550AF and the PC16550D are the same thing National reorganized their
part numbering system a few years ago, and the NS16550AFN no longer exists by that name. (If
you have a NS16550AFN, look at the date code on the part, which is a four digit number that usu-
ally starts with a nine. The first two digits of the number are the year, and the last two digits are
the week in that year when the part was packaged. If you have a NS16550AFN, it is probably a
few years old.)

The new numbers are like PC16550DV, with minor differences in the suffix letters depending on
the package material and its shape. (A description of the numbering system can be found below.)

It is important to understand that in some stores, you may pay $15(US) for a NS16550AFN made
in 1990 and in the next bin are the new PC16550DN parts with minor fixes that National has
made since the AFN part was in production, the PC16550DN was probably made in the past six
months and it costs half (as low as $5(US) in volume) as much as the NS16550AFN because they
are readily available.

As the supply of NS16550AFN chips continues to shrink, the price will probably continue to
increase until more people discover and accept that the PC16550DN really has the same function
as the old part number.

12.4.3.1.6.3 National Semiconductor Par t Number ing System The older NSnnnnnrqp part num-
bers are now of the format PCnnnnnrgp.

The "r" is the revision field. The current revision of the 16550 from National Semiconductor is
"D".

The "p" is the package-type field. The types are:

"F" QFP (quad flat pack) L lead type
"N" DIP (dual inline package) through hole straight lead type
"V" LPCC (lead plastic chip carrier) J lead type

The "g" is the product grade field. If an "I" precedes the package-type letter, it indicates an "indus-
trial" grade part, which has higher specs than a standard part but not as high as Military Specifi-
cation (Milspec) component. This is an optional field.

So what we used to call a NS16550AFN (DIP Package) is now called a PC16550DN or
PC16550DIN.

12.4.3.1.7 Other Vendors and Similar UARTs

Over the years, the 8250, 8250A, 16450 and 16550 have been licensed or copied by other chip ven-
dors. In the case of the 8250, 8250A and 16450, the exact circuit (the "megacell") was licensed to
many vendors, including Western Digital and Intel. Other vendors reverse-engineered the part
or produced emulations that had similar behavior.

FreeBSD Handbook 142

In internal modems, the modem designer will frequently emulate the 8250A/16450 with the
modem microprocessor, and the emulated UART will frequently have a hidden buffer consisting
of several hundred bytes. Because of the size of the buffer, these emulations can be as reliable as a
16550A in their ability to handle high speed data. However, most operating systems will still
report that the UART is only a 8250A or 16450, and may not make effective use of the extra
buffering present in the emulated UART unless special drivers are used.

Some modem makers are driven by market forces to abandon a design that has hundreds of bytes
of buffer and instead use a 16550A UART so that the product will compare favorably in market
comparisons even though the effective performance may be lowered by this action.

A common misconception is that all parts with "16550A" written on them are identical in perfor-
mance. There are differences, and in some cases, outright flaws in most of these 16550A clones.

When the NS16550 was developed, the National Semiconductor obtained several patents on the
design and they also limited licensing, making it harder for other vendors to provide a chip with
similar features. Because of the patents, reverse-engineered designs and emulations had to avoid
infringing the claims covered by the patents. Subsequently, these copies almost never perform
exactly the same as the NS16550A or PC16550D, which are the parts most computer and modem
makers want to buy but are sometimes unwilling to pay the price required to get the genuine
part.

Some of the differences in the clone 16550A parts are unimportant, while others can prevent the
device from being used at all with a given operating system or driver. These differences may
show up when using other drivers, or when particular combinations of events occur that were
not well tested or considered in the Windows driver. This is because most modem vendors and
16550-clone makers use the Microsoft drivers from Windows for Workgroups 3.11 and the
Microsoft MSD utility as the primary tests for compatibility with the NS16550A. This over-sim-
plistic criteria means that if a different operating system is used, problems could appear due to
subtle differences between the clones and genuine components.

National Semiconductor has made available a program named COMTEST that performs compati-
bility tests independent of any OS drivers. It should be remembered that the purpose of this type
of program is to demonstrate the flaws in the products of the competition, so the program will
report major as well as extremely subtle differences in behavior in the part being tested.

In a series of tests performed by the author of this document in 1994, components made by
National Semiconductor, TI, StarTech, and CMD as well as megacells and emulations embedded
in internal modems were tested with COMTEST. A difference count for some of these compo-
nents is listed below. Because these tests were performed in 1994, they may not reflect the current
performance of the given product from a vendor.

It should be noted that COMTEST normally aborts when an excessive number or certain types of
problems have been detected. As part of this testing, COMTEST was modified so that it would
not abort no matter how many differences were encountered.

FreeBSD Handbook 143

Vendor Part number Errors aka "differences" reported
National (PC16550DV) 0 *

National (NS16550AFN) 0

National (NS16C552V) 0 *

TI (TL16550AFN) 3

CMD (16C550PE) 19

StarTech (ST16C550J) 23

Rockwell reference modem
with internal 16550 or an
emulation (RC144DPi/C3000-25) 117

Sierra modem with an internal
16550 (SC11951/SC11351) 91

It is important to understand that a simple count of differences from COMTEST does not reveal a
lot about what differences are important and which are not. For example, about half of the differ-
ences reported in the two modems listed above that have internal UARTs were caused by the
clone UARTs not supporting five- and six-bit character modes. The real 16550, 16450, and 8250
UARTs all support these modes and COMTEST checks the functionality of these modes so over
fifty differences are reported. However, almost no modern modem supports five- or six-bit char-
acters, particularly those with error-correction and compression capabilities. This means that the
differences related to five- and six-bit character modes can be discounted.

Many of the differences COMTEST reports have to do with timing. In many of the clone designs,
when the host reads from one port, the status bits in some other port may not update in the same
amount of time (some faster, some slower) as a real NS16550AFN and COMTEST looks for these
differences. This means that the number of differences can be misleading in that one device may
only have one or two differences but they are extremely serious, and some other device that
updates the status registers faster or slower than the reference part (that would probably never
affect the operation of a properly written driver) could have dozens of differences reported.

* To date, the author of this document has not found any non-National parts that report zero dif-
ferences using the COMTEST program. It should also be noted that National has had five ver-
sions of the 16550 over the years and the newest parts behave a bit differently than the classic
NS16550AFN that is considered the benchmark for functionality. COMTEST appears to turn a
blind eye to the differences within the National product line and reports no errors on the National
parts (except for the original 16550) even when there are official erratas that describe bugs in the
A, B and C revisions of the parts, so this bias in COMTEST must be taken into account.

COMTEST can be used as a screening tool to alert the administrator to the presence of potentially
incompatible components that might cause problems or have to be handled as a special case.

If you run COMTEST on a 16550 that is in a modem or a modem is attached to the serial port, you
need to first issue a ATE0&W command to the modem so that the modem will not echo any of the
test characters. If you forget to do this, COMTEST will report at least this one difference:

Error (6)...Timeout interrupt failed: IIR = c1 LSR = 61

12.4.3.1.8 8250/16450/16550 Registers

The 8250/16450/16550 UART occupies eight contiguous I/O port addresses. In the IBM PC,
there are two defined locations for these eight ports and they are known collectively as COM1
and COM2. The makers of PC-clones and add-on cards have created two additional areas known
as COM3 and COM4, but these extra COM ports conflict with other hardware on some systems.
The most common conflict is with video adapters that provide IBM 8514 emulation.

FreeBSD Handbook 144

COM1 is located from 0x3f8 to 0x3ff and normally uses IRQ 4
COM2 is located from 0x2f8 to 0x2ff and normally uses IRQ 3
COM3 is located from 0x3e8 to 0x3ef and has no standardized IRQ
COM4 is located from 0x2e8 to 0x2ef and has no standardized IRQ

A description of the I/O ports of the 8250/16450/16550 UART is provided below.

I/O Access Description
Port Allowed

+0x00 write Transmit Holding Register (THR)
(DLAB==0) Information written to this port are treated

as data words and will be transmitted by the
UART.

+0x00 read Receive Buffer Register (RBR)
(DLAB==0) Any data words received by the UART from the

serial link are accessed by the host by
reading this port.

+0x00 write/read Divisor Latch LSB (DLL)
(DLAB==1) This value will be divided from the master

input clock (in the IBM PC, the master
clock is 1.8432MHz) and the resulting clock
will determine the baud rate of the UART.
This register holds bits 0 thru 7 of the
divisor.

+0x01 write/read Divisor Latch MSB (DLH)
(DLAB==1) This value will be divided from the master

input clock (in the IBM PC, the master
clock is 1.8432MHz) and the resulting clock
will determine the baud rate of the UART.
This register holds bits 8 thru 15 of the
divisor.

+0x01 write/read Interrupt Enable Register (IER)
(DLAB==0) The 8250/16450/16550 UART classifies events into

one of four categories. Each category can be
configured to generate an interrupt when any of
the events occurs. The 8250/16450/16550 UART
generates a single external interrupt signal
regardless of how many events in the enabled
categories have occurred. It is up to the host
processor to respond to the interrupt and then
poll the enabled interrupt categories (usually
all categories have interrupts enabled) to
determine the true cause(s) of the interrupt.

Bit 7 Reserved, always 0.

Bit 6 Reserved, always 0.

Bit 5 Reserved, always 0.

Bit 4 Reserved, always 0.

Bit 3 Enable Modem Status Interrupt (EDSSI)
Setting this bit to "1" allows the UART
to generate an interrupt when a
change occurs on one or more of the
status lines.

FreeBSD Handbook 145

Bit 2 Enable Receiver Line Status
Interrupt (ELSI)
Setting this bit to "1" causes the UART
to generate an interrupt when the
an error (or a BREAK signal) has been
detected in the incoming data.

Bit 1 Enable Transmitter Holding Register
Empty Interrupt (ETBEI)
Setting this bit to "1" causes the UART
to generate an interrupt when the
UART has room for one or more
additional characters that are to
be transmitted.

Bit 0 Enable Received Data Available
Interrupt (ERBFI)
Setting this bit to "1" causes the UART
to generate an interrupt when the UART
has received enough characters to exceed
the trigger level of the FIFO, or the
FIFO timer has expired (stale data), or
a single character has been received
when the FIFO is disabled.

+0x02 write FIFO Control Register (FCR)
(This port does not exist on the 8250 and 16450

UART.)

Bit 7 Receiver Trigger Bit #1
Bit 6 Receiver Trigger Bit #0

These two bits control at what point the
receiver is to generate an interrupt when
the FIFO is active.

7 6 How many words are received
before an interrupt is generated.

0 0 1

0 1 4

1 0 8

1 1 14

Bit 5 Reserved, always 0.

Bit 4 Reserved, always 0.

Bit 3 DMA Mode Select
If Bit 0 is set to "1" (FIFOs enabled),
setting this bit changes the operation
of the -RXRDY and -TXRDY signals from
Mode 0 to Mode 1.

Bit 2 Transmit FIFO Reset
When a "1" is written to this bit,
the contents of the FIFO are discarded.
Any word currently being transmitted
will be sent intact. This function is
useful in aborting transfers.

Bit 1 Receiver FIFO Reset
When a "1" is written to this bit,

FreeBSD Handbook 146

the contents of the FIFO are discarded.
Any word currently being assembled
in the shift register will be received
intact.

Bit 0 16550 FIFO Enable
When set, both the transmit and receive
FIFOs are enabled. Any contents in the
holding register, shift registers or
FIFOs are lost when FIFOs are enabled or
disabled.

+0x02 read Interrupt Identification Register (IIR)

Bit 7 FIFOs enabled.
On the 8250/16450 UART, this bit is zero.

Bit 6 FIFOs enabled.
On the 8250/16450 UART, this bit is zero.

Bit 5 Reserved, always 0.

Bit 4 Reserved, always 0.

Bit 3 Interrupt ID Bit #2
On the 8250/16450 UART, this bit is zero.

Bit 2 Interrupt ID Bit #1
Bit 1 Interrupt ID Bit #0

These three bits combine to report
the category of event that caused the
interrupt that is in progress. These
categories have priorities, so if
multiple categories of events occur at
the same time, the UART will report the
more important events first and the host
must resolve the events in the order they
are reported. All events that caused the
current interrupt must be resolved before
any new interrupts will be generated.
(This is a limitation of the PC
architecture.)

2 1 0 Priority Description

0 1 1 First Receiver Error
(OE, PE, BI or FE)

0 1 0 Second Received Data
Available

1 1 0 Second Trigger level
identification
(Stale data in

receive buffer)

0 0 1 Third Transmitter has
room for more
words (THRE)

0 0 0 Fourth Modem Status
Change (-CTS,
-DSR, -RI, or
-DCD)

FreeBSD Handbook 147

Bit 0 Interrupt Pending Bit
If this bit is set to "0", then at least
one interrupt is pending.

+0x03 write/read Line Control Register (LCR)

Bit 7 Divisor Latch Access Bit (DLAB)
When set, access to the data
transmit/receive register (THR/RBR) and
the Interrupt Enable Register (IER) is
disabled. Any access to these ports is
now redirected to the Divisor Latch
Registers. Setting this bit, loading
the Divisor Registers, and clearing
DLAB should be done with interrupts
disabled.

Bit 6 Set Break
When set to "1", the transmitter begins
to transmit continuous Spacing until
this bit is set to "0". This overrides
any bits of characters that are being
transmitted.

Bit 5 Stick Parity
When parity is enabled, setting this
bit causes parity to always be "1" or
"0", based on the value of Bit 4.

Bit 4 Even Parity Select (EPS)
When parity is enabled and Bit 5 is "0",
setting this bit causes even parity
to be transmitted and expected.
Otherwise, odd parity is used.

Bit 3 Parity Enable (PEN)
When set to "1", a parity bit is
inserted between the last bit of the
data and the Stop Bit. The UART will
also expect parity to be present in
the received data.

Bit 2 Number of Stop Bits (STB)
If set to "1" and using 5-bit data words,
1.5 Stop Bits are transmitted and
expected in each data word. For 6, 7
and 8-bit data words, 2 Stop Bits are
transmitted and expected. When this bit
is set to "0", one Stop Bit is used on
each data word.

Bit 1 Word Length Select Bit #1 (WLSB1)
Bit 0 Word Length Select Bit #0 (WLSB0)

Together these bits specify the number
of bits in each data word.

1 0 Word Length

0 0 5 Data Bits
0 1 6 Data Bits
1 0 7 Data Bits
1 1 8 Data Bits

FreeBSD Handbook 148

+0x04 write/read Modem Control Register (MCR)

Bit 7 Reserved, always 0.

Bit 6 Reserved, always 0.

Bit 5 Reserved, always 0.

Bit 4 Loop-Back Enable
When set to "1", the UART transmitter
and receiver are internally connected
together to allow diagnostic operations.
In addition, the UART modem control
outputs are connected to the UART modem
control inputs. CTS is connected to RTS,
DTR is connected to DSR, OUT1 is
connected to RI, and OUT 2 is connected
to DCD.

Bit 3 OUT 2
An auxiliary output that the host
processor may set high or low.
In the IBM PC serial adapter (and most
clones), OUT 2 is used to tri-state
(disable) the interrupt signal from the
8250/16450/16550 UART.

Bit 2 OUT 1
An auxiliary output that the host
processor may set high or low.
This output is not used on the IBM PC
serial adapter.

Bit 1 Request to Send (RTS)
When set to "1", the output of the UART
-RTS line is Low (Active).

Bit 0 Data Terminal Ready (DTR)
When set to "1", the output of the UART
-DTR line is Low (Active).

+0x05 write/read Line Status Register (LSR)

Bit 7 Error in Receiver FIFO
On the 8250/16450 UART, this bit is zero.
This bit is set to "1" when any of
the bytes in the FIFO have one or more
of the following error conditions: PE,
FE, or BI.

Bit 6 Transmitter Empty (TEMT)
When set to "1", there are no words
remaining in the transmit FIFO or the
transmit shift register. The
transmitter is completely idle.

Bit 5 Transmitter Holding Register Empty (THRE)
When set to "1", the FIFO (or holding
register) now has room for at least one
additional word to transmit. The
transmitter may still be transmitting
when this bit is set to "1".

Bit 4 Break Interrupt (BI)

FreeBSD Handbook 149

The receiver has detected a Break signal.

Bit 3 Framing Error (FE)
A Start Bit was detected but the Stop
Bit did not appear at the expected time.
The received word is probably garbled.

Bit 2 Parity Error (PE)
The parity bit was incorrect for the
word received.

Bit 1 Overrun Error (OE)
A new word was received and there
was no room in the receive buffer. The
newly-arrived word in the shift
register is discarded. On 8250/16450
UARTs, the word in the holding
register is discarded and the newly-
arrived word is put in the holding
register.

Bit 0 Data Ready (DR)
One or more words are in the
receive FIFO that the host may read.
A word must be completely received
and moved from the shift register into
the FIFO (or holding register for
8250/16450 designs) before this bit is
set.

+0x06 write/read Modem Status Register (MSR)

Bit 7 Data Carrier Detect (DCD)
Reflects the state of the DCD line
on the UART.

Bit 6 Ring Indicator (RI)
Reflects the state of the RI line on
the UART.

Bit 5 Data Set Ready (DSR)
Reflects the state of the DSR line on
the UART.

Bit 4 Clear To Send (CTS)
Reflects the state of the CTS line on
the UART.

Bit 3 Delta Data Carrier Detect (DDCD)
Set to "1" if the -DCD line has changed
state one more more times since the last
time the MSR was read by the host.

Bit 2 Trailing Edge Ring Indicator (TERI)
Set to "1" if the -RI line has had a
low to high transition since the last
time the MSR was read by the host.

Bit 1 Delta Data Set Ready (DDSR)
Set to "1" if the -DSR line has changed
state one more more times since the last
time the MSR was read by the host.

Bit 0 Delta Clear To Send (DCTS)

FreeBSD Handbook 150

Set to "1" if the -CTS line has changed
state one more more times since the last
time the MSR was read by the host.

+0x07 write/read Scratch Register (SCR)
This register performs no function in the
UART. Any value can be written by the host to
this location and read by the host later on.

12.4.3.1.9 Beyond the 16550A UART

Although National Semiconductor has not offered any components compatible with the 16550
that provide additional features, various other vendors have. Some of these components are
described below. It should be understood that to effectively utilize these improvements, drivers
may have to be provided by the chip vendor since most of the popular operating systems do not
support features beyond those provided by the 16550.

ST16650
By default this part is similar to the NS16550A, but an extended 32-byte send and
receive buffer can be optionally enabled. Made by Startech.

TIL16660
By default this part behaves similar to the NS16550A, but an extended 64-byte send
and receive buffer can be optionally enabled. Made by Texas Instruments.

Hayes ESP
This proprietary plug-in card contains a 2048-byte send and receive buffer, and sup-
ports data rates to 230.4Kbit/sec. Made by Hayes.

In addition to these "dumb" UARTs, many vendors produce intelligent serial communication
boards. This type of design usually provides a microprocessor that interfaces with several
UARTs, processes and buffers the data, and then alerts the main PC processor when necessary.
Because the UARTs are not directly accessed by the PC processor in this type of communication
system, it is not necessary for the vendor to use UARTs that are compatible with the 8250, 16450,
or the 16550 UART. This leaves the designer free to components that may have better perfor-
mance characteristics.

12.4.3.2 Configuring the sio driver

The sio driver provides support for NS8250-, NS16450-, NS16550 and NS16550A-based EIA
RS-232C (CCITT V.24) communications interfaces. Several multiport cards are supported as well.
See the sio(4) manual page for detailed technical documentation.

12.4.3.2.1 Digi Inter national (DigiBoard) PC/8

Contributed by Andrew Webster <awebster@pubnix.net> .
26 August 1995.

Here is a config snippet from a machine with a Digi International PC/8 with 16550. It has 8
modems connected to these 8 lines, and they work just great. Do not forget to add options
COM_MULTIPORTor it will not work very well!

device sio4 at isa? port 0x100 tty flags 0xb05
device sio5 at isa? port 0x108 tty flags 0xb05
device sio6 at isa? port 0x110 tty flags 0xb05
device sio7 at isa? port 0x118 tty flags 0xb05
device sio8 at isa? port 0x120 tty flags 0xb05
device sio9 at isa? port 0x128 tty flags 0xb05
device sio10 at isa? port 0x130 tty flags 0xb05
device sio11 at isa? port 0x138 tty flags 0xb05 irq 9 vector siointr

The trick in setting this up is that the MSB of the flags represent the last SIO port, in this case 11
so flags are 0xb05.

FreeBSD Handbook 151

12.4.3.2.2 Boca 16

Contributed by Don Whiteside <whiteside@acm.org> .
26 August 1995.

The procedures to make a Boca 16 pord board with FreeBSD are pretty straightforward, but you
will need a couple things to make it work:

1. You either need the kernel sources installed so you can recompile the necessary options or
you will need someone else to compile it for you. The 2.0.5 default kernel does not come
with multiport support enabled and you will need to add a device entry for each port any-
ways.

2. Two, you will need to know the interrupt and IO setting for your Boca Board so you can
set these options properly in the kernel.

One important note - the actual UART chips for the Boca 16 are in the connector box, not on the
internal board itself. So if you have it unplugged, probes of those ports will fail. I have never
tested booting with the box unplugged and plugging it back in, and I suggest you do not either.

If you do not already have a custom kernel configuration file set up, refer to Kernel Configuration
(section 5., page 35) for general procedures. The following are the specifics for the Boca 16 board
and assume you are using the kernel name MYKERNEL and editing with vi.

1. Add the line

options COM_MULTIPORT

to the config file.

2. Where the current device sio xxx lines are, you will need to add 16 more devices. Only
the last device includes the interrupt vector for the board. (See the sio(4) manual page for
detail as to why.)

The following example is for a Boca Board with an interrupt of 3, and a base IO address
100h. The IO address for Each port is +8 hexadecimal from the previous port, thus the
100h, 108h, 110h... addresses.

device sio1 at isa? port 0x100 tty flags 0x1005
device sio2 at isa? port 0x108 tty flags 0x1005
device sio3 at isa? port 0x110 tty flags 0x1005
device sio4 at isa? port 0x118 tty flags 0x1005
[...]
device sio15 at isa? port 0x170 tty flags 0x1005
device sio16 at isa? port 0x178 tty flags 0x1005 irq 3 vector siointr

The flags entry must be changed from this example unless you are using the exact same sio
assignments. Flags are set according to 0xMYY where M indicates the minor number of the
master port (the last port on a Boca 16) and YY indicates if FIFO is enabled or dis-
abled(enabled), IRQ sharing is used(yes) and if there is an AST/4 compatible IRQ control
register(no).

In this example,

flags 0x1005

indicates that the master port is sio16. If I added another board and assigned sio17 through

FreeBSD Handbook 152

sio28, the flags for all 16 ports on that board would be 0x1C05, where 1C indicates the
minor number of the master port. Do not change the 05 setting.

3. Save and complete the kernel configuration, recompile, install and reboot.

Presuming you have successfully installed the recompiled kernel and have it set to the cor-
rect address and IRQ, your boot message should indicate the successful probe of the Boca
ports as follows: (obviously the sio numbers, IO and IRQ could be different)

sio1 at 0x100-0x107 flags 0x1005 on isa
sio1: type 16550A (multiport)
sio2 at 0x108-0x10f flags 0x1005 on isa
sio2: type 16550A (multiport)
sio3 at 0x110-0x117 flags 0x1005 on isa
sio3: type 16550A (multiport)
sio4 at 0x118-0x11f flags 0x1005 on isa
sio4: type 16550A (multiport)
sio5 at 0x120-0x127 flags 0x1005 on isa
sio5: type 16550A (multiport)
sio6 at 0x128-0x12f flags 0x1005 on isa
sio6: type 16550A (multiport)
sio7 at 0x130-0x137 flags 0x1005 on isa
sio7: type 16550A (multiport)
sio8 at 0x138-0x13f flags 0x1005 on isa
sio8: type 16550A (multiport)
sio9 at 0x140-0x147 flags 0x1005 on isa
sio9: type 16550A (multiport)
sio10 at 0x148-0x14f flags 0x1005 on isa
sio10: type 16550A (multiport)
sio11 at 0x150-0x157 flags 0x1005 on isa
sio11: type 16550A (multiport)
sio12 at 0x158-0x15f flags 0x1005 on isa
sio12: type 16550A (multiport)
sio13 at 0x160-0x167 flags 0x1005 on isa
sio13: type 16550A (multiport)
sio14 at 0x168-0x16f flags 0x1005 on isa
sio14: type 16550A (multiport)
sio15 at 0x170-0x177 flags 0x1005 on isa
sio15: type 16550A (multiport)
sio16 at 0x178-0x17f irq 3 flags 0x1005 on isa
sio16: type 16550A (multiport master)

If the messages go by too fast to see, dmesg > more will show you the boot messages.

4. Next, appropriate entries in /dev for the devices must be made using the /dev/MAKEDEV
script. After becoming root:

cd /dev

./MAKEDEV tty1

./MAKEDEV cua1

(everything in between)

./MAKEDEV ttyg

./MAKEDEV cuag

If you do not want or need callout devices for some reason, you can dispense with making

FreeBSD Handbook 153

the cua* devices.

5. If you want a quick and sloppy way to make sure the devices are working, you can simply
plug a modem into each port and (as root) echo at > ttyd* for each device you have
made. You should see the RX lights flash for each working port.

12.4.3.3 Configuring the cy driver

Contributed by Alex Nash <alex@freebsd.org> .
6 June 1996.

The Cyclades multiport cards are based on the cy driver instead of the usual sio driver used by
other multiport cards. Configuration is a simple matter of:

1. Add the cy device to your kernel configuration (section 5.3, page 36) (note that your irq and
iomem settings may differ).

device cy0 at isa? tty irq 10 iomem 0xd4000 iosiz 0x2000 vector cyintr

2. Rebuild and install (section 5.2, page 35) the new kernel.

3. Make the device nodes (section 5.4, page 48) by typing (the following example assumes an
8-port board):

cd /dev
for i in 0 1 2 3 4 5 6 7;do ./MAKEDEV cuac$i ttyc$i;done

4. If appropriate, add dialup (section 14.3, page 194) entries to /etc/ttys (section 14.3.5.2, page
200) by duplicating serial device (ttyd) entries and using ttyc in place of ttyd . For
example:

ttyc0 "/usr/libexec/getty std.38400" unknown on insecure
ttyc1 "/usr/libexec/getty std.38400" unknown on insecure
ttyc2 "/usr/libexec/getty std.38400" unknown on insecure
[...]
ttyc7 "/usr/libexec/getty std.38400" unknown on insecure

5. Reboot with the new kernel.

12.4.4 * Parallel ports

12.4.5 * Modems

12.4.6 * Network cards

12.4.7 * Keyboards

12.4.8 * Mice

12.4.9 * Other

12.5 Storage Devices

FreeBSD Handbook 154

12.5.1 Using ESDI hard disks

Copyright © 1995, Wilko Bulte <wilko@yedi.iaf.nl> .
24 September 1995.

ESDI is an acronym that means Enhanced Small Device Interface. It is loosely based on the good
old ST506/412 interface originally devised by Seagate Technology, the makers of the first afford-
able 5.25" winchester disk.

The acronym says Enhanced, and rightly so. In the first place the speed of the interface is higher,
10 or 15 Mbits/second instead of the 5 Mbits/second of ST412 interfaced drives. Secondly some
higher level commands are added, making the ESDI interface somewhat ’smarter’ to the operat-
ing system driver writers. It is by no means as smart as SCSI by the way. ESDI is standardized by
ANSI.

Capacities of the drives are boosted by putting more sectors on each track. Typical is 35 sectors
per track, high capacity drives I have seen were up to 54 sectors/track.

Although ESDI has been largely obsoleted by IDE and SCSI interfaces, the availability of free or
cheap surplus drives makes them ideal for low (or now) budget systems.

12.5.1.1 Concepts of ESDI

12.5.1.1.1 Physical connections

The ESDI interface uses two cables connected to each drive. One cable is a 34 pin flat cable edge
connector that carries the command and status signals from the controller to the drive and vice-
versa. The command cable is daisy chained between all the drives. So, it forms a bus onto which
all drives are connected.

The second cable is a 20 pin flat cable edge connector that carries the data to and from the drive.
This cable is radially connected, so each drive has its own direct connection to the controller.

To the best of my knowledge PC ESDI controllers are limited to using a maximum of 2 drives per
controller. This is compatibility feature(?) left over from the WD1003 standard that reserves only
a single bit for device addressing.

12.5.1.1.2 Device addressing

On each command cable a maximum of 7 devices and 1 controller can be present. To enable the
controller to uniquely identify which drive it addresses, each ESDI device is equipped with
jumpers or switches to select the devices address.

On PC type controllers the first drive is set to address 0, the second disk to address 1. Always make
sure you set each disk to an unique address! So, on a PC with its two drives/controller maximum
the first drive is drive 0, the second is drive 1.

12.5.1.1.3 Ter mination

The daisy chained command cable (the 34 pin cable remember?) needs to be terminated at the
last drive on the chain. For this purpose ESDI drives come with a termination resistor network
that can be removed or disabled by a jumper when it is not used.

So, one and only one drive, the one at the farthest end of the command cable has its terminator
installed/enabled. The controller automatically terminates the other end of the cable. Please note
that this implies that the controller must be at one end of the cable and not in the middle.

12.5.1.2 Using ESDI disks with FreeBSD

Why is ESDI such a pain to get working in the first place?

People who tried ESDI disks with FreeBSD are known to have developed a profound sense of
frustration. A combination of factors works against you to produce effects that are hard to under-
stand when you have never seen them before.

FreeBSD Handbook 155

This has also led to the popular legend ESDI and FreeBSD is a plain NO-GO. The following sec-
tions try to list all the pitfalls and solutions.

12.5.1.2.1 ESDI speed var iants

As briefly mentioned before, ESDI comes in two speed flavors. The older drives and controllers
use a 10 Mbits/second data transfer rate. Newer stuff uses 15 Mbits/second.

It is not hard to imagine that 15 Mbits/second drive cause problems on controllers laid out for 10
Mbits/second. As always, consult your controller and drive documentation to see if things
match.

12.5.1.2.2 Stay on track

Mainstream ESDI drives use 34 to 36 sectors per track. Most (older) controllers cannot handle
more than this number of sectors. Newer, higher capacity, drives use higher numbers of sectors
per track. For instance, I own a 670 Mb drive that has 54 sectors per track.

In my case, the controller could not handle this number of sectors. It proved to work well except
that it only used 35 sectors on each track. This meant losing a lot of disk space.

Once again, check the documentation of your hardware for more info. Going out-of-spec like in
the example might or might not work. Give it a try or get another more capable controller.

12.5.1.2.3 Hard or soft sectoring

Most ESDI drives allow hard or soft sectoring to be selected using a jumper. Hard sectoring
means that the drive will produce a sector pulse on the start of each new sector. The controller
uses this pulse to tell when it should start to write or read.

Hard sectoring allows a selection of sector size (normally 256, 512 or 1024 bytes per formatted
sector). FreeBSD uses 512 byte sectors. The number of sectors per track also varies while still
using the same number of bytes per formatted sector. The number of unformatted bytes per sector
varies, dependent on your controller it needs more or less overhead bytes to work correctly.
Pushing more sectors on a track of course gives you more usable space, but might give problems
if your controller needs more bytes than the drive offers.

In case of soft sectoring, the controller itself determines where to start/stop reading or writing.
For ESDI hard sectoring is the default (at least on everything I came across). I never felt the urge
to try soft sectoring.

In general, experiment with sector settings before you install FreeBSD because you need to re-run
the low-level format after each change.

12.5.1.2.4 Low lev el for matting

ESDI drives need to be low level formatted before they are usable. A reformat is needed when-
ever you figgle with the number of sectors/track jumpers or the physical orientation of the drive
(horizontal, vertical). So, first think, then format. The format time must not be underestimated,
for big disks it can take hours.

After a low level format, a surface scan is done to find and flag bad sectors. Most disks have a
manufacturer bad block list listed on a piece of paper or adhesive sticker. In addition, on most
disks the list is also written onto the disk. Please use the manufacturer’s list. It is much easier to
remap a defect now than after FreeBSD is installed.

Stay away from low-level formatters that mark all sectors of a track as bad as soon as they find
one bad sector. Not only does this waste space, it also and more importantly causes you grief
with bad144 (see the section on bad144).

FreeBSD Handbook 156

12.5.1.2.5 Translations

Translations, although not exclusively a ESDI-only problem, might give you real trouble. Transla-
tions come in multiple flavors. Most of them have in common that they attempt to work around
the limitations posed upon disk geometries by the original IBM PC/AT design (thanks IBM!).

First of all there is the (in)famous 1024 cylinder limit. For a system to be able to boot, the stuff
(whatever operating system) must be in the first 1024 cylinders of a disk. Only 10 bits are avail-
able to encode the cylinder number. For the number of sectors the limit is 64 (0-63). When you
combine the 1024 cylinder limit with the 16 head limit (also a design feature) you max out at
fairly limited disk sizes.

To work around this problem, the manufacturers of ESDI PC controllers added a BIOS prom
extension on their boards. This BIOS extension handles disk I/O for booting (and for some oper-
ating systems all disk I/O) by using translation. For instance, a big drive might be presented to
the system as having 32 heads and 64 sectors/track. The result is that the number of cylinders is
reduced to something below 1024 and is therefore usable by the system without problems. It is
noteworthy to know that FreeBSD does not use the BIOS after its kernel has started. More on this
later.

A second reason for translations is the fact that most older system BIOSes could only handle
drives with 17 sectors per track (the old ST412 standard). Newer system BIOSes usually have a
user-defined drive type (in most cases this is drive type 47).

Whatever you do to translations after reading this document, keep in mind that if you have multiple operat-
ing systems on the same disk, all must use the same translation

While on the subject of translations, I have seen one controller type (but there are probably more
like this) offer the option to logically split a drive in multiple partitions as a BIOS option. I had
select 1 drive == 1 partition because this controller wrote this info onto the disk. On power-up it
read the info and presented itself to the system based on the info from the disk.

12.5.1.2.6 Spare sector ing

Most ESDI controllers offer the possibility to remap bad sectors. During/after the low-level for-
mat of the disk bad sectors are marked as such, and a replacement sector is put in place (logically
of course) of the bad one.

In most cases the remapping is done by using N-1 sectors on each track for actual data storage,
and sector N itself is the spare sector. N is the total number of sectors physically available on the
track. The idea behind this is that the operating system sees a ’perfect’ disk without bad sectors.
In the case of FreeBSD this concept is not usable.

The problem is that the translation from bad to good is performed by the BIOS of the ESDI con-
troller. FreeBSD, being a true 32 bit operating system, does not use the BIOS after it has been
booted. Instead, it has device drivers that talk directly to the hardware.

So: don’t use spare sectoring, bad block remapping or whatever it may be called by the controller manufac-
turer when you want to use the disk for FreeBSD.

12.5.1.2.7 Bad block handling

The preceding section leaves us with a problem. The controller’s bad block handling is not usable
and still FreeBSD’s filesystems assume perfect media without any flaws. To solve this problem,
FreeBSD use the bad144 tool. Bad144 (named after a Digital Equipment standard for bad block
handling) scans a FreeBSD slice for bad blocks. Having found these bad blocks, it writes a table
with the offending block numbers to the end of the FreeBSD slice.

When the disk is in operation, the disk accesses are checked against the table read from the disk.
Whenever a block number is requested that is in the bad144 list, a replacement block (also from
the end of the FreeBSD slice) is used. In this way, the bad144 replacement scheme presents

FreeBSD Handbook 157

’perfect’ media to the FreeBSD filesystems.

There are a number of potential pitfalls associated with the use of bad144. First of all, the slice
cannot have more than 126 bad sectors. If your drive has a high number of bad sectors, you
might need to divide it into multiple FreeBSD slices each containing less than 126 bad sectors.
Stay away from low-level format programs that mark every sector of a track as bad when they
find a flaw on the track. As you can imagine, the 126 limit is quickly reached when the low-level
format is done this way.

Second, if the slice contains the root filesystem, the slice should be within the 1024 cylinder BIOS
limit. During the boot process the bad144 list is read using the BIOS and this only succeeds when
the list is within the 1024 cylinder limit. Note that the restriction is not that only the root filesystem
must be within the 1024 cylinder limit, but rather the entire slice that contains the root filesystem.

12.5.1.2.8 Ker nel configuration

ESDI disks are handled by the same wddriver as IDE and ST412 MFM disks. The wd driver
should work for all WD1003 compatible interfaces.

Most hardware is jumperable for one of two different I/O address ranges and IRQ lines. This
allows you to have two wd type controllers in one system.

When your hardware allows non-standard strappings, you can use these with FreeBSD as long as
you enter the correct info into the kernel config file. An example from the kernel config file (they
live in /sys/i386/conf BTW).

First WD compatible controller
controller wdc0 at isa? port "IO_WD1" bio irq 14 vector wdintr
disk wd0 at wdc0 drive 0
disk wd1 at wdc0 drive 1

Second WD compatible controller
controller wdc1 at isa? port "IO_WD2" bio irq 15 vector wdintr
disk wd2 at wdc1 drive 0
disk wd3 at wdc1 drive 1

12.5.1.3 Par ticulars on ESDI hardware

12.5.1.3.1 Adaptec 2320 controllers

I successfully installed FreeBSD onto a ESDI disk controlled by a ACB-2320. No other operating
system was present on the disk.

To do so I low level formatted the disk using NEFMT.EXE (ftpable from www.adaptec.com) and
answered NO to the question whether the disk should be formatted with a spare sector on each
track. The BIOS on the ACD-2320 was disabled. I used the ’free configurable’ option in the system
BIOS to allow the BIOS to boot it.

Before using NEFMT.EXE I tried to format the disk using the ACB-2320 BIOS builtin formatter.
This proved to be a show stopper, because it did not give me an option to disable spare sectoring.
With spare sectoring enabled the FreeBSD installation process broke down on the bad144 run.

Please check carefully which ACB-232xy variant you have. The x is either 0 or 2, indicating a con-
troller without or with a floppy controller on board.

The y is more interesting. It can either be a blank, a "A-8" or a "D". A blank indicates a plain 10
Mbits/second controller. An "A-8" indicates a 15 Mbits/second controller capable of handling 52
sectors/track. A "D" means a 15 Mbits/second controller that can also handle drives with > 36
sectors/track (also 52 ?).

All variations should be capable of using 1:1 interleaving. Use 1:1, FreeBSD is fast enough to han-
dle it.

FreeBSD Handbook 158

12.5.1.3.2 Wester n Digital WD1007 controllers

I successfully installed FreeBSD onto a ESDI disk controlled by a WD1007 controller. To be pre-
cise, it was a WD1007-WA2. Other variations of the WD1007 do exist.

To get it to work, I had to disable the sector translation and the WD1007’s onboard BIOS. This
implied I could not use the low-level formatter built into this BIOS. Instead, I grabbed
WDFMT.EXE from www.wdc.com Running this formatted my drive just fine.

12.5.1.3.3 Ultrastor U14F controllers

According to multiple reports from the net, Ultrastor ESDI boards work OK with FreeBSD. I lack
any further info on particular settings.

12.5.1.4 Further reading

If you intend to do some serious ESDI hacking, you might want to have the official standard at
hand:

The latest ANSI X3T10 committee document is:

• Enhanced Small Device Interface (ESDI) [X3.170-1990/X3.170a-1991] [X3T10/792D Rev 11]

On Usenet the newsgroup comp.periphs is a noteworthy place to look for more info.

The World Wide Web (WWW) also proves to be a very handy info source: For info on Adaptec
ESDI controllers see . For info on Western Digital controllers see .

12.5.1.5 Thanks to...

"

Andrew Gordon for sending me an Adaptec 2320 controller and ESDI disk for testing.

12.5.2 What is SCSI?

Copyright © 1995, Wilko Bulte <wilko@yedi.iaf.nl> .
July 6, 1996.

SCSI is an acronym for Small Computer Systems Interface. It is an ANSI standard that has
become one of the leading I/O buses in the computer industry. The foundation of the SCSI stan-
dard was laid by Shugart Associates (the same guys that gave the world the first mini floppy
disks) when they introduced the SASI bus (Shugart Associates Standard Interface).

After some time an industry effort was started to come to a more strict standard allowing devices
from different vendors to work together. This effort was recognized in the ANSI SCSI-1 standard.
The SCSI-1 standard (approx 1985) is rapidly becoming obsolete. The current standard is SCSI-2
(see Further reading (section 12.5.2.5, page 169)), with SCSI-3 on the drawing boards.

In addition to a physical interconnection standard, SCSI defines a logical (command set) standard
to which disk devices must adhere. This standard is called the Common Command Set (CCS)
and was developed more or less in parallel with ANSI SCSI-1. SCSI-2 includes the (revised) CCS
as part of the standard itself. The commands are dependent on the type of device at hand. It does
not make much sense of course to define a Write command for a scanner.

The SCSI bus is a parallel bus, which comes in a number of variants. The oldest and most used is
an 8 bit wide bus, with single-ended signals, carried on 50 wires. (If you do not know what sin-
gle-ended means, do not worry, that is what this document is all about.) Modern designs also use
16 bit wide buses, with differential signals. This allows transfer speeds of 20Mbytes/second, on
cables lengths of up to 25 meters. SCSI-2 allows a maximum bus width of 32 bits, using an addi-
tional cable. Quickly emerging are Ultra SCSI (also called Fast-20) and Ultra2 (also called
Fast-40). Fast-20 is 20 million transfers per second (20 Mbytes/sec on a 8 bit bus), Fast-40 is 40
million transfers per second (40 Mbytes/sec on a 8 bit bus). Most hard drives sold today are

FreeBSD Handbook 159

single-ended Ultra SCSI (8 or 16 bits).

Of course the SCSI bus not only has data lines, but also a number of control signals. A very elabo-
rate protocol is part of the standard to allow multiple devices to share the bus in an efficient man-
ner. In SCSI-2, the data is always checked using a separate parity line. In pre-SCSI-2 designs par-
ity was optional.

In SCSI-3 even faster bus types are introduced, along with a serial SCSI busses that reduces the
cabling overhead and allows a higher maximum bus length. You might see names like SSA and
Fiberchannel in this context. None of the serial buses are currently in widespread use (especially
not in the typical FreeBSD environment). For this reason the serial bus types are not discussed
any further.

As you could have guessed from the description above, SCSI devices are intelligent. They have
to be to adhere to the SCSI standard (which is over 2 inches thick BTW). So, for a hard disk drive
for instance you do not specify a head/cylinder/sector to address a particular block, but simply
the number of the block you want. Elaborate caching schemes, automatic bad block replacement
etc are all made possible by this ’intelligent device’ approach.

On a SCSI bus, each possible pair of devices can communicate. Whether their function allows this
is another matter, but the standard does not restrict it. To avoid signal contention, the 2 devices
have to arbitrate for the bus before using it.

The philosophy of SCSI is to have a standard that allows older-standard devices to work with
newer-standard ones. So, an old SCSI-1 device should normally work on a SCSI-2 bus. I say Nor-
mally, because it is not absolutely sure that the implementation of an old device follows the (old)
standard closely enough to be acceptable on a new bus. Modern devices are usually more well-
behaved, because the standardization has become more strict and is better adhered to by the
device manufacturers.

Generally speaking, the chances of getting a working set of devices on a single bus is better when
all the devices are SCSI-2 or newer. This implies that you do not have to dump all your old stuff
when you get that shiny 2GB disk: I own a system on which a pre-SCSI-1 disk, a SCSI-2 QIC tape
unit, a SCSI-1 helical scan tape unit and 2 SCSI-1 disks work together quite happily. From a per-
formance standpoint you might want to separate your older and newer (=faster) devices how-
ever.

12.5.2.1 Components of SCSI

As said before, SCSI devices are smart. The idea is to put the knowledge about intimate hard-
ware details onto the SCSI device itself. In this way, the host system does not have to worry
about things like how many heads are hard disks has, or how many tracks there are on a specific
tape device. If you are curious, the standard specifies commands with which you can query your
devices on their hardware particulars. FreeBSD uses this capability during boot to check out what
devices are connected and whether they need any special treatment.

The advantage of intelligent devices is obvious: the device drivers on the host can be made in a
much more generic fashion, there is no longer a need to change (and qualify!) drivers for every
odd new device that is introduced.

For cabling and connectors there is a golden rule: get good stuff. With bus speeds going up all the
time you will save yourself a lot of grief by using good material.

So, gold plated connectors, shielded cabling, sturdy connector hoods with strain reliefs etc are the
way to go. Second golden rule: do no use cables longer than necessary. I once spent 3 days hunt-
ing down a problem with a flaky machine only to discover that shortening the SCSI bus by 1
meter solved the problem. And the original bus length was well within the SCSI specification.

FreeBSD Handbook 160

12.5.2.2 SCSI bus types

From an electrical point of view, there are two incompatible bus types: single-ended and differen-
tial. This means that there are two different main groups of SCSI devices and controllers, which
cannot be mixed on the same bus. It is possible however to use special converter hardware to
transform a single-ended bus into a differential one (and vice versa). The differences between the
bus types are explained in the next sections.

In lots of SCSI related documentation there is a sort of jargon in use to abbreviate the different
bus types. A small list:

• FWD: Fast Wide Differential

• FND: Fast Narrow Differential

• SE: Single Ended

• FN: Fast Narrow

• etc.

With a minor amount of imagination one can usually imagine what is meant.

Wide is a bit ambiguous, it can indicate 16 or 32 bit buses. As far as I know, the 32 bit variant is
not (yet) in use, so wide normally means 16 bit.

Fast means that the timing on the bus is somewhat different, so that on a narrow (8 bit) bus 10
Mbytes/sec are possible instead of 5 Mbytes/sec for ’slow’ SCSI. As discussed before, bus speeds
of 20 and 40 million transfers/second are also emerging (Fast-20 == Ultra SCSI and Fast-40 ==
Ultra2 SCSI).

It should be noted that the data lines > 8 are only used for data transfers and device addressing.
The transfers of commands and status messages etc are only performed on the lowest 8 data
lines. The standard allows narrow devices to operate on a wide bus. The usable bus width is
negotiated between the devices. You have to watch your device addressing closely when mixing
wide and narrow.

12.5.2.2.1 Single ended buses

A single-ended SCSI bus uses signals that are either 5 Volts or 0 Volts (indeed, TTL levels) and are
relative to a COMMON ground reference. A singled ended 8 bit SCSI bus has approximately 25
ground lines, who are all tied to a single ‘rail’ on all devices. A standard single ended bus has a
maximum length of 6 meters. If the same bus is used with fast-SCSI devices, the maximum length
allowed drops to 3 meters. Fast-SCSI means that instead of 5Mbytes/sec the bus allows
10Mbytes/sec transfers.

Fast-20 (Ultra SCSI) and Fast-40 allow for 20 and 40 million transfers/second respectively. So, F20
is 20 Mbytes/second on a 8 bit bus, 40 Mbytes/second on a 16 bit bus etc. For F20 the max bus
length is 1.5 meters, for F40 it becomes 0.75 meters. Be aware that F20 is pushing the limits quite a
bit, so you will quickly find out if your SCSI bus is electrically sound.

Please note that this means that if some devices on your bus use ’fast’ to communicate your bus
must adhere to the length restrictions for fast buses!

It is obvious that with the newer fast-SCSI devices the bus length can become a real bottleneck.
This is why the differential SCSI bus was introduced in the SCSI-2 standard.

For connector pinning and connector types please refer to the SCSI-2 standard (see Further
reading (section 12.5.2.5, page 169)) itself, connectors etc are listed there in painstaking detail.

Beware of devices using non-standard cabling. For instance Apple uses a 25pin D-type connecter
(like the one on serial ports and parallel printers). Considering that the official SCSI bus needs 50
pins you can imagine the use of this connector needs some ’creative cabling’. The reduction of

FreeBSD Handbook 161

the number of ground wires they used is a bad idea, you better stick to 50 pins cabling in accor-
dance with the SCSI standard. For Fast-20 and 40 do not even think about buses like this.

12.5.2.2.2 Differential buses

A differential SCSI bus has a maximum length of 25 meters. Quite a difference from the 3 meters
for a single-ended fast-SCSI bus. The idea behind differential signals is that each bus signal has its
own return wire. So, each signal is carried on a (preferably twisted) pair of wires. The voltage dif-
ference between these two wires determines whether the signal is asserted or de-asserted. To a
certain extent the voltage difference between ground and the signal wire pair is not relevant (do
not try 10 kVolts though).

It is beyond the scope of this document to explain why this differential idea is so much better.
Just accept that electrically seen the use of differential signals gives a much better noise margin.
You will normally find differential buses in use for inter-cabinet connections. Because of the lower
cost single ended is mostly used for shorter buses like inside cabinets.

There is nothing that stops you from using differential stuff with FreeBSD, as long as you use a
controller that has device driver support in FreeBSD. As an example, Adaptec marketed the
AHA1740 as a single ended board, whereas the AHA1744 was differential. The software interface
to the host is identical for both.

12.5.2.2.3 Ter minators

Terminators in SCSI terminology are resistor networks that are used to get a correct impedance
matching. Impedance matching is important to get clean signals on the bus, without reflections
or ringing. If you once made a long distance telephone call on a bad line you probably know
what reflections are. With 20Mbytes/sec traveling over your SCSI bus, you do not want signals
echoing back.

Terminators come in various incarnations, with more or less sophisticated designs. Of course,
there are internal and external variants. Many SCSI devices come with a number of sockets in
which a number of resistor networks can (must be!) installed. If you remove terminators from a
device, carefully store them. You will need them when you ever decide to reconfigure your SCSI
bus. There is enough variation in even these simple tiny things to make finding the exact replace-
ment a frustrating business. There are also SCSI devices that have a single jumper to enable or
disable a built-in terminator. There are special terminators you can stick onto a flat cable bus.
Others look like external connectors, or a connector hood without a cable. So, lots of choice as
you can see.

There is much debate going on if and when you should switch from simple resistor (passive) ter-
minators to active terminators. Active terminators contain slightly more elaborate circuit to give
cleaner bus signals. The general consensus seems to be that the usefulness of active termination
increases when you have long buses and/or fast devices. If you ever have problems with your
SCSI buses you might consider trying an active terminator. Try to borrow one first, they reput-
edly are quite expensive.

Please keep in mind that terminators for differential and single-ended buses are not identical. You
should not mix the two variants.

OK, and now where should you install your terminators? This is by far the most misunderstood
part of SCSI. And it is by far the simplest. The rule is: every single line on the SCSI bus has 2
(two) terminators, one at each end of the bus. So, two and not one or three or whatever. Do
yourself a favor and stick to this rule. It will save you endless grief, because wrong termination
has the potential to introduce highly mysterious bugs. (Note the "potential" here; the nastiest
part is that it may or may not work.)

A common pitfall is to have an internal (flat) cable in a machine and also an external cable
attached to the controller. It seems almost everybody forgets to remove the terminators from the
controller. The terminator must now be on the last external device, and not on the controller! In

FreeBSD Handbook 162

general, every reconfiguration of a SCSI bus must pay attention to this.

Note that termination is to be done on a per-line basis. This means if you have both narrow and
wide buses connected to the same host adapter, you need to enable termination on the higher 8
bits of the bus on the adapter (as well as the last devices on each bus, of course).

What I did myself is remove all terminators from my SCSI devices and controllers. I own a couple
of external terminators, for both the Centronics-type external cabling and for the internal flat
cable connectors. This makes reconfiguration much easier.

On modern devices, sometimes integrated terminators are used. These things are special purpose
integrated circuits that can be dis/en-abled with a control pin. It is not necessary to physically
remove them from a device. You may find them on newer host adapters, sometimes they are soft-
ware configurable, using some sort of setup tool. Some will even auto-detect the cables attached
to the connectors and automatically set up the termination as necessary. At any rate, consult
your documentation!

12.5.2.2.4 Ter minator power

The terminators discussed in the previous chapter need power to operate properly. On the SCSI
bus, a line is dedicated to this purpose. So, simple huh?

Not so. Each device can provide its own terminator power to the terminator sockets it has on-
device. But if you have external terminators, or when the device supplying the terminator power
to the SCSI bus line is switched off you are in trouble.

The idea is that initiators (these are devices that initiate actions on the bus, a discussion follows)
must supply terminator power. All SCSI devices are allowed (but not required) to supply termi-
nator power.

To allow for un-powered devices on a bus, the terminator power must be supplied to the bus via
a diode. This prevents the backflow of current to un-powered devices.

To prevent all kinds of nastiness, the terminator power is usually fused. As you can imagine,

usedTw
[(to theif nehh,devicesedT devices 53(tor powea wat neche ndsguishrminaddr2()-sr)18(ediswitche5ow of che bus via)]TJ
0 -1.)18(e)-30ide buses conitf course).

FreeBSD Handbook 163

something higher than 7 (or your CD-ROM will stop working).

The higher the SCSI target ID, the higher the priority the devices has. When it comes to arbitra-
tion between devices that want to use the bus at the same time, the device that has the highest
SCSI ID will win. This also means that the SCSI host adapter usually uses target ID 7. Note how-
ever that the lower 8 IDs have higher priorities than the higher 8 IDs on a wide-SCSI bus. Thus,
the order of target IDs is: [7 6 .. 1 0 15 14 .. 9 8] on a wide-SCSI system. (If you you
are wondering why the lower 8 have higher priority, read the previous paragraph for a hint.)

For a further subdivision, the standard allows for Logical Units or LUNs for short. A single target
ID may have multiple LUNs. For example, a tape device including a tape changer may have LUN
0 for the tape device itself, and LUN 1 for the tape changer. In this way, the host system can
address each of the functional units of the tape changer as desired.

12.5.2.2.6 Bus layout

SCSI buses are linear. So, not shaped like Y-junctions, star topologies, rings, cobwebs or whatever
else people might want to invent. One of the most common mistakes is for people with wide-
SCSI host adapters to connect devices on all three connecters (external connector, internal wide
connector, internal narrow connector). Don’t do that. It may appear to work if you are really
lucky, but I can almost guarantee that your system will stop functioning at the most unfortunate
moment (this is also known as "Murphy’s law").

You might notice that the terminator issue discussed earlier becomes rather hairy if your bus is
not linear. Also, if you have more connectors than devices on your internal SCSI cable, make sure
you attach devices on connectors on both ends instead of using the connectors in the middle and
let one or both ends dangle. This will screw up the termination of the bus.

The electrical characteristics, its noise margins and ultimately the reliability of it all are tightly
related to linear bus rule.

Stick to the linear bus rule!

12.5.2.3 Using SCSI with FreeBSD

12.5.2.3.1 About translations, BIOSes and magic...

As stated before, you should first make sure that you have a electrically sound bus.

When you want to use a SCSI disk on your PC as boot disk, you must aware of some quirks
related to PC BIOSes. The PC BIOS in its first incarnation used a low level physical interface to
the hard disk. So, you had to tell the BIOS (using a setup tool or a BIOS built-in setup) how your
disk physically looked like. This involved stating number of heads, number of cylinders, number
of sectors per track, obscure things like precompensation and reduced write current cylinder etc.

One might be inclined to think that since SCSI disks are smart you can forget about this. Alas, the
arcane setup issue is still present today. The system BIOS needs to know how to access your SCSI
disk with the head/cyl/sector method in order to load the FreeBSD kernel during boot.

The SCSI host adapter or SCSI controller you have put in your AT/EISA/PCI/whatever bus to
connect your disk therefore has its own on-board BIOS. During system startup, the SCSI BIOS
takes over the hard disk interface routines from the system BIOS. To fool the system BIOS, the
system setup is normally set to No hard disk present. Obvious, isn’t it?

The SCSI BIOS itself presents to the system a so called translated drive. This means that a fake
drive table is constructed that allows the PC to boot the drive. This translation is often (but not
always) done using a pseudo drive with 64 heads and 32 sectors per track. By varying the num-
ber of cylinders, the SCSI BIOS adapts to the actual drive size. It is useful to note that 32 * 64 / 2 =
the size of your drive in megabytes. The division by 2 is to get from disk blocks that are normally
512 bytes in size to Kbytes.

Right. All is well now?! No, it is not. The system BIOS has another quirk you might run into. The

FreeBSD Handbook 164

number of cylinders of a bootable hard disk cannot be greater than 1024. Using the translation
above, this is a show-stopper for disks greater than 1 GB. With disk capacities going up all the
time this is causing problems.

Fortunately, the solution is simple: just use another translation, e.g. with 128 heads instead of 32.
In most cases new SCSI BIOS versions are available to upgrade older SCSI host adapters. Some
newer adapters have an option, in the form of a jumper or software setup selection, to switch the
translation the SCSI BIOS uses.

It is very important that all operating systems on the disk use the same translation to get the
right idea about where to find the relevant partitions. So, when installing FreeBSD you must
answer any questions about heads/cylinders etc using the translated values your host adapter
uses.

Failing to observe the translation issue might lead to un-bootable systems or operating systems
overwriting each others partitions. Using fdisk you should be able to see all partitions.

You might have heard some talk of ’lying’ devices? Older FreeBSD kernels used to report the
geometry of SCSI disks when booting. An example from one of my systems:

aha0 targ 0 lun 0: <MICROP 1588-15MB1057404HSP4>
sd0: 636MB (1303250 total sec), 1632 cyl, 15 head, 53 sec, bytes/sec 512

Newer kernels usually do not report this information. e.g.

(bt0:0:0): "SEAGATE ST41651 7574" type 0 fixed SCSI 2
sd0(bt0:0:0): Direct-Access 1350MB (2766300 512 byte sectors)

Why has this changed?

This info is retrieved from the SCSI disk itself. Newer disks often use a technique called zone bit
recording. The idea is that on the outer cylinders of the drive there is more space so more sectors
per track can be put on them. This results in disks that have more tracks on outer cylinders than
on the inner cylinders and, last but not least, have more capacity. You can imagine that the value
reported by the drive when inquiring about the geometry now becomes suspect at best, and
nearly always misleading. When asked for a geometry , it is nearly always better to supply the
geometry used by the BIOS, or if the BIOS is never going to know about this disk, (e.g. it is not a boot-
ing disk) to supply a fictitious geometry that is convenient.

12.5.2.3.2 SCSI subsystem design

FreeBSD uses a layered SCSI subsystem. For each different controller card a device driver is writ-
ten. This driver knows all the intimate details about the hardware it controls. The driver has a
interface to the upper layers of the SCSI subsystem through which it receives its commands and
reports back any status.

On top of the card drivers there are a number of more generic drivers for a class of devices. More
specific: a driver for tape devices (abbreviation: st), magnetic disks (sd), CD-ROMs (cd) etc. In
case you are wondering where you can find this stuff, it all lives in /sys/scsi . See the man
pages in section 4 for more details.

The multi level design allows a decoupling of low-level bit banging and more high level stuff.
Adding support for another piece of hardware is a much more manageable problem.

12.5.2.3.3 Ker nel configuration

Dependent on your hardware, the kernel configuration file must contain one or more lines
describing your host adapter(s). This includes I/O addresses, interrupts etc. Consult the man
page for your adapter driver to get more info. Apart from that, check out /sys/i386/conf/LINT
for an overview of a kernel config file. LINT contains every possible option you can dream of. It

FreeBSD Handbook 165

does not imply LINT will actually get you to a working kernel at all.

Although it is probably stating the obvious: the kernel config file should reflect your actual hard-
ware setup. So, interrupts, I/O addresses etc must match the kernel config file. During system
boot messages will be displayed to indicate whether the configured hardware was actually
found. Note that most of the EISA/PCI drivers (namely ahb, ahc, ncr and amdwill automat-
ically obtain the correct parameters from the host adapters themselves at boot time; thus, you just
need to write, for instance, "controller ahc0 ".

An example loosely based on the FreeBSD 2.2.5-Release kernel config file LINT with some added
comments (between []):

SCSI host adapters: ‘aha’, ‘ahb’, ‘aic’, ‘bt’, ‘nca’
#
aha: Adaptec 154x
ahb: Adaptec 174x
ahc: Adaptec 274x/284x/294x
aic: Adaptec 152x and sound cards using the Adaptec AIC-6360 (slow!)
amd: AMD 53c974 based SCSI cards (e.g., Tekram DC-390 and 390T)
bt: Most Buslogic controllers
nca: ProAudioSpectrum cards using the NCR 5380 or Trantor T130
ncr: NCR/Symbios 53c810/815/825/875 etc based SCSI cards
uha: UltraStore 14F and 34F
sea: Seagate ST01/02 8 bit controller (slow!)
wds: Western Digital WD7000 controller (no scatter/gather!).
#

[For an Adaptec AHA274x/284x/294x/394x etc controller]
controller ahc0

[For an NCR/Symbios 53c875 based controller]
controller ncr0

[For an Ultrastor adapter]
controller uha0 at isa? port "IO_UHA0" bio irq ? drq 5 vector uhaintr

Map SCSI buses to specific SCSI adapters
controller scbus0 at ahc0
controller scbus2 at ncr0
controller scbus1 at uha0

The actual SCSI devices
disk sd0 at scbus0 target 0 unit 0 [SCSI disk 0 is at scbus 0, LUN 0]
disk sd1 at scbus0 target 1 [implicit LUN 0 if omitted]
disk sd2 at scbus1 target 3 [SCSI disk on the uha0]
disk sd3 at scbus2 target 4 [SCSI disk on the ncr0]
tape st1 at scbus0 target 6 [SCSI tape at target 6]
device cd0 at scbus? [the first ever CD-ROM found, no wiring]

The example above tells the kernel to look for a ahc (Adaptec 274x) controller, then for an
NCR/Symbios board, and so on. The lines following the controller specifications tell the kernel to
configure specific devices but only attach them when they match the target ID and LUN specified
on the corresponding bus.

Wired down devices get ’first shot’ at the unit numbers so the first non ’wired down’ device, is
allocated the unit number one greater than the highest ’wired down’ unit number for that kind of
device. So, if you had a SCSI tape at target ID 2 it would be configured as st2, as the tape at target
ID 6 is wired down to unit number 1. Note that wired down devices need not be found to get their
unit number. The unit number for a wired down device is reserved for that device, even if it is
turned off at boot time. This allows the device to be turned on and brought on-line at a later time,

FreeBSD Handbook 166

without rebooting. Notice that a device’s unit number has no relationship with its target ID on the
SCSI bus.

Below is another example of a kernel config file as used by FreeBSD version < 2.0.5. The differ-
ence with the first example is that devices are not ’wired down’. ’Wired down’ means that you
specify which SCSI target belongs to which device.

A kernel built to the config file below will attach the first SCSI disk it finds to sd0, the second disk
to sd1 etc. If you ever removed or added a disk, all other devices of the same type (disk in this
case) would ’move around’. This implies you have to change /etc/fstab each time.

Although the old style still works, you are strongly recommended to use this new feature. It will
save you a lot of grief whenever you shift your hardware around on the SCSI buses. So, when
you re-use your old trusty config file after upgrading from a pre-FreeBSD2.0.5.R system check
this out.

[driver for Adaptec 174x]
controller ahb0 at isa? bio irq 11 vector ahbintr
[for Adaptec 154x]
controller aha0 at isa? port "IO_AHA0" bio irq 11 drq 5 vector ahaintr
[for Seagate ST01/02]
controller sea0 at isa? bio irq 5 iomem 0xc8000 iosiz 0x2000 vector seaintr
controller scbus0

device sd0 [support for 4 SCSI harddisks, sd0 up sd3]

device st0 [support for 2 SCSI tapes]

[for the CD-ROM]
device cd0 #Only need one of these, the code dynamically grows

Both examples support SCSI disks. If during boot more devices of a specific type (e.g. sd disks)
are found than are configured in the booting kernel, the system will simply allocate more devices,
incrementing the unit number starting at the last number ’wired down’. If there are no ’wired
down’ devices then counting starts at unit 0.

Use man 4 scsi to check for the latest info on the SCSI subsystem. For more detailed info on
host adapter drivers use eg man 4 ahc for info on the Adaptec 294x driver.

12.5.2.3.4 Tuning your SCSI ker nel setup

Experience has shown that some devices are slow to respond to INQUIRY commands after a SCSI
bus reset (which happens at boot time). An INQUIRY command is sent by the kernel on boot to
see what kind of device (disk, tape, CD-ROM etc) is connected to a specific target ID. This process
is called device probing by the way.

To work around the ’slow response’ problem, FreeBSD allows a tunable delay time before the
SCSI devices are probed following a SCSI bus reset. You can set this delay time in your kernel
configuration file using a line like:

options SCSI_DELAY=15 #Be pessimistic about Joe SCSI device

This line sets the delay time to 15 seconds. On my own system I had to use 3 seconds minimum
to get my trusty old CD-ROM drive to be recognized. Start with a high value (say 30 seconds or
so) when you have problems with device recognition. If this helps, tune it back until it just stays
working.

FreeBSD Handbook 167

12.5.2.3.5 Rogue SCSI devices

"

Although the SCSI standard tries to be complete and concise, it is a complex standard and imple-
menting things correctly is no easy task. Some vendors do a better job then others.

This is exactly where the ’rogue’ devices come into view. Rogues are devices that are recognized
by the FreeBSD kernel as behaving slightly (...) non-standard. Rogue devices are reported by the
kernel when booting. An example for two of my cartridge tape units:

Feb 25 21:03:34 yedi /kernel: ahb0 targ 5 lun 0: <TANDBERG TDC 3600 -06:>
Feb 25 21:03:34 yedi /kernel: st0: Tandberg tdc3600 is a known rogue

Mar 29 21:16:37 yedi /kernel: aha0 targ 5 lun 0: <ARCHIVE VIPER 150 21247-005>
Mar 29 21:16:37 yedi /kernel: st1: Archive Viper 150 is a known rogue

For instance, there are devices that respond to all LUNs on a certain target ID, even if they are
actually only one device. It is easy to see that the kernel might be fooled into believing that there
are 8 LUNs at that particular target ID. The confusion this causes is left as an exercise to the
reader.

The SCSI subsystem of FreeBSD recognizes devices with bad habits by looking at the INQUIRY
response they send when probed. Because the INQUIRY response also includes the version num-
ber of the device firmware, it is even possible that for different firmware versions different
workarounds are used. See e.g. /sys/scsi/st.c and /sys/scsi/scsiconf.c for more info on how this
is done.

This scheme works fine, but keep in mind that it of course only works for devices that are
KNOWN to be weird. If you are the first to connect your bogus Mumbletech SCSI CD-ROM you
might be the one that has to define which workaround is needed.

After you got your Mumbletech working, please send the required workaround to the FreeBSD
development team for inclusion in the next release of FreeBSD. Other Mumbletech owners will be
grateful to you.

12.5.2.3.6 Multiple LUN devices

In some cases you come across devices that use multiple logical units (LUNs) on a single SCSI ID.
In most cases FreeBSD only probes devices for LUN 0. An example are so called bridge boards
that connect 2 non-SCSI harddisks to a SCSI bus (e.g. an Emulex MD21 found in old Sun sys-
tems).

This means that any devices with LUNs != 0 are not normally found during device probe on sys-
tem boot. To work around this problem you must add an appropriate entry in /sys/scsi/scsi-
conf.c and rebuild your kernel.

Look for a struct that is initialized like below:

{
T_DIRECT, T_FIXED, "MAXTOR", "XT-4170S", "B5A",
"mx1", SC_ONE_LU

}

For you Mumbletech BRIDGE2000 that has more than one LUN, acts as a SCSI disk and has
firmware revision 123 you would add something like:

FreeBSD Handbook 168

{
T_DIRECT, T_FIXED, "MUMBLETECH", "BRIDGE2000", "123",
"sd", SC_MORE_LUS

}

The kernel on boot scans the inquiry data it receives against the table and acts accordingly. See
the source for more info.

12.5.2.3.7 Tagged command queueing

Modern SCSI devices, particularly magnetic disks, support what is called tagged command queu-
ing (TCQ).

In a nutshell, TCQ allows the device to have multiple I/O requests outstanding at the same time.
Because the device is intelligent, it can optimise its operations (like head positioning) based on its
own request queue. On SCSI devices like RAID (Redundant Array of Independent Disks) arrays
the TCQ function is indispensable to take advantage of the device’s inherent parallelism.

Each I/O request is uniquely identified by a ’tag’ (hence the name tagged command queuing)
and this tag is used by FreeBSD to see which I/O in the device drivers queue is reported as com-
plete by the device.

It should be noted however that TCQ requires device driver support and that some devices
implemented it ’not quite right’ in their firmware. This problem bit me once, and it leads to
highly mysterious problems. In such cases, try to disable TCQ.

12.5.2.3.8 Busmaster host adapters

Most, but not all, SCSI host adapters are bus mastering controllers. This means that they can do
I/O on their own without putting load onto the host CPU for data movement.

This is of course an advantage for a multitasking operating system like FreeBSD. It must be noted
however that there might be some rough edges.

For instance an Adaptec 1542 controller can be set to use different transfer speeds on the host bus
(ISA or AT in this case). The controller is settable to different rates because not all motherboards
can handle the higher speeds. Problems like hangups, bad data etc might be the result of using a
higher data transfer rate then your motherboard can stomach.

The solution is of course obvious: switch to a lower data transfer rate and try if that works better.

In the case of a Adaptec 1542, there is an option that can be put into the kernel config file to allow
dynamic determination of the right, read: fastest feasible, transfer rate. This option is disabled by
default:

options "TUNE_1542" #dynamic tune of bus DMA speed

Check the man pages for the host adapter that you use. Or better still, use the ultimate documen-
tation (read: driver source).

12.5.2.4 Tracking down problems

The following list is an attempt to give a guideline for the most common SCSI problems and their
solutions. It is by no means complete.

• Check for loose connectors and cables.

• Check and double check the location and number of your terminators.

• Check if your bus has at least one supplier of terminator power (especially with external
terminators.

FreeBSD Handbook 169

• Check if no double target IDs are used.

• Check if all devices to be used are powered up.

• Make a minimal bus config with as little devices as possible.

• If possible, configure your host adapter to use slow bus speeds.

• Disable tagged command queuing to make things as simple as possible (for a NCR
hostadapter based system see man ncrcontrol)

• If you can compile a kernel, make one with the SCSIDEBUG option, and try accessing the
device with debugging turned on for that device. If your device does not even probe at
startup, you may have to define the address of the device that is failing, and the desired
debug level in /sys/scsi/scsidebug.h . If it probes but just does not work, you can use
the scsi(8) command to dynamically set a debug level to it in a running kernel (if
SCSIDEBUG is defined). This will give you COPIOUS debugging output with which to
confuse the gurus. see man 4 scsi for more exact information. Also look at man 8 scsi .

12.5.2.5 Further reading

If you intend to do some serious SCSI hacking, you might want to have the official standard at
hand:

Approved American National Standards can be purchased from ANSI at 11 West 42nd Street,
13th Floor, New York, NY 10036, Sales Dept: (212) 642-4900. You can also buy many ANSI stan-
dards and most committee draft documents from Global Engineering Documents, 15 Inverness
Way East, Englewood, CO 80112-5704, Phone: (800) 854-7179, Outside USA and Canada: (303)
792-2181, FAX: (303) 792- 2192.

Many X3T10 draft documents are available electronically on the SCSI BBS (719-574-0424) and on
the ncrinfo.ncr.com anonymous ftp site.

Latest X3T10 committee documents are:

• AT Attachment (ATA or IDE) [X3.221-1994] (Approved)

• ATA Extensions (ATA-2) [X3T10/948D Rev 2i]

• Enhanced Small Device Interface (ESDI) [X3.170-1990/X3.170a-1991] (Approved)

• Small Computer System Interface - 2 (SCSI-2) [X3.131-1994] (Approved)

• SCSI-2 Common Access Method Transport and SCSI Interface Module (CAM) [X3T10/792D
Rev 11]

Other publications that might provide you with additional information are:

• "SCSI: Understanding the Small Computer System Interface", written by NCR Corporation.
Available from: Prentice Hall, Englewood Cliffs, NJ, 07632 Phone: (201) 767-5937 ISBN
0-13-796855-8

• "Basics of SCSI", a SCSI tutorial written by Ancot Corporation Contact Ancot for availability
information at: Phone: (415) 322-5322 Fax: (415) 322-0455

• "SCSI Interconnection Guide Book", an AMP publication (dated 4/93, Catalog 65237) that
lists the various SCSI connectors and suggests cabling schemes. Available from AMP at
(800) 522-6752 or (717) 564-0100

• "Fast Track to SCSI", A Product Guide written by Fujitsu. Available from: Prentice Hall,
Englewood Cliffs, NJ, 07632 Phone: (201) 767-5937 ISBN 0-13-307000-X

• "The SCSI Bench Reference", "The SCSI Encyclopedia", and the "SCSI Tutor", ENDL Publica-
tions, 14426 Black Walnut Court, Saratoga CA, 95070 Phone: (408) 867-6642

FreeBSD Handbook 170

• "Zadian SCSI Navigator" (quick ref. book) and "Discover the Power of SCSI" (First book
along with a one-hour video and tutorial book), Zadian Software, Suite 214, 1210 S. Bascom
Ave., San Jose, CA 92128, (408) 293-0800

On Usenet the newsgroups comp.periphs.scsi and comp.periphs are noteworthy places to look
for more info. You can also find the SCSI-Faq there, which is posted periodically.

Most major SCSI device and host adapter suppliers operate ftp sites and/or BBS systems. They
may be valuable sources of information about the devices you own.

12.5.3 * Disk/tape controllers

"

12.5.3.1 * SCSI

12.5.3.2 * IDE

12.5.3.3 * Floppy

12.5.4 Hard drives

12.5.4.1 SCSI hard drives

Contributed by Satoshi Asami <asami@FreeBSD.ORG>.
17 February 1998.

As mentioned in the SCSI (section 12.5.2, page 158) section, virtually all SCSI hard drives sold
today are SCSI-2 compliant and thus will work fine as long as you connect them to a supported
SCSI host adapter. Most problems people encounter are either due to badly designed cabling
(cable too long, star topology, etc.), insufficient termination, or defective parts. Please refer to the
SCSI (section 12.5.2, page 158) section first if your SCSI hard drive is not working. However,
there are a couple of things you may want to take into account before you purchase SCSI hard
drives for your system.

12.5.4.1.1 Rotational speed

Rotational speeds of SCSI drives sold today range from around 4,500RPM to 10,000RPM. Most of
them are either 5,400RPM or 7,200RPM. Even though the 7,200RPM drives can generally transfer
data faster, they run considerably hotter than their 5,400RPM counterparts. A large fraction of
today’s disk drive malfunctions are heat-related. If you do not have very good cooling in your
PC case, you may want to stick with 5,400RPM or slower drives.

Note that newer drives, with higher areal recording densities, can deliver much more bits per
rotation than older ones. Today’s top-of-line 5,400RPM drives can sustain a throughput compara-
ble to 7,200RPM drives of one or two model generations ago. The number to find on the spec
sheet for bandwidth is "internal data (or transfer) rate". It is usually in megabits/sec so divide it
by 8 and you’ll get the rough approximation of how much megabytes/sec you can get out of the
drive.

(If you are a speed maniac and want a 10,000RPM drive for your cute little peecee, be my guest;
however, those drives become extremely hot. Don’t even think about it if you don’t have a fan
blowing air directly at the drive or a properly ventilated disk enclosure.)

Obviously, the latest 10,000RPM drives and 7,200RPM drives can deliver more data than the lat-
est 5,400RPM drives, so if absolute bandwidth is the necessity for your applications, you have lit-
tle choice but to get the faster drives. Also, if you need low latency, faster drives are better; not
only do they usually have lower average seek times, but also the rotational delay is one place
where slow-spinning drives can never beat a faster one. (The average rotational latency is half
the time it takes to rotate the drive once; thus, it’s 3 milliseconds for 10,000RPM drives, 4.2ms for
7,200RPM drives and 5.6ms for 5,400RPM drives.) Latency is seek time plus rotational delay.
Make sure you understand whether you need low latency or more accesses per second, though;

FreeBSD Handbook 171

in the latter case (e.g., news servers), it may not be optimal to purchase one big fast drive. You
can achieve similar or even better results by using the ccd (concatenated disk) driver to create a
striped disk array out of multiple slower drives for comparable overall cost.

Make sure you have adequate air flow around the drive, especially if you are going to use a fast-
spinning drive. You generally need at least 1/2" (1.25cm) of spacing above and below a drive.
Understand how the air flows through your PC case. Most cases have the power supply suck the
air out of the back. See where the air flows in, and put the drive where it will have the largest
volume of cool air flowing around it. You may need to seal some unwanted holes or add a new
fan for effective cooling.

Another consideration is noise. Many 7,200 or faster drives generate a high-pitched whine which
is quite unpleasant to most people. That, plus the extra fans often required for cooling, may
make 7,200 or faster drives unsuitable for some office and home environments.

12.5.4.1.2 For m factor

Most SCSI drives sold today are of 3.5" form factor. They come in two different heights; 1.6"
("half-height") or 1" ("low-profile"). The half-height drive is the same height as a CD-ROM drive.
However, don’t forget the spacing rule mentioned in the previous section. If you have three stan-
dard 3.5" drive bays, you will not be able to put three half-height drives in there (without frying
them, that is).

12.5.4.1.3 Interface

The majority of SCSI hard drives sold today are Ultra or Ultra-wide SCSI. The maximum band-
width of Ultra SCSI is 20MB/sec, and Ultra-wide SCSI is 40MB/sec. There is no difference in max
cable length between Ultra and Ultra-wide; however, the more devices you have on the same bus,
the sooner you will start having bus integrity problems. Unless you have a well-designed disk
enclosure, it is not easy to make more than 5 or 6 Ultra SCSI drives work on a single bus.

On the other hand, if you need to connect many drives, going for Fast-wide SCSI may not be a
bad idea. That will have the same max bandwidth as Ultra (narrow) SCSI, while electronically
it’s much easier to get it "right". My advice would be: if you want to connect many disks, get
wide SCSI drives; they usually cost a little more but it may save you down the road. (Besides, if
you can’t afford the cost difference, you shouldn’t be building a disk array.)

There are two variant of wide SCSI drives; 68-pin and 80-pin SCA (Single Connector Attach). The
SCA drives don’t have a separate 4-pin power connector, and also read the SCSI ID settings
through the 80-pin connector. If you are really serious about building a large storage system, get
SCA drives and a good SCA enclosure (dual power supply with at least one extra fan). They are
more electronically sound than 68-pin counterparts because there is no "stub" of the SCSI bus
inside the disk canister as in arrays built from 68-pin drives. They are easier to install too (you
just need to screw the drive in the canister, instead of trying to squeeze in your fingers in a tight
place to hook up all the little cables (like the SCSI ID and disk activity LED lines).

12.5.4.2 * IDE hard drives

12.5.5 Tape drives

Contributed by Jonathan M. Bresler <jmb@FreeBSD.ORG>.
2 July 1996.

12.5.5.1 General tape access commands

mt(1) provides generic access to the tape drives. Some of the more common commands are
rewind , erase , and status . See the mt(1) manual page for a detailed description.

FreeBSD Handbook 172

12.5.5.2 Controller Interfaces

There are several different interfaces that support tape drives. The interfaces are SCSI, IDE,
Floppy and Parallel Port. A wide variety of tape drives are available for these interfaces. Con-
trollers are discussed in Disk/tape controllers (section 12.5.3, page 170)

12.5.5.3 SCSI drives

The st(4) driver provides support for 8mm (Exabyte), 4mm (DAT: Digital Audio Tape), QIC
(Quarter-Inch Cartridge), DLT (Digital Linear Tape), QIC Minicartridge and 9-track (remember
the big reels that you see spinning in Hollywood computer rooms) tape drives. See the st(4)
manual page for a detailed description.

The drives listed below are currently being used by members of the FreeBSD community. They
are not the only drives that will work with FreeBSD. They just happen to be the ones that we use.

12.5.5.3.1 4mm (DAT : Digital Audio Tape)

Archive Python (section 12.5.5.7.2, page 173)

HP C1533A (section 12.5.5.7.13, page 177)

HP C1534A (section 12.5.5.7.14, page 177)

HP 35450A (section 12.5.5.7.16, page 179)

HP 35470A (section 12.5.5.7.17, page 179)

HP 35480A (section 12.5.5.7.18, page 180)

SDT-5000 (section 12.5.5.7.19, page 180)

Wangtek 6200 (section 12.5.5.7.24, page 182)

12.5.5.3.2 8mm (Exabyte)

EXB-8200 (section 12.5.5.7.10, page 176)

EXB-8500 (section 12.5.5.7.11, page 176)

EXB-8505 (section 12.5.5.7.12, page 176)

12.5.5.3.3 QIC (Quar ter-Inch Car tridge)

Archive Ananconda 2750 (section 12.5.5.7.1, page 173)

Archive Viper 60 (section 12.5.5.7.3, page 174)

Archive Viper 150 (section 12.5.5.7.4, page 174)

Archive Viper 2525 (section 12.5.5.7.5, page 174)

Tandberg TDC 3600 (section 12.5.5.7.20, page 180)

Tandberg TDC 3620 (section 12.5.5.7.21, page 181)

Tandberg TDC 4222 (section 12.5.5.7.22, page 181)

Wangtek 5525ES (section 12.5.5.7.23, page 181)

12.5.5.3.4 DLT (Digital Linear Tape)

Digital TZ87 (section 12.5.5.7.8, page 175)

12.5.5.3.5 Mini-Cartr idge

Conner CTMS 3200 (section 12.5.5.7.7, page 175)

Exabyte 2501 (section 12.5.5.7.9, page 175)

FreeBSD Handbook 173

12.5.5.3.6 Autoloaders/Changers

Hewlett-Packard HP C1553A Autoloading DDS2 (section 12.5.5.7.15, page 178)

12.5.5.4 * IDE drives

12.5.5.5 Floppy drives

Conner 420R (section 12.5.5.7.6, page 175)

12.5.5.6 * Parallel port drives

12.5.5.7 Detailed Information

12.5.5.7.1

Archive Anaconda 2750"

The boot message identifier for this drive is "ARCHIVE ANCDA 2750 28077 -003 type 1 remov-
able SCSI 2"

This is a QIC tape drive.

Native capacity is 1.35GB when using QIC-1350 tapes. This drive will read and write QIC-150
(DC6150), QIC-250 (DC6250), and QIC-525 (DC6525) tapes as well.

Data transfer rate is 350kB/s using dump(8) . Rates of 530kB/s have been reported when using
Amanda (section 9.3.5, page 121)

Production of this drive has been discontinued.

The SCSI bus connector on this tape drive is reversed from that on most other SCSI devices.
Make sure that you have enough SCSI cable to twist the cable one-half turn before and after the
Archive Anaconda tape drive, or turn your other SCSI devices upside-down.

Two kernel code changes are required to use this drive. This drive will not work as delivered.

If you have a SCSI-2 controller, short jumper 6. Otherwise, the drive behaves are a SCSI-1 device.
When operating as a SCSI-1 device, this drive, "locks" the SCSI bus during some tape operations,
including: fsf, rewind, and rewoffl.

If you are using the NCR SCSI controllers, patch the file /usr/src/sys/pci/ncr.c (as shown
below). Build and install a new kernel.

*** 4831,4835 ****
};

! if (np->latetime>4) {
/*
** Although we tried to wake it up,

--- 4831,4836 ----
};

! if (np->latetime>1200) {
/*
** Although we tried to wake it up,

Reported by: Jonathan M. Bresler <jmb@FreeBSD.ORG>

12.5.5.7.2

Archive Python"

The boot message identifier for this drive is "ARCHIVE Python 28454-XXX4ASB" "type 1 remov-
able SCSI 2" "density code 0x8c, 512-byte blocks"

This is a DDS-1 tape drive.

FreeBSD Handbook 174

Native capacity is 2.5GB on 90m tapes.

Data transfer rate is XXX.

This drive was repackaged by Sun Microsystems as model 411.

Reported by: Bob Bishop rb@gid.co.uk

12.5.5.7.3

Archive Viper 60"

The boot message identifier for this drive is "ARCHIVE VIPER 60 21116 -007" "type 1 removable
SCSI 1"

This is a QIC tape drive.

Native capacity is 60MB.

Data transfer rate is XXX.

Production of this drive has been discontinued.

Reported by: Philippe Regnauld regnauld@hsc.fr

12.5.5.7.4

Archive Viper 150"

The boot message identifier for this drive is "ARCHIVE VIPER 150 21531 -004" "Archive Viper 150
is a known rogue" "type 1 removable SCSI 1". A multitude of firmware revisions exist for this
drive. Your drive may report different numbers (e.g "21247 -005".

This is a QIC tape drive.

Native capacity is 150/250MB. Both 150MB (DC6150) and 250MB (DC6250) tapes have the
recording format. The 250MB tapes are approximately 67% longer than the 150MB tapes. This
drive can read 120MB tapes as well. It can not write 120MB tapes.

Data transfer rate is 100kB/s

This drive reads and writes DC6150 (150MB) and DC6250 (250MB) tapes.

This drives quirks are known and pre-compiled into the scsi tape device driver (st(4)).

Under FreeBSD 2.2-current, use mt blocksize 512 to set the blocksize. (The particular drive
had firmware revision 21247 -005. Other firmware revisions may behave differently) Previous
versions of FreeBSD did not have this problem.

Production of this drive has been discontinued.

Reported by: Pedro A M Vazquez vazquez@IQM.Unicamp.BR

Mike Smith msmith@atrad.adelaide.edu.au

12.5.5.7.5

Archive Viper 2525"

The boot message identifier for this drive is "ARCHIVE VIPER 2525 25462 -011" "type 1 remov-
able SCSI 1"

This is a QIC tape drive.

Native capacity is 525MB.

Data transfer rate is 180kB/s at 90 inches/sec.

The drive reads QIC-525, QIC-150, QIC-120 and QIC-24 tapes. Writes QIC-525, QIC-150, and

FreeBSD Handbook 175

QIC-120.

Firmware revisions prior to "25462 -011" are bug ridden and will not function properly.

Production of this drive has been discontinued.

12.5.5.7.6

Conner 420R"

The boot message identifier for this drive is "Conner tape".

This is a floppy controller, minicartridge tape drive.

Native capacity is XXXX

Data transfer rate is XXX

The drive uses QIC-80 tape cartridges.

Reported by: Mark Hannon mark@seeware.DIALix.oz.au

12.5.5.7.7

Conner CTMS 3200"

The boot message identifier for this drive is "CONNER CTMS 3200 7.00" "type 1 removable SCSI
2".

This is a minicartridge tape drive.

Native capacity is XXXX

Data transfer rate is XXX

The drive uses QIC-3080 tape cartridges.

Reported by: Thomas S. Traylor tst@titan.cs.mci.com

12.5.5.7.8

"

The boot message identifier for this drive is "DEC TZ87 (C) DEC 9206" "type 1 removable SCSI 2"
"density code 0x19"

This is a DLT tape drive.

Native capacity is 10GB.

This drive supports hardware data compression.

Data transfer rate is 1.2MB/s.

This drive is identical to the Quantum DLT2000. The drive firmware can be set to emulate several
well-known drives, including an Exabyte 8mm drive.

Reported by: Wilko Bulte <wilko@yedi.iaf.nl>

12.5.5.7.9

"

The boot message identifier for this drive is "EXABYTE EXB-2501"

This is a mini-cartridge tape drive.

Native capacity is 1GB when using MC3000XL minicartridges.

Data transfer rate is XXX

FreeBSD Handbook 176

This drive can read and write DC2300 (550MB), DC2750 (750MB), MC3000 (750MB), and
MC3000XL (1GB) minicartridges.

WARNING: This drive does not meet the SCSI-2 specifications. The drive locks up completely in
response to a SCSI MODE_SELECT command unless there is a formatted tape in the drive.
Before using this drive, set the tape blocksize with

mt -f /dev/st0ctl.0 blocksize 1024

Before using a minicartridge for the first time, the minicartridge must be formated. FreeBSD
2.1.0-RELEASE and earlier:

/sbin/scsi -f /dev/rst0.ctl -s 600 -c "4 0 0 0 0 0"

(Alternatively, fetch a copy of the scsiformat shell script from FreeBSD 2.1.5/2.2.) FreeBSD
2.1.5 and later:

/sbin/scsiformat -q -w /dev/rst0.ctl

Right now, this drive cannot really be recommended for FreeBSD.

Reported by: Bob Beaulieu ez@eztravel.com

12.5.5.7.10 Exabyte

EXB-8200"

The boot message identifier for this drive is "EXABYTE EXB-8200 252X" "type 1 removable SCSI
1"

This is an 8mm tape drive.

Native capacity is 2.3GB.

Data transfer rate is 270kB/s.

This drive is fairly slow in responding to the SCSI bus during boot. A custom kernel may be
required (set SCSI_DELAY to 10 seconds).

There are a large number of firmware configurations for this drive, some have been customized
to a particular vendor’s hardware. The firmware can be changed via EPROM replacement.

Production of this drive has been discontinued.

Reported by: Mike Smith msmith@atrad.adelaide.edu.au

12.5.5.7.11

Exabyte EXB-8500"

The boot message identifier for this drive is "EXABYTE EXB-8500-85Qanx0 0415" "type 1 remov-
able SCSI 2"

This is an 8mm tape drive.

Native capacity is 5GB.

Data transfer rate is 300kB/s.

Reported by: Greg Lehey grog@lemis.de

12.5.5.7.12

"

The boot message identifier for this drive is "EXABYTE EXB-85058SQANXR1 05B0" "type 1
removable SCSI 2"

This is an 8mm tape drive which supports compression, and is upward compatible with the

FreeBSD Handbook 177

EXB-5200 and EXB-8500.

Native capacity is 5GB.

The drive supports hardware data compression.

Data transfer rate is 300kB/s.

Reported by: Glen Foster gfoster@gfoster.com

12.5.5.7.13

Hewlett-Packard HP C1533A"

The boot message identifier for this drive is "HP C1533A 9503" "type 1 removable SCSI 2".

This is a DDS-2 tape drive. DDS-2 means hardware data compression and narrower tracks for
increased data capacity.

Native capacity is 4GB when using 120m tapes. This drive supports hardware data compression.

Data transfer rate is 510kB/s.

This drive is used in Hewlett-Packard’s SureStore 6000eU and 6000i tape drives and C1533A
DDS-2 DAT drive.

The drive has a block of 8 dip switches. The proper settings for FreeBSD are: 1 ON; 2 ON; 3 OFF;
4 ON; 5 ON; 6 ON; 7 ON; 8 ON.

switch 1 2 Result
ON ON Compression enabled at power-on, with host control
ON OFF Compression enabled at power-on, no host

control
OFF ON Compression disabled at power-on; the

host is allowed to control compression
OFF OFF Compression disabled at power-on, no host

control

Switch 3 controls MRS (Media Recognition System). MRS tapes have stripes on the transparent
leader. These identify the tape as DDS (Digital Data Storage) grade media. Tapes that do not
have the stripes will be treated as write-protected. Switch 3 OFF enables MRS. Switch 3 ON dis-
ables MRS.

See HP SureStore Tape Products and Hewlett-Packard Disk and Tape Technical Information for
more information on configuring this drive.

Warning: Quality control on these drives varies greatly. One FreeBSD core-team member has
returned 2 of these drives. Neither lasted more than 5 months.

Reported by: Stefan Esser <se@FreeBSD.ORG>

12.5.5.7.14

Hewlett-Packard HP 1534A"

The boot message identifier for this drive is "HP HP35470A T503" type 1 removable SCSI 2"
"Sequential-Access density code 0x13, variable blocks".

This is a DDS-1 tape drive. DDS-1 is the original DAT tape format.

Native capacity is 2GB when using 90m tapes.

Data transfer rate is 183kB/s.

The same mechanism is used in Hewlett-Packard’s SureStore 2000i tape drive, C35470A DDS for-
mat DAT drive, C1534A DDS format DAT drive and HP C1536A DDS format DAT drive.

The HP C1534A DDS format DAT drive has two indicator lights, one green and one amber. The

FreeBSD Handbook 178

green one indicates tape action: slow flash during load, steady when loaded, fast flash during
read/write operations. The amber one indicates warnings: slow flash when cleaning is required
or tape is nearing the end of its useful life, steady indicates an hard fault. (factory service
required?)

Reported by Gary Crutcher gcrutchr@nightflight.com

12.5.5.7.15

Hewlett-Packard HP C1553A Autoloading DDS2"

The boot message identifier for this drive is "".

This is a DDS-2 tape drive with a tape changer. DDS-2 means hardware data compression and
narrower tracks for increased data capacity.

Native capacity is 24GB when using 120m tapes. This drive supports hardware data compres-
sion.

Data transfer rate is 510kB/s (native).

This drive is used in Hewlett-Packard’s SureStore 12000e tape drive.

The drive has two selectors on the rear panel. The selector closer to the fan is SCSI id. The other
selector should be set to 7.

There are four internal switches. These should be set: 1 ON; 2 ON; 3 ON; 4 OFF.

At present the kernel drivers do not automatically change tapes at the end of a volume. This shell
script can be used to change tapes:

FreeBSD Handbook 179

#!/bin/sh
PATH="/sbin:/usr/sbin:/bin:/usr/bin"; export PATH

usage()
{

echo "Usage: dds_changer [123456ne] raw-device-name
echo "1..6 = Select cartridge"
echo "next cartridge"
echo "eject magazine"
exit 2

}

if [$# -ne 2] ; then
usage

fi

cdb3=0
cdb4=0
cdb5=0

case $1 in
[123456])

cdb3=$1
cdb4=1
;;

n)
;;

e)
cdb5=0x80
;;

?)
usage
;;

esac

scsi -f $2 -s 100 -c "1b 0 0 $cdb3 $cdb4 $cdb5"

12.5.5.7.16

Hewlett-Packard HP 35450A"

The boot message identifier for this drive is "HP HP35450A -A C620" "type 1 removable SCSI 2"
"Sequential-Access density code 0x13"

This is a DDS-1 tape drive. DDS-1 is the original DAT tape format.

Native capacity is 1.2GB.

Data transfer rate is 160kB/s.

Reported by: mark thompson mark.a.thompson@pobox.com

12.5.5.7.17

Hewlett-Packard HP 35470A"

The boot message identifier for this drive is "HP HP35470A 9 09" type 1 removable SCSI 2"

This is a DDS-1 tape drive. DDS-1 is the original DAT tape format.

Native capacity is 2GB when using 90m tapes.

Data transfer rate is 183kB/s.

The same mechanism is used in Hewlett-Packard’s SureStore 2000i tape drive, C35470A DDS for-
mat DAT drive, C1534A DDS format DAT drive, and HP C1536A DDS format DAT drive.

Warning: Quality control on these drives varies greatly. One FreeBSD core-team member has

FreeBSD Handbook 180

returned 5 of these drives. None lasted more than 9 months.

Reported by: David Dawes dawes@rf900.physics.usyd.edu.au (9 09)

12.5.5.7.18

Hewlett-Packard HP 35480A"

The boot message identifier for this drive is "HP HP35480A 1009" "type 1 removable SCSI 2"
"Sequential-Access density code 0x13".

This is a DDS-DC tape drive. DDS-DC is DDS-1 with hardware data compression. DDS-1 is the
original DAT tape format.

Native capacity is 2GB when using 90m tapes. It cannot handle 120m tapes. This drive supports
hardware data compression. Please refer to the section on HP C1533A (section 12.5.5.7.13, page
177) for the proper switch settings.

Data transfer rate is 183kB/s.

This drive is used in Hewlett-Packard’s SureStore 5000eU and 5000i tape drives and C35480A
DDS format DAT drive..

This drive will occasionally hang during a tape eject operation (mt offline). Pressing the front
panel button will eject the tape and bring the tape drive back to life.

WARNING: HP 35480-03110 only. On at least two occasions this tape drive when used with
FreeBSD 2.1.0, an IBM Server 320 and an 2940W SCSI controller resulted in all SCSI disk parti-
tions being lost. The problem has not be analyzed or resolved at this time.

12.5.5.7.19

"

There are at least two significantly different models: one is a DDS-1 and the other DDS-2. The
DDS-1 version is "SDT-5000 3.02". The DDS-2 version is "SONY SDT-5000 327M". The DDS-2 ver-
sion has a 1MB cache. This cache is able to keep the tape streaming in almost any circumstances.

The boot message identifier for this drive is "SONY SDT-5000 3.02" "type 1 removable SCSI 2"
"Sequential-Access density code 0x13"

Native capacity is 4GB when using 120m tapes. This drive supports hardware data compression.

Data transfer rate is depends upon the model or the drive. The rate is 630kB/s for the "SONY
SDT-5000 327M" while compressing the data. For the "SONY SDT-5000 3.02", the data transfer
rate is 225kB/s.

In order to get this drive to stream, set the blocksize to 512 bytes (mt blocksize 512) reported
by Kenneth Merry ken@ulc199.residence.gatech.edu"

"SONY SDT-5000 327M" information reported by Charles Henrich henrich@msu.edu

Reported by: Jean-Marc Zucconi <jmz@FreeBSD.ORG>

12.5.5.7.20

Tandberg TDC 3600"

The boot message identifier for this drive is "TANDBERG TDC 3600 =08:" "type 1 removable
SCSI 2"

This is a QIC tape drive.

Native capacity is 150/250MB.

This drive has quirks which are known and work around code is present in the scsi tape device
driver (st(4)). Upgrading the firmware to XXX version will fix the quirks and provide SCSI 2

FreeBSD Handbook 181

capabilities.

Data transfer rate is 80kB/s.

IBM and Emerald units will not work. Replacing the firmware EPROM of these units will solve
the problem.

Reported by: Michael Smith msmith@atrad.adelaide.edu.au

12.5.5.7.21

Tandberg TDC 3620"

This is very similar to the Tandberg TDC 3600 (section 12.5.5.7.20, page 180) drive.

Reported by: Jörg Wunsch <joerg@FreeBSD.ORG>

12.5.5.7.22

Tandberg TDC 4222"

The boot message identifier for this drive is "TANDBERG TDC 4222 =07" "type 1 removable SCSI
2"

This is a QIC tape drive.

Native capacity is 2.5GB. The drive will read all cartridges from the 60 MB (DC600A) upwards,
and write 150 MB (DC6150) upwards. Hardware compression is optionally supported for the 2.5
GB cartridges.

This drives quirks are known and pre-compiled into the scsi tape device driver (st(4)) begin-
ning with FreeBSD 2.2-current. For previous versions of FreeBSD, use mt to read one block from
the tape, rewind the tape, and then execute the backup program (mt fsr 1; mt rewind;
dump ...)

Data transfer rate is 600kB/s (vendor claim with compression), 350 KB/s can even be reached in
start/stop mode. The rate decreases for smaller cartridges.

Reported by: Jörg Wunsch <joerg@FreeBSD.ORG>

12.5.5.7.23

Wangtek 5525ES"

The boot message identifier for this drive is "WANGTEK 5525ES SCSI REV7 3R1" "type 1 remov-
able SCSI 1" "density code 0x11, 1024-byte blocks"

This is a QIC tape drive.

Native capacity is 525MB.

Data transfer rate is 180kB/s.

The drive reads 60, 120, 150, and 525MB tapes. The drive will not write 60MB (DC600 cartridge)
tapes. In order to overwrite 120 and 150 tapes reliably, first erase (mt erase) the tape. 120 and
150 tapes used a wider track (fewer tracks per tape) than 525MB tapes. The "extra" width of the
previous tracks is not overwritten, as a result the new data lies in a band surrounded on both
sides by the previous data unless the tape have been erased.

This drives quirks are known and pre-compiled into the scsi tape device driver (st(4)).

Other firmware revisions that are known to work are: M75D

Reported by: Marc van Kempen marc@bowtie.nl "REV73R1" Andrew Gordon Andrew.Gor-
don@net-tel.co.uk "M75D"

FreeBSD Handbook 182

12.5.5.7.24

Wangtek 6200"

The boot message identifier for this drive is "WANGTEK 6200-HS 4B18" "type 1 removable SCSI
2" "Sequential-Access density code 0x13"

This is a DDS-1 tape drive.

Native capacity is 2GB using 90m tapes.

Data transfer rate is 150kB/s.

Reported by: Tony Kimball alk@Think.COM

12.5.5.8 * Problem drives

12.5.6 CD-ROM drives

Contributed by David O’Brien <obrien@FreeBSD.ORG> .
23 November 1997.

As mentioned in Jordan’s Picks (section 12.2.1.4, page 131) Generally speaking those in The
FreeBSD Project prefer SCSI CDROM drives over IDE CDROM drives. However not all SCSI
CDROM drives are equal. Some feel the quality of some SCSI CDROM drives have been deterio-
rating to that of IDE CDROM drives. Toshiba used to be the favored stand-by, but many on the
SCSI mailing list have found displeasure with the 12x speed XM-5701TA as its volume (when
playing audio CDROMs) is not controllable by the various audio player software.

Another area where SCSI CDROM manufacturers are cutting corners is adhearance to the SCSI
specification (section 12.5.2.5, page 169). Many SCSI CDROMs will respond to multiple LUNs (sec-
tion 12.5.2.3.5, page 167) for its target address. Known violators include the 6x Teac CD-56S 1.0D.

12.5.7 * Other

12.6 * Other
12.6.1 * PCMCIA

FreeBSD Handbook 183

13. Localization
13.1 Russian Language (KOI8-R encoding)
Contributed by Andrey A. Chernov <ache@FreeBSD.ORG>

1 May 1997.

See more info about KOI8-R encoding at KOI8-R References (Russian Net Character Set).

13.1.1 Console Setup

1. Add following line to your kernel configuration file:

options "SC_MOUSE_CHAR=0x03"

to move character codes used for mouse cursor off KOI8-R pseudographics range.

2. Russian console entry in /etc/rc.conf should looks like

keymap=ru.koi8-r
keychange="61 ^[[K"
scrnmap=koi8-r2cp866
font8x16=cp866b-8x16
font8x14=cp866-8x14
font8x8=cp866-8x8

NOTE: ^[means that real ESC character must be entered into /etc/rc.conf , not just ^[
string.

This tuning means KOI8-R keyboard with Alternative screen font mapped to KOI8-R
encoding to preserve pseudographics, Gray Delete key remapped to match Russian term-
cap(5) entry for FreeBSD console.

RUS/LAT switch will be CapsLock. Old CapsLock function still available via Shift+Cap-
sLock. CapsLock LED will indicate RUS mode, not CapsLock mode.

3. For each ttyv? entry in /etc/ttys change terminal type from cons25 to cons25r , i.e.
each entry should looks like

ttyv0 "/usr/libexec/getty Pc" cons25r on secure

13.1.2 Locale Setup

There is two environment variables for locale setup:

• LANGfor POSIX setlocale(3) family functions;

• MM_CHARSETfor applications MIME chararter set.

The best way is using /etc/login.conf russian user’s login class in passwd(5) entry login
class position. See login.conf(5) for details.

13.1.2.1 Login Class Method

First of all check your /etc/login.conf have russian login class, this entry may looks like:

russian:Russian Users Accounts:\
:charset=KOI8-R:\
:lang=ru_RU.KOI8-R:\
:tc=default:

FreeBSD Handbook 184

13.1.2.1.1 How to do it with vipw(8)

If you use vipw(8) for adding new users, /etc/master.passwd entry should looks like:

user:password:1111:11:russian:0:0:User Name:/home/user:/bin/csh

13.1.2.1.2 How to do it with adduser(8)

If you use adduser(8) for adding new users:

• Set

defaultclass = russian

in /etc/adduser.conf (you must enter default class for all non-Russian users in this
case);

• Alternative variant will be answering russian each time when you see

Enter login class: default []:

prompt from adduser(8) ;

• Another variant: call

adduser -class russian

for each Russian user you want to add.

13.1.2.1.3 How to do it with pw(8)

If you use pw(8) for adding new users, call it in this form:

pw useradd user_name -L russian

13.1.2.2 Shell Star tup Files Method

If you don’t want to use login class method (section 13.1.2.1, page 183) for some reasons, just set
this two environment variables (section 13.1.2, page 183) in the following shell startup files:

• /etc/profile :

LANG=ru_RU.KOI8-R; export LANG
MM_CHARSET=KOI8-R; export MM_CHARSET

• /etc/csh.login :

setenv LANG ru_RU.KOI8-R
setenv MM_CHARSET KOI8-R

Alternatively you can add this instructions to

• /usr/share/skel/dot.profile :

(similar to /etc/profile above);

• /usr/share/skel/dot.login :

(similar to /etc/csh.login above).

FreeBSD Handbook 185

13.1.3 Printer Setup

Since most printers with Russian characters comes with hardware code page CP866, special out-
put filter needed for KOI8-R -> CP866 conversion. Such filter installed by default as
/usr/libexec/lpr/ru/koi2alt . So, Russian printer /etc/printcap entry should looks
like:

lp|Russian local line printer:\
:sh:of=/usr/libexec/lpr/ru/koi2alt:\
:lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs:

see printcap(5) for detailed description.

13.1.4 MSDOS FS and Russian file names

Look at following example fstab(5) entry to enable support for Russian file names in MSDOS
FS:

/dev/sd0s1 /dos/c msdos rw,-W=koi2dos,-L=ru_RU.KOI8-R 0 0

see mount_msdos(8) for detailed description of -W and -L options.

13.1.5 X Window Setup

Step by step instructions:

1. Do non-X locale setup (section 13.1.2, page 183) first as described.

NOTE:

Russian KOI8-R locale may not work with old XFree86 releases (lower than 3.3). XFree86
port from /usr/ports/x11/XFree86 already have most recent XFree86 version, so it
will work, if you install XFree86 from this port. XFree86 version shipped with the latest
FreeBSD distribution should work too (check XFree86 version number not less than 3.3
first).

2. Go to /usr/ports/russian/X.language directory and say

make all install

there. This port install latest version of KOI8-R fonts. XFree86 3.3 already have some
KOI8-R fonts, but this ones scaled better.

Check find "Files" section in your /etc/XF86Config , following lines must be before
any other FontPath entries:

FontPath "/usr/X11R6/lib/X11/fonts/cyrillic/misc"
FontPath "/usr/X11R6/lib/X11/fonts/cyrillic/75dpi"
FontPath "/usr/X11R6/lib/X11/fonts/cyrillic/100dpi"

If you use high resolution video mode, swap 75 dpi and 100 dpi lines.

3. To activate Russian keyboard add

XkbKeymap "xfree86(ru)"

line into "Keyboard" section in your /etc/XF86Config , also make sure that XkbDis-
able is turned off (commented out) there.

RUS/LAT switch will be CapsLock. Old CapsLock function still available via Shift+Cap-
sLock (in LAT mode only).

FreeBSD Handbook 186

NOTE: Russian XKB keyboard may not work with old XFree86 versions, see locale note
(section 13.1.5, page 185) for more info. Russian XKB keyboard may not work with non-
localized applications too, minimally localized application should call XtSetLanguageProc
(NULL, NULL, NULL); function early in the program.

13.2 German Language (ISO 8859-1)
Slaven Rezic <eserte@cs.tu-berlin.de> wrote a tutorial how to use umlauts on a FreeBSD
machine. The tutorial is written in German and available at
http://www.de.freebsd.org/de/umlaute/.

FreeBSD Handbook 187

Part III

Networ k Communications

FreeBSD Handbook 188

14. Serial Communications
14.1 Serial Basics
Assembled from FAQ.

This section should give you some general information about serial ports. If you do not find
what you want here, check into the Terminal and Dialup sections of the handbook.

The ttydX (or cuaaX) device is the regular device you will want to open for your applications.
When a process opens the device, it will have a default set of terminal I/O settings. You can see
these settings with the command

stty -a -f /dev/ttyd1

When you change the settings to this device, the settings are in effect until the device is closed.
When it is reopened, it goes back to the default set. To make changes to the default set, you can
open and adjust the settings of the ‘‘initial state’’ device. For example, to turn on CLOCALmode,
8 bits, and XON/XOFFflow control by default for ttyd5, do:

stty -f /dev/ttyid5 clocal cs8 ixon ixoff

A good place to do this is in /etc/rc.serial . Now, an application will have these settings by
default when it opens ttyd5 . It can still change these settings to its liking, though.

You can also prevent certain settings from being changed by an application by making adjust-
ments to the ‘‘lock state’’ device. For example, to lock the speed of ttyd5 to 57600 bps, do

stty -f /dev/ttyld5 57600

Now, an application that opens ttyd5 and tries to change the speed of the port will be stuck with
57600 bps.

Naturally, you should make the initial state and lock state devices writable only by root . The
MAKEDEVscript does NOT do this when it creates the device entries.

14.2 Terminals
Contributed by Sean Kelly <kelly@fsl.noaa.gov>
28 July 1996

Terminals provide a convenient and low-cost way to access the power of your FreeBSD system
when you are not at the computer’s console or on a connected network. This section describes
how to use terminals with FreeBSD.

14.2.1 Uses and Types of Terminals

The original Unix systems did not have consoles. Instead, people logged in and ran programs
through terminals that were connected to the computer’s serial ports. It is quite similar to using a
modem and some terminal software to dial into a remote system to do text-only work.

Today’s PCs have consoles capable of high quality graphics, but the ability to establish a login
session on a serial port still exists in nearly every Unix-style operating system today; FreeBSD is
no exception. By using a terminal attached to a unused serial port, you can log in and run any
text program that you would normally run on the console or in an xterm window in the X Win-
dow System.

For the business user, you can attach many terminals to a FreeBSD system and place them on
your employees’ desktops. For a home user, a spare computer such as an older IBM PC or a Mac-
intosh can be a terminal wired into a more powerful computer running FreeBSD. You can turn
what might otherwise be a single-user computer into a powerful multiple user system.

FreeBSD Handbook 189

For FreeBSD, there are three kinds of terminals:

• Dumb terminals (section 14.2.1.1, page 189)

• PCs acting as terminals (section 14.2.1.2, page 189)

• X terminals (section 14.2.1.3, page 189)

The remaining subsections describe each kind.

14.2.1.1 Dumb Terminals

Dumb terminals are specialized pieces of hardware that let you connect to computers over serial
lines. They are called ‘‘dumb’’ because they have only enough computational power to display,
send, and receive text. You cannot run any programs on them. It is the computer to which you
connect them that has all the power to run text editors, compilers, email, games, and so forth.

There are hundreds of kinds of dumb terminals made by many manufacturers, including Digital
Equipment Corporation’s VT-100 and Wyse’s WY-75. Just about any kind will work with
FreeBSD. Some high-end terminals can even display graphics, but only certain software pack-
ages can take advantage of these advanced features.

Dumb terminals are popular in work environments where workers do not need access to graphic
applications such as those provided by the X Window System.

14.2.1.2 PCs Acting As Terminals

If a dumb terminal (section 14.2.1.1, page 189) has just enough ability to display, send, and receive
text, then certainly any spare personal computer can be a dumb terminal. All you need is the
proper cable and some terminal emulation software to run on the computer.

Such a configuration is popular in homes. For example, if your spouse is busy working on your
FreeBSD system’s console, you can do some text-only work at the same time from a less powerful
personal computer hooked up as a terminal to the FreeBSD system.

14.2.1.3 X Terminals

X terminals are the most sophisticated kind of terminal available. Instead of connecting to a
serial port, they usually connect to a network like Ethernet. Instead of being relegated to text-
only applications, they can display any X application.

We introduce X terminals just for the sake of completeness. However, this chapter does not cover
setup, configuration, or use of X terminals.

14.2.2 Cables and Por ts

To connect a terminal to your FreeBSD system, you need the right kind of cable and a serial port
to which to connect it. This section tells you what to do. If you are already familiar with your
terminal and the cable it requires, skip to Configuration (section 14.2.3, page 191).

14.2.2.1 Cables

Because terminals use serial ports, you need to use serial---also known as RS-232C---cables to
connect the terminal to the FreeBSD system.

There are a couple of kinds of serial cables. Which one you’ll use depends on the terminal you
want to connect:

• If you are connecting a personal computer to act as a terminal, use a null-modem (section
14.2.2.1.1, page 190) cable. A null-modem cable connects two computers or terminals
together.

• If you have an actual terminal, your best source of information on what cable to use is the
documentation that accompanied the terminal. If you do not have the documentation, then
try a null-modem (section 14.2.2.1.1, page 190) cable. If that does not work, then try a

FreeBSD Handbook 190

standard (section 14.2.2.1.2, page 190) cable.

Also, the serial port on both the terminal and your FreeBSD system must have connectors that will
fit the cable you are using.

14.2.2.1.1 Null-modem cables

A null-modem cable passes some signals straight through, like ‘‘signal ground,’’ but switches
other signals. For example, the ‘‘send data’’ pin on one end goes to the ‘‘receive data’’ pin on the
other end.

If you like making your own cables, here is a table showing a recommended way to construct a
null-modem cable for use with terminals. This table shows the RS-232C signal names and the pin
numbers on a DB-25 connector.

Signal Pin# Pin# Signal
TxD 2 ----------------------- 3 RxD
RxD 3 ----------------------- 2 TxD
DTR 20 ----------------------- 6 DSR
DSR 6 ----------------------- 20 DTR
SG 7 ----------------------- 7 SG
DCD 8 ----------------------+ 4 RTS*

RTS 4 + + 5 CTS
*CTS 5 +---------------------- 8 DCD

* Connect pins 4 to 5 internally in the connector hood, and then to
pin 8 in the remote hood.

14.2.2.1.2 Standard RS-232C Cables

A standard serial cable passes all the RS-232C signals straight-through. That is, the ‘‘send data’’
pin on one end of the cable goes to the ‘‘send data’’ pin on the other end. This is the type of cable
to connect a modem to your FreeBSD system, and the type of cable needed for some terminals.

14.2.2.2 Por ts

Serial ports are the devices through which data is transferred between the FreeBSD host com-
puter and the terminal. This section describes the kinds of ports that exist and how they are
addressed in FreeBSD.

14.2.2.2.1 Kinds of Por ts

Several kinds of serial ports exist. Before you purchase or construct a cable, you need to make
sure it will fit the ports on your terminal and on the FreeBSD system.

Most terminals will have DB25 ports. Personal computers, including PCs running FreeBSD, will
have DB25 or DB9 ports. If you have a multiport serial card for your PC, you may have RJ-12 or
RJ-45 ports.

See the documentation that accompanied the hardware for specifications on the kind of port in
use. A visual inspection of the port often works, too.

14.2.2.2.2 Por t Names

In FreeBSD, you access each serial port through an entry in the /dev directory. There are two
different kinds of entries:

• Callin ports are named /dev/ttyd X where X is the port number, starting from zero. Gen-
erally, you use the callin port for terminals. Callin ports require that the serial line assert the
data carrier detect (DCD) signal to work.

• Callout ports are named /dev/cuaa X. You usually do not use the callout port for termi-
nals, just for modems. You may use the callout port if the serial cable or the terminal does
not support the carrier detect signal.

FreeBSD Handbook 191

See the sio(4) manual page for more information.

If you have connected a terminal to the first serial port (COM1 in DOS parlance), then you want
to use /dev/ttyd0 to refer to the terminal. If it is on the second serial port (also known as
COM2), it is /dev/ttyd1 , and so forth.

Note that you may have to configure your kernel to support each serial port, especially if you
have a multiport serial card. See Configuring the FreeBSD Kernel (section 5., page 35) for more
information.

14.2.3 Configuration

This section describes what you need to configure on your FreeBSD system to enable a login ses-
sion on a terminal. It assumes you have already configured your kernel to support the serial port
to which the terminal is connected---and that you have connected it.

In a nutshell, you need to tell the init process, which is responsible for process control and ini-
tialization, to start a getty process, which is responsible for reading a login name and starting
the login program.

To do so, you have to edit the /etc/ttys file. First, use the su command to become root. Then,
make the following changes to /etc/ttys :

1. Add an line to /etc/ttys for the entry in the /dev directory for the serial port if it is not
already there.

2. Specify that /usr/libexec/getty be run on the port, and specify the appropriate
getty type from the /etc/gettytab file.

3. Specify the default terminal type.

4. Set the port to ‘‘on.’’

5. Specify whether the port should be ‘‘secure.’’

6. Force init to reread the /etc/ttys file.

As an optional step, you may wish to create a custom getty type for use in step 2 by making an
entry in /etc/gettytab . This document does not explain how to do so; you are encouraged to
see the gettytab(5) and the getty(8) manual pages for more information.

The remaining sections detail how to do these steps. We will use a running example throughout
these sections to illustrate what we need to do. In our example, we will connect two terminals to
the system: a Wyse-50 and a old 286 IBM PC running Procomm terminal software emulating a
VT-100 terminal. We connect the Wyse to the second serial port and the 286 to the sixth serial
port (a port on a multiport serial card).

For more information on the /etc/ttys file, see the ttys(5) manual page.

14.2.3.1 Adding an Entry to /etc/ttys

First, you need to add an entry to the /etc/ttys file, unless one is already there.

The /etc/ttys file lists all of the ports on your FreeBSD system where you want to allow logins.
For example, the first virtual console ttyv0 has an entry in this file. You can log in on the con-
sole using this entry. This file contains entries for the other virtual consoles, serial ports, and
pseudo-ttys. For a hardwired terminal, just list the serial port’s /dev entry without the /dev
part.

When you installed your FreeBSD system, the /etc/ttys file included entries for the first four
serial ports: ttyd0 through ttyd3 . If you are attaching a terminal on one of those ports, you do
not need to add an entry.

In our example, we attached a Wyse-50 to the second serial port, ttyd1 , which is already in the

FreeBSD Handbook 192

file. We need to add an entry for the 286 PC connected to the sixth serial port. Here is an excerpt
of the /etc/ttys file after we add the new entry:

ttyd1 "/usr/libexec/getty std.9600" unknown off secure
ttyd5

14.2.3.2 Specifying the getty Type

Next, we need to specify what program will be run to handle the logins on a terminal. For
FreeBSD, the standard program to do that is /usr/libexec/getty . It is what provides the
login: prompt.

The program getty takes one (optional) parameter on its command line, the getty type. A
getty type tells about characteristics on the terminal line, like bps rate and parity. The getty
program reads these characteristics from the file /etc/gettytab .

The file /etc/gettytab contains lots of entries for terminal lines both old and new. In almost
all cases, the entries that start with the text std will work for hardwired terminals. These entries
ignore parity. There is a std entry for each bps rate from 110 to 115200. Of course, you can add
your own entries to this file. The manual page gettytab(5) provides more information.

When setting the getty type in the /etc/ttys file, make sure that the communications settings
on the terminal match.

For our example, the Wyse-50 uses no parity and connects at 38400 bps. The 286 PC uses no par-
ity and connects at 19200 bps. Here is the /etc/ttys file so far (showing just the two terminals
in which we are interested):

ttyd1 "/usr/libexec/getty std.38400" unknown off secure
ttyd5 "/usr/libexec/getty std.19200"

Note that the second field---where we specify what program to run---appears in quotes. This is
important, otherwise the type argument to getty might be interpreted as the next field.

14.2.3.3 Specifying the Default Terminal Type

The third field in the /etc/ttys file lists the default terminal type for the port. For dialup ports,
you typically put unknown or dialup in this field because users may dial up with practically
any kind of terminal or software. For hardwired terminals, the terminal type does not change, so
you can put a real terminal type in this field.

Users will usually use the tset program in their .login or .profile files to check the termi-
nal type and prompt for one if necessary. By setting a terminal type in the /etc/ttys file, users
can forego such prompting.

To find out what terminal types FreeBSD supports, see the file /usr/share/misc/termcap . It
lists about 600 terminal types. You can add more if you wish. See the termcap(5) manual page
for information.

In our example, the Wyse-50 is a Wyse-50 type of terminal (although it can emulate others, we
will leave it in Wyse-50 mode). The 286 PC is running Procomm which will be set to emulate a
VT-100. Here are the pertinent yet unfinished entries from the /etc/ttys file:

ttyd1 "/usr/libexec/getty std.38400" wy50 off secure
ttyd5 "/usr/libexec/getty std.19200" vt100

14.2.3.4 Enabling the Por t

The next field in /etc/ttys , the fourth field, tells whether to enable the port. Putting on here
will have the init process start the program in the second field, getty , which will prompt for a
login. If you put off in the fourth field, there will be no getty , and hence no logins on the port.

FreeBSD Handbook 193

So, naturally, you want an on in this field. Here again is the /etc/ttys file. We have turned
each port on .

ttyd1 "/usr/libexec/getty std.38400" wy50 on secure
ttyd5 "/usr/libexec/getty std.19200" vt100 on

14.2.3.5 Specifying Secure Por ts

We have arrived at the last field (well, almost: there is an optional window specifier, but we will
ignore that). The last field tells whether the port is secure.

What does ‘‘secure’’ mean?

It means that the root account (or any account with a user ID of 0) may login on the port. Inse-
cure ports do not allow root to login.

How do you use secure and insecure ports?

By marking a port as insecure, the terminal to which it is connected will not allow root to login.
People who know the root password to your FreeBSD system will first have to login using a regu-
lar user account. To gain superuser privileges, they will then have to use the su command.

Because of this, you will have two records to help track down possible compromises of root privi-
leges: both the login and the su command make records in the system log (and logins are also
recorded in the wtmp file).

By marking a port as secure, the terminal will allow root in. People who know the root password
will just login as root. You will not have the potentially useful login and su command records.

Which should you use?

Just use ‘‘insecure.’’ Use ‘‘insecure’’ even for terminals not in public user areas or behind locked
doors. It is quite easy to login and use su if you need superuser privileges.

Here finally are the completed entries in the /etc/ttys file, with comments added to describe
where the terminals are:

ttyd1 "/usr/libexec/getty std.38400" wy50 on insecure # Kitchen
ttyd5 "/usr/libexec/getty std.19200" vt100 on insecure # Guest bathroom

14.2.3.6 Force init to Reread

/etc/ttys"

When you boot FreeBSD, the first process, init , will read the /etc/ttys file and start the pro-
grams listed for each enabled port to prompt for logins.

After you edit /etc/ttys , you do not want to have to reboot your system to get init to see the
changes. So, init will reread /etc/ttys if it receives a SIGHUP (hangup) signal.

So, after you have saved your changes to /etc/ttys , send SIGHUP to init by typing:

kill -HUP 1

(The init process always has process ID 1.)

If everything is set up correctly, all cables are in place, and the terminals are powered up, you
should see login prompts. Your terminals are ready for their first logins!

14.2.4 Debugging your connection

Even with the most meticulous attention to detail, something could still go wrong while setting
up a terminal. Here is a list of symptoms and some suggested fixes.

FreeBSD Handbook 194

No login prompt appears
Make sure the terminal is plugged in and powered up. If it is a personal computer
acting as a terminal, make sure it is running terminal emulation software on the cor-
rect serial port.

Make sure the cable is connected firmly to both the terminal and the FreeBSD com-
puter. Make sure it is the right kind of cable.

Make sure the terminal and FreeBSD agree on the bps rate and parity settings. If
you have a video display terminal, make sure the contrast and brightness controls
are turned up. If it is a printing terminal, make sure paper and ink are in good sup-
ply.

Make sure that a getty process is running and serving the terminal. Type

ps -axww|grep getty

to get a list of running getty processes. You should see an entry for the terminal.
For example, the display

22189 d1 Is+ 0:00.03 /usr/libexec/getty std.38400 ttyd1

shows that a getty is running on the second serial port ttyd1 and is using the
std.38400 entry in /etc/gettytab .

If no getty process is running, make sure you have enabled the port in
/etc/ttys . Make sure you have run kill -HUP 1 .

Garbage appears instead of a login prompt
Make sure the terminal and FreeBSD agree on the bps rate and parity settings.
Check the getty processes to make sure the correct getty type is in use. If not, edit
/etc/ttys and run kill -HUP 1 .

Characters appear doubled; the password appears when typed
Switch the terminal (or the terminal emulation software) from ‘‘half duplex’’ or
‘‘local echo’’ to ‘‘full duplex.’’

14.3 Dialin Ser vice
Contributed by Guy Helmer <ghelmer@cs.iastate.edu> .

This document provides suggestions for configuring a FreeBSD system to handle dialup
modems. This document is written based on the author’s experience with FreeBSD versions 1.0,
1.1, and 1.1.5.1 (and experience with dialup modems on other UNIX-like operating systems);
however, this document may not answer all of your questions or provide examples specific
enough to your environment. The author cannot be responsible if you damage your system or
lose data due to attempting to follow the suggestions here.

14.3.1 Prerequisites

To begin with, the author assumes you have some basic knowledge of FreeBSD. You need to
have FreeBSD installed, know how to edit files in a UNIX-like environment, and how to look up
manual pages on the system. As discussed below, you will need certain versions of FreeBSD, and
knowledge of some terminology & modem and cabling.

14.3.1.1 FreeBSD Version

First, it is assumed that you are using FreeBSD version 1.1 or higher (including versions 2.x).
FreeBSD version 1.0 included two different serial drivers, which complicates the situation. Also,
the serial device driver (sio) has improved in every release of FreeBSD, so more recent versions
of FreeBSD are assumed to have better and more efficient drivers than earlier versions.

FreeBSD Handbook 195

14.3.1.2 Terminology

A quick rundown of terminology:

bps
Bits per Second - the rate at which data is transmitted

DTE
Data Terminal Equipment - for example, your computer

DCE
Data Communications Equipment - your modem

RS-232
EIA standard for serial communications via hardware

If you need more information about these terms and data communications in general, the author
remembers reading that The RS-232 Bible (anybody have an ISBN?) is a good reference.

When talking about communications data rates, the author does not use the term baud. Baud
refers to the number of electrical state transitions that may be made in a period of time, while bps
(bits per second) is the ‘‘correct’’ term to use (at least it does not seem to bother the curmudgeons
quite a much).

14.3.1.3 External vs. Internal Modems

External modems seem to be more convenient for dialup, because external modems often can be
semi-permanently configured via parameters stored in non-volatile RAM and they usually pro-
vide lighted indicators that display the state of important RS-232 signals. Blinking lights impress
visitors, but lights are also very useful to see whether a modem is operating properly.

Internal modems usually lack non-volatile RAM, so their configuration may be limited only to
setting DIP switches. If your internal modem has any signal indicator lights, it is probably diffi-
cult to view the lights when the system’s cover is in place.

14.3.1.4 Modems and Cables

A background knowledge of these items is assumed

• You know how to connect your modem to your computer so that the two can communicate
(unless you have an internal modem, which does not need such a cable)

• You are familiar with your modem’s command set, or know where to look up needed com-
mands

• You know how to configure your modem (probably via a terminal communications pro-
gram) so you can set the non-volatile RAM parameters

The first, connecting your modem, is usually simple - most straight-through serial cables work
without any problems. You need to have a cable with appropriate connectors (DB-25 or DB-9,
male or female) on each end, and the cable must be a DCE-to-DTE cable with these signals wired:

• Transmitted Data (SD)

• Received Data (RD)

• Request to Send (RTS)

• Clear to Send (CTS)

• Data Set Ready (DSR)

• Data Terminal Ready (DTR)

FreeBSD Handbook 196

• Carrier Detect (CD)

• Signal Ground (SG)

FreeBSD needs the RTSand CTSsignals for flow-control at speeds above 2400bps, the CDsignal
to detect when a call has been answered or the line has been hung up, and the DTRsignal to reset
the modem after a session is complete. Some cables are wired without all of the needed signals,
so if you have problems, such as a login session not going away when the line hangs up, you may
have a problem with your cable.

The second prerequisite depends on the modem(s) you use. If you do not know your modem’s
command set by heart, you will need to have the modem’s reference book or user’s guide handy.
Sample commands for USR Sportster 14,400 external modems will be given, which you may be
able to use as a reference for your own modem’s commands.

Lastly, you will need to know how to setup your modem so that it will work well with FreeBSD.
Like other UNIX-like operating systems, FreeBSD uses the hardware signals to find out when a
call has been answered or a line has been hung up and to hangup and reset the modem after a
call. FreeBSD avoids sending commands to the modem or watching for status reports from the
modem. If you are familiar with connecting modems to PC-based bulletin board systems, this
may seem awkward.

14.3.1.5 Serial Interface Considerations

FreeBSD supports NS8250-, NS16450-, NS16550-, and NS16550A-based EIA RS-232C (CCITT
V.24) communications interfaces. The 8250 and 16450 devices have single-character buffers. The
16550 device provides a 16-character buffer, which allows for better system performance. (Bugs
in plain 16550’s prevent the use of the 16-character buffer, so use 16550A’s if possible). Because

FreeBSD Handbook 197

To see if your kernel recognizes any of your serial ports, watch for messages while the kernel is
booting, or use the /sbin/dmesg command to replay the kernel’s boot messages. In particular,
look for messages that start with the characters sio . Hint: to view just the messages that have
the word sio , use the command:

/sbin/dmesg | grep ’sio’

For example, on a system with four serial ports, these are the serial-port specific kernel boot mes-
sages:

sio0 at 0x3f8-0x3ff irq 4 on isa
sio0: type 16550A
sio1 at 0x2f8-0x2ff irq 3 on isa
sio1: type 16550A
sio2 at 0x3e8-0x3ef irq 5 on isa
sio2: type 16550A
sio3 at 0x2e8-0x2ef irq 9 on isa
sio3: type 16550A

If your kernel does not recognize all of your serial ports, you will probably need to configure a
custom FreeBSD kernel for your system.

Please see the BSD System Manager’s Manual chapter on ‘‘Building Berkeley Kernels with Con-
fig’’ [the source for which is in /usr/src/share/doc/smm] and ‘‘FreeBSD Configuration
Options’’ [in /sys/conf/options and in /sys/ arch/conf/options.arch, with arch for example
being i386] for more information on configuring and building kernels. You may have to unpack
the kernel source distribution if have not installed the system sources already (srcdist/src-
sys.?? in FreeBSD 1.1, srcdist/sys.?? in FreeBSD 1.1.5.1, or the entire source distribution in
FreeBSD 2.0) to be able to configure and build kernels.

Create a kernel configuration file for your system (if you have not already) by cd ing to
/sys/i386/conf . Then, if you are creating a new custom configuration file, copy the file
GENERICAH (or GENERICBT, if you have a BusTek SCSI controller on FreeBSD 1.x) to
YOURSYS, where YOURSYS is the name of your system, but in upper-case letters. Edit the file,
and change the device lines:

device sio0 at isa? port "IO_COM1" tty irq 4 vector siointr
device sio1 at isa? port "IO_COM2" tty irq 3 vector siointr
device sio2 at isa? port "IO_COM3" tty irq 5 vector siointr
device sio3 at isa? port "IO_COM4" tty irq 9 vector siointr

You can comment-out or completely remove lines for devices you do not have. If you have a
multiport serial board, such as the Boca Board BB2016, please see the sio(4) man page for com-
plete information on how to write configuration lines for multiport boards. Be careful if you are
using a configuration file that was previously used for a different version of FreeBSD because the
device flags have changed between versions.

Note that port "IO_COM1" is a substitution for port 0x3f8 , IO_COM2is 0x2f8 , IO_COM3is
0x3e8 , and IO_COM4 is 0x2e8 , which are fairly common port addresses for their respective
serial ports; interrupts 4, 3, 5, and 9 are fairly common interrupt request lines. Also note that reg-
ular serial ports cannot share interrupts on ISA-bus PCs (multiport boards have on-board elec-
tronics that allow all the 16550A’s on the board to share one or two interrupt request lines).

When you are finished adjusting the kernel configuration file, use the program config as docu-
mented in ‘‘Building Berkeley Kernels with Config’’ and the config(8) manual page to prepare
a kernel building directory, then build, install, and test the new kernel.

14.3.4 Device Special Files

Most devices in the kernel are accessed through ‘‘device special files’’, which are located in the
/dev directory. The sio devices are accessed through the /dev/ttyd? (dial-in) and
/dev/cua0? (call-out) devices. On FreeBSD version 1.1.5 and higher, there are also initialization

FreeBSD Handbook 198

devices (/dev/ttyid? and /dev/cuai0?) and locking devices (/dev/ttyld? and
/dev/cual0?). The initialization devices are used to initialize communications port parameters
each time a port is opened, such as crtscts for modems which use CTS/RTS signaling for flow
control. The locking devices are used to lock flags on ports to prevent users or programs chang-
ing certain parameters; see the manual pages termios(4) , sio(4) , and stty(1) for informa-
tion on the terminal settings, locking & initializing devices, and setting terminal options, respec-
tively.

14.3.4.1 Making Device Special Files

A shell script called MAKEDEVin the /dev directory manages the device special files. (The man-
ual page for MAKEDEV(8) on FreeBSD 1.1.5 is fairly bogus in its discussion of COMports, so
ignore it.) To use MAKEDEVto make dialup device special files for COM1:(port 0), cd to /dev and
issue the command MAKEDEV ttyd0 . Likewise, to make dialup device special files for COM2:
(port 1), use MAKEDEV ttyd1 .

MAKEDEVnot only creates the /dev/ttyd? device special files, but also creates the /dev/cua0?
(and all of the initializing and locking special files under FreeBSD 1.1.5 and up) and removes the
hardwired terminal special file /dev/tty0? , if it exists.

After making new device special files, be sure to check the permissions on the files (especially the
/dev/cua* files) to make sure that only users who should have access to those device special
files can read & write on them - you probably do not want to allow your average user to use your
modems to dialout. The default permissions on the /dev/cua* files should be sufficient:

crw-rw---- 1 uucp dialer 28, 129 Feb 15 14:38 /dev/cua01
crw-rw---- 1 uucp dialer 28, 161 Feb 15 14:38 /dev/cuai01
crw-rw---- 1 uucp dialer 28, 193 Feb 15 14:38 /dev/cual01

These permissions allow the user uucp and users in the group dialer to use the call-out
devices.

14.3.5 Configuration Files

There are three system configuration files in the /etc directory that you will probably need to
edit to allow dialup access to your FreeBSD system. The first, /etc/gettytab , contains config-
uration information for the /usr/libexec/getty daemon. Second, /etc/ttys holds infor-
mation that tells /sbin/init what tty devices should have getty processes running on them.
Lastly, you can place port initialization commands in the /etc/rc.serial script if you have
FreeBSD 1.1.5.1 or higher; otherwise, you can initialize ports in the /etc/rc.local script.

There are two schools of thought regarding dialup modems on UNIX. One group likes to config-
ure their modems and system so that no matter at what speed a remote user dials in, the local
computer-to-modem RS-232 interface runs at a locked speed. The benefit of this configuration is
that the remote user always sees a system login prompt immediately. The downside is that the
system does not know what a user’s true data rate is, so full-screen programs like Emacs will not
adjust their screen-painting methods to make their response better for slower connections.

The other school configures their modems’ RS-232 interface to vary its speed based on the remote
user’s connection speed. For example, V.32bis (14.4 Kbps) connections to the modem might make
the modem run its RS-232 interface at 19.2 Kbps, while 2400 bps connections make the modem’s
RS-232 interface run at 2400 bps. Because getty does not understand any particular modem’s
connection speed reporting, getty gives a login: message at an initial speed and watches the
characters that come back in response. If the user sees junk, it is assumed that they know they
should press the <Enter> key until they see a recognizable prompt. If the data rates do not
match, getty sees anything the user types as ‘‘junk’’, tries going to the next speed and gives the
login: prompt again. This procedure can continue ad nauseum, but normally only takes a
keystroke or two before the user sees a good prompt. Obviously, this login sequence does not
look as clean as the former ‘‘locked-speed’’ method, but a user on a low-speed connection should
receive better interactive response from full-screen programs.

FreeBSD Handbook 199

The author will try to give balanced configuration information, but is biased towards having the
modem’s data rate follow the connection rate.

14.3.5.1 /etc/gettytab

/etc/gettytab is a termcap(5) -style file of configuration information for getty(8) . Please
see the gettytab(5) manual page for complete information on the format of the file and the list
of capabilities.

14.3.5.1.1 Locked-Speed Config

If you are locking your modem’s data communications rate at a particular speed, you probably
will not need to make any changes to /etc/gettytab .

14.3.5.1.2 Matching-Speed Config

You will need to setup an entry in /etc/gettytab to give getty information about the speeds
you wish to use for your modem. If you have a 2400 bps modem, you can probably use the exist-
ing D2400 entry. This entry already exists in the FreeBSD 1.1.5.1 gettytab file, so you do not
need to add it unless it is missing under your version of FreeBSD:

#
Fast dialup terminals, 2400/1200/300 rotary (can start either way)
#
D2400|d2400|Fast-Dial-2400:\

:nx=D1200:tc=2400-baud:
3|D1200|Fast-Dial-1200:\

:nx=D300:tc=1200-baud:
5|D300|Fast-Dial-300:\

:nx=D2400:tc=300-baud:

If you have a higher speed modem, you will probably need to add an entry in /etc/gettytab ;
here is an entry you could use for a 14.4 Kbps modem with a top interface speed of 19.2 Kbps:

#
Additions for a V.32bis Modem
#
um|V300|High Speed Modem at 300,8-bit:\

:nx=V19200:tc=std.300:
un|V1200|High Speed Modem at 1200,8-bit:\

:nx=V300:tc=std.1200:
uo|V2400|High Speed Modem at 2400,8-bit:\

:nx=V1200:tc=std.2400:
up|V9600|High Speed Modem at 9600,8-bit:\

:nx=V2400:tc=std.9600:
uq|V19200|High Speed Modem at 19200,8-bit:\

:nx=V9600:tc=std.19200:

On FreeBSD 1.1.5 and later, this will result in 8-bit, no parity connections. Under FreeBSD 1.1,
add :np: parameters to the std. xxx entries at the top of the file for 8 bits, no parity; otherwise,
the default is 7 bits, even parity.

The example above starts the communications rate at 19.2 Kbps (for a V.32bis connection), then
cycles through 9600 bps (for V.32), 2400 bps, 1200 bps, 300 bps, and back to 19.2 Kbps. Communi-
cations rate cycling is implemented with the nx= (next table) capability. Each of the lines uses a
tc= (table continuation) entry to pick up the rest of the ‘‘standard’’ settings for a particular data
rate.

If you have a 28.8 Kbps modem and/or you want to take advantage of compression on a 14.4
Kbps modem, you need to use a higher communications rate than 19.2 Kbps. Here is an example
of a gettytab entry starting a 57.6 Kbps:

FreeBSD Handbook 200

#
Additions for a V.32bis or V.34 Modem
Starting at 57.6 Kbps
#
vm|VH300|Very High Speed Modem at 300,8-bit:\

:nx=VH57600:tc=std.300:
vn|VH1200|Very High Speed Modem at 1200,8-bit:\

:nx=VH300:tc=std.1200:
vo|VH2400|Very High Speed Modem at 2400,8-bit:\

:nx=VH1200:tc=std.2400:
vp|VH9600|Very High Speed Modem at 9600,8-bit:\

:nx=VH2400:tc=std.9600:
vq|VH57600|Very High Speed Modem at 57600,8-bit:\

:nx=VH9600:tc=std.57600:

If you have a slow CPU or a heavily loaded system and you do not have 16550A-based serial
ports, you may receive sio ‘‘silo’’ errors at 57.6 Kbps.

14.3.5.2 /etc/ttys

/etc/ttys is the list of ttys for init to monitor. /etc/ttys also provides security informa-
tion to login (user root may only login on ttys marked secure). See the manual page for
ttys(5) for more information.

You will need to either modify existing lines in /etc/ttys or add new lines to make init run
getty processes automatically on your new dialup ports. The general format of the line will be
the same, whether you are using a locked-speed or matching-speed configuration:

ttyd0 "/usr/libexec/getty xxx" dialup on

The first item in the above line is the device special file for this entry - ttyd0 means
/dev/ttyd0 is the file that this getty will be watching. The second item,
"/usr/libexec/getty xxx" (xxx will be replaced by the initial gettytab capability) is the
process init will run on the device. The third item, dialup , is the default terminal type. The
fourth parameter, on , indicates to init that the line is operational. There can be a fifth parame-
ter, secure , but it should only be used for terminals which are physically secure (such as the sys-
tem console).

The default terminal type (dialup in the example above) may depend on local preferences.
dialup is the traditional default terminal type on dialup lines so that users may customize their
login scripts to notice when the terminal is dialup and automatically adjust their terminal type.
However, the author finds it easier at his site to specify vt102 as the default terminal type, since
the users just use VT102 emulation on their remote systems.

After you have made changes to /etc/ttys , you may send the init process a HUPsignal to re-
read the file. You can use the command

kill -1 1

to send the signal. If this is your first time setting up the system, though, you may want to wait
until your modem(s) are properly configured and connected before signaling init .

14.3.5.2.1 Locked-Speed Config

For a locked-speed configuration, your ttys entry needs to have a fixed-speed entry provided to
getty . For a modem whose port speed is locked at 19.2 Kbps, the ttys entry might look like
this:

ttyd0 "/usr/libexec/getty std.19200" dialup on

If your modem is locked at a different data rate, substitute the appropriate name for the
std. speed entry for std.19200 from /etc/gettytab for your modem’s data rate.

FreeBSD Handbook 201

14.3.5.2.2 Matching-Speed Config

In a matching-speed configuration, your ttys entry needs to reference the appropriate beginning
‘‘auto-baud’’ (sic) entry in /etc/gettytab . For example, if you added the above suggested
entry for a matching-speed modem that starts at 19.2 Kbps (the gettytab entry containing the
V19200 starting point), your ttys entry might look like this:

ttyd0 "/usr/libexec/getty V19200" dialup on

14.3.5.3 /etc/rc.serial or /etc/rc.local

High-speed modems, like V.32, V.32bis, and V.34 modems, need to use hardware (RTS/CTS)
flow control. You can add stty commands to /etc/rc.serial on FreeBSD 1.1.5.1 and up, or
/etc/rc.local on FreeBSD 1.1, to set the hardware flow control flag in the FreeBSD kernel for
the modem ports.

For example, on a sample FreeBSD 1.1.5.1 system, /etc/rc.serial reads:

#!/bin/sh
#
Serial port initial configuration

stty -f /dev/ttyid1 crtscts
stty -f /dev/cuai01 crtscts

which sets the termios flag crtscts on serial port #1’s (COM2:) dialin and dialout initialization
devices.

On an old FreeBSD 1.1 system, these entries were added to /etc/rc.local to set the crtscts flag
on the devices:

Set serial ports to use RTS/CTS flow control
stty -f /dev/ttyd0 crtscts
stty -f /dev/ttyd1 crtscts
stty -f /dev/ttyd2 crtscts
stty -f /dev/ttyd3 crtscts

Since there is no initialization device special file on FreeBSD 1.1, one has to just set the flags on
the sole device special file and hope the flags are not cleared by a miscreant.

14.3.6 Modem Settings

If you have a modem whose parameters may be permanently set in non-volatile RAM, you will
need to use a terminal program (such as Telix under PC-DOS or tip under FreeBSD) to set the
parameters. Connect to the modem using the same communications speed as the initial speed
getty will use and configure the modem’s non-volatile RAM to match these requirements:

• CDasserted when connected

• DTRasserted for operation; dropping DTR hangs up line & resets modem

• CTStransmitted data flow control

• Disable XON/XOFFflow control

• RTSreceived data flow control

• Quiet mode (no result codes)

• No command echo

Please read the documentation for your modem to find out what commands and/or DIP switch
settings you need to give it.

For example, to set the above parameters on a USRobotics Sportster 14,400 external modem, one
could give these commands to the modem:

FreeBSD Handbook 202

ATZ
AT&C1&D2&H1&I0&R2&W

You might also want to take this opportunity to adjust other settings in the modem, such as
whether it will use V.42bis and/or MNP5 compression.

The USR Sportster 14,400 external modem also has some DIP switches that need to be set; for
other modems, perhaps you can use these settings as an example:

• Switch 1: UP - DTR Normal

• Switch 2: Do not care (Verbal Result Codes/Numeric Result Codes)

• Switch 3: UP - Suppress Result Codes

• Switch 4: DOWN - No echo, offline commands

• Switch 5: UP - Auto Answer

• Switch 6: UP - Carrier Detect Normal

• Switch 7: UP - Load NVRAM Defaults

• Switch 8: Do not care (Smart Mode/Dumb Mode)

Result codes should be disabled/suppressed for dialup modems to avoid problems that can
occur if getty mistakenly gives a login: prompt to a modem that is in command mode and the
modem echoes the command or returns a result code. I have heard this sequence can result in a
extended, silly conversation between getty and the modem.

14.3.6.1 Locked-speed Config

For a locked-speed configuration, you will need to configure the modem to maintain a constant
modem-to-computer data rate independent of the communications rate. On a USR Sportster
14,400 external modem, these commands will lock the modem-to-computer data rate at the speed
used to issue the commands:

ATZ
AT&B1&W

14.3.6.2 Matching-speed Config

For a variable-speed configuration, you will need to configure your modem to adjust its serial
port data rate to match the incoming call rate. On a USR Sportster 14,400 external modem, these
commands will lock the modem’s error-corrected data rate to the speed used to issue the com-
mands, but allow the serial port rate to vary for non-error-corrected connections:

ATZ
AT&B2&W

14.3.6.3 Checking the Modem’s Configuration

Most high-speed modems provide commands to view the modem’s current operating parameters
in a somewhat human-readable fashion. On the USR Sportster 14,400 external modems, the com-
mand ATI5 displays the settings that are stored in the non-volatile RAM. To see the true operat-
ing parameters of the modem (as influenced by the USR’s DIP switch settings), use the com-
mands ATZ and then ATI4 .

If you have a different brand of modem, check your modem’s manual to see how to double-check
your modem’s configuration parameters.

14.3.7 Troubleshooting

Here are a few steps you can follow to check out the dialup modem on your system.

FreeBSD Handbook 203

14.3.7.1 Checking out the FreeBSD system

Hook up your modem to your FreeBSD system, boot the system, and, if your modem has status
indication lights, watch to see whether the modem’s DTR indicator lights when the login:
prompt appears on the system’s console - if it lights up, that should mean that FreeBSD has
started a getty process on the appropriate communications port and is waiting for the modem
to accept a call.

If the DTRindicator doesn’t light, login to the FreeBSD system through the console and issue a ps
ax to see if FreeBSD is trying to run a getty process on the correct port. You should see a lines
like this among the processes displayed:

114 ?? I 0:00.10 /usr/libexec/getty V19200 ttyd0
115 ?? I 0:00.10 /usr/libexec/getty V19200 ttyd1

If you see something different, like this:

114 d0 I 0:00.10 /usr/libexec/getty V19200 ttyd0
^^

and the modem has not accepted a call yet, this means that getty has completed its open on the
communications port. This could indicate a problem with the cabling or a mis-configured
modem, because getty should not be able to open the communications port until CD (carrier
detect) has been asserted by the modem.

If you do not see any getty processes waiting to open the desired ttyd? port, double-check
your entries in /etc/ttys to see if there are any mistakes there. Also, check the log file
/var/log/messages to see if there are any log messages from init or getty regarding any
problems. If there are any messages, triple-check the configuration files /etc/ttys and
/etc/gettytab , as well as the appropriate device special files /dev/ttyd? , for any mistakes,
missing entries, or missing device special files.

14.3.7.2 Try Dialing In

Try dialing into the system; be sure to use 8 bits, no parity, 1 stop bit on the remote system. If you
do not get a prompt right away, or get garbage, try pressing <Enter> about once per second. If
you still do not see a login: prompt after a while, try sending a BREAK. If you are using a high-
speed modem to do the dialing, try dialing again after locking the dialing modem’s interface
speed (via AT&B1on a USR Sportster, for example).

If you still cannot get a login: prompt, check /etc/gettytab again and double-check that

• The initial capability name specified in /etc/ttys for the line matches a name of a capa-
bility in /etc/gettytab

• Each nx= entry matches another gettytab capability name

• Each tc= entry matches another gettytab capability name

If you dial but the modem on the FreeBSD system will not answer, make sure that the modem is
configured to answer the phone when DTRis asserted. If the modem seems to be configured cor-
rectly, verify that the DTRline is asserted by checking the modem’s indicator lights (if it has any).

If you have gone over everything several times and it still does not work, take a break and come
back to it later. If it still does not work, perhaps you can send an electronic mail message to the
FreeBSD general questions mailing list <freebsd-questions@FreeBSD.ORG> describing your
modem and your problem, and the good folks on the list will try to help.

14.3.8 Acknowledgments

Thanks to these people for comments and advice:

FreeBSD Handbook 204

Sean Kelly
<kelly@fsl.noaa.gov> " for a number of good suggestions

14.4 Dialout Ser vice
Information integrated from FAQ.

The following are tips to getting your host to be able to connect over the modem to another com-
puter. This is appropriate for establishing a terminal session with a remote host.

This is useful to log onto a BBS.

This kind of connection can be extremely helpful to get a file on the Internet if you have problems
with PPP. If you need to ftp something and PPP is broken, use the terminal session to ftp it.
Then use zmodem to transfer it to your machine.

14.4.1 Why cannot I run tip or cu?

On your system, the programs tip and cu are probably executable only by uucp and group
dialer . You can use the group dialer to control who has access to your modem or remote sys-
tems. Just add yourself to group dialer.

Alternatively, you can let everyone on your system run tip and cu by typing:

chmod 4511 /usr/bin/tip

You do not have to run this command for cu , since cu is just a hard link to tip .

14.4.2 My stock Hay es modem is not supported, what can I do?

Actually, the man page for tip is out of date. There is a generic Hayes dialer already built in.
Just use ‘‘at=hayes ’’ in your /etc/remote file.

The Hayes driver is not smart enough to recognize some of the advanced features of newer
modems—messages like BUSY, NO DIALTONE, or CONNECT 115200 will just confuse it. You
should turn those messages off when you use tip (using ATX0&W).

Also, the dial timeout for tip is 60 seconds. Your modem should use something less, or else tip
will think there is a communication problem. Try ATS7=45&W.

Actually, as shipped tip does not yet support it fully. The solution is to edit the file tipconf.h
in the directory /usr/src/usr.bin/tip/tip Obviously you need the source distribution to
do this.

Edit the line ‘‘#define HAYES 0 ’’ to ‘‘#define HAYES 1 ’’. Then ‘‘make’’ and ‘‘make
install ’’. Everything works nicely after that.

14.4.3 How am I expected to enter these AT commands?

Make what is called a ‘‘direct ’’ entry in your /etc/remote file. For example, if your modem
is hooked up to the first serial port, /dev/cuaa0 , then put in the following line:

cuaa0:dv=/dev/cuaa0:br#19200:pa=none

Use the highest bps rate your modem supports in the br capability. Then, type ‘‘tip cuaa0 ’’
and you will be connected to your modem.

If there is no /dev/cuaa0 on your system, do this:

FreeBSD Handbook 205

cd /dev
MAKEDEV cuaa0

Or use cu as root with the following command:

cu -l‘‘line’’ -s‘‘speed’’

with line being the serial port (e.g./dev/cuaa0) and speed being the speed (e.g.57600). When
you are done entering the AT commands hit ˜. to exit.

14.4.4 The @ sign for the pn capability does not work!

The @sign in the phone number capability tells tip to look in /etc/phones for a phone number.
But the @sign is also a special character in capability files like /etc/remote . Escape it with a
backslash:

pn=\@

14.4.5 How can I dial a phone number on the command line?

Put what is called a ‘‘generic ’’ entry in your /etc/remote file. For example:

tip115200|Dial any phone number at 115200 bps:\
:dv=/dev/cuaa0:br#115200:at=hayes:pa=none:du:
tip57600|Dial any phone number at 57600 bps:\
:dv=/dev/cuaa0:br#57600:at=hayes:pa=none:du:

Then you can things like ‘‘tip -115200 5551234 ’’. If you prefer cu over tip , use a generic cu
entry:

cu115200|Use cu to dial any number at 115200bps:\
:dv=/dev/cuaa1:br#57600:at=hayes:pa=none:du:

and type ‘‘cu 5551234 -s 115200 ’’.

14.4.6 Do I have to type in the bps rate ever y time I do that?

Put in an entry for tip1200 or cu1200 , but go ahead and use whatever bps rate is appropriate
with the br capability. tip thinks a good default is 1200 bps which is why it looks for a
‘‘tip1200 ’’ entry. You do not have to use 1200 bps, though.

14.4.7 I access a number of hosts through a terminal server.

Rather than waiting until you are connected and typing ‘‘CONNECT <host> ’’ each time, use tip’s
cmcapability. For example, these entries in /etc/remote :

pain|pain.deep13.com|Forrester’s machine:\
:cm=CONNECT pain\n:tc=deep13:
muffin|muffin.deep13.com|Frank’s machine:\
:cm=CONNECT muffin\n:tc=deep13:
deep13:Gizmonics Institute terminal server:\
:dv=/dev/cua02:br#38400:at=hayes:du:pa=none:pn=5551234:

will let you type ‘‘tip pain ’’ or ‘‘tip muffin ’’ to connect to the hosts pain or muffin; and
‘‘tip deep13 ’’ to get to the terminal server.

FreeBSD Handbook 206

14.4.8 Can tip try more than one line for each site?

This is often a problem where a university has several modem lines and several thousand stu-
dents trying to use them...

Make an entry for your university in /etc/remote and use @for the pn capability:

big-university:\
:pn=\@:tc=dialout
dialout:\
:dv=/dev/cuaa3:br#9600:at=courier:du:pa=none:

Then, list the phone numbers for the university in /etc/phones :

big-university 5551111
big-university 5551112
big-university 5551113
big-university 5551114

tip will try each one in the listed order, then give up. If you want to keep retrying, run tip in a
while loop.

14.4.9 Why do I have to hit CTRL+P twice to send CTRL+P once?

CTRL+P is the default ‘‘force’’ character, used to tell tip that the next character is literal data.
You can set the force character to any other character with the ˜s escape, which means ‘‘set a
variable.’’

Type ‘‘˜sforce=<single-char> ’’ followed by a newline. <single-char> is any single char-
acter. If you leave out <single-char> , then the force character is the nul character, which you
can get by typing CTRL+2 or CTRL+SPACE. A pretty good value for <single-char> is
SHIFT+CTRL+6, which I have seen only used on some terminal servers.

You can have the force character be whatever you want by specifying the following in your
$HOME/.tiprc file:

force=<single-char>

14.4.10 Suddenly ever ything I type is in UPPER CASE??

You must have pressed CTRL+A, tip ’s ‘‘raise character,’’ specially designed for people with bro-
ken caps-lock keys. Use ˜s as above and set the variable ‘‘raisechar’’ to something reasonable. In
fact, you can set it to the same as the force character, if you never expect to use either of these fea-
tures.

Here is a sample .tiprc file perfect for Emacs users who need to type CTRL+2 and CTRL+A a lot:

force=^^
raisechar=^^

The ^^ is SHIFT+CTRL+6.

14.4.11 How can I do file transfers with tip?

If you are talking to another UNIX system, you can send and receive files with ˜p (put) and ˜t
(take). These commands run ‘‘cat ’’ and ‘‘echo ’’ on the remote system to accept and send files.
The syntax is:

˜p <local-file> [<remote-file>]
˜t <remote-file> [<local-file>]

FreeBSD Handbook 207

There is no error checking, so you probably should use another protocol, like zmodem.

14.4.12 How can I run zmodem with tip?

To receive files, start the sending program on the remote end. Then, type ‘‘˜C rz ’’ to begin
receiving them locally.

To send files, start the receiving program on the remote end. Then, type ‘‘˜C sz <files> ’’ to
send them to the remote system.

FreeBSD Handbook 208

15. PPP and SLIP
If your connection to the Internet is through a modem, or you wish to provide other people with
dialup connections to the Internet using FreeBSD, you have the option of using PPP or SLIP. Fur-
thermore, two varieties of PPP are provided: user (sometimes referred to as iijppp) and kernel.
The procedures for configuring both types of PPP, and for setting up SLIP are described in this
chapter.

15.1 Setting up User PPP
User PPP was introduced to FreeBSD in release 2.0.5 as an addition to the existing kernel imple-
mentation of PPP. So, what is different about this new PPP that warrants its addition? To quote
from the manual page:

This is a user process PPP software package. Normally, PPP is
implemented as a part of the kernel (e.g. as managed by pppd)
and it is thus somewhat hard to debug and/or modify its behav-
ior. However, in this implementation PPP is done as a user pro-
cess with the help of the tunnel device driver (tun).

In essence, this means that rather than running a PPP daemon, the ppp program can be run as
and when desired. No PPP interface needs to be compiled into the kernel, as the program can use
the generic tunnel device to get data into and out of the kernel.

From here on out, user ppp will be referred to simply as ppp unless a distinction needs to be
made between it and any other PPP client/server software such as pppd. Unless otherwise
stated, all commands in this section should be executed as root.

15.1.1 Before you start

This document assumes you are in roughly this position:

You have an account with an Internet Service Provider (ISP) which lets you use PPP. Further, you
have a modem (or other device) connected and configured correctly which allows you to connect
to your ISP.

You are going to need the following information to hand:

•

Your ISPs phone number(s).

•

Your login name and password. This can be either a regular unix style login/password
pair, or a PPP PAP or CHAP login/password pair.

•

The IP address of your ISP’s gateway. The gateway is the machine to which you will con-
nect and will be set up as your default route . If your ISP hasn’t given you this number,
don’t worry. We can make one up and your ISP’s PPP server will tell us when we connect.

This number is known from now on as HISADDR.

•

Your ISP’s netmask setting. Again, if your ISP hasn’t given you this information, you can
safely use a netmask of 255.255.255.0.

•

The IP addresses of one or more nameservers. Normally, you will be given two IP numbers.
You MUST have this information unless you run your own nameserver.

FreeBSD Handbook 209

•

If your ISP allocates you a static IP address and hostname then you will need this informa-
tion too. If not, you will need to know from what range of IP addresses your allocated IP
address will belong. If you haven’t been given this range, don’t worry. You can configure
PPP to accept any IP number (as explained later).

If you do not have any of the required information, contact your ISP and make sure they provide
it to you.

15.1.2 Building a ppp ready kernel

As the description states, ‘‘ppp’’ uses the kernel ‘‘tun’’ device. It is necessary to make sure that
your kernel has support for this device compiled in.

To check this, go to your kernel compile directory (/sys/i386/conf or /sys/pc98/conf) and
examine your kernel configuration file. It needs to have the line

pseudo-device tun 1

in it somewhere. The stock GENERIC kernel has this as standard, so if you have not installed a
custom kernel or you do not have a /sys directory, you do not have to change anything.

If your kernel configuration file does not have this line in it, or you need to configure more than
one tun device (for example, if you are setting up a server and could have 16 dialup ppp connec-
tions at any one time then you will need to use ‘‘16’’ instead of ‘‘1’’), then you should add the line,
re-compile, re-install and boot the new kernel. Please refer to the Configuring the FreeBSD Kernel
(section 5., page 35) section for more information on kernel configuration.

You can check how many tunnel devices your current kernel has by typing the following:

ifconfig -a
tun0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500

inet 200.10.100.1 --> 203.10.100.24 netmask 0xffffffff
tun1: flags=8050<POINTOPOINT,RUNNING,MULTICAST> mtu 576
tun2: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500

inet 203.10.100.1 --> 203.10.100.20 netmask 0xffffffff
tun3: flags=8050<POINTOPOINT,RUNNING,MULTICAST> mtu 1500

which in this case shows four tunnel devices, two of which are currently configured and being
used.

If you have a kernel without the tun device, and you can not rebuild it for some reason, all is not
lost. You should be able to dynamically load the code. Refer to the appropriate modload(8) and
lkm(4) pages for further details.

You may also wish to take this opportunity to configure a firewall. Details can be found in the
Firewalls (section 6.4, page 61) section.

15.1.3 Check the tun device

Most users will only require one ‘‘tun’’ device (tun0). If you have used more (i.e., a number other
than ‘1’ in the pseudo-device line in the kernel configuration file) then alter all references to
‘‘tun0’’ below to reflect whichever device number you are using.

The easiest way to make sure that the tun0 device is configured correctly is to re-make it. To do
this, execute the following commands:

cd /dev
./MAKEDEV tun0

If you require 16 tunnel devices in your kernel, you will need to create more than just tun0:

cd /dev
./MAKEDEV tun15

FreeBSD Handbook 210

Also, to confirm that the kernel is configured correctly, the following command should give the
indicated output:

$ ifconfig tun0
tun0: flags=8050<POINTOPOINT,RUNNING,MULTICAST> mtu 1500
$

15.1.4 Name Resolution Configuration

The resolver is the part of the system that turns IP addresses into hostnames and vice versa. It
can be configured to look for maps that describe IP to hostname mappings in one of two places.
The first is a file called /etc/hosts (man 5 hosts). The second is the Internet Domain Name
Service (DNS), a distributed data base, the discussion of which is beyond the scope of this docu-
ment.

This section describes briefly how to configure your resolver.

The resolver is a set of system calls that do the name mappings, but you have to tell them where
to find their information. You do this by first editing the file /etc/host.conf . Do not call this
file /etc/hosts.conf (note the extra ‘‘s’’) as the results can be confusing.

15.1.4.1 Edit the /etc/host.conf file

This file should contain the following two lines:

hosts
bind

which instructs the resolver to first look in the file /etc/hosts , and then to consult the DNS if
the name was not found.

15.1.4.2 Edit the /etc/hosts(5) file

This file should contain the IP addresses and names of machines on your network. At a bare min-
imum it should contain entries for the machine which will be running ppp. Assuming that your
machine is called foo.bar.com with the IP address 10.0.0.1, /etc/hosts should contain:

127.0.0.1 localhost
10.0.0.1 foo.bar.com foo

The first line defines the alias ‘‘localhost’’ as a synonym for the current machine. Regardless of
your own IP address, the IP address for this line should always be 127.0.0.1. The second line
maps the name ‘‘foo.bar.com’’ (and the shorthand ‘‘foo’’) to the IP address 10.0.0.1.

If your provider allocates you a static IP address and name, then use these in place of the 10.0.0.1
entry.

15.1.4.3 Edit the /etc/resolv.conf file

/etc/resolv.conf tells the resolver how to behave. If you are running your own DNS, you
may leave this file empty. Normally, you will need to enter the following line(s):

nameserver x.x.x.x
nameserver y.y.y.y
domain bar.com

The x.x.x.x and y.y.y.y addresses are those given to you by your ISP. Add as many ‘‘name-
server’’ lines as your ISP provides. The ‘‘domain’’ line defaults to your hostname’s domain, and
is probably unnecessary. Refer to the resolv.conf manual page for details of other possible entries
in this file.

FreeBSD Handbook 211

15.1.5 PPP Configuration

Both user ppp and pppd (the kernel level implementation of PPP) use configuration files located
in the /etc/ppp directory. The sample configuration files provided are a good reference for user
ppp, so don’t delete them.

Configuring ppp requires that you edit a number of files, depending on your requirements. What
you put in them depends to some extent on whether your ISP allocates IP addresses statically
(i.e., you get given one IP address, and always use that one) or dynamically (i.e., your IP address
can be different for each PPP session).

15.1.5.1 PPP and Static IP addresses

"

You will need to create a configuration file called /etc/ppp/ppp.conf . It should look similar
to the example below. Note that lines that end in a ‘‘:’’ start in the first column, all other lines
should be indented as shown using spaces or tabs.

1 default:
2 set device /dev/cuaa0
3 set speed 115200
4 set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 5 \"\" ATE1Q0 OK-AT-OK
\\dATDT\\T TIMEOUT 40 CONNECT"
5 provider:
6 set phone "(0123) 456 7890"
7 set login "TIMEOUT 10 gin:-BREAK-gin: foo word: bar col: ppp"
8 set timeout 300
9 deny lqr
10 set ifaddr x.x.x.x y.y.y.y
11 delete ALL
12 add 0 0 HISADDR

Do not include the line numbers, they are just for reference in this discussion.

Line 1:
Identifies the default entry. Commands in this entry are executed automatically
when ppp is run.

Line 2:
Identifies the device to which the modem is connected. COM1: is /dev/cuaa0 and
COM2: is /dev/cuaa1 .

Line 3:
Sets the speed you want to connect at. If 115200 doesn’t work (it should with any
reasonably new modem), try 38400 instead.

Line 4:
The dial string. User ppp uses an expect-send syntax similar to the chat(8) pro-
gram. Refer to the manual page for information on the features of this language.

Line 5:
Identifies an entry for a provider called ‘‘provider’’.

Line 6:
Sets the phone number for this provider. Multiple phone numbers may be specified
using the ‘‘:’’ or ‘‘|’’ character as a separator. The difference between these speara-
tors is described in the ppp manual page. To summarize, if you want to rotate
through the numbers, use the ‘‘:’’. If you want to always attempt to dial the first
number first and only use the other numbers if the first number fails, use the ‘‘|’’.
Always quote the entire set of phone numbers as shown.

FreeBSD Handbook 212

Line 7:
The login string is of the same chat-like syntax as the dial string. In this example,
the string works for a service whose login session looks like this:

J. Random Provider
login: foo
password: bar
protocol: ppp

You will need to alter this script to suit your own needs. If you’re using PAP or
CHAP, there will be no login at this point, so your login string can be left blank. See
PAP and CHAP authentication (section 15.1.5.4, page 217) for further details.

Line 8:
Sets the default timeout (in seconds) for the connection. Here, the connection will
be closed automatically after 300 seconds of inactivity. If you never want to time-
out, set this value to zero.

Line 9:
Ppp can be configured to exchange Link Quality Report (LQR) packets. These pack-
ets describe how good the physical link is. Ppp’s LQR strategy is to close the con-
nection when a number of these packets are missed. This is useful when you have a
direct serial link to another machine and the DSR modem signal is not available to
indicate that the line is up. When data saturates the line, LQR packets are some-
times ‘‘missed’’, causing ppp to close the connection prematurely. Refusing to
negotiate lqr is sometimes prudent (if you are going through a modem) as it avoids
this whole mess. By default, ppp will not attempt to negotiate LQR, but will accept
LQR negotiation from the peer.

Line 10:
Sets the interface addresses. The string x.x.x.x should be replaced by the IP address
that your provider has allocated to you. The string y.y.y.y should be replaced by
the IP address that your ISP indicated for their gateway (the machine to which you
connect). If your ISP hasn’t given you a gateway address, use 10.0.0.2/0 . If you
need to use a ‘‘guessed’’ address, make sure that you create an entry in
/etc/ppp/ppp.linkup as per the instructions for PPP and Dynamic IP addresses
(section 15.1.5.2, page 212). If this line is omitted, ppp cannot run in -auto or
-dynamic mode.

Line 11:
Deletes all existing routing table entries for the acquired tun device. This should
not normally be necessary, but will make sure that PPP is starting with a clean bill
of health.

Line 12:
Adds a default route to your ISPs gateway. The special word HISADDRis replaced
with the gateway address specified on line 9. It is important that this line appears
after line 9, otherwise HISADDRwill not yet be initialized.

It is not necessary to add an entry to ppp.linkup when you have a static IP address as your
routing table entries are already correct before you connect. You may however wish to create an
entry to invoke programs after connection. This is explained later with the sendmail example.

Example configuration files can be found in the /etc/ppp directory.

15.1.5.2 PPP and Dynamic IP addresses

"

If your service provider does not assign static IP numbers, ppp can be configured to negotiate the
local and remote addresses. This is done by "guessing" an IP number and allowing ppp to set it

FreeBSD Handbook 213

up correctly using the IP Configuration Protocol (IPCP) after connecting. The ppp.conf configu-
ration is the same as PPP and Static IP addresses (section 15.1.5.1, page 211), with the following
change:

10 set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.0

Again, do not include the line numbers, they are just for reference in this discussion. Indentation
of at least one space is required.

Line 10:
The number after the ‘‘/’’ character is the number of bits of the address that ppp
will insist on. You may wish to use IP numbers more appropriate to your circum-
stances, but the above example will almost always work. If it fails, you may be able
to defeat some broken ppp implementations by supplying an additional 0.0.0.0
argument:

set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.0 0.0.0.0

This tells ppp to negotiate using address 0.0.0.0 rather than 10.0.0.1 . Do not
use 0.0.0.0/0 as the first argument to set ifaddr as it prevents ppp from set-
ting up an initial route in -auto and -ddial mode.

You will also need to create an entry in /etc/ppp/ppp.linkup . Ppp.linkup is used after a
connection has been established. At this point, ppp will know what IP addresses should really be
used. The following entry will delete the existing bogus routes, and create correct ones:

1 provider:
2 delete ALL
3 add 0 0 HISADDR

Line 1:
On establishing a connection, ppp will look for an entry in ppp.linkup according
to the following rules: First, try to match the same label as we used in ppp.conf .
If that fails, look for an entry for the IP number of our gateway. This entry is a four-
octet IP style label. If we still haven’t found an entry, look for the MYADDRentry.

Line 2:
This line tells ppp to delete all existing routes for the acquired tun interface (except
the direct route entry).

Line 3:
This line tells ppp to add a default route that points to HISADDR. HISADDRwill be
replaced with the IP number of the gateway as negotiated in the IPCP.

See the pmdemand entry in the files /etc/ppp/ppp.conf.sample and
/etc/ppp/ppp.linkup.sample for a detailed example.

15.1.5.3 Receiving incoming calls with PPP

This section describes setting up ppp in a server role.

When you configure ppp to receive incoming calls, you must decide whether you wish to for-
ward packets for just ppp connections, for all interfaces, or not at all. To forward for just ppp
connections, include the line

enable proxy

in your ppp.conf file. If you wish to forward packets on all interfaces, use the

gateway=YES

option in /etc/rc.conf (this file used to be called /etc/sysconfig).

FreeBSD Handbook 214

15.1.5.3.1 Which getty?

Configuring FreeBSD for Dialup Services (section 14.3, page 194) provides a good description on
enabling dialup services using getty.

An alternative to getty is mgetty11 , a smarter version of getty designed with dialup lines in mind.

The advantages of using mgetty is that it actively talks to modems, meaning if port is turned off in
/etc/ttys then your modem won’t answer the phone.

Later versions of mgetty (from 0.99beta onwards) also support the automatic detection of PPP
streams, allowing your clients script-less access to your server.

Refer to Mgetty and AutoPPP (section 15.1.5.3.7.1, page 216) for more information on mgetty.

15.1.5.3.2 PPP per missions

PPP must normally be run as user id 0. If however you wish to allow ppp to run in server mode
as a normal user by executing ppp as described below, that user must be given permission to run
ppp by adding them to the network group in /etc/group .

15.1.5.3.3 Setting up a PPP shell for dynamic-IP users

Create a file called /etc/ppp/ppp-shell containing the following:

#!/bin/sh
IDENT=‘echo $0 | sed -e ’s/^.*-\(.*\)$/\1/’‘
CALLEDAS="$IDENT"
TTY=‘tty‘

if [x$IDENT = xdialup]; then
IDENT=‘basename $TTY‘

fi

echo "PPP for $CALLEDAS on $TTY"
echo "Starting PPP for $IDENT"

exec /usr/sbin/ppp -direct $IDENT

This script should be executable. Now make a symbolic link called ppp-dialup to this script
using the following commands:

ln -s /etc/ppp/ppp-shell /etc/ppp/ppp-dialup

You should use this script as the shell for all your dialup ppp users. This is an example from
/etc/password for a dialup PPP user with username pchilds. (remember don’t directly edit the
password file, use vipw)

pchilds:*:1011:300:Peter Childs PPP:/home/ppp:/etc/ppp/ppp-dialup

Create a /home/ppp directory that is world readable containing the following 0 byte files

-r--r--r-- 1 root wheel 0 May 27 02:23 .hushlogin
-r--r--r-- 1 root wheel 0 May 27 02:22 .rhosts

which prevents /etc/motd from being displayed.

15.1.5.3.4 Setting up a PPP shell for static-IP users

Create the ppp-shell file as above and for each account with statically assigned IPs create a
symbolic link to ppp-shell .

For example, if you have three dialup customers fred, sam, and mary, that you route class C net-
works for, you would type the following:

11. <URL:http://www.leo.org/˜doering/mgetty/index.html>

FreeBSD Handbook 215

ln -s /etc/ppp/ppp-shell /etc/ppp/ppp-fred
ln -s /etc/ppp/ppp-shell /etc/ppp/ppp-sam
ln -s /etc/ppp/ppp-shell /etc/ppp/ppp-mary

Each of these users dialup accounts should have their shell set to the symbolic link created above.
(ie. mary’s shell should be /etc/ppp/ppp-mary).

15.1.5.3.5 Setting up ppp.conf for dynamic-IP users

The /etc/ppp/ppp.conf file should contain something along the lines of

default:
set debug phase lcp chat
set timeout 0

ttyd0:
set ifaddr 203.14.100.1 203.14.100.20 255.255.255.255
enable proxy

ttyd1:
set ifaddr 203.14.100.1 203.14.100.21 255.255.255.255
enable proxy

Note the indenting is important.

The default: section is loaded for each session. For each dialup line enabled in /etc/ttys
create an entry similar to the one for ttyd0: above. Each line should get a unique IP from your
pool of ip address for dynamic users.

15.1.5.3.6 Setting up ppp.conf for static-IP users

Along with the contents of the sample /etc/ppp/ppp.conf above you should add a section for
each of the statically assigned dialup users. We will continue with our fred, sam, and mary exam-
ple.

fred:
set ifaddr 203.14.100.1 203.14.101.1 255.255.255.255

sam:
set ifaddr 203.14.100.1 203.14.102.1 255.255.255.255

mary:
set ifaddr 203.14.100.1 203.14.103.1 255.255.255.255

The file /etc/ppp/ppp.linkup should also contain routing information for each static IP user
if required. The line below would add a route for the 203.14.101.0 class C via the client’s ppp
link.

fred:
add 203.14.101.0 netmask 255.255.255.0 HISADDR

sam:
add 203.14.102.0 netmask 255.255.255.0 HISADDR

mary:
add 203.14.103.0 netmask 255.255.255.0 HISADDR

15.1.5.3.7 More on mgetty, AutoPPP, and MS extensions

FreeBSD Handbook 216

15.1.5.3.7.1 Mgetty and AutoPPP "

Configuring and compiling mgetty with the AUTO_PPP option enabled allows mgetty to detect
the LCP phase of PPP connections and automatically spawn off a ppp shell. However, since the
default login/password sequence does not occur it is necessary to authenticate users using either
PAP or CHAP.

This section assumes the user has successfully configured, compiled, and installed a version of
mgetty with the AUTO_PPP option (v0.99beta or later)

Make sure your /usr/local/etc/mgetty+sendfax/login.config file has the following in
it:

/AutoPPP/ - - /etc/ppp/ppp-pap-dialup

This will tell mgetty to run the ppp-pap-dialup script for detected PPP connections.

Create a file called /etc/ppp/ppp-pap-dialup containing the following (the file should be
executable):

#!/bin/sh
TTY=‘tty‘
IDENT=‘basename $TTY‘
exec /usr/sbin/ppp -direct pap$IDENT

For each dialup line enabled in /etc/ttys create a corresponding entry in
/etc/ppp/ppp.conf . This will happily co-exist with the definitions we created above.

papttyd0:
enable pap
set ifaddr 203.14.100.1 203.14.100.20 255.255.255.255
enable proxy

papttyd1:
enable pap
set ifaddr 203.14.100.1 203.14.100.21 255.255.255.255
enable proxy

Each user logging in with this method will need to have a username/password in
/etc/ppp/ppp.secret file, or alternatively add the

enable passwdauth

option to authenticate users via pap from the /etc/password d file. (*)

(*) Note this option only available in 2.2-961014-SNAP or later, or by getting the updated ppp
code for 2.1.x. (see MS extensions below for details)

15.1.5.3.7.2 MS extentions From 2.2-961014-SNAP onwards it is possible to allow the automatic
negotiation of DNS and NetBIOS name servers with clients supporting this feature (namely
Win95/NT clients). See RFC1877 for more details on the protocol.

An example of enabling these extensions in your /etc/ppp/ppp.conf file is illustrated below.

default:
set debug phase lcp chat
set timeout 0
enable msext
set ns 203.14.100.1 203.14.100.2
set nbns 203.14.100.5

This will tell the clients the primary and secondary name server addresses, and a netbios name-
server host.

FreeBSD Handbook 217

15.1.5.4 PAP and CHAP authentication

"

Some ISPs set their system up so that the authentication part of your connection is done using
either of the PAP or CHAP authentication mechanisms. If this is the case, your ISP will not give a
login: prompt when you connect, but will start talking PPP immediately.

PAP is less secure than CHAP, but security is not normally an issue here as passwords, although
being sent as plain text with PAP, are being transmitted down a serial line only. There’s not much
room for crackers to "eavesdrop".

Referring back to the PPP and Static IP addresses (section 15.1.5.1, page 211) or PPP and Dynamic IP
addresses (section 15.1.5.2, page 212) sections, the following alterations must be made:

7 set login
.....
13 set authname MyUserName
14 set authkey MyPassword

As always, do not include the line numbers, they are just for reference in this discussion. Inden-
tation of at least one space is required.

Line 7:
Your ISP will not normally require that you log into the server if you’re using PAP
or CHAP. You must therefore disable your "set login" string.

Line 13:
This line specifies your PAP/CHAP user name. You will need to insert the correct
value for MyUserName.

Line 14:
This line specifies your PAP/CHAP password. You will need to insert the correct
value for MyPassword . You may want to add an additional line

15 accept PAP

or

15 accept CHAP

to make it obvious that this is the intention, but PAP and CHAP are accepted by
default.

NOTE: Your authkey will be logged if you have command logging turned on (set log +com-
mand). Care should be taken when deciding the ppp log file permissions.

15.1.5.5 Changing your ppp configuration on the fly

It is possible to talk to the ppp program while it is running in the background, but only if a suit-
able password has been set up.

By default, ppp will listen to a TCP port of 3000 + tunno , where tunno is the number of the tun
device acquired, however, if a password for the local machine is not set up in
/etc/ppp/ppp.secret , no server connection will be created. To set your password, put the
following line in /etc/ppp/ppp.secret :

foo MyPassword

where foo is your local hostname (run hostname -s to determine the correct name), and
MyPassword is the unencrypted password that you wish to use. /etc/ppp/ppp.secret
should NOT be accessable by anyone without user id 0. This means that / , /etc and /etc/ppp
should not be writable, and ppp.secret should be owned by user id 0 and have permissions

FreeBSD Handbook 218

0600.

It is also possible to select a specific port number or to have ppp listen to a local unix domain
socket rather than to a TCP socket. Refer to the set socket command in manual page for fur-
ther details.

Once a socket has been set up, the pppctl(8) program may be used in scripts that wish to
manipulate the running program.

15.1.6 Final system configuration

"

You now have PPP configured, but there are a few more things to do before it is ready to work.
They all involve editing the /etc/rc.conf file (was /etc/sysconfig).

Working from the top down in this file, make sure the ‘‘hostname=’’ line is set, e.g.:

hostname=foo.bar.com

If your ISP has supplied you with a static IP address and name, it’s probably best that you use
this name as your host name.

Look for the network_interfaces variable. If you want to configure your system to dial your ISP
on demand, make sure the tun0 device is added to the list, otherwise remove it.

network_interfaces="lo0 tun0"
ifconfig_tun0=

Note, the ifconfig_tun0 variable should be empty, and a file called /etc/start_if.tun0 should
be created. This file should contain the line

ppp -auto mysystem

This script is executed at network configuration time, starting your ppp daemon in automatic
mode. If you have a LAN for which this machine is a gateway, you may also wish to use the
-alias switch. Refer to the manual page for further details.

Set the router program to ‘‘NO’’ with the line

router_enable=NO (/etc/rc.conf)
router=NO (/etc/sysconfig)

It is important that the routed daemon is not started (it’s started by default) as routed tends to
delete the default routing table entries created by ppp.

It is probably worth your while ensuring that the ‘‘sendmail_flags’’ line does not include the ‘‘-q’’
option, otherwise sendmail will attempt to do a network lookup every now and then, possibly
causing your machine to dial out. You may try:

sendmail_flags="-bd"

The upshot of this is that you must force sendmail to re-examine the mail queue whenever the
ppp link is up by typing:

/usr/sbin/sendmail -q

You may wish to use the !bg command in ppp.linkup to do this automatically:

1 provider:
2 delete ALL
3 add 0 0 HISADDR
4 !bg sendmail -bd -q30m

If you don’t like this, it is possible to set up a "dfilter" to block SMTP traffic. Refer to the sample
files for further details.

All that is left is to reboot the machine.

FreeBSD Handbook 219

After rebooting, you can now either type

ppp

and then ‘‘dial provider’’ to start the PPP session, or, if you want ppp to establish sessions auto-
matically when there is outbound traffic (and you haven’t created the start_if.tun0 script), type

ppp -auto provider

15.1.7 Summary

To recap, the following steps are necessary when setting up ppp for the first time:

Client side:

• Ensure that the tun device is built into your kernel.

• Ensure that the tunX device file is available in the /dev directory.

• Create an entry in /etc/ppp/ppp.conf . The pmdemandexample should suffice for most
ISPs.

• If you have a dynamic IP address, create an entry in /etc/ppp/ppp.linkup .

• Update your /etc/rc.conf (or sysconfig) file.

• Create a start_if.tun0 script if you require demand dialing.

Server side:

• Ensure that the tun device is built into your kernel.

• Ensure that the tunX device file is available in the /dev directory.

• Create an entry in /etc/passwd (using the vipw(8) program).

• Create a profile in this users home directory that runs ‘‘ppp -direct direct-server’’ or similar.

• Create an entry in /etc/ppp/ppp.conf . The direct-server example should suffice.

• Create an entry in /etc/ppp/ppp.linkup .

• Update your /etc/rc.conf (or sysconfig) file.

15.1.8 Acknowledgments

This section of the handbook was last updated on Sun Sep 7, 1997 by Brian Somers
<brian@FreeBSD.ORG>

Thanks to the following for their input, comments & suggestions:

Nik Clayton <nik@FreeBSD.ORG>

Dirk-Willem van Gulik <Dirk.vanGulik@jrc.it>

Peter Childs <pjchilds@imforei.apana.org.au>

15.2 Setting up Kernel PPP
Contributed by Gennady B. Sorokopud <gena@NetVision.net.il> .

Before you start setting up PPP on your machine make sure that pppd is located in /usr/sbin and
directory /etc/ppp exists.

pppd can work in two modes:

1. as a "client" , i.e. you want to connect your machine to outside world via PPP serial con-
nection or modem line.

FreeBSD Handbook 220

2. as a "server" , i.e. your machine is located on the network and used to connect other com-
puters using PPP.

In both cases you will need to set up an options file (/etc/ppp/options or ˜/.ppprc if you
have more then one user on your machine that uses PPP).

You also will need some modem/serial software (preferably kermit) so you can dial and estab-
lish connection with remote host.

15.2.1 Working as a PPP client

I used the following /etc/ppp/options to connect to CISCO terminal server PPP line.

crtscts # enable hardware flow control
modem # modem control line
noipdefault # remote PPP server must supply your IP address.

if the remote host doesn’t send your IP during IPCP
negotiation , remove this option

passive # wait for LCP packets
domain ppp.foo.com # put your domain name here

:<remote_ip> # put the IP of remote PPP host here
it will be used to route packets via PPP link
if you didn’t specified the noipdefault option
change this line to <local_ip>:<remote_ip>

defaultroute # put this if you want that PPP server will be your
default router

To connect:

1. Dial to the remote host using kermit (or other modem program) enter your user name
and password (or whatever is needed to enable PPP on the remote host)

2. Exit kermit. (without hanging up the line)

3. enter:

/usr/src/usr.sbin/pppd.new/pppd /dev/tty01 19200

(put the appropriate speed and device name)

Now your computer is connected with PPP. If the connection fails for some reasons you can add
the "debug" option to the /etc/ppp/options file and check messages on the console to track
the problem

Following /etc/ppp/pppup script will make all 3 stages automatically:

FreeBSD Handbook 221

#!/bin/sh
ps ax |grep pppd |grep -v grep
pid=‘ps ax |grep pppd |grep -v grep|awk ’{print $1;}’‘
if ["X${pid}" != "X"] ; then

echo ’killing pppd, PID=’ ${pid}
kill ${pid}

fi
ps ax |grep kermit |grep -v grep
pid=‘ps ax |grep kermit |grep -v grep|awk ’{print $1;}’‘
if ["X${pid}" != "X"] ; then

echo ’killing kermit, PID=’ ${pid}
kill -9 ${pid}

fi

ifconfig ppp0 down
ifconfig ppp0 delete

kermit -y /etc/ppp/kermit.dial
pppd /dev/tty01 19200

/etc/ppp/kermit.dial is kermit script that dials and makes all necessary authorization on
the remote host. (Example of such script is attached to the end of this document)

Use the following /etc/ppp/pppdown script to disconnect the PPP line:

#!/bin/sh
pid=‘ps ax |grep pppd |grep -v grep|awk ’{print $1;}’‘
if [X${pid} != "X"] ; then

echo ’killing pppd, PID=’ ${pid}
kill -TERM ${pid}

fi

ps ax |grep kermit |grep -v grep
pid=‘ps ax |grep kermit |grep -v grep|awk ’{print $1;}’‘
if ["X${pid}" != "X"] ; then

echo ’killing kermit, PID=’ ${pid}
kill -9 ${pid}

fi

/sbin/ifconfig ppp0 down
/sbin/ifconfig ppp0 delete
kermit -y /etc/ppp/kermit.hup
/etc/ppp/ppptest

Check if PPP is still running (/usr/etc/ppp/ppptest):

#!/bin/sh
pid=‘ps ax| grep pppd |grep -v grep|awk ’{print $1;}’‘
if [X${pid} != "X"] ; then

echo ’pppd running: PID=’ ${pid-NONE}
else

echo ’No pppd running.’
fi
set -x
netstat -n -I ppp0
ifconfig ppp0

Hangs up modem line (/etc/ppp/kermit.hup):

FreeBSD Handbook 222

set line /dev/tty01 ; put your modem device here
set speed 19200
set file type binary
set file names literal
set win 8
set rec pack 1024
set send pack 1024
set block 3
set term bytesize 8
set command bytesize 8
set flow none

pau 1
out +++
inp 5 OK
out ATH0\13
echo \13
exit

Here is an alternate method using chat instead of kermit .

Contributed by Robert Huff <rhuff@cybercom.net> .

The following two files are sufficient to accomplish a pppd connection.

/etc/ppp/options :

/dev/cuaa1 115200

crtscts # enable hardware flow control
modem # modem control line
connect "/usr/bin/chat -f /etc/ppp/login.chat.script"
noipdefault # remote PPP server must supply your IP address.

if the remote host doesn’t send your IP during
IPCP negotiation, remove this option

passive # wait for LCP packets
domain <your.domain> # put your domain name here

: # put the IP of remote PPP host here
it will be used to route packets via PPP link
if you didn’t specified the noipdefault option
change this line to <local_ip>:<remote_ip>

defaultroute # put this if you want that PPP server will be
your default router

/etc/ppp/login.chat.script :

(This should actually go into a single line.)

ABORT BUSY ABORT ’NO CARRIER’ "" AT OK ATDT<phone.number>
CONNECT "" TIMEOUT 10 ogin:-\\r-ogin: <login-id>
TIMEOUT 5 sword: <password>

Once these are installed and modified correctly, all you need to do is

pppd .

This sample based primarily on information provided by: Trev Roydhouse <Trev.Royd-
house@f401.n711.z3.fidonet.org> and used by permission.

15.2.2 Working as a PPP server

/etc/ppp/options :

FreeBSD Handbook 223

crtscts # Hardware flow control
netmask 255.255.255.0 # netmask (not required)
192.114.208.20:192.114.208.165 # ip’s of local and remote hosts

local ip must be different from one
you assigned to the ethernet (or other)
interface on your machine.
remote IP is ip address that will be
assigned to the remote machine

domain ppp.foo.com # your domain
passive # wait for LCP
modem # modem line

Following /etc/ppp/pppserv script will enable ppp server on your machine

#!/bin/sh
ps ax |grep pppd |grep -v grep
pid=‘ps ax |grep pppd |grep -v grep|awk ’{print $1;}’‘
if ["X${pid}" != "X"] ; then

echo ’killing pppd, PID=’ ${pid}
kill ${pid}

fi
ps ax |grep kermit |grep -v grep
pid=‘ps ax |grep kermit |grep -v grep|awk ’{print $1;}’‘
if ["X${pid}" != "X"] ; then

echo ’killing kermit, PID=’ ${pid}
kill -9 ${pid}

fi

reset ppp interface
ifconfig ppp0 down
ifconfig ppp0 delete

enable autoanswer mode
kermit -y /etc/ppp/kermit.ans

run ppp
pppd /dev/tty01 19200

Use this /etc/ppp/pppservdown script to stop ppp server:

#!/bin/sh
ps ax |grep pppd |grep -v grep
pid=‘ps ax |grep pppd |grep -v grep|awk ’{print $1;}’‘
if ["X${pid}" != "X"] ; then

echo ’killing pppd, PID=’ ${pid}
kill ${pid}

fi
ps ax |grep kermit |grep -v grep
pid=‘ps ax |grep kermit |grep -v grep|awk ’{print $1;}’‘
if ["X${pid}" != "X"] ; then

echo ’killing kermit, PID=’ ${pid}
kill -9 ${pid}

fi
ifconfig ppp0 down
ifconfig ppp0 delete

kermit -y /etc/ppp/kermit.noans

Following kermit script will enable/disable autoanswer mode on your modem
(/etc/ppp/kermit.ans):

FreeBSD Handbook 224

set line /dev/tty01
set speed 19200
set file type binary
set file names literal
set win 8
set rec pack 1024
set send pack 1024
set block 3
set term bytesize 8
set command bytesize 8
set flow none

pau 1
out +++
inp 5 OK
out ATH0\13
inp 5 OK
echo \13
out ATS0=1\13 ; change this to out ATS0=0\13 if you want to disable

; autoanswer mod
inp 5 OK
echo \13
exit

This /etc/ppp/kermit.dial script is used for dialing and authorizing on remote host. You
will need to customize it for your needs. Put your login and password in this script , also you
will need to change input statement depending on responses from your modem and remote host.

;
; put the com line attached to the modem here:
;
set line /dev/tty01
;
; put the modem speed here:
;
set speed 19200
set file type binary ; full 8 bit file xfer
set file names literal
set win 8
set rec pack 1024
set send pack 1024
set block 3
set term bytesize 8
set command bytesize 8
set flow none
set modem hayes
set dial hangup off
set carrier auto ; Then SET CARRIER if necessary,
set dial display on ; Then SET DIAL if necessary,
set input echo on
set input timeout proceed
set input case ignore
def \%x 0 ; login prompt counter
goto slhup

:slcmd ; put the modem in command mode
echo Put the modem in command mode.
clear ; Clear unread characters from input buffer
pause 1
output +++ ; hayes escape sequence
input 1 OK\13\10 ; wait for OK
if success goto slhup
output \13
pause 1
output at\13

FreeBSD Handbook 225

input 1 OK\13\10
if fail goto slcmd ; if modem doesn’t answer OK, try again

:slhup ; hang up the phone
clear ; Clear unread characters from input buffer
pause 1
echo Hanging up the phone.
output ath0\13 ; hayes command for on hook
input 2 OK\13\10
if fail goto slcmd ; if no OK answer, put modem in command mode

:sldial ; dial the number
pause 1
echo Dialing.
output atdt9,550311\13\10 ; put phone number here
assign \%x 0 ; zero the time counter

:look
clear ; Clear unread characters from input buffer
increment \%x ; Count the seconds
input 1 {CONNECT }
if success goto sllogin
reinput 1 {NO CARRIER\13\10}
if success goto sldial
reinput 1 {NO DIALTONE\13\10}
if success goto slnodial
reinput 1 {\255}
if success goto slhup
reinput 1 {\127}
if success goto slhup
if < \%x 60 goto look
else goto slhup

:sllogin ; login
assign \%x 0 ; zero the time counter
pause 1
echo Looking for login prompt.

:slloop
increment \%x ; Count the seconds
clear ; Clear unread characters from input buffer
output \13
;
; put your expected login prompt here:
;
input 1 {Username: }
if success goto sluid
reinput 1 {\255}
if success goto slhup
reinput 1 {\127}
if success goto slhup
if < \%x 10 goto slloop ; try 10 times to get a login prompt
else goto slhup ; hang up and start again if 10 failures

:sluid
;
; put your userid here:
;
output ppp-login\13
input 1 {Password: }
;
; put your password here:
;
output ppp-password\13
input 1 {Entering SLIP mode.}

FreeBSD Handbook 226

echo
quit

:slnodial
echo \7No dialtone. Check the telephone line!\7
exit 1

; local variables:
; mode: csh
; comment-start: "; "
; comment-start-skip: "; "
; end:

15.3 Setting up a SLIP Client
Contributed by Satoshi Asami <asami@FreeBSD.ORG>
8 Aug 1995.

The following is one way to set up a FreeBSD machine for SLIP on a static host network. For
dynamic hostname assignments (i.e., your address changes each time you dial up), you probably
need to do something much fancier.

First, determine which serial port your modem is connected to. I have a symbolic link
/dev/modem -> cuaa1 , and only use the modem name in my configuration files. It can
become quite cumbersome when you need to fix a bunch of files in /etc and .kermrc ’s all over
the system! (Note that /dev/cuaa0 is COM1, cuaa1 is COM2, etc.)

Make sure you have

pseudo-device sl 1

in your kernel’s config file. It is included in the GENERIC kernel, so this will not be a problem
unless you deleted it.

15.3.1 Things you have to do only once

1. Add your home machine, the gateway and nameservers to your /etc/hosts file. Mine
looks like this:

127.0.0.1 localhost loghost
136.152.64.181 silvia.HIP.Berkeley.EDU silvia.HIP silvia

136.152.64.1 inr-3.Berkeley.EDU inr-3 slip-gateway
128.32.136.9 ns1.Berkeley.edu ns1
128.32.136.12 ns2.Berkeley.edu ns2

By the way, silvia is the name of the car that I had when I was back in Japan (it is called
2?0SX here in U.S.).

2. Make sure you have "hosts" before "bind" in your /etc/host.conf . Otherwise, funny
things may happen.

3. Edit the file /etc/rc.conf . Note that you should edit the file /etc/sysconfig instead
if you are running FreeBSD previous to version 2.2.2.

1. Set your hostname by editing the line that says:

hostname=myname.my.domain

You should give it your full Internet hostname.

FreeBSD Handbook 228

2. Leave the kermit there (you can suspend it by "z") and as root, type

slattach -h -c -s 115200 /dev/modem

if you are able to "ping" hosts on the other side of the router, you are connected! If it does
not work, you might want to try "-a" instead of "-c" as an argument to slattach.

15.3.3 How to shutdown the connection

Type "kill -INT ‘cat /var/run/slattach.modem.pid‘" (as root) to kill slattach. Then go back to ker-
mit ("fg" if you suspended it) and exit from it ("q").

The slattach man page says you have to use "ifconfig sl0 down" to mark the interface down, but
this does not seem to make any difference for me. ("ifconfig sl0" reports the same thing.)

Some times, your modem might refuse to drop the carrier (mine often does). In that case, simply
start kermit and quit it again. It usually goes out on the second try.

15.3.4 Troubleshooting

If it does not work, feel free to ask me. The things that people tripped over so far:

• Not using "-c" or "-a" in slattach (I have no idea why this can be fatal, but adding this flag
solved the problem for at least one person)

• Using "s10" instead of "sl0" (might be hard to see the difference on some fonts).

• Try "ifconfig sl0" to see your interface status. I get:

silvia# ifconfig sl0
sl0: flags=10<POINTOPOINT>

inet 136.152.64.181 --> 136.152.64.1 netmask ffffff00

• Also, netstat -r will give the routing table, in case you get the "no route to host" mes-
sages from ping. Mine looks like:

silvia# netstat -r
Routing tables
Destination Gateway Flags Refs Use IfaceMTU Rtt
Netmasks:
(root node)
(root node)

Route Tree for Protocol Family inet:
(root node) =>
default inr-3.Berkeley.EDU UG 8 224515 sl0 - -
localhost.Berkel localhost.Berkeley UH 5 42127 lo0 - 0.438
inr-3.Berkeley.E silvia.HIP.Berkele UH 1 0 sl0 - -
silvia.HIP.Berke localhost.Berkeley UGH 34 47641234 lo0 - 0.438
(root node)

(this is after transferring a bunch of files, your numbers should be smaller).

15.4 Setting up a SLIP Server
Contributed by Guy Helmer <ghelmer@cs.iastate.edu> .

v1.0, 15 May 1995.

This document provides suggestions for setting up SLIP Server services on a FreeBSD system,

FreeBSD Handbook 229

which typically means configuring your system to automatically startup connections upon login
for remote SLIP clients. The author has written this document based on his experience; however,
as your system and needs may be different, this document may not answer all of your questions,
and the author cannot be responsible if you damage your system or lose data due to attempting
to follow the suggestions here.

This guide was originally written for SLIP Server services on a FreeBSD 1.x system. It has been
modified to reflect changes in the pathnames and the removal of the SLIP interface compression
flags in early versions of FreeBSD 2.X, which appear to be the only major changes between
FreeBSD versions. If you do encounter mistakes in this document, please email the author with
enough information to help correct the problem.

15.4.1 Prerequisites

This document is very technical in nature, so background knowledge is required. It is assumed
that you are familiar with the TCP/IP network protocol, and in particular, network and node
addressing, network address masks, subnetting, routing, and routing protocols, such as RIP.
Configuring SLIP services on a dial-up server requires a knowledge of these concepts, and if you
are not familiar with them, please read a copy of either Craig Hunt’s TCP/IP Network Administra-
tion published by O’Reilly & Associates, Inc. (ISBN Number 0-937175-82-X), or Douglas Comer’s
books on the TCP/IP protocol.

It is further assumed that you have already setup your modem(s) and configured the appropriate
system files to allow logins through your modems. If you have not prepared your system for this
yet, please see the tutorial for configuring dialup services; if you have a World-Wide Web browser
available, browse the list of tutorials at http://www.freebsd.org/ ; otherwise, check the place
where you found this document for a document named dialup.txt or something similar. You
may also want to check the manual pages for sio(4) for information on the serial port device
driver and ttys(5) , gettytab(5) , getty(8) , & init(8) for information relevant to config-
uring the system to accept logins on modems, and perhaps stty(1) for information on setting
serial port parameters [such as clocal for directly-connected serial interfaces].

15.4.2 Quick Over view

In its typical configuration, using FreeBSD as a SLIP server works as follows: a SLIP user dials up
your FreeBSD SLIP Server system and logs in with a special SLIP login ID that uses
/usr/sbin/sliplogin as the special user’s shell. The sliplogin program browses the file
/etc/sliphome/slip.hosts to find a matching line for the special user, and if it finds a
match, connects the serial line to an available SLIP interface and then runs the shell script
/etc/sliphome/slip.login to configure the SLIP interface.

15.4.2.1 An Example of a SLIP Server Login

For example, if a SLIP user ID were Shelmerg , Shelmerg ’s entry in /etc/master.passwd
would look something like this (except it would be all on one line):

Shelmerg:password:1964:89::0:0:Guy Helmer - SLIP:
/usr/users/Shelmerg:/usr/sbin/sliplogin

and, when Shelmerg logs in, sliplogin will search /etc/sliphome/slip.hosts for a line
that had a matching user ID; for example, there may be a line in /etc/sliphome/slip.hosts
that reads:

Shelmerg dc-slip sl-helmer 0xfffffc00 autocomp

sliplogin will find that matching line, hook the serial line into the next available SLIP inter-
face, and then execute /etc/sliphome/slip.login like this:

/etc/sliphome/slip.login 0 19200 Shelmerg dc-slip sl-helmer 0xfffffc00 autocomp

If all goes well, /etc/sliphome/slip.login will issue an ifconfig for the SLIP interface to
which sliplogin attached itself (slip interface 0, in the above example, which was the first

FreeBSD Handbook 230

parameter in the list given to slip.login) to set the local IP address (dc-slip), remote IP
address (sl-helmer), network mask for the SLIP interface (0xfffffc00), and any additional
flags (autocomp). If something goes wrong, sliplogin usually logs good informational mes-
sages via the daemon syslog facility, which usually goes into /var/log/messages (see the
manual pages for syslogd(8) and syslog.conf(5) , and perhaps check /etc/syslog.conf
to see to which files syslogd is logging).

OK, enough of the examples -- let us dive into setting up the system.

15.4.3 Kernel Configuration

FreeBSD’s default kernels usually come with two SLIP interfaces defined (sl0 and sl1); you can
use netstat -i to see whether these interfaces are defined in your kernel.

Sample output from netstat -i :

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ed0 1500 <Link>0.0.c0.2c.5f.4a 291311 0 174209 0 133
ed0 1500 138.247.224 ivory 291311 0 174209 0 133
lo0 65535 <Link> 79 0 79 0 0
lo0 65535 loop localhost 79 0 79 0 0
sl0* 296 <Link> 0 0 0 0 0
sl1* 296 <Link> 0 0 0 0 0

The sl0 and sl1 interfaces shown in netstat -i ’s output indicate that there are two SLIP
interfaces built into the kernel. (The asterisks after the sl0 and sl1 indicate that the interfaces
are ‘‘down’’.)

However, FreeBSD’s default kernels do not come configured to forward packets (ie, your
FreeBSD machine will not act as a router) due to Internet RFC requirements for Internet hosts (see
RFC’s 1009 [Requirements for Internet Gateways], 1122 [Requirements for Internet Hosts -- Com-
munication Layers], and perhaps 1127 [A Perspective on the Host Requirements RFCs]), so if you
want your FreeBSD SLIP Server to act as a router, you will have to edit the /etc/rc.conf file
(called /etc/sysconfig in FreeBSD releases prior to 2.2.2) and change the setting of the gate-
way variable to YES. If you have an older system which predates even the /etc/sysconfig
file, then add the following command:

sysctl -w net.inet.ip.forwarding = 1

to your /etc/rc.local file.

You will then need to reboot for the new settings to take effect.

You will notice that near the end of the default kernel configuration file
(/sys/i386/conf/GENERIC) is a line that reads:

pseudo-device sl 2

which is the line that defines the number of SLIP devices available in the kernel; the number at
the end of the line is the maximum number of SLIP connections that may be operating simultane-
ously.

Please refer to Configuring the FreeBSD Kernel (section 5., page 35) for help in reconfiguring your
kernel.

15.4.4 Sliplogin Configuration

As mentioned earlier, there are three files in the /etc/sliphome directory that are part of the
configuration for /usr/sbin/sliplogin (see sliplogin(8) for the actual manual page for
sliplogin): slip.hosts , which defines the SLIP users & their associated IP addresses;
slip.login , which usually just configures the SLIP interface; and (optionally) slip.logout ,
which undoes slip.login ’s effects when the serial connection is terminated.

FreeBSD Handbook 231

15.4.4.1 slip.hosts Configuration

/etc/sliphome/slip.hosts contains lines which have at least four items, separated by
whitespace:

• SLIP user’s login ID

• Local address (local to the SLIP server) of the SLIP link

• Remote address of the SLIP link

• Network mask

The local and remote addresses may be host names (resolved to IP addresses by /etc/hosts or
by the domain name service, depending on your specifications in /etc/host.conf), and I
believe the network mask may be a name that can be resolved by a lookup into /etc/networks .
On a sample system, /etc/sliphome/slip.hosts looks like this:

----- begin /etc/sliphome/slip.hosts -----
#
login local-addr remote-addr mask opt1 opt2
(normal,compress,noicmp)
#
Shelmerg dc-slip sl-helmerg 0xfffffc00 autocomp
----- end /etc/sliphome/slip.hosts ------

At the end of the line is one or more of the options.

• normal - no header compression

• compress - compress headers

• autocomp - compress headers if the remote end allows it

• noicmp - disable ICMP packets (so any ‘‘ping’’ packets will be dropped instead of using
up your bandwidth)

Note that sliplogin under early releases of FreeBSD 2 ignored the options that FreeBSD 1.x rec-
ognized, so the options normal , compress , autocomp , and noicmp had no effect until support
was added in FreeBSD 2.2 (unless your slip.login script included code to make use of the
flags).

Your choice of local and remote addresses for your SLIP links depends on whether you are going
to dedicate a TCP/IP subnet or if you are going to use ‘‘proxy ARP’’ on your SLIP server (it is not
‘‘true’’ proxy ARP, but that is the terminology used in this document to describe it). If you are not
sure which method to select or how to assign IP addresses, please refer to the TCP/IP books ref-
erenced in the slips:prereqs (section 15.4.1, page 229) section and/or consult your IP network man-
ager.

If you are going to use a separate subnet for your SLIP clients, you will need to allocate the sub-
net number out of your assigned IP network number and assign each of your SLIP client’s IP
numbers out of that subnet. Then, you will probably either need to configure a static route to the
SLIP subnet via your SLIP server on your nearest IP router, or install gated on your FreeBSD
SLIP server and configure it to talk the appropriate routing protocols to your other routers to
inform them about your SLIP server’s route to the SLIP subnet.

Otherwise, if you will use the ‘‘proxy ARP’’ method, you will need to assign your SLIP client’s IP
addresses out of your SLIP server’s Ethernet subnet, and you will also need to adjust your
/etc/sliphome/slip.login and /etc/sliphome/slip.logout scripts to use arp(8) to
manage the proxy-ARP entries in the SLIP server’s ARP table.

FreeBSD Handbook 232

15.4.4.2 slip.login Configuration

The typical /etc/sliphome/slip.login file looks like this:

----- begin /etc/sliphome/slip.login -----
#!/bin/sh -
#
@(#)slip.login 5.1 (Berkeley) 7/1/90

#
generic login file for a slip line. sliplogin invokes this with
the parameters:
1 2 3 4 5 6 7-n
slipunit ttyspeed loginname local-addr remote-addr mask opt-args
#
/sbin/ifconfig sl$1 inet $4 $5 netmask $6
----- end /etc/sliphome/slip.login -----

This slip.login file merely ifconfig’s the appropriate SLIP interface with the local and remote
addresses and network mask of the SLIP interface.

If you have decided to use the ‘‘proxy ARP’’ method (instead of using a separate subnet for your
SLIP clients), your /etc/sliphome/slip.login file will need to look something like this:

----- begin /etc/sliphome/slip.login for "proxy ARP" -----
#!/bin/sh -
#
@(#)slip.login 5.1 (Berkeley) 7/1/90

#
generic login file for a slip line. sliplogin invokes this with
the parameters:
1 2 3 4 5 6 7-n
slipunit ttyspeed loginname local-addr remote-addr mask opt-args
#
/sbin/ifconfig sl$1 inet $4 $5 netmask $6
Answer ARP requests for the SLIP client with our Ethernet addr
/usr/sbin/arp -s $5 00:11:22:33:44:55 pub
----- end /etc/sliphome/slip.login for "proxy ARP" -----

The additional line in this slip.login , arp -s $5 00:11:22:33:44:55 pub , creates an
ARP entry in the SLIP server’s ARP table. This ARP entry causes the SLIP server to respond with
the SLIP server’s Ethernet MAC address whenever a another IP node on the Ethernet asks to
speak to the SLIP client’s IP address.

When using the example above, be sure to replace the Ethernet MAC address
(00:11:22:33:44:55) with the MAC address of your system’s Ethernet card, or your ‘‘proxy
ARP’’ will definitely not work! You can discover your SLIP server’s Ethernet MAC address by
looking at the results of running netstat -i ; the second line of the output should look some-
thing like:

ed0 1500 <Link>0.2.c1.28.5f.4a 191923 0 129457 0 116
^^^^^^^^^^^^^^^

which indicates that this particular system’s Ethernet MAC address is 00:02:c1:28:5f:4a --
the periods in the Ethernet MAC address given by netstat -i must be changed to colons and
leading zeros should be added to each single-digit hexadecimal number to convert the address
into the form that arp(8) desires; see the manual page on arp(8) for complete information on
usage.

Note that when you create /etc/sliphome/slip.login and
/etc/sliphome/slip.logout , the ‘‘execute’’ bit (ie, chmod 755
/etc/sliphome/slip.login /etc/sliphome/slip.logout) must be set, or sliplogin
will be unable to execute it.

FreeBSD Handbook 233

15.4.4.3 slip.logout Configuration

/etc/sliphome/slip.logout is not strictly needed (unless you are implementing ‘‘proxy
ARP’’), but if you decide to create it, this is an example of a basic slip.logout script:

----- begin /etc/sliphome/slip.logout -----
#!/bin/sh -
#
slip.logout

#
logout file for a slip line. sliplogin invokes this with
the parameters:
1 2 3 4 5 6 7-n
slipunit ttyspeed loginname local-addr remote-addr mask opt-args
#
/sbin/ifconfig sl$1 down
----- end /etc/sliphome/slip.logout -----

If you are using ‘‘proxy ARP’’, you will want to have /etc/sliphome/slip.logout remove
the ARP entry for the SLIP client:

----- begin /etc/sliphome/slip.logout for "proxy ARP" -----
#!/bin/sh -
#
@(#)slip.logout

#
logout file for a slip line. sliplogin invokes this with
the parameters:
1 2 3 4 5 6 7-n
slipunit ttyspeed loginname local-addr remote-addr mask opt-args
#
/sbin/ifconfig sl$1 down
Quit answering ARP requests for the SLIP client
/usr/sbin/arp -d $5
----- end /etc/sliphome/slip.logout for "proxy ARP" -----

The arp -d $5 removes the ARP entry that the ‘‘proxy ARP’’ slip.login added when the
SLIP client logged in.

It bears repeating: make sure /etc/sliphome/slip.logout has the execute bit set for after
you create it (ie, chmod 755 /etc/sliphome/slip.logout).

15.4.5 Routing Considerations

If you are not using the ‘‘proxy ARP’’ method for routing packets between your SLIP clients and
the rest of your network (and perhaps the Internet), you will probably either have to add static
routes to your closest default router(s) to route your SLIP client subnet via your SLIP server, or
you will probably need to install and configure gated on your FreeBSD SLIP server so that it will
tell your routers via appropriate routing protocols about your SLIP subnet.

15.4.5.1 Static Routes

Adding static routes to your nearest default routers can be troublesome (or impossible, if you do
not have authority to do so...). If you have a multiple-router network in your organization, some
routers, such as Cisco and Proteon, may not only need to be configured with the static route to
the SLIP subnet, but also need to be told which static routes to tell other routers about, so some
expertise and troubleshooting/tweaking may be necessary to get static-route-based routing to
work.

FreeBSD Handbook 234

15.4.5.2 Running gated

An alternative to the headaches of static routes is to install gated on your FreeBSD SLIP server
and configure it to use the appropriate routing protocols (RIP/OSPF/BGP/EGP) to tell other
routers about your SLIP subnet. You can use gated from the ports collection (section 4., page 23)
or retrieve and build it yourself from the GateD anonymous ftp site; I believe the current version
as of this writing is gated-R3_5Alpha_8.tar.Z , which includes support for FreeBSD ‘‘out-of-
the-box’’. Complete information and documentation on gated is available on the Web starting at
the Merit GateD Consortium. Compile and install it, and then write a /etc/gated.conf file to
configure your gated; here is a sample, similar to what the author used on a FreeBSD SLIP server:

----- begin sample /etc/gated.conf for gated version 3.5Alpha5 -----
#
gated configuration file for dc.dsu.edu; for gated version 3.5alpha5
Only broadcast RIP information for xxx.xxx.yy out the ed Ethernet interface
#
#
tracing options
#
traceoptions "/var/tmp/gated.output" replace size 100k files 2 general ;

rip yes {
interface sl noripout noripin ;
interface ed ripin ripout version 1 ;
traceoptions route ;

} ;

#
Turn on a bunch of tracing info for the interface to the kernel:
kernel {

traceoptions remnants request routes info interface ;
} ;

#
Propagate the route to xxx.xxx.yy out the Ethernet interface via RIP
#

export proto rip interface ed {
proto direct {

xxx.xxx.yy mask 255.255.252.0 metric 1; # SLIP connections
} ;

} ;

#
Accept routes from RIP via ed Ethernet interfaces

import proto rip interface ed {
all ;

} ;

----- end sample /etc/gated.conf -----

The above sample gated.conf file broadcasts routing information regarding the SLIP subnet
xxx.xxx.yy via RIP onto the Ethernet; if you are using a different Ethernet driver than the ed
driver, you will need to change the references to the ed interface appropriately. This sample file
also sets up tracing to /var/tmp/gated.output for debugging gated ’s activity; you can cer-
tainly turn off the tracing options if gated works OK for you. You will need to change the
xxx.xxx.yy ’s into the network address of your own SLIP subnet (be sure to change the net
mask in the proto direct clause as well).

When you get gated built and installed and create a configuration file for it, you will need to run
gated in place of routed on your FreeBSD system; change the routed/gated startup parame-
ters in /etc/netstart as appropriate for your system. Please see the manual page for gated

FreeBSD Handbook 235

for information on gated ’s command-line parameters.

15.4.6 Acknowledgments

Thanks to these people for comments and advice regarding this tutorial:

Wilko Bulte
<wilko@yedi.iaf.nl> "

Piero Serini
<Piero@Strider.Inet.IT>

FreeBSD Handbook 236

16. Advanced Networking
16.1 Gateways and Routes
Contributed by Coranth Gryphon <gryphon@healer.com> .
6 October 1995.

For one machine to be able to find another, there must be a mechanism in place to describe how
to get from one to the other. This is called Routing. A ‘‘route’’ is a defined pair of addresses: a
destination and a gateway. The pair indicates that if you are trying to get to this destination, send
along through this gateway. There are three types of destinations: individual hosts, subnets, and
‘‘default’’. The ‘‘default route’’ is used if none of the other routes apply. We will talk a little bit
more about default routes later on. There are also three types of gateways: individual hosts,
interfaces (also called ‘‘links’’), and ethernet hardware addresses.

16.1.1 An example

To illustrate different aspects of routing, we will use the following example which is the output of
the command netstat -r :

Destination Gateway Flags Refs Use Netif Expire

default outside-gw UGSc 37 418 ppp0
localhost localhost UH 0 181 lo0
test0 0:e0:b5:36:cf:4f UHLW 5 63288 ed0 77
10.20.30.255 link#1 UHLW 1 2421
foobar.com link#1 UC 0 0
host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0
host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 =>
host2.foobar.com link#1 UC 0 0
224 link#1 UC 0 0

The first two lines specify the default route (which we will cover in the next section) and the
localhost route.

The interface (Netif column) that it specifies to use for localhost is lo0 , also known as the
loopback device. This says to keep all traffic for this destination internal, rather than sending it
out over the LAN, since it will only end up back where it started anyway.

The next thing that stands out are the ‘‘0:e0:... ’’ addresses. These are ethernet hardware
addresses. FreeBSD will automatically identify any hosts (test0 in the example) on the local eth-
ernet and add a route for that host, directly to it over the ethernet interface, ed0 . There is also a
timeout (Expire column) associated with this type of route, which is used if we fail to hear from
the host in a specific amount of time. In this case the route will be automatically deleted. These
hosts are identified using a mechanism known as RIP (Routing Information Protocol), which fig-
ures out routes to local hosts based upon a shortest path determination.

FreeBSD will also add subnet routes for the local subnet (10.20.30.255 is the broadcast
address for the subnet 10.20.30 , and foobar.com is the domain name associated with that
subnet). The designation link#1 refers to the first ethernet card in the machine. You will notice
no additional interface is specified for those.

Both of these groups (local network hosts and local subnets) have their routes automatically con-
figured by a daemon called routed . If this is not run, then only routes which are statically
defined (ie. entered explicitly) will exist.

The host1 line refers to our host, which it knows by ethernet address. Since we are the sending
host, FreeBSD knows to use the loopback interface (lo0) rather than sending it out over the ether-
net interface.

The two host2 lines are an example of what happens when we use an ifconfig alias (see the sec-
tion of ethernet for reasons why we would do this). The => symbol after the lo0 interface says

FreeBSD Handbook 237

that not only are we using the loopback (since this is address also refers to the local host), but
specifically it is an alias. Such routes only show up on the host that supports the alias; all other
hosts on the local network will simply have a link#1 line for such.

The final line (destination subnet 224) deals with MultiCasting, which will be covered in a
another section.

The other column that we should talk about are the Flags . Each route has different attributes
that are described in the column. Below is a short table of some of these flags and their meanings:

U
Up: The route is active.

H
Host: The route destination is a single host.

G
Gateway: Send anything for this destination on to this remote system, which will
figure out from there where to send it.

S
Static: This route was configured manually, not automatically generated by the sys-
tem.

C
Clone: Generates a new route based upon this route for machines we connect to.
This type of route is normally used for local networks.

W
WasCloned Indicated a route that was auto-configured based upon a local area net-
work (Clone) route.

L
Link: Route involves references to ethernet hardware.

16.1.2 Default routes

When the local system needs to make a connection to remote host, it checks the routing table to
determine if a known path exists. If the remote host falls into a subnet that we know how to reach
(Cloned routes), then the system checks to see if it can connect along that interface.

If all known paths fail, the system has one last option: the default route. This route is a special
type of gateway route (usually the only one present in the system), and is always marked with a
‘‘c ’’ in the flags field. For hosts on a local area network, this gateway is set to whatever machine
has a direct connection to the outside world (whether via PPP link, or your hardware device
attached to a dedicated data line).

If you are configuring the default route for a machine which itself is functioning as the gateway to
the outside world, then the default route will be the gateway machine at your Internet Service
Provider’s (ISP) site.

Let us look at an example of default routes. This is a common configuration:

[Local2] <--ether--> [Local1] <--PPP--> [ISP-Serv] <--ether--> [T1-GW]

The hosts Local1 and Local2 are at your site, with the formed being your PPP connection to
your ISP’s Terminal Server. Your ISP has a local network at their site, which has, among other
things, the server where you connect and a hardware device (T1-GW) attached to the ISP’s Inter-
net feed.

The default routes for each of your machines will be:

FreeBSD Handbook 239

16.1.5 Troubleshooting

Sometimes, there is a problem with routing propagation, and some sites are unable to connect to
you. Perhaps the most useful command for trying to figure out where a routing is breaking down
is the traceroute(8) command. It is equally useful if you cannot seem to make a connection
to a remote machine (ie. ping(8) fails).

The traceroute(8) command is run with the name of the remote host you are trying to con-
nect to. It will show the gateway hosts along the path of the attempt, eventually either reaching
the target host, or terminating because of a lack of connection.

For more information, see the manual page for traceroute(8) .

16.2 NFS
Contributed by John Lind <john@starfire.MN.ORG> .

Certain Ethernet adapters for ISA PC systems have limitations which can lead to serious network
problems, particularly with NFS. This difficulty is not specific to FreeBSD, but FreeBSD systems
are affected by it.

The problem nearly always occurs when (FreeBSD) PC systems are networked with high-perfor-
mance workstations, such as those made by Silicon Graphics, Inc., and Sun Microsystems, Inc.
The NFS mount will work fine, and some operations may succeed, but suddenly the server will
seem to become unresponsive to the client, even though requests to and from other systems con-
tinue to be processed. This happens to the client system, whether the client is the FreeBSD sys-
tem or the workstation. On many systems, there is no way to shut down the client gracefully
once this problem has manifested itself. The only solution is often to reset the client, because the
NFS situation cannot be resolved.

Though the "correct" solution is to get a higher performance and capacity Ethernet adapter for the
FreeBSD system, there is a simple workaround that will allow satisfactory operation. If the
FreeBSD system is the SERVER, include the option "-w=1024" on the mount from the client. If the
FreeBSD system is the CLIENT, then mount the NFS file system with the option "-r=1024". These
options may be specified using the fourth field of the fstab entry on the client for automatic
mounts, or by using the "-o" parameter of the mount command for manual mounts.

It should be noted that there is a different problem, sometimes mistaken for this one, when the
NFS servers and clients are on different networks. If that is the case, make CERTAIN that your
routers are routing the necessary UDP information, or you will not get anywhere, no matter what
else you are doing.

In the following examples, "fastws" is the host (interface) name of a high-performance worksta-
tion, and "freebox" is the host (interface) name of a FreeBSD system with a lower-performance
Ethernet adapter. Also, "/sharedfs" will be the exported NFS filesystem (see "man exports"), and
"/project" will be the mount point on the client for the exported file system. In all cases, note that
additional options, such as "hard" or "soft" and "bg" may be desirable in your application.

Examples for the FreeBSD system ("freebox") as the client: in /etc/fstab on freebox:
fastws:/sharedfs /project nfs rw,-r=1024 0 0 as a manual mount command on freebox: mount -t
nfs -o -r=1024 fastws:/sharedfs /project

Examples for the FreeBSD system as the server: in /etc/fstab on fastws: freebox:/sharedfs
/project nfs rw,-w=1024 0 0 as a manual mount command on fastws: mount -t nfs -o -w=1024
freebox:/sharedfs /project

Nearly any 16-bit Ethernet adapter will allow operation without the above restrictions on the
read or write size.

For anyone who cares, here is what happens when the failure occurs, which also explains why it
is unrecoverable. NFS typically works with a "block" size of 8k (though it may do fragments of

FreeBSD Handbook 240

smaller sizes). Since the maximum Ethernet packet is around 1500 bytes, the NFS "block" gets
split into multiple Ethernet packets, even though it is still a single unit to the upper-level code,
and must be received, assembled, and ACKNOWLEDGED as a unit. The high-performance
workstations can pump out the packets which comprise the NFS unit one right after the other,
just as close together as the standard allows. On the smaller, lower capacity cards, the later pack-
ets overrun the earlier packets of the same unit before they can be transferred to the host and the
unit as a whole cannot be reconstructed or acknowledged. As a result, the workstation will time
out and try again, but it will try again with the entire 8K unit, and the process will be repeated, ad
infinitum.

By keeping the unit size below the Ethernet packet size limitation, we ensure that any complete
Ethernet packet received can be acknowledged individually, avoiding the deadlock situation.

Overruns may still occur when a high-performance workstations is slamming data out to a PC
system, but with the better cards, such overruns are not guaranteed on NFS "units". When an
overrun occurs, the units affected will be retransmitted, and there will be a fair chance that they
will be received, assembled, and acknowledged.

16.3 Diskless Operation
Contributed by Martin Renters <martin@FreeBSD.ORG> .

netboot.com/netboot.rom allow you to boot your FreeBSD machine over the network and
run FreeBSD without having a disk on your client. Under 2.0 it is now possible to have local
swap. Swapping over NFS is also still supported.

Supported Ethernet cards include: Western Digital/SMC 8003, 8013, 8216 and compatibles;
NE1000/NE2000 and compatibles (requires recompile)

16.3.1 Setup Instructions

1. Find a machine that will be your server. This machine will require enough disk space to
hold the FreeBSD 2.0 binaries and have bootp, tftp and NFS services available.

Tested machines:

• HP9000/8xx running HP-UX 9.04 or later (pre 9.04 doesn’t work)

• Sun/Solaris 2.3. (you may need to get bootp)

2. Set up a bootp server to provide the client with IP, gateway, netmask.

diskless:\
:ht=ether:\
:ha=0000c01f848a:\
:sm=255.255.255.0:\
:hn:\
:ds=192.1.2.3:\
:ip=192.1.2.4:\
:gw=192.1.2.5:\
:vm=rfc1048:

3. Set up a TFTP server (on same machine as bootp server) to provide booting information to
client. The name of this file is cfg.X.X.X.X (or /tftpboot/cfg.X.X.X.X , it will try
both) where X.X.X.X is the IP address of the client. The contents of this file can be any
valid netboot commands. Under 2.0, netboot has the following commands:

FreeBSD Handbook 241

help - print help list
ip <X.X.X.X> - print/set client’s IP address
server <X.X.X.X> - print/set bootp/tftp server address
netmask <X.X.X.X> - print/set netmask
hostname <name> - print/set hostname
kernel <name> - print/set kernel name
rootfs <ip:/fs> - print/set root filesystem
swapfs <ip:/fs> - print/set swap filesystem
swapsize <size> - set diskless swapsize in Kbytes
diskboot - boot from disk
autoboot - continue boot process
trans <on|off> - turn transceiver on|off
flags [bcdhsv] - set boot flags

A typical completely diskless cfg file might contain:

rootfs 192.1.2.3:/rootfs/myclient
swapfs 192.1.2.3:/swapfs
swapsize 20000
hostname myclient.mydomain

A cfg file for a machine with local swap might contain:

rootfs 192.1.2.3:/rootfs/myclient
hostname myclient.mydomain

4. Ensure that your NFS server has exported the root (and swap if applicable) filesystems to
your client, and that the client has root access to these filesystems

A typical /etc/exports file on FreeBSD might look like:

/rootfs/myclient -maproot=0:0 myclient.mydomain
/swapfs -maproot=0:0 myclient.mydomain

And on HP-UX:

/rootfs/myclient -root=myclient.mydomain
/swapfs -root=myclient.mydomain

5. If you are swapping over NFS (completely diskless configuration) create a swap file for
your client using dd . If your swapfs command has the arguments /swapfs and the size
20000 as in the example above, the swapfile for myclient will be called
/swapfs/swap.X.X.X.X where X.X.X.X is the client’s IP addr, eg:

dd if=/dev/zero of=/swapfs/swap.192.1.2.4 bs=1k count=20000

Also, the client’s swap space might contain sensitive information once swapping starts, so
make sure to restrict read and write access to this file to prevent unauthorized access:

chmod 0600 /swapfs/swap.192.1.2.4

6. Unpack the root filesystem in the directory the client will use for its root filesystem
(/rootfs/myclient in the example above).

FreeBSD Handbook 242

• On HP-UX systems: The server should be running HP-UX 9.04 or later for
HP9000/800 series machines. Prior versions do not allow the creation of device files
over NFS.

• When extracting /dev in /rootfs/myclient , beware that some systems (HPUX)
will not create device files that FreeBSD is happy with. You may have to go to single
user mode on the first bootup (press control-c during the bootup phase), cd /dev
and do a "sh ./MAKEDEV all " from the client to fix this.

7. Run netboot.com on the client or make an EPROM from the netboot.rom file

16.3.2 Using Shared / and /usr filesystems

At present there isn’t an officially sanctioned way of doing this, although I have been using a
shared /usr filesystem and individual / filesystems for each client. If anyone has any sugges-
tions on how to do this cleanly, please let me and/or the FreeBSD core team <freebsd-
core@FreeBSD.ORG> know.

16.3.3 Compiling netboot for specific setups

Netboot can be compiled to support NE1000/2000 cards by changing the configuration in
/sys/i386/boot/netboot/Makefile . See the comments at the top of this file.

16.4 ISDN
Last modified by Bill Lloyd <wlloyd@mpd.ca> .

A good resource for information on ISDN technology and hardware is Dan Kegel’s ISDN Page12 .

A quick simple roadmap to ISDN follows:

• If you live in Europe I suggest you investigate the ISDN card section.

• If you are planning to use ISDN primarily to connect to the Internet with an Internet
Provider on a dialup non-dedicated basis, I suggest you look into Terminal Adapters. This
will give you the most flexibility, with the fewest problems, if you change providers.

• If you are connecting two lans together, or connecting to the Internet with a dedicated ISDN
connection, I suggest you consider the stand alone router/bridge option.

Cost is a significant factor in determining what solution you will choose. The following options
are listed from least expensive to most expensive.

16.4.1 ISDN Cards

Original Contribution by Hellmuth Michaelis <hm@kts.org> .

This section is obsolete. Please read the ISDN4BSD13 homepage.

This section is really only relevant to European ISDN users. The cards supported are not yet(?)
available for North American ISDN standards.

You should be aware that this code is largely under development. Specifically, drivers have only
been written for two manufacturers cards.

PC ISDN cards support the full bandwidth of ISDN, 128Kbs. These cards are often the least
expensive type of ISDN equipment.

Under FreeBSD 2.1.0 and 2.1.5, there is early unfinished ISDN code under /usr/src/gnu/isdn.

12. <URL:http://alumni.caltech.edu/˜dank/isdn/>

13. <URL:http://www.hcs.de/users/hm/isdn4bsd/i4b-main.html>

FreeBSD Handbook 243

This code is out of date and should not be used. If you want to go this route, get the bisdn stuff.
This code has been removed from the main source tree starting with FreeBSD 2.2.

There is the bisdn ISDN package available from hub.freebsd.org14 supporting FreeBSD 2.1R,
FreeBSD-current and NetBSD. The latest source can be found on the above mentioned ftp server
under directory isdn as file bisdn-097.tar.gz.

There are drivers for the following cards:

• Currently all (passive) Teles cards and their clones are supported for the EuroISDN (DSS1)
and 1TR6 protocols.

• Dr. Neuhaus - Niccy 1016

There are several limitations with the bisdn stuff. Specifically the following features usually asso-
ciated with ISDN are not supported.

• No PPP support, only raw hdlc. This means you cannot connect to most standalone
routers.

• Bridging Control Protocol not supported.

• Multiple cards are not supported.

• No bandwidth on demand.

• No channel bundling.

A majordomo maintained mailing list is available. To join the list, send mail to <major-
domo@FreeBSD.ORG>and specify:

subscribe freebsd-isdn

In the body of your message.

16.4.2 ISDN Terminal Adapters

Terminal adapters(TA), are to ISDN what modems are to regular phone lines.

Most TA’s use the standard hayes modem AT command set, and can be used as a drop in replace-
ment for a modem.

A TA will operate basically the same as a modem except connection and throughput speeds will
be much faster than your old modem. You will need to configure PPP (section 15.2, page 219)
exactly the same as for a modem setup. Make sure you set your serial speed as high as possible.

The main advantage of using a TA to connect to an Internet Provider is that you can do Dynamic
PPP. As IP address space becomes more and more scarce, most providers are not willing to pro-
vide you with a static IP anymore. Most standalone routers are not able to accommodate
dynamic IP allocation.

TA’s completely rely on the PPP daemon that you are running for their features and stability of
connection. This allows you to upgrade easily from using a modem to ISDN on a FreeBSD
machine, if you already have PPP setup. However, at the same time any problems you experi-
enced with the PPP program and are going to persist.

If you want maximum stability, use the kernel PPP (section 15.2, page 219) option, not the user-
land iijPPP (section 15.1, page 208).

The following TA’s are know to work with FreeBSD.

14. <URL:ftp://hub.freebsd.org/pub/bisdn>

FreeBSD Handbook 244

• Motorola BitSurfer and Bitsurfer Pro

• Adtran

Most other TA’s will probably work as well, TA vendors try to make sure their product can accept
most of the standard modem AT command set.

The real problem with external TA’s is like modems you need a good serial card in your com-
puter.

You should read the serial ports (section 12.4.3.1, page 135) section in the handbook for a detailed
understanding of serial devices, and the differences between asynchronous and synchronous
serial ports.

A TA running off a standard PC serial port (asynchronous) limits you to 115.2Kbs, even though
you have a 128Kbs connection. To fully utilize the 128Kbs that ISDN is capable of, you must
move the TA to a synchronous serial card.

Do not be fooled into buying an internal TA and thinking you have avoided the syn-
chronous/asynchronous issue. Internal TA’s simply have a standard PC serial port chip built
into them. All this will do, is save you having to buy another serial cable, and find another
empty electrical socket.

A synchronous card with a TA is at least as fast as a standalone router, and with a simple 386
FreeBSD box driving it, probably more flexible.

The choice of sync/TA vs standalone router is largely a religious issue. There has been some dis-
cussion of this in the mailing lists. I suggest you search the archives15 for the complete discus-
sion.

16.4.3 Standalone ISDN Bridges/Routers

ISDN bridges or routers are not at all specific to FreeBSD or any other operating system. For a
more complete description of routing and bridging technology, please refer to a Networking ref-
erence book.

In the context of this page, I will use router and bridge interchangeably.

As the cost of low end ISDN routers/bridges comes down, it will likely become a more and more
popular choice. An ISDN router is a small box that plugs directly into your local Ethernet net-
work(or card), and manages its own connection to the other bridge/router. It has all the software
to do PPP and other protocols built in.

A router will allow you much faster throughput that a standard TA, since it will be using a full
synchronous ISDN connection.

The main problem with ISDN routers and bridges is that interoperability between manufacturers
can still be a problem. If you are planning to connect to an Internet provider, I recommend that
you discuss your needs with them.

If you are planning to connect two lan segments together, ie: home lan to the office lan, this is the
simplest lowest maintenance solution. Since you are buying the equipment for both sides of the
connection you can be assured that the link will work.

For example to connect a home computer or branch office network to a head office network the
following setup could be used.

Branch office or Home network

Network is 10 Base T Ethernet. Connect router to network cable with AUI/10BT transceiver, if
necessary.

15. <URL:http://www.freebsd.org/search.html>

FreeBSD Handbook 245

---Sun workstation
|
---FreeBSD box
|
---Windows 95 (Do not admit to owning it)
|
Standalone router

|
ISDN BRI line

If your home/branch office is only one computer you can use a twisted pair crossover cable to
connect to the standalone router directly.

Head office or other lan

Network is Twisted Pair Ethernet.

-------Novell Server
| H |
| ---Sun
| |
| U ---FreeBSD
| |
| ---Windows 95
| B |
|___---Standalone router

|
ISDN BRI line

One large advantage of most routers/bridges is that they allow you to have 2 SEPARATE INDE-
PENDENT PPP connections to 2 separate sites at the SAME time. This is not supported on most
TA’s, except for specific(expensive) models that have two serial ports. Do not confuse this with
channel bonding, MPP etc.

This can be very useful feature, for example if you have an dedicated internet ISDN connection at
your office and would like to tap into it, but don’t want to get another ISDN line at work. A
router at the office location can manage a dedicated B channel connection (64Kbs) to the internet,
as well as a use the other B channel for a separate data connection. The second B channel can be
used for dialin, dialout or dynamically bond(MPP etc.) with the first B channel for more band-
width.

An Ethernet bridge will also allow you to transmit more than just IP traffic, you can also send
IPX/SPX or whatever other protocols you use.

FreeBSD Handbook 246

17. Electronic Mail
Contributed by Bill Lloyd <wlloyd@mpd.ca> .

Electronic Mail configuration is the subject of many System Administration (section 26., page 363)
books. If you plan on doing anything beyond setting up one mailhost for your network, you
need industrial strength help.

Some parts of E-Mail configuration are controlled in the Domain Name System (DNS). If you are
going to run your own own DNS server check out /etc/namedb and ’ man -k named ’ for
more information.

17.1 Basic Information
These are the major programs involved in an E-Mail exchange. A mailhost is a server that is
responsible for delivering and receiving all email for your host, and possibly your network.

17.1.1 User program

This is a program like elm, pine, mail , or something more sophisticated like a WWW
browser. This program will simply pass off all e-mail transactions to the local mailhost , either
by calling sendmail or delivering it over TCP.

17.1.2 Mailhost Ser ver Daemon

Usually this program is sendmail or smail running in the background. Turn it off or change
the command line options in /etc/rc.conf (or, prior to FreeBSD 2.2.2, /etc/sysconfig). It
is best to leave it on, unless you have a specific reason to want it off. Example: You are building a
Firewall (section 6.4, page 61).

You should be aware that sendmail is a potential weak link in a secure site. Some versions of
sendmail have known security problems.

sendmail does two jobs. It looks after delivering and receiving mail.

If sendmail needs to deliver mail off your site it will look up in the DNS to determine the actual
host that will receive mail for the destination.

If it is acting as a delivery agent sendmail will take the message from the local queue and
deliver it across the Internet to another sendmail on the receivers computer.

17.1.3 DNS - Name Service

The Domain Name System and its daemon named , contain the database mapping hostname to IP
address, and hostname to mailhost. The IP address is specified in an "A" record. The "MX"
record specifies the mailhost that will receive mail for you. If you do not have a "MX" record mail
for your hostname, the mail will be delivered to your host directly.

Unless you are running your own DNS server, you will not be able to change any information in
the DNS yourself. If you are using an Internet Provider, speak to them.

17.1.4 POP Ser vers

This program gets the mail from your mailbox and gives it to your browser. If you want to run a
POP server on your computer, you will need to do 2 things.

• Get pop software from the Ports collection16 that can be found in /usr/ports or packages
collection. This handbook section has a complete reference on the Ports (section 4., page 23)
system.

16. <URL:../ports/mail.html>

FreeBSD Handbook 247

• Modify /etc/inetd.conf to load the POP server.

The pop program will have instructions with it. Read them.

17.2 Configuration
17.2.1 Basic

As your FreeBSD system comes "out of the box"[TM], you should be able to send E-mail to exter-
nal hosts as long as you have /etc/resolv.conf setup or are running a name server. If you
want to have mail for your host delivered to your specific host,there are two methods:

- Run a name server (man -k named) and have your own domain smallminingco.com

- Get mail delivered to the current DNS name for your host. Ie: dorm6.ahouse.school.edu

No matter what option you choose, to have mail delivered directly to your host, you must be a
full Internet host. You must have a permanent IP address. IE: NO dynamic PPP. If you are
behind a firewall, the firewall must be passing on smtp traffic to you. From /etc/services

smtp 25/tcp mail #Simple Mail Transfer

If you want to receive mail at your host itself, you must make sure that the DNS MX entry points
to your host address, or there is no MX entry for your DNS name.

Try this

newbsdbox# hostname
newbsdbox.freebsd.org
newbsdbox# host newbsdbox.freebsd.org
newbsdbox.freebsd.org has address 204.216.27.xx

If that is all that comes out for your machine, mail directory to root@newbsdbox.freebsd.org will
work no problems.

If instead, you have this

newbsdbox# host newbsdbox.freebsd.org
newbsdbox.FreeBSD.org has address 204.216.27.xx
newbsdbox.FreeBSD.org mail is handled (pri=10) by freefall.FreeBSD.org

All mail sent to your host directly will end up on freefall, under the same username.

This information is setup in your domain name server. This should be the same host that is listed
as your primary nameserver in /etc/resolv.conf

The DNS record that carries mail routing information is the Mail eXchange entry. If no MX entry
exists, mail will be delivered directly to the host by way of the Address record.

The MX entry for freefall.freebsd.org at one time.

freefall MX 30 mail.crl.net
freefall MX 40 agora.rdrop.com
freefall HINFO Pentium FreeBSD
freefall MX 10 freefall.FreeBSD.org
freefall MX 20 who.cdrom.com
freefall A 204.216.27.xx
freefall CNAME www.FreeBSD.org

Freefall has many MX entries. The lowest MX number gets the mail in the end. The others will
queue mail temporarily, if freefall is busy or down.

Alternate MX sites should have separate connections to the Internet, to be most useful. An Inter-
net Provider or other friendly site can provide this service.

FreeBSD Handbook 248

dig, nslookup, and host are your friends.

17.2.2 Mail for your Domain (Network).

To setup up a network mailhost, you need to direct the mail from arriving at all the workstations.
In other words, you want to hijack all mail for *.smallminingco.com and divert it to one
machine, your mailhost.

The network users on their workstations will most likely pick up their mail over POP or telnet.

A user account with the SAME USERNAME should exist on both machines. Please use adduser
to do this as required. If you set the shell to /nonexistent the user will not be allowed to login.

The mailhost that you will be using must be designated the Mail eXchange for each workstation.
This must be arranged in DNS (ie BIND, named). Please refer to a Networking book for in-depth
information.

You basically need to add these lines in your DNS server.

pc24.smallminingco.com A xxx.xxx.xxx.xxx ; Workstation ip
MX 10 smtp.smallminingco.com ; Your mailhost

You cannot do this yourself unless you are running a DNS server. If you do not want to run a
DNS server, get somebody else like your Internet Provider to do it.

This will redirect mail for the workstation to the Mail eXchange host. It does not matter what
machine the A record points to, the mail will be sent to the MX host.

This feature is used to implement Virtual E-Mail Hosting.

Example

I have a customer with domain foo.bar and I want all mail for foo.bar to be sent to my machine
smtp.smalliap.com. You must make an entry in your DNS server like:

foo.bar MX 10 smtp.smalliap.com ; your mailhost

The A record is not needed if you only want E-Mail for the domain. IE: Don’t expect ping
foo.bar to work unless an Address record for foo.bar exists as well.

On the mailhost that actually accepts mail for final delivery to a mailbox, sendmail must be told
what hosts it will be accepting mail for.

Add pc24.smallminingco.com to /etc/sendmail.cw (if you are using FEATURE(use_cw_file)), or
add a "Cw myhost.smalliap.com" line to /etc/sendmail.cf

If you plan on doing anything serious with sendmail you should install the sendmail source.
The source has plenty of documentation with it. You will find information on getting sendmail
source from the UUCP information (section 17.2.3, page 248).

17.2.3 Setting up UUCP.

Stolen from the FAQ.

The sendmail configuration that ships with FreeBSD is suited for sites that connect directly to the
Internet. Sites that wish to exchange their mail via UUCP must install another sendmail configu-
ration file.

Tweaking /etc/sendmail.cf manually is considered something for purists. Sendmail version
8 comes with a new approach of generating config files via some m4 preprocessing, where the
actual hand-crafted configuration is on a higher abstraction level. You should use the configura-
tion files under

FreeBSD Handbook 249

/usr/src/usr.sbin/sendmail/cf

If you did not install your system with full sources, the sendmail config stuff has been broken out
into a separate source distribution tarball just for you. Assuming you have your CD-ROM
mounted, do:

cd /usr/src
tar -xvzf /cdrom/dists/src/ssmailcf.aa

Do not panic, this is only a few hundred kilobytes in size. The file READMEin the cf directory
can serve as a basic introduction to m4 configuration.

For UUCP delivery, you are best advised to use the mailertable feature. This constitutes a database
that sendmail can use to base its routing decision upon.

First, you have to create your .mc file. The directory /usr/src/usr.sbin/sendmail/cf/cf
is the home of these files. Look around, there are already a few examples. Assuming you have
named your file foo.mc , all you need to do in order to convert it into a valid sendmail.cf is:

cd /usr/src/usr.sbin/sendmail/cf/cf
make foo.cf

If you don’t have a /usr/obj hiearchy, then:

cp foo.cf /etc/sendmail.cf

Otherwise:

cp /usr/obj/‘pwd‘/foo.cf /etc/sendmail.cf

A typical .mc file might look like:

include(‘../m4/cf.m4’)
VERSIONID(‘Your version number’)
OSTYPE(bsd4.4)

FEATURE(nodns)
FEATURE(nocanonify)
FEATURE(mailertable)

define(‘UUCP_RELAY’, your.uucp.relay)
define(‘UUCP_MAX_SIZE’, 200000)

MAILER(local)
MAILER(smtp)
MAILER(uucp)

Cw your.alias.host.name
Cw youruucpnodename.UUCP

The nodns and nocanonify features will prevent any usage of the DNS during mail delivery. The
UUCP_RELAY clause is needed for bizarre reasons, do not ask. Simply put an Internet hostname
there that is able to handle .UUCP pseudo-domain addresses; most likely, you will enter the mail
relay of your ISP there.

Once you have this, you need this file called /etc/mailertable . A typical example of this
gender again:

FreeBSD Handbook 250

#
makemap hash /etc/mailertable.db < /etc/mailertable
#
horus.interface-business.de uucp-dom:horus
.interface-business.de uucp-dom:if-bus
interface-business.de uucp-dom:if-bus
.heep.sax.de smtp8:%1
horus.UUCP uucp-dom:horus
if-bus.UUCP uucp-dom:if-bus
. uucp-dom:sax

As you can see, this is part of a real-life file. The first three lines handle special cases where
domain-addressed mail should not be sent out to the default route, but instead to some UUCP
neighbor in order to ‘‘shortcut’’ the delivery path. The next line handles mail to the local Ethernet
domain that can be delivered using SMTP. Finally, the UUCP neighbors are mentioned in the
.UUCP pseudo-domain notation, to allow for a ‘‘uucp-neighbor!recipient’’ override of the default
rules. The last line is always a single dot, matching everything else, with UUCP delivery to a
UUCP neighbor that serves as your universal mail gateway to the world. All of the node names
behind the uucp-dom: keyword must be valid UUCP neighbors, as you can verify using the
command uuname.

As a reminder that this file needs to be converted into a DBM database file before being usable,
the command line to accomplish this is best placed as a comment at the top of the mailertable.
You always have to execute this command each time you change your mailertable.

Final hint: if you are uncertain whether some particular mail routing would work, remember the
-bt option to sendmail. It starts sendmail in address test mode; simply enter ‘‘0 ’’, followed by the
address you wish to test for the mail routing. The last line tells you the used internal mail agent,
the destination host this agent will be called with, and the (possibly translated) address. Leave
this mode by typing Control-D.

j@uriah 191% sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> 0 foo@interface-business.de
rewrite: ruleset 0 input: foo @ interface-business . de
...
rewrite: ruleset 0 returns: $# uucp-dom $@ if-bus $: foo \
< @ interface-business . de >
> ^D
j@uriah 192%

17.3 FAQ
Migration from FAQ.

17.3.1 Why do I have to use the FQDN for hosts on my site?

You will probably find that the host is actually in a different domain; for example, if you are in
foo.bar.edu and you wish to reach a host called ‘‘mumble’’ in the bar.edu domain, you will have
to refer to it by the fully-qualified domain name, ‘‘mumble.bar.edu’’, instead of just ‘‘mumble’’.

Traditionally, this was allowed by BSD BIND resolvers. However the current version of BIND that
ships with FreeBSD no longer provides default abbreviations for non-fully qualified domain
names other than the domain you are in. So an unqualified host mumble must either be found as
mumble.foo.bar.edu , or it will be searched for in the root domain.

This is different from the previous behavior, where the search continued across mum-
ble.bar.edu , and mumble.edu . Have a look at RFC 1535 for why this was considered bad
practice, or even a security hole.

As a good workaround, you can place the line

FreeBSD Handbook 251

search foo.bar.edu bar.edu

instead of the previous

domain foo.bar.edu

into your /etc/resolv.conf . However, make sure that the search order does not go beyond
the ‘‘boundary between local and public administration’’, as RFC 1535 calls it.

17.3.2 Sendmail says ‘‘mail loops back to myself’’

This is answered in the sendmail FAQ as follows:-

* I am getting "Local configuration error" messages, such as:

553 relay.domain.net config error: mail loops back to myself
554 <user@domain.net>... Local configuration error

How can I solve this problem?

You have asked mail to the domain (e.g., domain.net) to be
forwarded to a specific host (in this case, relay.domain.net)
by using an MX record, but the relay machine does not recognize
itself as domain.net. Add domain.net to /etc/sendmail.cw
(if you are using FEATURE(use_cw_file)) or add "Cw domain.net"
to /etc/sendmail.cf.

The sendmail FAQ is in /usr/src/usr.sbin/sendmail and is recommended reading if you
want to do any ‘‘tweaking’’ of your mail setup.

17.3.3 How can I do E-Mail with a dialup PPP host?

You want to connect a FreeBSD box on a lan, to the Internet. The FreeBSD box will be a mail gate-
way for the lan. The PPP connection is non-dedicated.

There are at least two way to do this.

The other is to use UUCP.

The key is to get a Internet site to provide secondary MX services for your domain. For example:

bigco.com. MX 10 bigco.com.
MX 20 smalliap.com.

Only one host should be specified as the final recipient (add ‘‘Cw bigco.com’’ in /etc/send-
mail.cf on bigco.com).

When the senders sendmail is trying to deliver the mail it will try to connect to you over the
modem link. It will most likely time out because you are not online. Sendmail will automatically
deliver it to the secondary MX site, ie your Internet provider. The secondary MX site will try
every (sendmail_flags = "-bd -q15m" in /etc/rc.conf) 15 minutes to connect to your
host to deliver the mail to the primary MX site.

You might wat to use something like this as a login script.

#!/bin/sh
Put me in /usr/local/bin/pppbigco
(sleep 60 ; /usr/sbin/sendmail -q) &
/usr/sbin/ppp -direct pppbigco

If you are going to create a separate login script for a user you could use sendmail
-qRbigco.com instead in the script above. This will force all mail in your queue for bigco.com
to be processed immediately.

A further refinement of the situation is as follows.

FreeBSD Handbook 252

Message stolen from the freebsd-isp mailing list.

> we provide the secondary mx for a customer. The customer connects to
> our services several times a day automatically to get the mails to
> his primary mx (We do not call his site when a mail for his domains
> arrived). Our sendmail sends the mailqueue every 30 minutes. At the
> moment he has to stay 30 minutes online to be sure that all mail is
> gone to the primary mx.
>
> Is there a command that would initiate sendmail to send all the mails
> now? The user has not root-privileges on our machine of course.

In the ’privacy flags’ section of sendmail.cf, there is a definition
Opgoaway,restrictqrun

Remove restrictqrun to allow non-root users to start the queue processing.
You might also like to rearrange the MXs. We are the 1st MX for our
customers like this, and we have defined:

If we are the best MX for a host, try directly instead of generating
local config error.
OwTrue

That way a remote site will deliver straight to you, without trying
the customer connection. You then send to your customer. Only works for
"hosts", so you need to get your customer to name their mail machine
"customer.com" as well as "hostname.customer.com" in the DNS. Just put
an A record in the DNS for "customer.com".

FreeBSD Handbook 253

Part IV

Advanced topics

FreeBSD Handbook 254

18. The Cutting Edge: FreeBSD-current and FreeBSD-
stable
FreeBSD is under constant development between releases. For people who want to be on the cut-
ting edge, there are several easy mechanisms for keeping your system in sync with the latest
developments. Be warned: the cutting edge is not for everyone! This chapter will help you
decide if you want to track the development system, or stick with one of the released versions.

18.1 Staying Current with FreeBSD
Contributed by Jordan K. Hubbard <jkh@FreeBSD.ORG>.

18.1.1 What is FreeBSD-current?

FreeBSD-current is, quite literally, nothing more than a daily snapshot of the working sources for
FreeBSD. These include work in progress, experimental changes and transitional mechanisms
that may or may not be present in the next official release of the software. While many of us com-
pile almost daily from FreeBSD-current sources, there are periods of time when the sources are
literally un-compilable. These problems are generally resolved as expeditiously as possible, but
whether or not FreeBSD-current sources bring disaster or greatly desired functionality can liter-
ally be a matter of which part of any given 24 hour period you grabbed them in!

18.1.2 Who needs FreeBSD-current?

FreeBSD-current is made generally available for 3 primary interest groups:

1. Members of the FreeBSD group who are actively working on some part of the source tree
and for whom keeping ‘current’ is an absolute requirement.

2. Members of the FreeBSD group who are active testers, willing to spend time working
through problems in order to ensure that FreeBSD-current remains as sane as possible.
These are also people who wish to make topical suggestions on changes and the general
direction of FreeBSD.

3. Peripheral members of the FreeBSD (or some other) group who merely wish to keep an
eye on things and use the current sources for reference purposes (e.g. for reading, not run-
ning). These people also make the occasional comment or contribute code.

18.1.3 What is FreeBSD-current NOT?

1. A fast-track to getting pre-release bits because you heard there is some cool new feature
in there and you want to be the first on your block to have it.

2. A quick way of getting bug fixes.

3. In any way ‘‘officially supported’’ by us.

We do our best to help people genuinely in one of the 3 ‘‘legitimate’’ FreeBSD-current cate-
gories, but we simply do not have the time to provide tech support for it. This is not because
we are mean and nasty people who do not like helping people out (we would not even be
doing FreeBSD if we were), it is literally because we cannot answer 400 messages a day and
actually work on FreeBSD! I am sure that, if given the choice between having us answer
lots of questions or continuing to improve FreeBSD, most of you would vote for us
improving it.

18.1.4 Using FreeBSD-current

1. Join the FreeBSD-current mailing list <freebsd-current@FreeBSD.ORG> and the
FreeBSD CVS commit message mailing list <cvs-all@FreeBSD.ORG> . This is not just a
good idea, it is essential. If you are not on the FreeBSD-current mailing list you will not see

FreeBSD Handbook 255

the comments that people are making about the current state of the system and thus will
probably end up stumbling over a lot of problems that others have already found and
solved. Even more importantly, you will miss out on potentially critical information (e.g.
‘‘Yo, Everybody! Before you rebuild /usr/src , you must rebuild the kernel or your sys-
tem will crash horribly!").

The cvs-all mailing list will allow you to see the commit log entry for each change as it is
made along with any pertinent information on possible side-effects.

To join these lists, send mail to <majordomo@FreeBSD.ORG> and specify:

subscribe freebsd-current
subscribe cvs-all

In the body of your message. Optionally, you can also say ‘help’ and Majordomo will send
you full help on how to subscribe and unsubscribe to the various other mailing lists we
support.

2. Grab the sources from ftp.FreeBSD.ORG. You can do this in three ways:

1. Use the CTM (section 18.3.2, page 260) facility. Unless you have a good TCP/IP
connection at a flat rate, this is the way to do it.

2. Use the cvsup (section 18.3.3, page 263) program with this supfile17 . This is the
second most recommended method, since it allows you to grab the entire collection
once and then only what has changed from then on. Many people run cvsup from
cron and keep their sources up-to-date automatically.

3. Use ftp. The source tree for FreeBSD-current is always "exported" on:
ftp://ftp.FreeBSD.ORG/pub/FreeBSD/FreeBSD-current We also use ‘wu-ftpd’
which allows compressed/tar’d grabbing of whole trees. e.g. you see:

usr.bin/lex

You can do:

ftp> cd usr.bin
ftp> get lex.tar.Z

And it will get the whole directory for you as a compressed tar file.

3. Essentially, if you need rapid on-demand access to the source and communications band-
width is not a consideration, use cvsup or ftp. Otherwise, use CTM.

4. If you are grabbing the sources to run, and not just look at, then grab all of current, not
just selected portions. The reason for this is that various parts of the source depend on
updates elsewhere, and trying to compile just a subset is almost guaranteed to get you into
trouble.

5. Before compiling current, read the Makefile in /usr/src carefully. You should at least run
a ‘make world (section 18.4, page 272)’ the first time through as part of the upgrading pro-
cess. Reading the FreeBSD-current mailing list <freebsd-current@FreeBSD.ORG> will
keep you up-to-date on other bootstrapping procedures that sometimes become necessary
as we move towards the next release.

17. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/FreeBSD-

current/src/share/examples/cvsup/standard-supfile>

FreeBSD Handbook 256

6. Be active! If you are running FreeBSD-current, we want to know what you have to say
about it, especially if you have suggestions for enhancements or bug fixes. Suggestions
with accompanying code are received most enthusiastically!

18.2 Staying Stable with FreeBSD
Contributed by Jordan K. Hubbard <jkh@FreeBSD.ORG>.

18.2.1 What is FreeBSD-stable?

FreeBSD-stable is our development branch for a more low-key and conservative set of changes
intended for our next mainstream release. Changes of an experimental or untested nature do not
go into this branch (see FreeBSD-current (section 18.1, page 254)).

18.2.2 Who needs FreeBSD-stable?

If you are a commercial user or someone who puts maximum stability of their FreeBSD system
before all other concerns, you should consider tracking stable. This is especially true if you have
installed the most recent release (2.2.6-RELEASE18 at the time of this writing) since the stable
branch is effectively a bug-fix stream relative to the previous release.

Please note that the stable tree endeavors, above all, to be fully compilable and stable at all times,
but we do occasionally make mistakes (these are still active sources with quickly-transmitted
updates, after all). We also do our best to thoroughly test fixes in current before bringing them
into stable, but sometimes our tests fail to catch every case. If something breaks for you in stable,
please let us know immediately! (see next section).

18.2.3 Using FreeBSD-stable

1. Join the FreeBSD-stable mailing list <freebsd-stable@FreeBSD.ORG> . This will keep
you informed of build-dependencies that may appear in stable or any other issues requir-
ing special attention. Developers will also make announcements in this mailing list when
they are contemplating some controversial fix or update, giving the users a chance to
respond if they have any issues to raise concerning the proposed change.

To join this list, send mail to <majordomo@FreeBSD.ORG> and say:

subscribe freebsd-stable

In the body of your message. Optionally, you can also say ‘help’ and Majordomo will send
you full help on how to subscribe and unsubscribe to the various other mailing lists we
support.

2. Grab the sources from ftp.FreeBSD.ORG. You can do this in three ways:

1. Use the CTM (section 18.3.2, page 260) facility. Unless you have a good TCP/IP
connection at a flat rate, this is the way to do it.

2. Use the cvsup (section 18.3.3, page 263) program with this supfile19 . This is the sec-
ond most recommended method, since it allows you to grab the entire collection
once and then only what has changed from then on. Many people run cvsup from
cron to keep their sources up-to-date automatically.

18. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/2.2.6-RELEASE>

19. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/FreeBSD-

current/src/share/examples/cvsup/stable-supfile>

FreeBSD Handbook 257

3. Use ftp. The source tree for FreeBSD-stable is always "exported" on:
ftp://ftp.FreeBSD.ORG/pub/FreeBSD/FreeBSD-stable

We also use ‘wu-ftpd’ which allows compressed/tar’d grabbing of whole trees. e.g.
you see:

usr.bin/lex

You can do:

ftp> cd usr.bin
ftp> get lex.tar.Z

And it will get the whole directory for you as a compressed tar file.

3. Essentially, if you need rapid on-demand access to the source and communications band-
width is not a consideration, use cvsup or ftp. Otherwise, use CTM.

4. Before compiling stable, read the Makefile in /usr/src carefully. You should at least run a
‘make world (section 18.4, page 272)’ the first time through as part of the upgrading process.
Reading the FreeBSD-stable mailing list <freebsd-stable@FreeBSD.ORG> will keep
you up-to-date on other bootstrapping procedures that sometimes become necessary as we
move towards the next release.

18.3 Synchronizing Source Trees over the Internet
Contributed by Jordan K. Hubbard <jkh@FreeBSD.ORG>.

There are various ways of using an Internet (or email) connection to stay up-to-date with any
given area of the FreeBSD project sources, or all areas, depending on what interests you. The pri-
mary services we offer are Anonymous CVS (section 18.3.1, page 258), CVSup (section 18.3.3, page
263) and CTM (section 18.3.2, page 260).

Anonymous CVS and CVSup use the pull model of updating sources. In the case of CVSup, the
user (or a cron script) invokes the cvsup program and it interacts with a cvsupd server some-
where to bring your files up to date. The updates you receive are up-to-the-minute and you get
them when, and only when, you want them. You can easily restrict your updates to the specific
files or directories that are of interest to you. Updates are generated on the fly by the server,
according to what you have and what you want to have. Anonymous CVS is quite a bit more
simplistic than CVSup in that it’s just an extention to cvs(1) which allows it to pull changes
directly from a remote CVS repository. CVSup can do this far more efficiently, but anoncvs is
easier to use.

CTM, on the other hand, does not interactively compare the sources you have with those on the
master archive or otherwise pull changes across. Instead, a script which identifies changes in files
since its previous run is executed several times a day on the master CTM machine, any detected
changes being compressed, stamped with a sequence-number and encoded for transmission over
email (in printable ASCII only). Once received, these "CTM deltas" can then be handed to the
ctm_rmail(1) utility which will automatically decode, verify and apply the changes to the user’s
copy of the sources. This process is far more efficient than CVSup or Anonymous CVS, and
places less strain on our server resources since it is a push rather than a pull model.

There are other trade-offs, of course. If you inadvertently wipe out portions of your archive,
CVSup will detect and rebuild the damaged portions for you. CTM won’t do this and anoncvs is
probably more likely to become seriously confused than anything else. If you wipe some portion
of your source tree out (and don’t have it backed up) then you will have to start from scratch

FreeBSD Handbook 258

(from the most recent CVS "base delta") and rebuild it all with CTM or, with anoncvs, simply
delete the bad bits and re-sync.

For more information on Anonymous CVS, CTM and CVSup, please see one of the following sec-
tions:

18.3.1 Anonymous CVS

Contributed by Jordan K. Hubbard <jkh@FreeBSD.ORG>

18.3.1.1 Introduction

Anonymous CVS (or, as it is otherwise known, anoncvs) is a feature provided by the CVS utilities
bundled with FreeBSD for synchronizing with a remote CVS repository. Among other things, it
allows users of FreeBSD to perform, with no special privileges, read-only CVS operations against
one of the FreeBSD project’s official anoncvs servers. To use it, one simply sets the CVSROOT
environment variable to point at the appropriate anoncvs server and then uses the cvs(1) com-
mand to access it like any local repository.

While it can also be said that the CVSup (section 18.3.3, page 263) and anoncvs services both per-
form essentially the same function, there are various trade-offs which can influence the user’s
choice of synchronization methods. In a nutshell, CVSup is much more efficient in its usage of
network resources and is by far the most technically sophisticated of the two, but at a price. To
use CVSup, a special client must first be installed and configured before any bits can be grabbed,
and then only in the fairly large chunks which CVSupcalls collections.

Anoncvs , by contrast, can be used to examine anything from an individual file to a specific pro-
gram (like ls or grep) by referencing the CVS module name. Of course, anoncvs is also only good
for read-only operations on the CVS repository, so if it’s your intention to support local develop-
ment in one repository shared with the FreeBSD project bits then CVSup is really your only
option.

18.3.1.2 Using Anonymous CVS

Configuring cvs(1) to use an Anonymous CVS repository is a simple matter of setting the CVS-
ROOT environment variable to point to one of the FreeBSD project’s anoncvs servers. At the
time of this writing, the following servers are available:

• USA: anoncvs@anoncvs.freebsd.org:/cvs

Since CVS allows one to "check out" virtually any version of the FreeBSD sources that ever
existed (or, in some cases, will exist :), you need to be familiar with the revision (-r) flag to
cvs(1) and what some of the permissible values for it in the FreeBSD Project repository are.

There are two kinds of tags, revision tags and branch tags. A revision tag refers to a specific revi-
sion. Its meaning stays the same from day to day. A branch tag, on the other hand, refers to the
latest revision on a given line of development, at any given time. Because a branch tag does not
refer to a specific revision, it may mean something different tomorrow than it means today.

Here are the branch tags that users might be interested in:

HEAD
Symbolic name for the main line, or FreeBSD-current. Also the default when no
revision is specified.

RELENG_2_2
The line of development for FreeBSD-2.2.x, also known as FreeBSD-stable. Not
valid for the ports collection.

RELENG_2_1_0
The line of development for FreeBSD-2.1.x - this branch is largely obsolete. Not
valid for the ports collection.

FreeBSD Handbook 259

Here are the revision tags that users might be interested in:

RELENG_2_2_6_RELEASE
FreeBSD-2.2.6. Not valid for the ports collection.

RELENG_2_2_5_RELEASE
FreeBSD-2.2.5. Not valid for the ports collection.

RELENG_2_2_2_RELEASE
FreeBSD-2.2.2. Not valid for the ports collection.

RELENG_2_2_1_RELEASE
FreeBSD-2.2.1. Not valid for the ports collection.

RELENG_2_2_0_RELEASE
FreeBSD-2.2.0. Not valid for the ports collection.

RELENG_2_1_7_RELEASE
FreeBSD-2.1.7. Not valid for the ports collection.

RELENG_2_1_6_1_RELEASE
FreeBSD-2.1.6.1. Not valid for the ports collection.

RELENG_2_1_6_RELEASE
FreeBSD-2.1.6. Not valid for the ports collection.

RELENG_2_1_5_RELEASE
FreeBSD-2.1.5. Not valid for the ports collection.

RELENG_2_1_0_RELEASE
FreeBSD-2.1.0. Not valid for the ports collection.

When you specify a branch tag, you normally receive the latest versions of the files on that line of
development. If you wish to receive some past version, you can do so by specifying a date with
the -D date flag. See the cvs(1) man page for more details.

18.3.1.3 Examples

While it really is recommended that you read the manual page for cvs(1) thoroughly before
doing anything, here are some quick examples which essentially show how to use Anonymous
CVS:

Checking out something from -current (ls(1)) and deleting it again:

% setenv CVSROOT anoncvs@anoncvs.freebsd.org:/cvs
% cvs co ls
% cvs release -d ls

Checking out the version of ls(1) in the 2.2-stable branch:

% setenv CVSROOT anoncvs@anoncvs.freebsd.org:/cvs
% cvs co -rRELENG_2_2 ls
% cvs release -d ls

Creating a list of changes (as unidiffs) to ls(1) between FreeBSD 2.2.2 and FreeBSD 2.2.6:

% setenv CVSROOT anoncvs@anoncvs.freebsd.org:/cvs
% cvs rdiff -u -rRELENG_2_2_2_RELEASE -rRELENG_2_2_6_RELEASE ls

Finding out what other module names can be used:

% setenv CVSROOT anoncvs@anoncvs.freebsd.org:/cvs
% cvs co modules
% more modules/modules
% cvs release -d modules

FreeBSD Handbook 260

18.3.1.4 Other Resources

The following additional resources may be helpful in learning CVS:

• CVS Tutorial20 from Cal Poly.

• Cyclic Software21 , commercial maintainers of CVS.

• CVSWeb22 is the FreeBSD Project web interface for CVS.

18.3.2 CTM

Contributed by Poul-Henning Kamp <phk@FreeBSD.ORG>. Updated 19-October-1997.

CTMis a method for keeping a remote directory tree in sync with a central one. It has been devel-
oped for usage with FreeBSD’s source trees, though other people may find it useful for other pur-
poses as time goes by. Little, if any, documentation currently exists at this time on the process of
creating deltas, so talk to Poul-Henning Kamp <phk@FreeBSD.ORG> for more information
should you wish to use CTMfor other things.

18.3.2.1 Why should I use CTM?

CTMwill give you a local copy of the FreeBSD source trees. There are a number of ‘‘flavors’’ of
the tree available. Whether you wish to track the entire cvs tree or just one of the branches, CTM
can provide you the information. If you are an active developer on FreeBSD, but have lousy or
non-existent TCP/IP connectivity, or simply wish to have the changes automatically sent to you,
CTMwas made for you. You will need to obtain up to three deltas per day for the most active
branches. However, you should consider having them sent by automatic email. The sizes of the
updates are always kept as small as possible. This is typically less than 5K, with an occasional
(one in ten) being 10-50K and every now and then a biggie of 100K+ or more coming around.

You will also need to make yourself aware of the various caveats related to working directly from
the development sources rather than a pre-packaged release. This is particularly true if you
choose the ‘‘current’’ sources. It is recommended that you read Staying current with FreeBSD (sec-
tion 18.1, page 254).

18.3.2.2 What do I need to use CTM?

You will need two things: The ‘‘CTM’’ program and the initial deltas to feed it (to get up to ‘‘cur-
rent’’ levels).

The CTMprogram has been part of FreeBSD ever since version 2.0 was released, and lives in
/usr/src/usr.sbin/CTM if you have a copy of the source online.

If you are running a pre-2.0 version of FreeBSD, you can fetch the current CTMsources directly
from:

<URL:ftp://ftp.FreeBSD.ORG/pub/FreeBSD/FreeBSD-current/src/usr.sbin/ctm>

The ‘‘deltas’’ you feed CTMcan be had two ways, FTP or e-mail. If you have general FTP access to
the Internet then the following FTP sites support access to CTM:

<URL:ftp://ftp.FreeBSD.ORG/pub/FreeBSD/CTM>

or see section mirrors (section 25.3, page 358).

FTP the relevant directory and fetch the READMEfile, starting from there.

20. <URL:http://www.csc.calpoly.edu/˜dbutler/tutorials/winter96/cvs/>

21. <URL:http://www.cyclic.com>

22. <URL:http://www.freebsd.org/cgi/cvsweb.cgi>

FreeBSD Handbook 261

If you may wish to get your deltas via email:

Send email to <majordomo@FreeBSD.ORG> to subscribe to one of the CTMdistribution lists.
‘‘ctm-cvs-cur’’ supports the entire cvs tree. ‘‘ctm-src-cur’’ supports the head of the development
branch. ‘‘ctm-src-2_2’’ supports the 2.2 release branch, etc. (If you do not know how to subscribe
yourself using majordomo, send a message first containing the word ‘‘help’’ - it will send you
back usage instructions.)

When you begin receiving your CTMupdates in the mail, you may use the ctm_rmail program
to unpack and apply them. You can actually use the ctm_rmail program directly from a entry
in /etc/aliases if you want to have the process run in a fully automated fashion. Check the
ctm_rmail man page for more details.

NOTE: No matter what method you use to get the CTMdeltas, you should subscribe to the ctm-
announce@FreeBSD.ORG mailing list. In the future, this will be the only place where announce-
ments concerning the operations of the CTMsystem will be posted. Send an email to <major-
domo@FreeBSD.ORG>with a single line of ‘‘subscribe ctm-announce ’’ to get added to the
list.

18.3.2.3 Starting off with CTM for the first time

Before you can start using CTMdeltas, you will need to get a to a starting point for the deltas pro-
duced subsequently to it.

First you should determine what you already have. Everyone can start from an ‘‘Empty’’ direc-
tory. However, since the trees are many tens of megabytes, you should prefer to start from some-
thing already at hand. If you have a RELEASE CD, you can copy or extract an initial source from
it. This will save a significant transfer of data.

Once you identify a suitable starting point, you must use an initial ‘‘transition’’ delta to transform
your starting point into a CTMsupported tree.

You can recognize these transition deltas by the ‘‘X’’ appended to the number (src-
cur.3210XEmpty.gz for instance). The designation following the ‘‘X’’ corresponds to the ori-
gin of your initial ‘‘seed’’. ‘‘Empty’’ is an empty directory, ‘‘R225’’ would designate the 2.2.5
release, etc. As a rule a base transition from ‘‘Empty’’ is producted every 100 deltas. By the way,
they are large! 25 to 30 Megabytes of gzip ’ed data is common for the ‘‘XEmpty’’ deltas.

Once you’ve picked a base delta to start from, you will also need all deltas with higher numbers
following it.

18.3.2.4 Using CTM in your daily life

To apply the deltas, simply say:

cd /where/ever/you/want/the/stuff
ctm -v -v /where/you/store/your/deltas/src-xxx.*

CTMunderstands deltas which have been put through gzip , so you do not need to gunzip them
first, this saves disk space.

Unless it feels very secure about the entire process, CTMwill not touch your tree. To verify a delta
you can also use the ‘‘-c ’’ flag and CTMwill not actually touch your tree; it will merely verify the
integrity of the delta and see if it would apply cleanly to your current tree.

There are other options to CTMas well, see the manual pages or look in the sources for more infor-
mation.

I would also be very happy if somebody could help with the ‘‘user interface’’ portions, as I have
realized that I cannot make up my mind on what options should do what, how and when...

That’s really all there is to it. Every time you get a new delta, just run it through CTMto keep

FreeBSD Handbook 262

your sources up to date.

Do not remove the deltas if they are hard to download again. You just might want to keep them
around in case something bad happens. Even if you only have floppy disks, consider using
fdwrite to make a copy.

18.3.2.5 Keeping your local chang es

As a developer one would like to experiment with and change files in the source tree. CTM sup-
ports local modifications in a limited way: before checking for the presence of a file foo , it first
looks for foo.ctm . If this file exists, CTM will operate on it instead of foo .

This behaviour gives us a simple way to maintain local changes: simply copy the files you plan to
modify to the corresponding file names with a .ctm suffix. Then you can freely hack the code,
while CTM keeps the .ctm file up-to-date.

18.3.2.6 Other interesting CTM options

18.3.2.6.1 Finding out exactly what would be touched by an update

You can determine the list of changes that CTM will make on your source repository using the
‘‘-l ’’ option to CTM.

This is useful if you would like to keep logs of the changes, pre- or post- process the modified
files in any manner, or just are feeling a tad paranoid :-).

18.3.2.6.2 Making backups before updating

Sometimes you may want to backup all the files that would be changed by a CTM update.

Specifying the ‘‘-B backup-file ’’ option causes CTM to backup all files that would be touched
by a given CTM delta to backup-file .

18.3.2.6.3 Restricting the files touched by an update

Sometimes you would be interested in restricting the scope of a given CTM update, or may be
interested in extracting just a few files from a sequence of deltas.

You can control the list of files that CTM would operate on by specifying filtering regular expres-
sions using the ‘‘-e ’’ and ‘‘-x ’’ options.

For example, to extract an up-to-date copy of lib/libc/Makefile from your collection of
saved CTM deltas, run the commands:

cd /where/ever/you/want/to/extract/it/
ctm -e ’^lib/libc/Makefile’ ˜ctm/src-xxx.*

For every file specified in a CTM delta, the ‘‘-e ’’ and ‘‘-x ’’ options are applied in the order given
on the command line. The file is processed by CTM only if it is marked as eligible after all the
‘‘-e ’’ and ‘‘-x ’’ options are applied to it.

18.3.2.7 Future plans for CTM

Tons of them:

• Use some kind of authentication into the CTM system, so as to allow detection of spoofed
CTM updates.

• Clean up the options to CTM, they became confusing and counter intuitive.

The bad news is that I am very busy, so any help in doing this will be most welcome. And do not
forget to tell me what you want also...

FreeBSD Handbook 263

18.3.2.8 Miscellaneous stuff

All the ‘‘DES infected’’ (e.g. export controlled) source is not included. You will get the ‘‘interna-
tional’’ version only. If sufficient interest appears, we will set up a ‘‘sec-cur ’’ sequence too.
There is a sequence of deltas for the ports collection too, but interest has not been all that high
yet. Tell me if you want an email list for that too and we will consider setting it up.

18.3.2.9 Thanks!

Bruce Evans
<bde@FreeBSD.ORG>" for his pointed pen and invaluable comments.

Søren Schmidt
<sos@FreeBSD.ORG>" for patience.

Stephen McKay
wrote ctm_[rs]mail , much appreciated.

Jordan K. Hubbard
<jkh@FreeBSD.ORG>" for being so stubborn that I had to make it better.

All the users
I hope you like it...

18.3.3 CVSup

Contributed by John Polstra <jdp@FreeBSD.ORG>.

18.3.3.1 Introduction

CVSup is a software package for distributing and updating source trees from a master CVS repos-
itory on a remote server host. The FreeBSD sources are maintained in a CVS repository on a cen-
tral development machine in California. With CVSup, FreeBSD users can easily keep their own
source trees up to date.

CVSup uses the so-called pull model of updating. Under the pull model, each client asks the
server for updates, if and when they are wanted. The server waits passively for update requests
from its clients. Thus all updates are instigated by the client. The server never sends unsolicited
updates. Users must either run the CVSup client manually to get an update, or they must set up
a cron job to run it automatically on a regular basis.

The term "CVSup", capitalized just so, refers to the entire software package. Its main components
are the client "cvsup" which runs on each user’s machine, and the server "cvsupd" which runs at
each of the FreeBSD mirror sites.

As you read the FreeBSD documentation and mailing lists, you may see references to sup. Sup
was the predecessor of CVSup, and it served a similar purpose. CVSup is in used in much the
same way as sup and, in fact, uses configuration files which are backward-compatible with sup’s.
Sup is no longer used in the FreeBSD project, because CVSup is both faster and more flexible.

18.3.3.2 Installation

The easiest way to install CVSup if you are running FreeBSD 2.2 or later is to use either the port23

from the FreeBSD ports collection (section 4., page 23) or the corresponding binary package24 ,
depending on whether you prefer to roll your own or not.

If you are running FreeBSD-2.1.6 or 2.1.7, you unfortunately cannot use the binary package ver-
sions due to the fact that it requires a version of the C library that does not yet exist in
FreeBSD-2.1.{6,7}. You can easily use the port25 , however, just as with FreeBSD 2.2. Simply

23. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/ports-current/net/cvsup.tar>

24. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/packages-current/net/cvsup-15.4.tgz>

FreeBSD Handbook 264

unpack the tar file, cd to the cvsup subdirectory and type "make install".

Because CVSup is written in Modula-326 , both the package and the port require that the Mod-
ula-3 runtime libraries be installed. These are available as the lang/modula-3-lib27 port and the
lang/modula-3-lib-3.628 package. If you follow the same directions as for cvsup, these libraries
will be compiled and/or installed automatically when you install the CVSup port or package.

The Modula-3 libraries are rather large, and fetching and compiling them is not an instantaneous
process. For that reason, a third option is provided. You can get statically linked FreeBSD executa-
bles for CVSup from either the USA distribution site:

• ftp://ftp.freebsd.org/pub/FreeBSD/CVSup/cvsup-bin-15.4.tar.gz29 (client including
GUI).

• ftp://ftp.freebsd.org/pub/FreeBSD/CVSup/cvsup.nogui-bin-15.4.tar.gz30 (client without
GUI).

• ftp://ftp.freebsd.org/pub/FreeBSD/CVSup/cvsupd-bin-15.4.tar.gz31 (server).

or the German mirror:

• ftp://ftp.cs.tu-berlin.de/pub/FreeBSD/CVSup/cvsup-bin-15.4.tar.gz32 (client including
GUI).

• ftp://ftp.cs.tu-berlin.de/pub/FreeBSD/CVSup/cvsup.nogui-bin-15.4.tar.gz33 (client with-
out GUI).

• ftp://ftp.cs.tu-berlin.de/pub/FreeBSD/CVSup/cvsupd-bin-15.4.tar.gz34 (server).

Most users will need only the client. These executables are entirely self-contained, and they will
run on any version of FreeBSD from FreeBSD-2.1.0 to FreeBSD-current.

In summary, your options for installing CVSup are:

• FreeBSD-2.2 or later: static binary, port, or package

• FreeBSD-2.1.6, 2.1.7: static binary or port

• FreeBSD-2.1.5 or earlier: static binary

18.3.3.3 Configuration

CVSup’s operation is controlled by a configuration file called the "supfile". Beginning with
FreeBSD-2.2, there are some sample supfiles in the directory /usr/share/examples/cvsup35 .
These examples are also available from
ftp://ftp.freebsd.org/pub/FreeBSD/FreeBSD-current/src/share/examples/cvsup/36 if you are

25. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/ports-current/net/cvsup.tar>

26. <URL:http://www.research.digital.com/SRC/modula-3/html/home.html>

27. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/ports-current/lang/modula-3-lib.tar>

28. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/packages-current/lang/modula-3-lib-3.6.tgz>

29. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/CVSup/cvsup-bin-15.4.tar.gz>

30. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/CVSup/cvsup.nogui-bin-15.4.tar.gz>

31. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/CVSup/cvsupd-bin-15.4.tar.gz>

32. <URL:ftp://ftp.cs.tu-berlin.de/pub/FreeBSD/CVSup/cvsup-bin-15.4.tar.gz>

33. <URL:ftp://ftp.cs.tu-berlin.de/pub/FreeBSD/CVSup/cvsup.nogui-bin-15.4.tar.gz>

34. <URL:ftp://ftp.cs.tu-berlin.de/pub/FreeBSD/CVSup/cvsupd-bin-15.4.tar.gz>

35. <URL:file:/usr/share/examples/cvsup>

FreeBSD Handbook 265

on a pre-2.2 system.

The information in a supfile answers the following questions for cvsup:

• Which files do you want to receive? (section 18.3.3.3, page 265)

• Which versions of them do you want? (section 18.3.3.3, page 265)

• Where do you want to get them from? (section 18.3.3.3, page 267)

• Where do you want to put them on your own machine? (section 18.3.3.3, page 267)

• Where do you want to put your status files? (section 18.3.3.3, page 267)

In the following sections, we will construct a typical supfile by answering each of these questions
in turn. First, we describe the overall structure of a supfile.

A supfile is a text file. Comments begin with "#" and extend to the end of the line. Lines that are
blank and lines that contain only comments are ignored.

Each remaining line describes a set of files that the user wishes to receive. The line begins with
the name of a "collection", a logical grouping of files defined by the server. The name of the col-
lection tells the server which files you want. After the collection name come zero or more fields,
separated by white space. These fields answer the questions listed above. There are two types of
fields: flag fields and value fields. A flag field consists of a keyword standing alone, e.g., "delete"
or "compress". A value field also begins with a keyword, but the keyword is followed without
intervening white space by "=" and a second word. For example, "release=cvs" is a value field.

A supfile typically specifies more than one collection to receive. One way to structure a supfile is
to specify all of the relevant fields explicitly for each collection. However, that tends to make the
supfile lines quite long, and it is inconvenient because most fields are the same for all of the col-
lections in a supfile. CVSup provides a defaulting mechanism to avoid these problems. Lines
beginning with the special pseudo-collection name "*default" can be used to set flags and values
which will be used as defaults for the subsequent collections in the supfile. A default value can
be overridden for an individual collection, by specifying a different value with the collection
itself. Defaults can also be changed or augmented in mid-supfile by additional "*default" lines.

With this background, we will now proceed to construct a supfile for receiving and updating the
main source tree of FreeBSD-current (section 18.1, page 254).

• Which files do you want to receive?

The files available via CVSup are organized into named groups called "collections". The
collections that are available are described here (section 18.3.3.5, page 269). In this example,
we wish to receive the entire main source tree for the FreeBSD system. There is a single
large collection "src-all" which will give us all of that, except the export-controlled cryptog-
raphy support. Let us assume for this example that we are in the USA or Canada. Then we
can get the cryptography code with one additional collection, "cvs-crypto". As a first step
toward constructing our supfile, we simply list these collections, one per line:

src-all
cvs-crypto

• Which version(s) of them do you want?

With CVSup, you can receive virtually any version of the sources that ever existed. That is

36. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/FreeBSD-current/src/share/examples/cvsup/>

FreeBSD Handbook 266

possible because the cvsupd server works directly from the CVS repository, which contains
all of the versions. You specify which one of them you want using the "tag=" and "date="
value fields.

WARNING: Be very careful to specify any "tag=" fields correctly. Some tags are valid only
for certain collections of files. If you specify an incorrect or misspelled tag, CVSup will
delete files which you probably do not want deleted. In particular, use only "tag=. " for the
"ports-*" collections.

The "tag=" field names a symbolic tag in the repository. There are two kinds of tags, revi-
sion tags and branch tags. A revision tag refers to a specific revision. Its meaning stays the
same from day to day. A branch tag, on the other hand, refers to the latest revision on a
given line of development, at any given time. Because a branch tag does not refer to a spe-
cific revision, it may mean something different tomorrow than it means today.

Here are the branch tags that users might be interested in:

tag=.
The main line of development, also known as FreeBSD-current. Note: the "."
is not punctuation; it is the name of the tag. Valid for all collections.

tag=RELENG_2_2
The line of development for FreeBSD-2.2.x, also known as FreeBSD-stable.
Not valid for the ports-* collections.

tag=RELENG_2_1_0
The line of development for FreeBSD-2.1.x - this branch is largely obsolete.
Not valid for the ports-* collections.

Here are the revision tags that users might be interested in:

tag=RELENG_2_2_6_RELEASE
FreeBSD-2.2.6. Not valid for the ports-* collections.

tag=RELENG_2_2_5_RELEASE
FreeBSD-2.2.5. Not valid for the ports-* collections.

tag=RELENG_2_2_2_RELEASE
FreeBSD-2.2.2. Not valid for the ports-* collections.

tag=RELENG_2_2_1_RELEASE
FreeBSD-2.2.1. Not valid for the ports-* collections.

tag=RELENG_2_2_0_RELEASE
FreeBSD-2.2.0. Not valid for the ports-* collections.

tag=RELENG_2_1_7_RELEASE
FreeBSD-2.1.7. Not valid for the ports-* collections.

tag=RELENG_2_1_6_1_RELEASE
FreeBSD-2.1.6.1. Not valid for the ports-* collections.

tag=RELENG_2_1_6_RELEASE
FreeBSD-2.1.6. Not valid for the ports-* collections.

tag=RELENG_2_1_5_RELEASE
FreeBSD-2.1.5. Not valid for the ports-* collections.

tag=RELENG_2_1_0_RELEASE
FreeBSD-2.1.0. Not valid for the ports-* collections.

WARNING: Be very careful to type the tag name exactly as shown. CVSup cannot distin-
guish between valid and invalid tags. If you misspell the tag, CVSup will behave as though

FreeBSD Handbook 267

you had specified a valid tag which happens to refer to no files at all. It will delete your
existing sources in that case.

When you specify a branch tag, you normally receive the latest versions of the files on that
line of development. If you wish to receive some past version, you can do so by specifying
a date with the "date=" value field. The cvsup(1) manual page explains how to do that.

For our example, we wish to receive FreeBSD-current. We add this line at the beginning of
our supfile:

*default tag=.

There is an important special case that comes into play if you specify neither a "tag=" field
nor a "date=" field. In that case, you receive the actual RCS files directly from the server’s
CVS repository, rather than receiving a particular version. Developers generally prefer this
mode of operation. By maintaining a copy of the repository itself on their systems, they
gain the ability to browse the revision histories and examine past versions of files. This gain
is achieved at a large cost in terms of disk space, however.

• Where do you want to get them from?

We use the "host=" field to tell cvsup where to obtain its updates. Any of the CVSup mirror
sites (section 25.4, page 359) will do, though you should try to select one that’s near to you.
In this example, we’ll use the primary FreeBSD distribution site, "cvsup.FreeBSD.org":

*default host=cvsup.FreeBSD.org

On any particular run of cvsup, you can override this setting on the command line, with "-h
hostname".

• Where do you want to put them on your own machine?

The "prefix=" field tells cvsup where to put the files it receives. In this example, we will put
the source files directly into our main source tree, "/usr/src". The "src" directory is already
implicit in the collections we have chosen to receive, so this is the correct specification:

*default prefix=/usr

• Where should cvsup maintain its status files?

The cvsup client maintains certain status files in what is called the "base" directory. These
files help CVSup to work more efficiently, by keeping track of which updates you have
already received. We will use the standard base directory, "/usr/local/etc/cvsup":

*default base=/usr/local/etc/cvsup

This setting is used by default if it is not specified in the supfile, so we actually do not need
the above line.

If your base directory does not already exist, now would be a good time to create it. The
cvsup client will refuse to run if the base directory does not exist.

• Miscellaneous supfile settings:

There is one more line of boiler plate that normally needs to be present in the supfile:

*default release=cvs delete use-rel-suffix compress

FreeBSD Handbook 268

"release=cvs" indicates that the server should get its information out of the main FreeBSD
CVS repository. This is virtually always the case, but there are other possibilities which are
beyond the scope of this discussion.

"delete" gives CVSup permission to delete files. You should always specify this, so that
CVSup can keep your source tree fully up to date. CVSup is careful to delete only those
files for which it is responsible. Any extra files you happen to have will be left strictly
alone.

"use-rel-suffix" is ... arcane. If you really want to know about it, see the cvsup(1) manual
page. Otherwise, just specify it and do not worry about it.

"compress" enables the use of gzip-style compression on the communication channel. If
your network link is T1 speed or faster, you probably should not use compression. Other-
wise, it helps substantially.

• Putting it all together:

Here is the entire supfile for our example:

*default tag=.
*default host=cvsup.FreeBSD.org
*default prefix=/usr
*default base=/usr/local/etc/cvsup
*default release=cvs delete use-rel-suffix compress
src-all
cvs-crypto

18.3.3.4 Running CVSup

You are now ready to try an update. The command line for doing this is quite simple:

cvsup supfile

where "supfile" is of course the name of the supfile you have just created. Assuming you are run-
ning under X11, cvsup will display a GUI window with some buttons to do the usual things.
Press the "go" button, and watch it run.

Since you are updating your actual "/usr/src" tree in this example, you will need to run the pro-
gram as root so that cvsup has the permissions it needs to update your files. Having just created
your configuration file, and having never used this program before, that might understandably
make you nervous. There is an easy way to do a trial run without touching your precious files.
Just create an empty directory somewhere convenient, and name it as an extra argument on the
command line:

mkdir /var/tmp/dest
cvsup supfile /var/tmp/dest

The directory you specify will be used as the destination directory for all file updates. CVSup
will examine your usual files in "/usr/src", but it will not modify or delete any of them. Any file
updates will instead land in "/var/tmp/dest/usr/src". CVSup will also leave its base directory
status files untouched when run this way. The new versions of those files will be written into the
specified directory. As long as you have read access to "/usr/src", you do not even need to be
root to perform this kind of trial run.

If you are not running X11 or if you just do not like GUIs, you should add a couple of options to
the command line when you run cvsup:

cvsup -g -L 2 supfile

The "-g" tells cvsup not to use its GUI. This is automatic if you are not running X11, but other-
wise you have to specify it.

The "-L 2" tells cvsup to print out the details of all the file updates it is doing. There are three

FreeBSD Handbook 269

levels of verbosity, from "-L 0" to "-L 2". The default is 0, which means total silence except for
error messages.

There are plenty of other options available. For a brief list of them, type "cvsup -H". For more
detailed descriptions, see the manual page.

Once you are satisfied with the way updates are working, you can arrange for regular runs of
cvsup using cron(8). Obviously, you should not let cvsup use its GUI when running it from cron.

18.3.3.5 CVSup File Collections

The file collections available via CVSup are organized hierarchically. There are a few large collec-
tions, and they are divided into smaller sub-collections. Receiving a large collection is equivalent
to receiving each of its sub-collections. The hierarchical relationships among collections are
reflected by the use of indentation in the list below.

The most commonly used collections are src-all , cvs-crypto , and ports-all . The other
collections are used only by small groups of people for specialized purposes, and some mirror
sites may not carry all of them.

cvs-all release=cvs
The main FreeBSD CVS repository, excluding the export-restricted cryptography
code.

distrib release=cvs
Files related to the distribution and mirroring of FreeBSD.

doc-all release=cvs
Sources for the FreeBSD handbook and other documentation.

ports-all release=cvs
The FreeBSD ports collection.

ports-archivers release=cvs
Archiving tools.

ports-astro release=cvs
Astronomical ports.

ports-audio release=cvs
Sound support.

ports-base release=cvs
Miscellaneous files at the top of /usr/ports.

ports-benchmarks release=cvs
Benchmarks.

ports-biology release=cvs
Biology.

ports-cad release=cvs
Computer aided design tools.

ports-chinese release=cvs
Chinese language support.

ports-comms release=cvs
Communication software.

ports-converters release=cvs
character code converters.

FreeBSD Handbook 270

ports-databases release=cvs
Databases.

ports-devel release=cvs
Development utilities.

ports-editors release=cvs
Editors.

ports-emulators release=cvs
Emulators for other operating systems.

ports-games release=cvs
Games.

ports-german release=cvs
German language support.

ports-graphics release=cvs
Graphics utilities.

ports-japanese release=cvs
Japanese language support.

ports-korean release=cvs
Korean language support.

ports-lang release=cvs
Programming languages.

ports-mail release=cvs
Mail software.

ports-math release=cvs
Numerical computation software.

ports-mbone release=cvs
MBone applications.

ports-misc release=cvs
Miscellaneous utilities.

ports-net release=cvs
Networking software.

ports-news release=cvs
USENET news software.

ports-plan9 release=cvs
Various programs from Plan9.

ports-print release=cvs
Printing software.

ports-russian release=cvs
Russian language support.

ports-security release=cvs
Security utilities.

ports-shells release=cvs
Command line shells.

FreeBSD Handbook 271

ports-sysutils release=cvs
System utilities.

ports-textproc release=cvs
text processing utilities (does not include desktop pub-
lishing).

ports-vietnamese release=cvs
Vietnamese language support.

ports-www release=cvs
Software related to the World Wide Web.

ports-x11 release=cvs
X11 software.

src-all release=cvs The main FreeBSD sources, excluding the export-
restricted cryptography code.

src-base release=cvs
Miscellaneous files at the top of /usr/src .

src-bin release=cvs
User utilities that may be needed in single-user mode
(/usr/src/bin).

src-contrib release=cvs
Utilities and libraries from outside the FreeBSD project,
used relatively unmodified (/usr/src/contrib).

src-etc release=cvs
System configuration files (/usr/src/etc).

src-games release=cvs
Games (/usr/src/games).

src-gnu release=cvs
Utilities covered by the GNU Public License
(/usr/src/gnu).

src-include release=cvs
Header files (/usr/src/include).

src-kerberosIV release=cvs
KerberosIV security package (/usr/src/kerbero-
sIV).

src-lib release=cvs
Libraries (/usr/src/lib).

src-libexec release=cvs
System programs normally executed by other programs
(/usr/src/libexec).

src-release release=cvs
Files required to produce a FreeBSD release
(/usr/src/release).

src-sbin release=cvs
System utilities for single-user mode (/usr/src/sbin).

src-share release=cvs
Files that can be shared across multiple systems

FreeBSD Handbook 272

(/usr/src/share).

src-sys release=cvs
The kernel (/usr/src/sys).

src-tools release=cvs
Various tools for the maintenance of FreeBSD
(/usr/src/tools).

src-usrbin release=cvs
User utilities (/usr/src/usr.bin).

src-usrsbin release=cvs
System utilities (/usr/src/usr.sbin).

www release=cvsThe sources for the World Wide Web data.

cvs-crypto release=cvs The export-restricted cryptography code.

src-crypto release=cvs
Export-restricted utilities and libraries from outside the FreeBSD pro-
ject, used relatively unmodified (/usr/src/crypto).

src-eBones release=cvs
Kerberos and DES (/usr/src/eBones).

src-secure release=cvs
DES (/usr/src/secure).

distrib release=self The CVSup server’s own configuration files. Used by CVSup mirror
sites.

gnats release=current The GNATS bug-tracking database.

mail-archive release=current FreeBSD mailing list archive.

www release=currentThe installed World Wide Web data. Used by WWW mirror sites.

18.3.3.6 Announcements, Questions, and Bug Reports

Most FreeBSD-related discussion of CVSup takes place on the FreeBSD technical discussions
mailing list <freebsd-hackers@FreeBSD.ORG> . New versions of the software are announced
there, as well as on the FreeBSD announcements mailing list <freebsd-
announce@FreeBSD.ORG>.

Questions and bug reports should be addressed to the author of the program at
cvsup-bugs@polstra.com37 .

18.4 Using make world to rebuild your system
Contributed by Nik Clayton <nik@FreeBSD.ORG>.

Once you have synchronised your local source tree against a particular version of FreeBSD (sta-
ble , current and so on) you must then use the source tree to rebuild the system.

Currently, the best source of information on how to do that is a tutorial available from
http://www.nothing-going-on.demon.co.uk/FreeBSD/make-world/make-world.html.

A successor to this tutorial will be integrated into the handbook.

37. <URL:mailto:cvsup-bugs@polstra.com>

FreeBSD Handbook 273

19. Contributing to FreeBSD
Contributed by Jordan K. Hubbard <jkh@FreeBSD.ORG>.

So you want to contribute something to FreeBSD? That is great! We can always use the help, and
FreeBSD is one of those systems that relies on the contributions of its user base in order to survive.
Your contributions are not only appreciated, they are vital to FreeBSD’s continued growth!

Contrary to what some people might also have you believe, you do not need to be a hot-shot pro-
grammer or a close personal friend of the FreeBSD core team in order to have your contributions
accepted. The FreeBSD Project’s development is done by a large and growing number of interna-
tional contributors whose ages and areas of technical expertise vary greatly, and there is always
more work to be done than there are people available to do it.

Since the FreeBSD project is responsible for an entire operating system environment (and its
installation) rather than just a kernel or a few scattered utilities, our "TODO" list also spans a very
wide range of tasks, from documentation, beta testing and presentation to highly specialized
types of kernel development. No matter what your skill level, there is almost certainly something
you can do to help the project!

Commercial entities engaged in FreeBSD-related enterprises are also encouraged to contact us.
Need a special extension to make your product work? You will find us receptive to your
requests, given that they are not too outlandish. Working on a value-added product? Please let
us know! We may be able to work cooperatively on some aspect of it. The free software world is
challenging a lot of existing assumptions about how software is developed, sold, and maintained
throughout its life cycle, and we urge you to at least give it a second look.

19.1 What Is Needed
The following list of tasks and sub-projects represents something of an amalgam of the various
core team TODO lists and user requests we have collected over the last couple of months. Where
possible, tasks have been ranked by degree of urgency. If you are interested in working on one of
the tasks you see here, send mail to the coordinator listed by clicking on their names. If no coor-
dinator has been appointed, maybe you would like to volunteer?

19.1.1 High priority tasks

The following tasks are considered to be urgent, usually because they represent something that is
badly broken or sorely needed:

1. 3-stage boot issues. Overall coordination: FreeBSD technical discussions mailing list
<freebsd-hackers@FreeBSD.ORG>

• Autodetect memory over 64MB properly.

• Move userconfig (-c) into 3rd stage boot.

• Do WinNT compatible drive tagging so that the 3rd stage can provide an accurate
mapping of BIOS geometries for disks.

2. Filesystem problems. Overall coordination: FreeBSD filesystem project mailing list
<freebsd-fs@FreeBSD.ORG>

• Fix the MSDOS file system.

• Clean up and document the nullfs filesystem code. Coordinator: Justin T. Gibbs
<gibbs@FreeBSD.ORG>

• Fix the union file system. Coordinator: John Dyson <dyson@FreeBSD.ORG>

3. Implement kernel and user vm86 support. Coordinator: FreeBSD technical discussions
mailing list <freebsd-hackers@FreeBSD.ORG>

FreeBSD Handbook 274

4. Implement Int13 vm86 disk driver. Coordinator: FreeBSD technical discussions mailing
list <freebsd-hackers@FreeBSD.ORG>

5. SCSI driver issues. Overall coordination: FreeBSD technical discussions mailing list
<freebsd-hackers@FreeBSD.ORG>

• Support tagged queuing generically. Requires a rewrite of how we do our command
queuing, but we need this anyway to for prioritized I/O (CD-R writers/scanners).

• Better error handling (Busy status and retries).

• Merged Scatter-Gather list creation code.

6. Kernel issues. Overall coordination: FreeBSD technical discussions mailing list
<freebsd-hackers@FreeBSD.ORG>

• Complete the eisaconf conversion of all existing drivers.

• Change all interrupt routines to take a (void *) instead of using unit numbers.

• Merge EISA/PCI/ISA interrupt registration code.

• Split PCI/EISA/ISA probes out from drivers like bt742a.c (WIP)

• Fix the syscons ALT-Fn/vt switching hangs. Coordinator: Søren Schmidt
<sos@FreeBSD.ORG>

• Rewrite the Intel Etherexpress 16 driver.

• Merge the 3c509 and 3c590 drivers (essentially provide a PCI probe for ep.c).

• Support Adaptec 3985 (first as a simple 3 channel SCSI card) Coordinator: Justin T.
Gibbs <gibbs@FreeBSD.ORG>

• Support Advansys SCSI controller products. Coordinator: Justin T. Gibbs
<gibbs@FreeBSD.ORG>

19.1.2 Medium priority tasks

The following tasks need to be done, but not with any particular urgency:

1. Port AFS (Andrew File System) to FreeBSD Coordinator: Alexander Seth Jones 38

2. MCA support? This should be finalized one way or the other.

3. Full LKM based driver support/Configuration Manager.

• Devise a way to do all LKM registration without ld. This means some kind of sym-
bol table in the kernel.

• Write a configuration manager (in the 3rd stage boot?) that probes your hardware in
a sane manner, keeps only the LKMs required for your hardware, etc.

4. PCMCIA/PCCARD. Coordinators: Nate Williams <nate@FreeBSD.ORG> and Poul-Hen-
ning Kamp <phk@FreeBSD.ORG>

• Documentation!

• Reliable operation of the pcic driver (needs testing).

• Recognizer and handler for sio.c (mostly done).

• Recognizer and handler for ed.c (mostly done).

38. <URL:mailto:ajones@ctron.com>

FreeBSD Handbook 275

• Recognizer and handler for ep.c (mostly done).

• User-mode recognizer and handler (partially done).

5. Advanced Power Management. Coordinators: Nate Williams <nate@FreeBSD.ORG> and
Poul-Henning Kamp <phk@FreeBSD.ORG>

• APM sub-driver (mostly done).

• IDE/ATA disk sub-driver (partially done).

• syscons/pcvt sub-driver.

• Integration with the PCMCIA/PCCARD drivers (suspend/resume).

19.1.3 Low priority tasks

The following tasks are purely cosmetic or represent such an investment of work that it is not
likely that anyone will get them done anytime soon:

The first 20 items are from Terry Lambert <terry@lambert.org>

1. Ability to make BIOS calls from protected mode using V86 mode on the processor and
return the results via a mapped interrupt IPC mechanism to the protected mode caller.

2. Drivers built into the kernel that use the BIOS call mechanism to allow them to be inde-
pendent of the actual underlying hardware the same way that DOS is independent of the
underlying hardware. This includes NetWork and ASPI drivers loaded in DOS prior to
BSD being loaded by a DOS-based loader program, which means potential polling, which
means DOS-not-busy interrupt generation for V86 machines by the protected mode kernel.

3. An image format that allows tagging of such drivers data and text areas in the default ker-
nel executable so that that portion of the kernel address space may be recovered at a later
time, after hardware specific protected mode drivers have been loaded and activated. This
includes separation of BIOS based drivers from each other, since it is better to run with a
BIOS based driver in all cases than to not run at all.

4. Abstraction of the bus interface mechanism. Currently, PCMCIA, EISA, and PCI busses
are assumed to be bridged from ISA. This is not something which should be assumed.

5. A configuration manager that knows about PNP events, including power management
events, insertion, extraction, and bus (PNP ISA and PCMCIA bridging chips) vs. card level
event management.

6. A topological sort mechanism for assigning reassignable addresses that do not collide with
other reassignable and non-reassignable device space resource usage by fixed devices.

7. A registration based mechanism for hardware services registration. Specifically, a device
centric registration mechanism for timer and sound and other system critical service
providers. Consider Timer2 and Timer0 and speaker services as one example of a single
monolithic service provider.

8. A kernel exported symbol space in the kernel data space accessible by an LKM loader
mechanism that does relocation and symbol space manipulation. The intent of this inter-
face is to support the ability to demand load and unload kernel modules.

9. NetWare Server (protected mode ODI driver) loader and subservices to allow the use of
ODI card drivers supplied with network cards. The same thing for NDIS drivers and Net-
Ware SCSI drivers.

10. An "upgrade system" option that works on Linux boxes instead of just previous rev
FreeBSD boxes.

FreeBSD Handbook 276

11. Splitting of the console driver into abstraction layers, both to make it easier to port and to
kill the X and ThinkPad and PS/2 mouse and LED and console switching and bouncing
NumLock problems once and for all.

12. Other kernel emulation environments for other foreign drivers as opportunity permits.
SCO and Solaris are good candidates, followed by UnixWare, etc.

13. Processor emulation environments for execution of foreign binaries. This is easier than it
sounds if the system call interface does not change much.

14. Streams to allow the use of commercial streams drivers.

15. Kernel multithreading (requires kernel preemption).

16. Symmetric Multiprocessing with kernel preemption (requires kernel preemption).

17. A concerted effort at support for portable computers. This is somewhat handled by chang-
ing PCMCIA bridging rules and power management event handling. But there are things
like detecting internal vs. external display and picking a different screen resolution based
on that fact, not spinning down the disk if the machine is in dock, and allowing dock-
based cards to disappear without affecting the machines ability to boot (same issue for
PCMCIA).

18. Reorganization of the source tree for multiple platform ports.

19. A "make world" that "makes the world" (rename the current one to "make regress" if that is
all it is good for).

20. A 4M (preferably smaller!) memory footprint.

19.1.4 Smaller tasks

Most of the tasks listed in the previous sections require either a considerable investment of time
or an in-depth knowledge of the FreeBSD kernel (or both). However, there are also many useful
tasks which are suitable for ’weekend hackers’, or people without programming skills.

1. If you run FreeBSD-current and have a good Internet connection, there is a machine cur-
rent.freebsd.org which builds a full release once a day - every now and again, try and
install the latest release from it and report any failures in the process.

2. Read the freebsd-bugs mailing list. There might be a problem you can comment construc-
tively on or with patches you can test. Or you could even try to fix one of the problems
yourself.

3. Read through the FAQ and Handbook periodically. If anything is badly explained, out of
date or even just completely wrong, let us know. Even better, send us a fix (SGML is not
difficult to learn, but there is no objection to ASCII submissions).

4. Help translate FreeBSD documentation into your native language (if not already available)
- just send an email to FreeBSD documentation project mailing list <freebsd-
doc@FreeBSD.ORG>asking if anyone is working on it. Note that you are not committing
yourself to translating every single FreeBSD document by doing this - in fact, the docu-
mentation most in need of translation is the installation instructions.

5. Read the freebsd-questions mailing list and the newsgroup comp.unix.bsd.freebsd.misc
occasionally (or even regularly). It can be very satisfying to share your expertise and help
people solve their problems; sometimes you may even learn something new yourself!
These forums can also be a source of ideas for things to work on.

6. If you know of any bugfixes which have been successfully applied to -current but have not
been merged into -stable after a decent interval (normally a couple of weeks), send the
committer a polite reminder.

FreeBSD Handbook 277

7. Move contributed software to src/contrib in the source tree.

8. Make sure code in src/contrib is up to date.

9. Look for year 2000 bugs (and fix any you find!)

10. Build the source tree (or just part of it) with extra warnings enabled and clean up the
warnings.

11. Fix warnings for ports which do deprecated things like using gets() or including malloc.h.

12. If you have contributed any ports, send your patches back to the original author (this will
make your life easier when they bring out the next version)

13. Suggest further tasks for this list!

19.2 How to Contribute
Contributions to the system generally fall into one or more of the following 6 categories:

19.2.1 Bug repor ts and general commentary

"

An idea or suggestion of general technical interest should be mailed to the FreeBSD technical dis-
cussions mailing list <freebsd-hackers@FreeBSD.ORG> . Likewise, people with an interest in
such things (and a tolerance for a high volume of mail!) may subscribe to the hackers mailing list
by sending mail to <majordomo@FreeBSD.ORG>. See mailing lists (section 27.1, page 368) for
more information about this and other mailing lists.

If you find a bug or are submitting a specific change, please report it using the send-pr(1) pro-
gram or its WEB-based equivalent39 . Try to fill-in each field of the bug report. Unless they
exceed 65KB, include any patches directly in the report. Consider compressing them and using
uuencode(1) if they exceed 20KB. Upload very large submissions to
<URL:ftp://ftp.FreeBSD.ORG/pub/FreeBSD/incoming/> .

After filing a report, you should receive confirmation along with a tracking number. Keep this
tracking number so that you can update us with details about the problem by sending mail to
bug-followup@FreeBSD.ORG40 . Use the number as the message subject, e.g. "Re:
kern/3377" . Additional information for any bug report should be submitted this way.

If you do not receive confirmation in a timely fashion (3 days to a week, depending on your email
connection) or are, for some reason, unable to use the send-pr(1) command, then you may ask
someone to file it for you by sending mail to the FreeBSD problem reports mailing list
<freebsd-bugs@FreeBSD.ORG> .

19.2.2 Changes to the documentation

Changes to the documentation are overseen by the FreeBSD documentation project mailing list
<freebsd-doc@FreeBSD.ORG> . Send submissions and changes (even small ones are wel-
come!) using send-pr as described in Bug Reports and General Commentary (section 19.2.1, page
277).

19.2.3 Changes to existing source code

An addition or change to the existing source code is a somewhat trickier affair and depends a lot
on how far out of date you are with the current state of the core FreeBSD development. There is a
special on-going release of FreeBSD known as ‘‘FreeBSD-current’’ which is made available in a
variety of ways for the convenience of developers working actively on the system. See Staying

39. <URL:http://www.freebsd.org/send-pr.html>

40. <URL:mailto:bug-followup@FreeBSD.ORG>

FreeBSD Handbook 278

current with FreeBSD (section 18.1, page 254) for more information about getting and using
FreeBSD-current.

Working from older sources unfortunately means that your changes may sometimes be too obso-
lete or too divergent for easy re-integration into FreeBSD. Chances of this can be minimized
somewhat by subscribing to the FreeBSD announcements mailing list <freebsd-
announce@FreeBSD.ORG> and the FreeBSD-current mailing list <freebsd-cur-
rent@FreeBSD.ORG> lists, where discussions on the current state of the system take place.

Assuming that you can manage to secure fairly up-to-date sources to base your changes on, the
next step is to produce a set of diffs to send to the FreeBSD maintainers. This is done with the
diff(1) command, with the ‘context diff’ form being preferred. For example:

diff -c oldfile newfile

or

diff -c -r olddir newdir

would generate such a set of context diffs for the given source file or directory hierarchy. See the
man page for diff(1) for more details.

Once you have a set of diffs (which you may test with the patch(1) command), you should sub-
mit them for inclusion with FreeBSD. Use the send-pr(1) program as described in Bug Reports
and General Commentary (section 19.2.1, page 277). Do not just send the diffs to the FreeBSD tech-
nical discussions mailing list <freebsd-hackers@FreeBSD.ORG> or they will get lost! We
greatly appreciate your submission (this is a volunteer project!); because we are busy, we may not
be able to address it immediately, but it will remain in the pr database until we do.

If you feel it appropriate (e.g. you have added, deleted, or renamed files), bundle your changes
into a tar file and run the uuencode(1) program on it. Shar archives are also welcome.

If your change is of a potentially sensitive nature, e.g. you are unsure of copyright issues govern-
ing its further distribution or you are simply not ready to release it without a tighter review first,
then you should send it to FreeBSD core team <freebsd-core@FreeBSD.ORG> directly rather
than submitting it with send-pr(1) . The core mailing list reaches a much smaller group of peo-
ple who do much of the day-to-day work on FreeBSD. Note that this group is also very busy and
so you should only send mail to them where it is truly necessary.

Please refer to man 9 intro and man 9 style for some information on coding style. We
would appreciate it if you were at least aware of this information before submitting code.

19.2.4 New code or major value-added packages

In the rare case of a significant contribution of a large body work, or the addition of an important
new feature to FreeBSD, it becomes almost always necessary to either send changes as uuen-
code’d tar files or upload them to our ftp site
<URL:ftp://ftp.FreeBSD.ORG/pub/FreeBSD/incoming> .

When working with large amounts of code, the touchy subject of copyrights also invariably
comes up. Acceptable copyrights for code included in FreeBSD are:

1. The BSD copyright. This copyright is most preferred due to its ‘‘no strings attached’’
nature and general attractiveness to commercial enterprises. Far from discouraging such
commercial use, the FreeBSD Project actively encourages such participation by commercial
interests who might eventually be inclined to invest something of their own into FreeBSD.

2. The GNU Public License, or ‘‘GPL’’. This license is not quite as popular with us due to the
amount of extra effort demanded of anyone using the code for commercial purposes, but
given the sheer quantity of GPL’d code we currently require (compiler, assembler, text

FreeBSD Handbook 279

formatter, etc) it would be silly to refuse additional contributions under this license. Code
under the GPL also goes into a different part of the tree, that being /sys/gnu or
/usr/src/gnu , and is therefore easily identifiable to anyone for whom the GPL presents
a problem.

Contributions coming under any other type of copyright must be carefully reviewed before their
inclusion into FreeBSD will be considered. Contributions for which particularly restrictive com-
mercial copyrights apply are generally rejected, though the authors are always encouraged to
make such changes available through their own channels.

To place a ‘‘BSD-style’’ copyright on your work, include the following text at the very beginning
of every source code file you wish to protect, replacing the text between the ‘%%’ with the appro-
priate information.

Copyright (c) %%proper_years_here%%
%%your_name_here%%, %%your_state%% %%your_zip%%. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer as
the first lines of this file unmodified.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY %%your_name_here%% ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL %%your_name_here%% BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Id

For your convenience, a copy of this text can be found in /usr/share/examples/etc/bsd-
style-copyright .

19.2.5 Por ting an existing piece of free software

Contributed by Jordan K. Hubbard <jkh@FreeBSD.ORG>, Gary Palmer
<gpalmer@FreeBSD.ORG> , Satoshi Asami <asami@FreeBSD.ORG> and David O’Brien
<obrien@FreeBSD.ORG> .
28 August 1996.

The porting of freely available software, while perhaps not as gratifying as developing your own
from scratch, is still a vital part of FreeBSD’s growth and of great usefulness to those who would
not otherwise know where to turn for it. All ported software is organized into a carefully orga-
nized hierarchy known as ‘‘the ports collection’’. The collection enables a new user to get a quick
and complete overview of what is available for FreeBSD in an easy-to-compile form. It also saves
considerable space by not actually containing the majority of the sources being ported, but
merely those differences required for running under FreeBSD.

What follows are some guidelines for creating a new port for FreeBSD 3.x. The bulk of the work
is done by /usr/share/mk/bsd.port.mk , which all port Makefiles include. Please refer to
that file for more details on the inner workings of the ports collection. Even if you don’t hack

FreeBSD Handbook 280

Makefiles daily, it is well commented, and you will still gain much knowledge from it.

19.2.5.1 Before Starting the Por t

Note: Only a fraction of the overridable variables (${..}) are mentioned in this document. Most
(if not all) are documented at the start of bsd.port.mk . This file uses a non-standard tab set-
ting. Emacs and Vim should recognize the setting on loading the file. vi or ex can be set to using
the correct value by typing ‘:set tabstop=4 ’ once the file has been loaded.

You may come across code that needs modifications or conditional compilation based upon what
version of UNIX it is running under. If you need to make such changes to the code for condi-
tional compilation, make sure you make the changes as general as possible so that we can back-
port code to FreeBSD 1.x systems and cross-port to other BSD systems such as 4.4BSD from
CSRG, BSD/386, 386BSD, NetBSD, and OpenBSD.

The preferred way to tell 4.3BSD/Reno (1990) and newer versions of the BSD code apart is by
using the ‘BSD’ macro defined in <sys/param.h> . Hopefully that file is already included; if not,
add the code:

#if (defined(__unix__) || defined(unix)) && !defined(USG)
#include <sys/param.h>
#endif

to the proper place in the .c file. We believe that every system that defines these to symbols has
sys/param.h. If you find a system that doesn’t, we would like to know. Please send mail to
FreeBSD ports mailing list <freebsd-ports@FreeBSD.ORG> .

Another way is to use the GNU Autoconf style of doing this:

#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif

Don’t forget to add -DHAVE_SYS_PARAM_Hto the CFLAGSin the Makefile for this method.

Once you have <sys/param.h> included, you may use:

#if (defined(BSD) && (BSD >= 199103))

to detect if the code is being compiled on a 4.3 Net2 code base or newer (e.g. FreeBSD 1.x,
4.3/Reno, NetBSD 0.9, 386BSD, BSD/386 1.1 and below).

Use:

#if (defined(BSD) && (BSD >= 199306))

to detect if the code is being compiled on a 4.4 code base or newer (e.g. FreeBSD 2.x, 4.4, NetBSD
1.0, BSD/386 2.0 or above).

The value of the BSD macro is 199506 for the 4.4BSD-Lite2 code base. This is stated for informa-
tional purposes only. It should not be used to distinguish between version of FreeBSD based
only on 4.4-Lite vs. versions that have merged in changes from 4.4-Lite2. The __FreeBSD__ macro
should be used instead.

Use sparingly:

• __FreeBSD__ is defined in all versions of FreeBSD. Use it if the change you are making
ONLY affects FreeBSD. Porting gotchas like the use of sys_errlist[] vs strerror()
are Berkeleyisms, not FreeBSD changes.

• In FreeBSD 2.x, __FreeBSD__ is defined to be 2. In earlier versions, it is 1. Later versions
will bump it to match their major version number.

• If you need to tell the difference between a FreeBSD 1.x system and a FreeBSD 2.x or 3.x sys-
tem, usually the right answer is to use the BSDmacros described above. If there actually is
a FreeBSD specific change (such as special shared library options when using ‘ld ’) then it is

FreeBSD Handbook 281

OK to use __FreeBSD__ and ‘#if __FreeBSD__ > 1 ’ to detect a FreeBSD 2.x and later
system.

If you need more granularity in detecting FreeBSD systems since 2.0-RELEASE you can use
the following:

#if __FreeBSD__ >= 2
#include <osreldate.h>
if __FreeBSD_version >= 199504

/* 2.0.5+ release specific code here */
endif
#endif

__FreeBSD_version values:

2.0-RELEASE: 199411
2.1-current’s: 199501, 199503
2.0.5-RELEASE: 199504
2.2-current before 2.1: 199508
2.1.0-RELEASE: 199511
2.2-current before 2.1.5: 199512
2.1.5-RELEASE: 199607
2.2-current before 2.1.6: 199608
2.1.6-RELEASE: 199612
2.1.7-RELEASE: 199612
2.2-RELEASE: 220000
2.2.1-RELEASE: 220000 (yes, no change)
2.2-STABLE after 2.2.1-RELEASE: 220000 (yes, still no change)
2.2-STABLE after texinfo-3.9: 221001
2.2-STABLE after top: 221002
2.2.2-RELEASE: 222000
2.2-STABLE after 2.2.2-RELEASE: 222001
2.2.5-RELEASE: 225000
2.2-STABLE after 2.2.5-RELEASE: 225001
2.2-STABLE after ldconfig -R merge: 225002
2.2.6-RELEASE: 226000
2.2-STABLE after 2.2.6-RELEASE: 226001
3.0-current before mount(2) change: 300000
3.0-current as of Nov 1997: 300001

(Note that 2.2-STABLE sometimes identifies itself as "2.2.5-STABLE" after the
2.2.5-RELEASE.) The pattern used to be year followed by the month, but we decided to
change it to a more straightforward major/minor system starting from 2.2. This is because
the parallel development on several branches made it infeasible to classify the releases sim-
ply by their real release dates. (Note that if you are making a port now, you don’t have to
worry about old -current’s; they are listed here just for your reference.)

In the hundreds of ports that have been done, there have only been one or two cases where
__FreeBSD__ should have been used. Just because an earlier port screwed up and used it in the
wrong place does not mean you should do so too.

19.2.5.2 Quick Por ting

This section tells you how to do a quick port. In many cases, it is not enough, but we will see.

First, get the original tarball and put it into ${DISTDIR} , which defaults to /usr/ports/dist-
files .

Note: The following assumes that the software compiled out-of-the-box, i.e., there was absolutely
no change required for the port to work on your FreeBSD box. If you needed to change some-
thing, you will have to refer to the next section too.

FreeBSD Handbook 282

19.2.5.2.1 Writing the Makefile

The minimal Makefile would look something like this:

New ports collection makefile for: oneko
Version required: 1.1b
Date created: 5 December 1994
Whom: asami
#
Id
#

DISTNAME= oneko-1.1b
CATEGORIES= games
MASTER_SITES= ftp://ftp.cs.columbia.edu/archives/X11R5/contrib/

MAINTAINER= asami@FreeBSD.ORG

USE_IMAKE= yes

.include <bsd.port.mk>

See if you can figure it out. Do not worry about the contents of the Id line, it will be filled in
automatically by CVS when the port is imported to our main ports tree. You can find a more
detailed example in the sample Makefile (section 19.2.5.10, page 298) section.

19.2.5.2.2 Writing the description files

There are three required description files that are required for any port, whether they actually
package or not. They are COMMENT, DESCR, and PLIST , and reside in the pkg subdirectory.

19.2.5.2.2.1 COMMENT This is the one-line description of the port. PLEASE do not include the
package name (or version number of the software) in the comment. Here is an example:

A cat chasing a mouse all over the screen.

19.2.5.2.2.2 DESCR This is a longer description of the port. One to a few paragraphs concisely
explaining what the port does is sufficient. This is not a manual or an in-depth description on
how to use or compile the port! Please be careful if you are copying from the READMEor manpage;
too often they are not a concise description of the port or are in an awkward format (e.g. man-
pages have justified spacing). If the ported software has an official WWW homepage, you should
list in here.

It is recommended that you sign the name at the end of this file, as in:

This is a port of oneko, in which a cat chases a poor mouse all over
the screen.

:
(etc.)

http://www.oneko.org/

- Satoshi
asami@cs.berkeley.edu

19.2.5.2.2.3 PLIST This file lists all the files installed by the port. It is also called the ‘packing
list’ because the package is generated by packing the files listed here. The pathnames are relative
to the installation prefix (usually /usr/local or /usr/X11R6). Also it is assumed the man-
pages will be compressed.

Here is a small example:

FreeBSD Handbook 283

bin/oneko
man/man1/oneko.1.gz
lib/X11/app-defaults/Oneko
lib/X11/oneko/cat1.xpm
lib/X11/oneko/cat2.xpm
lib/X11/oneko/mouse.xpm

Refer to the pkg_create(1) man page for details on the packing list.

19.2.5.2.3 Creating the checksum file

Just type ‘make makesum ’. The ports make rules will automatically generate the file
files/md5 .

19.2.5.2.4 Testing the port

You should make sure that the port rules do exactly what you want it to do, including packaging
up the port. Try doing ‘make install ’, ‘make package ’ and then ‘make deinstall ’ and
see if all the files and directories are correctly deleted. Then do a ‘pkg_add ‘make package-
name‘.tgz ’ and see if everything re-appears and works correctly. Then do another ‘make
deinstall ’ and then ‘make reinstall; make package ’ to make sure you haven’t included
in the packing list any files that are not installed by your port.

19.2.5.2.5 Submitting the port

First, make sure you have read the Do’s and Dont’s (section 19.2.5.9, page 293) section.

Now that you are happy with your port, the only thing remaining is to put it in the main FreeBSD
ports tree and make everybody else happy about it too. We do not need your work/ directory or
the pkgname.tgz package, so delete them now. Next, simply include the output of ‘shar
‘find port_dir‘ ’ in a bug report and send it with the send-pr(1) program. If the uncom-
pressed port is larger than 20KB, you should compress it into a tarfile and use uuencode(1)
before including it in the bug report (uuencoded tarfiles are acceptable even if the report is
smaller than 20KB but are not preferred). Be sure to classify the bug report as category ‘ports’
and class ‘change-request’.

One more time, do not include the original source distfile, the work/ directory, or the package you
built with ‘make package ’!

See Bug Reports and General Commentary (section 19.2.1, page 277) for more information.

We will look at your port, get back to you if necessary, and put it in the tree. Your name will also
appear in the list of ‘Additional FreeBSD contributors’ on the FreeBSD Handbook and other files.
Isn’t that great?!? :)

19.2.5.3 Slow Por ting

Ok, so it was not that simple, and the port required some modifications to get it to work. In this
section, we will explain, step by step, how to modify it to get it to work with the ports paradigm.

19.2.5.3.1 How things wor k

First, this is the sequence of events which occurs when the user first types ‘make’ in your port’s
directory, and you may find that having bsd.port.mk in another window while you read this
really helps to understand it.

But do not worry if you do not really understand what bsd.port.mk is doing, not many people
do... :>

1. The fetch target is run. The fetch target is responsible for making sure that the tarball
exists locally in ${DISTDIR} . If fetch cannot find the required files in ${DISTDIR} it will
look up the URL ${MASTER_SITES} , which is set in the Makefile, as well as our main ftp
site at ftp://ftp.freebsd.org/pub/FreeBSD/distfiles/, where we put sanctioned distfiles as
backup. It will then attempt to fetch the named distribution file with ${FETCH} ,

FreeBSD Handbook 284

assuming that the requesting site has direct access to the Internet. If that succeeds, it will
save the file in ${DISTDIR} for future use and proceed.

2. The extract target is run. It looks for your port’s distribution file in ${DISTDIR} (typically
a gzip’d tarball) and unpacks it into a temporary subdirectory specified by ${WRKDIR}
(defaults to work).

3. The patch target is run. First, any patches defined in ${PATCHFILES} are applied. Sec-
ond, if any patches are found in ${PATCHDIR} (defaults to the patches subdirectory),
they are applied at this time in alphabetical order.

4. The configure target is run. This can do any one of many different things.

1. If it exists, scripts/configure is run.

2. If ${HAS_CONFIGURE}or ${GNU_CONFIGURE}is set, ${WRKSRC}/configure is
run.

3. If ${USE_IMAKE} is set, ${XMKMF} (default: ‘xmkmf -a ’) is run.

5. The build target is run. This is responsible for descending into the ports’ private working
directory (${WRKSRC}) and building it. If ${USE_GMAKE}is set, GNU make will be used,
otherwise the system make will be used.

The above are the default actions. In addition, you can define targets ‘pre-<something> ’ or
‘post-<something> ’, or put scripts with those names, in the scripts subdirectory, and they
will be run before or after the default actions are done.

For example, if you have a post-extract target defined in your Makefile, and a file pre-
build in the scripts subdirectory, the post-extract target will be called after the regular
extraction actions, and the pre-build script will be executed before the default build rules are
done. It is recommended that you use Makefile targets if the actions are simple enough, because
it will be easier for someone to figure out what kind of non-default action the port requires.

The default actions are done by the bsd.port.mk targets ‘do-<something> ’. For example, the
commands to extract a port are in the target ‘do-extract ’. If you are not happy with the default
target, you can fix it by redefining the ‘do-<something> ’ target in your Makefile.

Note that the ‘main’ targets (e.g., extract , configure , etc.) do nothing more than make sure all
the stages up to that one is completed and call the real targets or scripts, and they are not
intended to be changed. If you want to fix the extraction, fix do-extract , but never ever touch
extract !

Now that you understand what goes on when the user types ‘make’, let us go through the recom-
mended steps to create the perfect port.

19.2.5.3.2 Getting the original sources

Get the original sources (normally) as a compressed tarball (<foo>.tar.gz or <foo>.tar.Z)
and copy it into ${DISTDIR} . Always use mainstream sources when and where you can.

If you cannot find a ftp/http site that is well-connected to the net, or can only find sites that have
irritatingly non-standard formats, you might want to put a copy on a reliable http or ftp server
that you control. If you are a FreeBSD committer, your public_html directory on freefall is
ideal. Make sure you set MASTER_SITEto reflect your choice! If you cannot find somewhere
convenient and reliable to put the distfile, we can ‘house’ it ourselves by putting it on

ftp://ftp.freebsd.org/pub/FreeBSD/distfiles/LOCAL_PORTS/

as the last resort. Please refer to this location as ${MASTER_SITE_LOCAL}. Send mail to the

FreeBSD Handbook 285

FreeBSD ports mailing list <freebsd-ports@FreeBSD.ORG> if you are not sure what to do.

If your port requires some additional ‘patches’ that are available on the Internet, fetch them too
and put them in ${DISTDIR} . Do not worry if they come from site other than where you got the
main source tarball, we have a way to handle these situations (see the description of ${PATCH-
FILES} (section 19.2.5.4.5, page 287) below).

19.2.5.3.3 Modifying the port

Unpack a copy of the tarball in a private directory and make whatever changes are necessary to
get the port to compile properly under the current version of FreeBSD. Keep careful track of
everything you do, as you will be automating the process shortly. Everything, including the
deletion, addition or modification of files should be doable using an automated script or patch
file when your port is finished.

If your port requires significant user interaction/customization to compile or install, you should
take a look at one of Larry Wall’s classic Configure scripts and perhaps do something similar
yourself. The goal of the new ports collection is to make each port as ‘plug-and-play’ as possible
for the end-user while using a minimum of disk space.

Note: Unless explicitly stated, patch files, scripts, and other files you have created and con-
tributed to the FreeBSD ports collection are assumed to be covered by the standard BSD copy-
right conditions.

19.2.5.3.4 Patching

In the preparation of the port, files that have been added or changed can be picked up with a
recursive diff for later feeding to patch. Each set of patches you wish to apply should be collected
into a file named ‘patch-<xx> ’ where <xx> denotes the sequence in which the patches will be
applied -- these are done in alphabetical order, thus ‘aa ’ first, ‘ab ’ second and so on. These files
should be stored in ${PATCHDIR} , from where they will be automatically applied. All patches
should be relative to ${WRKSRC}(generally the directory your port’s tarball unpacks itself into,
that being where the build is done). To make fixes and upgrades easier you should avoid having
more than one patch fix the same file (e.g., patch-aa and patch-ab both changing ${WRK-
SRC}/foobar.c).

19.2.5.3.5 Configuring

Include any additional customization commands to your configure script and save it in the
‘scripts ’ subdirectory. As mentioned above, you can also do this as Makefile targets and/or
scripts with the name pre-configure or post-configure .

19.2.5.3.6 Handling user input

If your port requires user input to build, configure or install, then set IS_INTERACTIVE in your
Makefile. This will allow ‘overnight builds’ to skip your port if the user sets the variable BATCH
in his environment (and if the user sets the variable INTERACTIVE, then only those ports requir-
ing interaction are built).

19.2.5.4 Configuring the Makefile

Configuring the Makefile is pretty simple, and again we suggest that you look at existing exam-
ples before starting. Also, there is a sample Makefile (section 19.2.5.10, page 298) in this handbook,
so take a look and please follow the ordering of variables and sections in that template to make
your port easier for others to read.

Now, consider the following problems in sequence as you design your new Makefile:

19.2.5.4.1 The or iginal source

Does it live in ${DISTDIR} as a standard gzip’d tarball? If so, you can go on to the next step. If
not, you should look at overriding any of the ${EXTRACT_CMD}, ${EXTRACT_BEFORE_ARGS},

FreeBSD Handbook 286

${EXTRACT_AFTER_ARGS}, ${EXTRACT_SUFX}, or ${DISTFILES} variables, depending on
how alien a format your port’s distribution file is. (The most common case is
‘EXTRACT_SUFX=.tar.Z ’, when the tarball is condensed by regular compress, not gzip.)

In the worst case, you can simply create your own ‘do-extract ’ target to override the default,
though this should be rarely, if ever, necessary.

19.2.5.4.2 DISTNAME

You should set ${DISTNAME} to be the base name of your port. The default rules expect the dis-
tribution file list (${DISTFILES}) to be named ${DISTNAME}${EXTRACT_SUFX} by default
which, if it is a normal tarball, is going to be something like:

foozolix-1.0.tar.gz

for a setting of ‘DISTNAME=foozolix-1.0 ’.

The default rules also expect the tarball(s) to extract into a subdirectory called work/${DIST-
NAME}, e.g.

work/foozolix-1.0/

All this behavior can be overridden, of course; it simply represents the most common time-saving
defaults. For a port requiring multiple distribution files, simply set ${DISTFILES} explicitly. If
only a subset of ${DISTFILES} are actual extractable archives, then set them up in
${EXTRACT_ONLY}, which will override the ${DISTFILES} list when it comes to extraction,
and the rest will be just left in ${DISTDIR} for later use.

19.2.5.4.3 CATEGORIES

When a package is created, it is put under /usr/ports/packages/All and links are made
from one or more subdirectories of /usr/ports/packages . The names of these subdirectories
are specified by the variable ${CATEGORIES}. It is intended to make life easier for the user
when he is wading through the pile of packages on the ftp site or the CD-ROM. Please take a
look at the existing categories (you can find them in the ports page) and pick the ones that are
suitable for your port. If your port truly belongs to something that is different from all the exist-
ing ones, you can even create a new category name.

19.2.5.4.4 MASTER_SITES

Record the directory part of the ftp/http-URL pointing at the original tarball in ${MAS-
TER_SITES} . Do not forget the trailing slash (/)!

The make macros will try to use this specification for grabbing the distribution file with
${FETCH} if they cannot find it already on the system.

It is recommended that you put multiple sites on this list, preferably from different continents.
This will safeguard against wide-area network problems, and we are even planning to add sup-
port for automatically determining the closest master site and fetching from there!

If the original tarball is part of one of the following popular archives: X-contrib, GNU, Perl
CPAN, TeX CTAN, or Linux Sunsite, you refer to those sites in an easy compact form using MAS-
TER_SITE_XCONTRIB, MASTER_SITE_GNU, MASTER_SITE_PERL_CPAN, MAS-
TER_SITE_TEX_CTAN, and MASTER_SITE_SUNSITE. Simply set MASTER_SITE_SUBDIR to
the path with in the archive. Here is an example:

MASTER_SITES= ${MASTER_SITE_XCONTRIB}
MASTER_SITE_SUBDIR= applications

The user can also set the MASTER_SITE_* variables in /etc/make.conf to override our
choices, and use their favorite mirrors of these popular archives instead.

FreeBSD Handbook 287

19.2.5.4.5 PATCHFILES

If your port requires some additional patches that are available by ftp or http, set ${PATCH-
FILES} to the names of the files and ${PATCH_SITES} to the URL of the directory that contains
them (the format is the same as ${MASTER_SITES}).

If the patch is not relative to the top of the source tree (i.e., ${WKRSRC}) because it contains some
extra pathnames, set ${PATCH_DIST_STRIP} accordingly. For instance, if all the pathnames in
the patch has an extra ‘foozolix-1.0/ ’ in front of the filenames, then set
‘PATCH_DIST_STRIP=-p1 ’.

Do not worry if the patches are compressed, they will be decompressed automatically if the file-
names end with ‘.gz ’ or ‘.Z ’.

If the patch is distributed with some other files, such as documentation, in a gzip’d tarball, you
can’t just use ${PATCHFILES} . If that is the case, add the name and the location of the patch tar-
ball to ${DISTFILES} and ${MASTER_SITES} . Then, from the pre-patch target, apply the
patch either by running the patch command from there, or copying the patch file into the
${PATCHDIR} directory and calling it patch-<xx> . (Note the tarball will have been extracted
alongside the regular source by then, so there is no need to explicitly extract it if it is a regular
gzip’d or compress’d tarball.) If you do the latter, take extra care not to overwrite something that
already exists in that directory. Also do not forget to add a command to remove the copied patch
in the pre-clean target.

19.2.5.4.6 MAINTAINER

Set your mail-address here. Please. :)

For detailed description of the responsibility of maintainers, refer to MAINTAINER on Makefiles
(section 20.1, page 316) section.

19.2.5.4.7 Dependencies

Many ports depend on other ports. There are five variables that you can use to ensure that all the
required bits will be on the user’s machine.

19.2.5.4.7.1 LIB_DEPENDS This variable specifies the shared libraries this port depends on. It
is a list of ‘lib:dir ’ pairs where lib is the name of the shared library, and dir is the directory
in which to find it in case it is not available. For example,

LIB_DEPENDS= jpeg\\.6\\.:${PORTSDIR}/graphics/jpeg

will check for a shared jpeg library with major version 6, and descend into the graphics/jpeg
subdirectory of your ports tree to build and install it if it is not found.

Note that the lib part is just an argument given to ‘ldconfig -r | grep ’, so periods should
be escaped by two backslashes like in the example above.

The dependency is checked from within the extract target. Also, the name of the dependency
is put in to the package so that pkg_add will automatically install it if it is not on the user’s sys-
tem.

19.2.5.4.7.2 RUN_DEPENDS This variable specifies executables or files this port depends on
during run-time. It is a list of ‘path:dir ’ pairs where path is the name of the executable or file,
and dir is the directory in which to find it in case it is not available. If path starts with a slash
(/), it is treated as a file and its existence is tested with ‘test -e ’; otherwise, it is assumed to be
an executable, and ‘which -s ’ is used to determine if the program exists in the user’s search
path.

For example,

FreeBSD Handbook 288

RUN_DEPENDS= ${PREFIX}/etc/innd:${PORTSDIR}/news/inn \
wish:${PORTSDIR}/x11/tk

will check if the file ‘/usr/local/etc/innd ’ exists, and build and install it from the news/inn
subdirectory of the ports tree if it is not found. It will also see if an executable called ‘wish ’ is in
your search path, and descend into the x11/tk subdirectory of your ports tree to build and
install it if it is not found. (Note that in this case, ‘innd ’ is actually an executable; if an executable
is in a place that is not expected to be in a normal user’s search path, you should use the full path-
name.)

The dependency is checked from within the install target. Also, the name of the dependency
is put in to the package so that pkg_add will automatically install it if it is not on the user’s sys-
tem.

19.2.5.4.7.3 BUILD_DEPENDS This variable specifies executables or files this port requires to
build. Like RUN_DEPENDS, it is a list of ‘path:dir ’ pairs. For example,

BUILD_DEPENDS= unzip:${PORTSDIR}/archivers/unzip

will check for an executable called ‘unzip ’, and descend into the archivers/unzip subdirec-
tory of your ports tree to build and install it if it is not found.

Note that ‘build’ here means everything from extracting to compilation. The dependency is
checked from within the extract target.

19.2.5.4.7.4 FETCH_DEPENDS This variable specifies executables or files this port requires to
fetch. Like the previous two, it is a list of ‘path:dir ’ pairs. For example,

FETCH_DEPENDS= ncftp2:${PORTSDIR}/net/ncftp2

will check for an executable called ‘ncftp2 ’, and descend into the net/ncftp2 subdirectory of
your ports tree to build and install it if it is not found.

The dependency is checked from within the fetch target.

19.2.5.4.7.5 DEPENDS If there is a dependency that does not fall into either of the above four
categories, or your port requires to have the source of the other port extracted (i.e., having them
installed is not enough), then use this variable. This is just a list of directories, as there is nothing
to check, unlike the previous four.

19.2.5.4.8 Building mechanisms

If your package uses GNU make, set ‘USE_GMAKE=yes’. If your package uses GNU configure ,
set ‘GNU_CONFIGURE=yes’. If you want to give some extra arguments to GNU configure
(other than the default ‘--prefix=${PREFIX} ’), set those extra arguments in ${CONFIG-
URE_ARGS}.

If your package is an X application that creates Makefiles from Imakefiles using imake , then set
‘USE_IMAKE=yes’. This will cause the configure stage to automatically do an xmkmf -a . If the
‘-a ’ flag is a problem for your port, set ‘XMKMF=xmkmf’.

If your port’s source Makefile has something else than ‘all ’ as the main build target, set
${ALL_TARGET} accordingly. Same goes for ‘install ’ and ${INSTALL_TARGET} .

19.2.5.4.9 NO_INSTALL_MANPAGES

If the port uses imake but does not understand the ‘install.man ’ target, ‘NO_INSTALL_MAN-
PAGES=yes’ should be set. In addition, the author of the original port should be shot. :>

FreeBSD Handbook 289

19.2.5.5 Por ts that require Motif

There are many programs that require a Motif library (available from several commercial ven-
dors, while there is (at least) one effort to create a free clone) to compile. Since it is a popular
toolkit and their licenses usually permit redistribution of statically linked binaries, we have made
special provisions for handling ports that require Motif in a way that we can easily compile bina-
ries linked either dynamically or statically.

19.2.5.5.1 REQUIRES_MOTIF

If your port requires Motif, define this variable in the Makefile. This will prevent people who
don’t own a copy of Motif from even attempting to build it.

19.2.5.5.2 ${MOTIFLIB}

This variable will be set by bsd.port.mk to be the appropriate reference to the Motif library.
Please patch the source to use this wherever the Motif library is referenced in the Makefile or
Imakefile.

There are two common cases:

1. If the port refers to the Motif library as ‘-lXm ’ in its Makefile or Imakefile, simply substi-
tute ‘${MOTIFLIB} ’ for it.

2. If the port uses ‘XmClientLibs ’ in its Imakefile, change it to ‘${MOTIFLIB} ${XTOOL-
LIB} ${XLIB} ’.

Note that ${MOTIFLIB} (usually) expands to ‘-L/usr/X11R6/lib -lXm ’ or
‘/usr/X11R6/lib/libXm.a ’, so there is no need to add ‘-L ’ or ‘-l ’ in front.

19.2.5.6 Info files

The new version of texinfo (included in 2.2.2-RELEASE and onwards) contains a utility called
‘install-info ’ to add and delete entries to the ‘dir ’ file. If your port installs any info docu-
ments, please follow these instructions so your port/package will correctly update the user’s
${PREFIX}/info/dir file. (Sorry for the length of this section, but it is imperative to weave all
the info files together. If done correctly, it will produce a beautiful listing, so please bear with me!
:)

First, this is what you (as a porter) need to know:

% install-info --help
install-info [OPTION]... [INFO-FILE [DIR-FILE]]

Install INFO-FILE in the Info directory file DIR-FILE.

Options:
--delete Delete existing entries in INFO-FILE;

don’t insert any new entries.
:

--entry=TEXT Insert TEXT as an Info directory entry.
:

--section=SEC Put this file’s entries in section SEC of the directory.
:

Note that this program will not actually install info files; it merely inserts or deletes entries in the
dir file.

Here’s a seven-step procedure to convert ports to use install-info . I will use edi-
tors/emacs as an example.

1. Look at the texinfo sources and make a patch to insert @dircategory and @direntry
statements to files that don’t have them. This is part of my patch:

FreeBSD Handbook 290

--- ./man/vip.texi.org Fri Jun 16 15:31:11 1995
+++ ./man/vip.texi Tue May 20 01:28:33 1997
@@ -2,6 +2,10 @@

@setfilename ../info/vip
@settitle VIP

+@dircategory The Emacs editor and associated tools
+@direntry
+* VIP: (vip). A VI-emulation for Emacs.
+@end direntry

@iftex
@finalout
:

The format should be self-explanatory. Many authors leave a dir file in the source tree
that contains all the entries you need, so look around before you try to write your own.
Also, make sure you look into related ports and make the section names and entry inden-
tations consistent (we recommend that all entry text start at the 4th tab stop).

Note that you can put only one info entry per file because of a bug in ‘install-info
--delete ’ that deletes only the first entry if you specify multiple entries in the @diren-
try section.

You can give the dir entries to install-info as arguments (--section and --entry)
instead of patching the texinfo sources. I do not think this is a good idea for ports because
you need to duplicate the same information in three places (Makefile and
@exec/@unexec of PLIST ; see below). However, if you have a Japanese (or other multi-
byte encoding) info files, you will have to use the extra arguments to install-info
because makeinfo can’t handle those texinfo sources. (See Makefile and PLIST of
japanese/skk for examples on how to do this).

2. Go back to the port directory and do a ‘make clean; make ’ and verify that the info files
are regenerated from the texinfo sources. Since the texinfo sources are newer than the info
files, they should be rebuilt when you type make; but many Makefile s don’t include cor-
rect dependencies for info files. In emacs’ case, I had to patch the main Makefile.in so it
will descend into the mansubdirectory to rebuild the info pages.

--- ./Makefile.in.org Mon Aug 19 21:12:19 1996
+++ ./Makefile.in Tue Apr 15 00:15:28 1997
@@ -184,7 +184,7 @@

Subdirectories to make recursively. ‘lisp’ is not included
because the compiled lisp files are part of the distribution
and you cannot remake them without installing Emacs first.

-SUBDIR = lib-src src
+SUBDIR = lib-src src man

The makefiles of the directories in $SUBDIR.
SUBDIR_MAKEFILES = lib-src/Makefile man/Makefile src/Makefile oldXMenu/Makefile lwlib/Makefile

--- ./man/Makefile.in.org Thu Jun 27 15:27:19 1996
+++ ./man/Makefile.in Tue Apr 15 00:29:52 1997
@@ -66,6 +66,7 @@

${srcdir}/gnu1.texi \
${srcdir}/glossary.texi

+all: info
info: $(INFO_TARGETS)

dvi: $(DVI_TARGETS)

FreeBSD Handbook 291

The second hunk was necessary because the default target in the man subdir is called
info , while the main Makefile wants to call all . I also deleted the installation of the
info info file because we already have one with the same name in /usr/share/info
(that patch is not shown here).

3. If there is a place in the Makefile that is installing the dir file, delete it. Your port may
not be doing it. Also, remove any commands that are otherwise mucking around with the
dir file.

--- ./Makefile.in.org Mon Aug 19 21:12:19 1996
+++ ./Makefile.in Mon Apr 14 23:38:07 1997
@@ -368,14 +368,8 @@

if [‘(cd ${srcdir}/info && /bin/pwd)‘ != ‘(cd ${infodir} && /bin/pwd)‘]; \
then \

(cd ${infodir}; \
- if [-f dir]; then \
- if [! -f dir.old]; then mv -f dir dir.old; \
- else mv -f dir dir.bak; fi; \
- fi; \

cd ${srcdir}/info ; \
- (cd $${thisdir}; ${INSTALL_DATA} ${srcdir}/info/dir ${infodir}/dir); \
- (cd $${thisdir}; chmod a+r ${infodir}/dir); \

for f in ccmode* cl* dired-x* ediff* emacs* forms* gnus* info* message* mh-e* sc* vip*;
(cd $${thisdir}; \

${INSTALL_DATA} ${srcdir}/info/$$f ${infodir}/$$f; \
chmod a+r ${infodir}/$$f); \

4. (This step is only necessary if you are modifying an existing port.) Take a look at
pkg/PLIST and delete anything that is trying to patch up info/dir . They may be in
pkg/INSTALL or some other file, so search extensively.

Index: pkg/PLIST
===
RCS file: /usr/cvs/ports/editors/emacs/pkg/PLIST,v
retrieving revision 1.15
diff -u -r1.15 PLIST
--- PLIST 1997/03/04 08:04:00 1.15
+++ PLIST 1997/04/15 06:32:12
@@ -15,9 +15,6 @@

man/man1/emacs.1.gz
man/man1/etags.1.gz
man/man1/ctags.1.gz

-@unexec cp %D/info/dir %D/info/dir.bak
-info/dir
-@unexec cp %D/info/dir.bak %D/info/dir

info/cl
info/cl-1
info/cl-2

5. Add a post-install target to the Makefile to create a dir file if it is not there. Also, call
install-info with the installed info files.

FreeBSD Handbook 292

Index: Makefile
===
RCS file: /usr/cvs/ports/editors/emacs/Makefile,v
retrieving revision 1.26
diff -u -r1.26 Makefile
--- Makefile 1996/11/19 13:14:40 1.26
+++ Makefile 1997/05/20 10:25:09 1.28
@@ -20,5 +20,11 @@

post-install:
.for file in emacs-19.34 emacsclient etags ctags b2m

strip ${PREFIX}/bin/${file}
.endfor

+ if [! -f ${PREFIX}/info/dir]; then \
+ ${SED} -ne ’1,/Menu:/p’ /usr/share/info/dir > ${PREFIX}/info/dir; \
+ fi
+.for info in emacs vip viper forms gnus mh-e cl sc dired-x ediff ccmode
+ install-info ${PREFIX}/info/${info} ${PREFIX}/info/dir
+.endfor

.include <bsd.port.mk>

Do not use anything other than /usr/share/info/dir and the above command to cre-
ate a new info file. In fact, I’d add the first three lines of the above patch to bsd.port.mk
if you (the porter) wouldn’t have to do it in PLIST by yourself anyway.

6. Edit PLIST and add equivalent @exec statements and also @unexec for pkg_delete .
You do not need to delete info/dir with @unexec.

Index: pkg/PLIST
===
RCS file: /usr/cvs/ports/editors/emacs/pkg/PLIST,v
retrieving revision 1.15
diff -u -r1.15 PLIST
--- PLIST 1997/03/04 08:04:00 1.15
+++ PLIST 1997/05/20 10:25:12 1.17
@@ -16,7 +14,15 @@

man/man1/etags.1.gz
man/man1/ctags.1.gz

+@unexec install-info --delete %D/info/emacs %D/info/dir
:

+@unexec install-info --delete %D/info/ccmode %D/info/dir
info/cl
info/cl-1

@@ -87,6 +94,18 @@
info/viper-3
info/viper-4

+@exec [-f %D/info/dir] || sed -ne ’1,/Menu:/p’ /usr/share/info/dir > %D/info/dir
+@exec install-info %D/info/emacs %D/info/dir

:
+@exec install-info %D/info/ccmode %D/info/dir

libexec/emacs/19.34/i386--freebsd/cvtmail
libexec/emacs/19.34/i386--freebsd/digest-doc

Note that the ‘@unexec install-info --delete ’ commands have to be listed before
the info files themselves so they can read the files. Also, the ‘@exec install-info ’
commands have to be after the info files and the @exec command that creates the the dir
file.

FreeBSD Handbook 293

7. Test and admire your work. :) The sequence I recommend is: ‘make package ’,
‘pkg_delete ’, then ‘pkg_add ’. Check the dir file before and after each step.

19.2.5.7 Licensing Problems

Some software packages have restrictive licenses or can be in violation to the law (PKP’s patent
on public key crypto, ITAR (export of crypto software) to name just two of them). What we can
do with them vary a lot, depending on the exact wordings of the respective licenses.

Note that it is your responsibility as a porter to read the licensing terms of the software and make
sure that the FreeBSD project will not be held accountable of violating them by redistributing the
source or compiled binaries either via ftp or CD-ROM. If in doubt, please contact the FreeBSD
ports mailing list <freebsd-ports@FreeBSD.ORG> .

There are two variables you can set in the Makefile to handle the situations that arise frequently:

1. If the port has a ‘do not sell for profit’ type of license, set the variable NO_CDROM. We will
make sure such ports won’t go into the CD-ROM come release time. The distfile and pack-
age will still be available via ftp.

2. If the resulting package needs to be built uniquely for each site, or the resulting binary
package can’t be distributed due to licensing; set the variable NO_PACKAGE. We will make
sure such packages won’t go on the ftp site, nor into the CD-ROM come release time. The
distfile will still be included on both however.

3. If the port has legal restrictions on who can use it (e.g., crypto stuff) or has a ‘no commer-
cial use’ license, set the variable RESTRICTEDto be the string describing the reason why.
For such ports, the distfiles/packages will not be available even from our ftp sites.

Note: The GNU General Public License (GPL), both version 1 and 2, should not be a problem for
ports.

Note: If you are a committer, make sure you update the ports/LEGAL file too.

19.2.5.8 Upgrading

When you notice that a port is out of date compared to the latest version from the original
authors, first make sure you have the latest port. You can find them in the ports-current
directory of the ftp mirror sites.

The next step is to send a mail to the maintainer, if one is listed in the port’s Makefile. That per-
son may already be working on an upgrade, or have a reason to not upgrade the port right now
(because of, for example, stability problems of the new version).

If the maintainer asks you to do the upgrade or there isn’t any such person to begin with, please
make the upgrade and send the recursive diff (either unified or context diff is fine, but port com-
mitters appear to prefer unified diff more) of the new and old ports directories to us (e.g., if your
modified port directory is called ‘superedit ’ and the original as in our tree is
‘superedit.bak ’, then send us the result of ‘diff -ruN superedit.bak superedit ’).
Please examine the output to make sure all the changes make sense. The best way to send us the
diff is by including it to send-pr(1) (category ‘ports’). Please mention any added or deleted
files in the message, as they have to be explicitly specified to CVS when doing a commit. If the
diff is more than about 20KB, please compress and uuencode it; otherwise, just include it in as is
in the PR.

19.2.5.9 Do’s and Dont’s

"

Here is a list of common do’s and dont’s that you encounter during the porting process. You
should check your own port against this list, but you can also check ports in the PR database that
others have submitted. Submit any comments on ports you check as described in Bug Reports and

FreeBSD Handbook 294

General Commentary (section 19.2.1, page 277). Checking ports in the PR database will both make
it faster for us to commit them, and prove that you know what you are doing.

19.2.5.9.1 WRKDIR

Do not leave anything valuable lying around in the work subdirectory, ‘make clean ’ will nuke it
completely! If you need auxiliary files that are not scripts or patches, put them in the ${FILES-
DIR} subdirectory (files by default) and use the post-extract target to copy them to the
work subdirectory.

19.2.5.9.2 Por tlint Clean

Do use portlint ! The portlint program is part of the ports collection.

19.2.5.9.3 Compress manpages, str ip binar ies

Do compress manpages and strip binaries. If the original source already strips the binary, fine;
otherwise, you can add a post-install rule to do it yourself. Here is an example:

post-install:
strip ${PREFIX}/bin/xdl

Use the file command on the installed executable to check whether the binary is stripped or
not. If it does not say ‘not stripped’, it is stripped.

To automagically compress the manpages, use the MAN[1-9LN] variables. They will check the
variable NOMANCOMPRESSthat the user can set in /etc/make.conf to disable man page com-
pression. Place them last in the section below the MAINTAINERvariable. Here is an example:

MAN1= foo.1 bar.1
MAN5= foo.conf.5
MAN8= baz.8

Note that this is not usually necessary with ports that are X applications and use Imake to build.

If your port anchors its man tree somewhere other than PREFIX, you can use the MANPREFIXto
set it. Also, if only manpages in certain section go in a non-standard place, such as many Perl
modules ports, you can set individual man paths using MANsectPREFIX (where sect is one of 1-9, L
or N).

19.2.5.9.4 INSTALL_* macros

Do use the macros provided in bsd.port.mk to ensure correct modes and ownership of files in
your own *-install targets. They are:

• ${INSTALL_PROGRAM}is a command to install binary executables.

• ${INSTALL_SCRIPT} is a command to install executable scripts.

• ${INSTALL_DATA} is a command to install sharable data.

• ${INSTALL_MAN} is a command to install manpages and other documentation (it doesn’t
compress anything).

These are basically the install command with all the appropriate flags. See below for an exam-
ple on how to use them.

19.2.5.9.5 INSTALL package script

If your port needs execute commands when the binary package is installed with pkg_add you
can do with via the pkg/INSTALL script. This script will automatically be added to the package,
and will be run twice by pkg_add. The first time will as ‘INSTALL ${PKGNAME} PRE-
INSTALL ’ and the second time as ‘INSTALL ${PKGNAME} POST-INSTALL ’. ‘$2 ’ can be tested
to determine which mode the script is being run in. The ‘PKG_PREFIX’ environmental variable
will be set to the package installation directory. See man pkg_add(1) for additional informa-
tion. Note, that this script is not run automatically if you install the port with ‘make install ’.

FreeBSD Handbook 295

If you are depending on it being run, you will have to explicitly call it on your port’s Makefile.

19.2.5.9.6 REQ package script

If your port needs to determine if it should install or not, you can create a pkg/REQ ‘‘require-
ments’’ script. It will be invoked automatically at installation/deinstallation time to determine
whether or not installation/deinstallation should proceed. See man pkg_create(1) and man
pkg_add(1) for more information.

19.2.5.9.7 Install additional documentation

If your software has some documentation other than the standard man and info pages that you
think is useful for the user, install it under ${PREFIX}/share/doc . This can be done, like the
previous item, in the post-install target.

Create a new directory for your port. The directory name should reflect what the port is. This
usually means ${PKGNAME}minus the version part. However, if you think the user might want
different versions of the port to be installed at the same time, you can use the whole ${PKG-
NAME}.

Make the installation dependent to the variable NOPORTDOCSso that users can disable it in
/etc/make.conf , like this:

post-install:
.if !defined(NOPORTDOCS)

${MKDIR} ${PREFIX}/share/doc/xv
${INSTALL_MAN} ${WRKSRC}/docs/xvdocs.ps ${PREFIX}/share/doc/xv

.endif

Do not forget to add them to pkg/PLIST too! (Do not worry about NOPORTDOCShere; there is
currently no way for the packages to read variables from /etc/make.conf .)

If you need to display a message to the installer, you may place the message in pkg/MESSAGE.
This capability is often useful to display additional installation steps to be taken after a pkg_add,
or to display licensing information. (note: the MESSAGE file does not need to be added to
pkg/PLIST).

19.2.5.9.8 DIST_SUBDIR

Do not let your port clutter /usr/ports/distfiles . If your port requires a lot of files to be
fetched, or contains a file that has a name that might conflict with other ports (e.g., ‘Makefile’), set
${DIST_SUBDIR} to the name of the port (${PKGNAME}without the version part should work
fine). This will change ${DISTDIR} from the default /usr/ports/distfiles to
/usr/ports/distfiles/${DIST_SUBDIR} , and in effect puts everything that is required for
your port into that subdirectory.

It will also look at the subdirectory with the same name on the backup master site at
ftp.freebsd.org . (Setting ${DISTDIR} explicitly in your Makefile will not accomplish this,
so please use ${DIST_SUBDIR} .)

Note this does not affect the ${MASTER_SITES} you define in your Makefile.

19.2.5.9.9 Feedback

Do send applicable changes/patches to the original author/maintainer for inclusion in next
release of the code. This will only make your job that much easier for the next release.

19.2.5.9.10 RCS str ings

Do not put RCS strings in patches. CVS will mangle them when we put the files into the ports
tree, and when we check them out again, they will come out different and the patch will fail. RCS
strings are surrounded by dollar (‘$’) signs, and typically start with ‘$Id ’ or ‘$RCS’.

FreeBSD Handbook 296

19.2.5.9.11 Recursive diff

Using the recurse (‘-r ’) option to diff to generate patches is fine, but please take a look at the
resulting patches to make sure you don’t have any unnecessary junk in there. In particular, diffs
between two backup files, Makefiles when the port uses Imake or GNU configure, etc., are unnec-
essary and should be deleted. Also, if you had to delete a file, then you can do it in the post-
extract target rather than as part of the patch. Once you are happy with the resulting diff,
please split it up into one source file per patch file.

19.2.5.9.12 PREFIX

Do try to make your port install relative to ${PREFIX} . (The value of this variable will be set to
${LOCALBASE} (default /usr/local), unless ${USE_IMAKE} or ${USE_X11} is set, in which
case it will be ${X11BASE} (default /usr/X11R6).)

Not hard-coding ‘/usr/local ’ or ‘/usr/X11R6 ’ anywhere in the source will make the port
much more flexible and able to cater to the needs of other sites. For X ports that use imake, this is
automatic; otherwise, this can often be done by simply replacing the occurrences of
‘/usr/local ’ (or ‘/usr/X11R6 ’ for X ports that do not use imake) in the various scripts/Make-
files in the port to read ‘${PREFIX} ’, as this variable is automatically passed down to every stage
of the build and install processes.

The variable ${PREFIX} can be reassigned in your Makefile or in the user’s environment. How-
ever, it is strongly discouraged for individual ports to set this variable explicitly in the Makefiles.
(If your port is an X port but does not use imake, set USE_X11=yes; this is quite different from
setting PREFIX=/usr/X11R6 .)

Also, refer to programs/files from other ports with the variables mentioned above, not explicit
pathnames. For instance, if your port requires a macro PAGERto be the full pathname of less ,
use the compiler flag:

-DPAGER=\"${PREFIX}/bin/less\"

or

-DPAGER=\"${LOCALBASE}/bin/less\"

if this is an X port, instead of

-DPAGER=\"/usr/local/bin/less\".

This way it will have a better chance of working if the system administrator has moved the whole
‘/usr/local’ tree somewhere else.

19.2.5.9.13 Subdirectories

Try to let the port put things in the right subdirectories of ${PREFIX} . Some ports lump every-
thing and put it in the subdirectory with the port’s name, which is incorrect. Also, many ports
put everything except binaries, header files and manual pages in the a subdirectory of ‘lib ’,
which does not bode well with the BSD paradigm. Many of the files should be moved to one of
the following: ‘etc ’ (setup/configuration files), ‘libexec ’ (executables started internally),
‘sbin ’ (executables for superusers/managers), ‘info ’ (documentation for info browser) or
‘share ’ (architecture independent files). See man hier(7) for details, the rule governing /usr
pretty much applies to /usr/local too. The exception are ports dealing with USENET ‘news’.
They may use ${PREFIX}/news as a destination for their files.

19.2.5.9.14 ldconfig

If your port installs a shared library, add a post-install target to your Makefile that runs
‘/sbin/ldconfig -m ’ on the directory where the new library is installed (usually ${PRE-
FIX}/lib) to register it into the shared library cache.

FreeBSD Handbook 297

Also, add an @exec line to your pkg/PLIST file so that a user who installed the package can
start using the shared library immediately. This line should immediately follow the line for the
shared library itself, as in:

lib/libtcl80.so.1.0
@exec /sbin/ldconfig -m %D/lib

Never, ever, ever add a line that says ‘ldconfig ’ without any arguments to your Makefile or
pkg/PLIST. This will reset the shared library cache to the contents of /usr/lib only, and will
royally screw up the user’s machine ("Help, xinit does not run anymore after I install this port!").
Anybody who does this will be shot and cut into 65,536 pieces by a rusty knife and have his liver
chopped out by a bunch of crows and will eternally rot to death in the deepest bowels of hell (not
necessarily in that order)....

19.2.5.9.15 UIDs

If your port requires a certain user ID to be on the installed system, let the pkg/INSTALL script
call pw to create it automatically. Look at japanese/Wnn or net/cvsup-mirror for examples.
It is customary to use UIDs in the upper 2-digit range (i.e., from around 50 to 99) for this purpose.

Make sure you don’t use a UID already used by the system or other ports. This is the current list
of UIDs between 50 and 99.

majordom:*:54:1024:Majordomo Pseudo User:/usr/local/majordomo:/nonexistent
cyrus:*:60:248:the cyrus mail server:/nonexistent:/nonexistent
gnats:*:61:1:GNATS database owner:/usr/local/share/gnats/gnats-db:/bin/sh
uucp:*:66:66:UUCP pseudo-user:/var/spool/uucppublic:/usr/libexec/uucp/uucico
xten:*:67:67:X-10 daemon:/usr/local/xten:/nonexistent
pop:*:68:6:Post Office Owner:/nonexistent:/nonexistent
wnn:*:69:7:Wnn:/nonexistent:/nonexistent
ifmail:*:70:66:Ifmail user:/nonexistent:/nonexistent
pgsql:*:71:246:PostgreSQL pseudo-user:/usr/local/pgsql:/bin/sh
msql:*:80:249:mSQL-2 pseudo-user:/var/db/msqldb:/bin/sh

Please send a notice to FreeBSD ports mailing list <freebsd-ports@FreeBSD.ORG> if you sub-
mit or commit a port that allocates a new UID in this range so we can keep this list up to date.

19.2.5.9.16 Do things rationally

The Makefile should do things simply and reasonably. If you can make it a couple of lines
shorter or more readable, then do so. Examples include using a make ‘.if ’ construct instead of a
shell ‘if ’ construct, not redefining do-extract if you can redefine ${EXTRACT*} instead, and
using $GNU_CONFIGUREinstead of ‘CONFIGURE_ARGS += --prefix=${PREFIX} ’.

19.2.5.9.17 Respect CFLAGS

The port should respect the ${CFLAGS} variable. If it doesn’t, please add ‘NO_PACK-
AGE=ignores cflags ’ to the Makefile.

19.2.5.9.18 Miscellanea

The files pkg/DESCR, pkg/COMMENT, and pkg/PLIST should each be double-checked. If you
are reviewing a port and feel they can be worded better, do so.

Don’t copy more copies of the GNU General Public License into our system, please.

Please be careful to note any legal issues! Don’t let us illegally distribute software!

19.2.5.9.19 If you are stuck....

Do look at existing examples and the bsd.port.mk file before asking us questions! ;)

Do ask us questions if you have any trouble! Do not just beat your head against a wall! :)

FreeBSD Handbook 298

19.2.5.10 A Sample Makefile

Here is a sample Makefile that you can use to create a new port. Make sure you remove all the
extra comments (ones between brackets)!

It is recommended that you follow this format (ordering of variables, empty lines between sec-
tions, etc.). Not all of the existing Makefiles are in this format (mostly old ones), but we are trying
to uniformize how they look. This format is designed so that the most important information is
easy to locate.

[the header...just to make it easier for us to identify the ports.]
New ports collection makefile for: xdvi
[the version required header should updated when upgrading a port.]
Version required: pl18 [things like "1.5alpha" are fine here too]
[this is the date when the first version of this Makefile was created.

Never change this when doing an update of the port.]
Date created: 26 May 1995
[this is the person who did the original port to FreeBSD, in particular, the

person who wrote the first version of this Makefile. Remember, this should
not be changed when upgrading the port later.]

Whom: Satoshi Asami <asami@FreeBSD.ORG>
#
Id
[^^^^ This will be automatically replaced with RCS ID string by CVS

when it is committed to our repository.]
#

[section to describe the port itself and the master site - DISTNAME
is always first, followed by PKGNAME (if necessary), CATEGORIES,
and then MASTER_SITES, which can be followed by MASTER_SITE_SUBDIR.
After those, one of EXTRACT_SUFX or DISTFILES can be specified too.]

DISTNAME= xdvi
PKGNAME= xdvi-pl18
CATEGORIES= print
[do not forget the trailing slash ("/")!

if you aren’t using MASTER_SITE_* macros]
MASTER_SITES= ${MASTER_SITE_XCONTRIB}
MASTER_SITE_SUBDIR= applications
[set this if the source is not in the standard ".tar.gz" form]
EXTRACT_SUFX= .tar.Z

[section for distributed patches -- can be empty]
PATCH_SITES= ftp://ftp.sra.co.jp/pub/X11/japanese/
PATCHFILES= xdvi-18.patch1.gz xdvi-18.patch2.gz

[maintainer; *mandatory*! This is the person (preferably with commit
privileges) who a user can contact for questions and bug reports - this
person should be the porter or someone who can forward questions to the
original porter reasonably promptly. If you really do not want to have
your address here, set it to "ports@FreeBSD.ORG".]

MAINTAINER= asami@FreeBSD.ORG

[dependencies -- can be empty]
RUN_DEPENDS= gs:${PORTSDIR}/print/ghostscript
LIB_DEPENDS= Xpm\\.4\\.:${PORTSDIR}/graphics/xpm

[this section is for other standard bsd.port.mk variables that do not
belong to any of the above]

[If it asks questions during configure, build, install...]
IS_INTERACTIVE= yes
[If it extracts to a directory other than ${DISTNAME}...]
WRKSRC= ${WRKDIR}/xdvi-new
[If the distributed patches were not made relative to ${WRKSRC}, you

may need to tweak this]
PATCH_DIST_STRIP= -p1

FreeBSD Handbook 299

[If it requires a "configure" script generated by GNU autoconf to be run]
GNU_CONFIGURE= yes
[If it requires GNU make, not /usr/bin/make, to build...]
USE_GMAKE= yes
[If it is an X application and requires "xmkmf -a" to be run...]
USE_IMAKE= yes
[et cetera.]

[non-standard variables to be used in the rules below]
MY_FAVORITE_RESPONSE= "yeah, right"

[then the special rules, in the order they are called]
pre-fetch:

i go fetch something, yeah

post-patch:
i need to do something after patch, great

pre-install:
and then some more stuff before installing, wow

[and then the epilogue]
.include <bsd.port.mk>

19.2.5.11 Package Names

The following are the conventions you should follow in naming your packages. This is to have
our package directory easy to scan, as there are already lots and lots of packages and users are
going to turn away if they hurt their eyes!

The package name should look like

[<language>-]<name>[[-]<compiled.specifics>]-<version.string.numbers>;

If your ${DISTNAME} doesn’t look like that, set ${PKGNAME}to something in that format.

1. FreeBSD strives to support the native language of its users. The ‘<language>’ part should
be a two letter abbreviation of the natural language defined by ISO-639 if the port is spe-
cific to a certain language. Examples are ‘ja’ for Japanese, ‘ru’ for Russian, ‘vi’ for Viet-
namese, ‘zh’ for Chinese, ‘ko’ for Korean and ‘de’ for German.

2. The ‘<name>’ part should be all lowercases, except for a really large package (with lots of
programs in it). Things like XFree86 (yes there really is a package of it, check it out) and
ImageMagick fall into this category. Otherwise, convert the name (or at least the first let-
ter) to lowercase. If the capital letters are important to the name (for example, with one-
letter names like R or V) you may use capital letters at your discretion. There is a tradition
of naming Perl 5 modules by prepending ‘p5-’ and converting the double-colon separator
to a hyphen; for example, the ‘Data::Dumper ’ module becomes ‘p5-Data-Dumper’. If the
software in question has numbers, hyphens, or underscores in its name, you may include
them as well (like ‘kinput2’).

3. If the port can be built with different hardcoded defaults (usually specified as environment
variables or on the make command line), the ‘<compiled.specifics>’ part should state the
compiled-in defaults (the hyphen is optional). Examples are papersize and font units.

4. The version string should be a period-separated list of integers and single lowercase alpha-
betics. The only exception is the string ‘pl’ (meaning ‘patchlevel’), which can be used only
when there are no major and minor version numbers in the software.

Here are some (real) examples on how to convert a ${DISTNAME} into a suitable ${PKGNAME}:

FreeBSD Handbook 300

DISTNAME PKGNAME Reason
mule-2.2.2 mule-2.2.2 no prob at all
XFree86-3.1.2 XFree86-3.1.2 ditto
EmiClock-1.0.2 emiclock-1.0.2 no uppercase names for single programs
gmod1.4 gmod-1.4 need hyphen after ‘<name>’
xmris.4.02 xmris-4.02 ditto
rdist-1.3alpha rdist-1.3a no strings like ‘alpha’ allowed
es-0.9-beta1 es-0.9b1 ditto
v3.3beta021.src tiff-3.3 what the heck was that anyway? ;)
tvtwm tvtwm-pl11 version string always required
piewm piewm-1.0 ditto
xvgr-2.10pl1 xvgr-2.10.1 ‘pl’ allowed only when no maj/minor numbers
gawk-2.15.6 ja-gawk-2.15.6 Japanese language version
psutils-1.13 psutils-letter-1.13 papersize hardcoded at package build time
pkfonts pkfonts300-1.0 package for 300dpi fonts

If there is absolutely no trace of version information in the original source and it is unlikely that
the original author will ever release another version, just set the version string to ‘1.0’ (like the
piewm example above). Otherwise, ask the original author or use the date string (‘yy.mm.dd’) as
the version.

19.2.5.12 That is It, Folks!

Boy, this sure was a long tutorial, wasn’t it? Thanks for following us to here, really.

Well, now that you know how to do a port, let us go at it and convert everything in the world into
ports! That is the easiest way to start contributing to the FreeBSD Project! :)

19.2.6 Money, Hardware or Internet access

We are always very happy to accept donations to further the cause of the FreeBSD Project and, in
a volunteer effort like ours, a little can go a long way! Donations of hardware are also very
important to expanding our list of supported peripherals since we generally lack the funds to buy
such items ourselves.

19.2.6.1 Donating funds

While the FreeBSD Project is not a 501(C3) (non-profit) corporation and hence cannot offer special
tax incentives for any donations made, any such donations will be gratefully accepted on behalf
of the project by FreeBSD, Inc.

FreeBSD, Inc. was founded in early 1995 by Jordan K. Hubbard <jkh@FreeBSD.ORG> and
David Greenman <davidg@FreeBSD.ORG> with the goal of furthering the aims of the FreeBSD
Project and giving it a minimal corporate presence. Any and all funds donated (as well as any
profits that may eventually be realized by FreeBSD, Inc.) will be used exclusively to further the
project’s goals.

Please make any checks payable to FreeBSD, Inc., sent in care of the following address:

FreeBSD, Inc.
c/o Jordan Hubbard
4041 Pike Lane, suite #F.
Concord CA, 94520

[temporarily using the Walnut Creek CDROM address until a PO box can be
opened]

Wire transfers may also be sent directly to:

FreeBSD Handbook 301

Bank Of America
Concord Main Office
P.O. Box 37176
San Francisco CA, 94137-5176

Routing #: 121-000-358
Account #: 01411-07441 (FreeBSD, Inc.)

Any correspondence related to donations should be sent to Jordan Hubbard41 , either via email or
to the FreeBSD, Inc. postal address given above.

If you do not wish to be listed in our donors (section 19.3, page 301) section, please specify this
when making your donation. Thanks!

19.2.6.2 Donating hardware

Donations of hardware in any of the 3 following categories are also gladly accepted by the
FreeBSD Project:

• General purpose hardware such as disk drives, memory or complete systems should be sent
to the FreeBSD, Inc. address listed in the donating funds section.

• Hardware for which ongoing compliance testing is desired. We are currently trying to put
together a testing lab of all components that FreeBSD supports so that proper regression
testing can be done with each new release. We are still lacking many important pieces (net-
work cards, motherboards, etc) and if you would like to make such a donation, please con-
tact David Greenman <davidg@FreeBSD.ORG> for information on which items are still
required.

• Hardware currently unsupported by FreeBSD for which you would like to see such support
added. Please contact the FreeBSD core team <freebsd-core@FreeBSD.ORG> before
sending such items as we will need to find a developer willing to take on the task before we
can accept delivery of new hardware.

19.2.6.3 Donating Internet access

We can always use new mirror sites for FTP, WWW or cvsup. If you would like to be such a mir-
ror, please contact the FreeBSD project administrators42 for more information.

19.3 Donors Galler y
The FreeBSD Project is indebted to the following donors and would like to publically thank them
here!

• Contributors to the central server project:

The following individuals and businesses made it possible for the FreeBSD Project to build
a new central server machine to eventually replace freefall.freebsd.org by donating the follow-
ing items:

• Ade Barkah43 and his employer, Hemisphere Online44 , donated a Pentium Pro (P6)
200Mhz CPU

• ASA Computers45 donated a Tyan 1662 motherboard.

41. <URL:mailto:jkh@FreeBSD.org>

42. <URL:mailto:admin@FreeBSD.ORG>

43. <URL:mailto:mbarkah@freebsd.org>

44. <URL:http://www.hemi.com>

45. <URL:http://www.asacomputers.com>

FreeBSD Handbook 302

• Joe McGuckin46 of ViaNet Communications47 donated a Kingston ethernet con-
troller.

• Jack O’Neill48 donated an NCR 53C875 SCSI controller card.

• Ulf Zimmermann49 of Alameda Networks50 donated 128MB of memory, a 4 Gb disk
drive and the case.

• Direct funding:

The following individuals and businesses have generously contributed direct funding to the
project:

• Annelise Anderson51

• Matt Dillon52

• Epilogue Technology Corporation53

• Sean Eric Fagan

• Gianmarco Giovannelli54

• Josef C. Grosch55

• Chuck Robey56

• Kenneth P. Stox57 of Imaginary Landscape, LLC.58

• Dmitry S. Kohmanyuk59

• Laser560 of Japan (a portion of the profits from sales of their various FreeBSD CD-
ROMs.

• Fuki Shuppan Publishing Co.61 donated a portion of their profits from Hajimete no
FreeBSD (FreeBSD, Getting started) to the FreeBSD and XFree86 projects.

46. <URL:mailto:joe@via.net>

47. <URL:http://www.via.net>

48. <URL:mailto:jack@diamond.xtalwind.net>

49. <URL:mailto:ulf@Alameda.net>

50. <URL:http://www.Alameda.net>

51. <URL:mailto:ANDRSN@HOOVER.STANFORD.EDU>

52. <URL:mailto:dillon@best.net>

53. <URL:http://www.epilogue.com/>

54. <URL:mailto:gmarco@masternet.it>

55. <URL:mailto:joeg@truenorth.org>

56. <URL:mailto:chuckr@freebsd.org>

57. <URL:mailto:ken@stox.sa.enteract.com>

58. <URL:http://www.imagescape.com>

59. <URL:mailto:dk@dog.farm.org>

60. <URL:http://www.cdrom.co.jp/>

61. <URL:http://www.mmjp.or.jp/fuki/>

FreeBSD Handbook 303

• ASCII Corp.62 donated a portion of their profits from several FreeBSD-related books
to the FreeBSD project.

• Yokogawa Electric Corp63 has generously donated significant funding to the FreeBSD
project.

• BuffNET64

• Hardware contributors:

The following individuals and businesses have generously contributed hardware for testing
and device driver development/support:

• Walnut Creek CDROM for providing the Pentium P5-90 and 486/DX2-66 EISA/VL
systems that are being used for our development work, to say nothing of the network
access and other donations of hardware resources.

• TRW Financial Systems, Inc. provided 130 PCs, three 68 GB fileservers, twelve Ether-
nets, two routers and an ATM switch for debugging the diskless code. They also keep
a couple of FreeBSD hackers alive and busy. Thanks!

• Dermot McDonnell donated the Toshiba XM3401B CDROM drive currently used in
freefall.

• Chuck Robey <chuckr@glue.umd.edu> contributed his floppy tape streamer for
experimental work.

• Larry Altneu <larry@ALR.COM> , and Wilko Bulte <wilko@yedi.iaf.nl> , pro-
vided Wangtek and Archive QIC-02 tape drives in order to improve the wt driver.

• Ernst Winter <ewinter@lobo.muc.de> contributed a 2.88 MB floppy drive to the
project. This will hopefully increase the pressure for rewriting the floppy disk driver.
;-)

• Tekram Technologies65 sent one each of their DC-390, DC-390U and DC-390F FAST
and ULTRA SCSI host adapter cards for regression testing of the NCR and AMD
drivers with their cards. They are also to be applauded for making driver sources for
free operating systems available from their FTP server
ftp://ftp.tekram.com/scsi/FreeBSD66 .

• Larry M. Augustin67 contributed not only a Symbios Sym8751S SCSI card, but also a
set of data books, including one about the forthcoming Sym53c895 chip with Ultra-2
and LVD support, and the latest programming manual with information on how to
safely use the advanced features of the latest Symbios SCSI chips. Thanks a lot!

• Christoph Kukulies68 donated an FX120 12 speed Mitsumi CDROM drive for IDE
CDROM driver development.

• Special contributors:

62. <URL:http://www.ascii.co.jp/>

63. <URL:http://www.yokogawa.co.jp/>

64. <URL:http://www.buffnet.net/>

65. <URL:http://www.tekram.com>

66. <URL:ftp://ftp.tekram.com/scsi/FreeBSD>

67. <URL:mailto:lma@varesearch.com>

68. <URL:mailto:kuku@freebsd.org>

FreeBSD Handbook 304

• Walnut Creek CDROM69 has donated almost more than we can say (see the history
(section 1.2, page 5) document for more details). In particular, we would like to thank
them for the original hardware used for freefall.FreeBSD.ORG, our primary develop-
ment machine, and for thud.FreeBSD.ORG, a testing and build box. We are also
indebted to them for funding various contributors over the years and providing us
with unrestricted use of their T1 connection to the Internet.

• The interface business GmbH, Dresden70 has been patiently supporting Jörg Wunsch
<joerg@FreeBSD.ORG> who has often preferred FreeBSD work over paywork, and
used to fall back to their (quite expensive) EUnet Internet connection whenever his
private connection became too slow or flakey to work with it...

• Berkeley Software Design, Inc.71 has contributed their DOS emulator code to the
remaining BSD world, which is used in the dosemu command.

19.4 Derived Software Contributors
This software was originally derived from William F. Jolitz’s 386BSD release 0.1, though almost
none of the original 386BSD specific code remains. This software has been essentially re-imple-
mented from the 4.4BSD-Lite release provided by the Computer Science Research Group (CSRG)
at the University of California, Berkeley and associated academic contributors.

There are also portions of NetBSD and OpenBSD that have been integrated into FreeBSD as well,
and we would therefore like to thank all the contributors to NetBSD and OpenBSD for their
work.

19.5 Additional FreeBSD Contributors
(in alphabetical order by first name):

• ABURAYA Ryushirou <rewsirow@ff.iij4u.or.jp>

• Ada T Lim <ada@bsd.org>

• Adam Glass <glass@postgres.berkeley.edu>

• Adam McDougall <mcdouga9@egr.msu.edu>

• Adrian T. Filipi-Martin <atf3r@agate.cs.virginia.edu>

• Akito Fujita <fujita@zoo.ncl.omron.co.jp>

• Alain Kalker <A.C.P.M.Kalker@student.utwente.nl>

• Alan Cox <alc@cs.rice.edu>

• Andreas Kohout <shanee@rabbit.augusta.de>

• Andreas Lohr <andreas@marvin.RoBIN.de>

• Andrew Gordon <andrew.gordon@net-tel.co.uk>

• Andrew Herbert <andrew@werple.apana.org.au>

• Andrew McRae <amcrae@cisco.com>

• Andrew Moore <alm@FreeBSD.org>

69. <URL:http://www.cdrom.com>

70. <URL:http://www.interface-business.de>

71. <URL:http://www.bsdi.com>

FreeBSD Handbook 305

• Andrew Stevenson <andrew@ugh.net.au>

• Andrew V. Stesin <stesin@elvisti.kiev.ua>

• Andrey Zakhvatov <andy@icc.surw.chel.su>

• Andy Whitcroft <andy@sarc.city.ac.uk>

• Angelo Turetta <ATuretta@stylo.it>

• Anthony Yee-Hang Chan <yeehang@netcom.com>

• Ari Suutari <ari@suutari.iki.fi>

• Brent J. Nordquist <bjn@visi.com>

• Bernd Rosauer <br@schiele-ct.de>

• Bill Kish <kish@osf.org>

• Bill Lloyd <wlloyd@mpd.ca>

• Bob Wilcox <bob@obiwan.uucp>

• Boyd Faulkner <faulkner@mpd.tandem.com>

• Brent J. Nordquist <bjn@visi.com>

• Brett Taylor <brett@peloton.physics.montana.edu>

• Brian Clapper <bmc@willscreek.com>

• Brian Handy <handy@lambic.space.lockheed.com>

• Brian Tao <taob@risc.org>

• Brion Moss <brion@queeg.com>

• Bruce Gingery <bgingery@gtcs.com>

• Carey Jones <mcj@acquiesce.org>

• Carl Fongheiser <cmf@netins.net>

• Charles Hannum <mycroft@ai.mit.edu>

• Charles Mott <cmott@srv.net>

• Chet Ramey <chet@odin.INS.CWRU.Edu>

• Chris Dabrowski < chris@vader.org>

• Chris G. Demetriou <cgd@postgres.berkeley.edu>

• Chris Shenton <cshenton@angst.it.hq.nasa.gov>

• Chris Stenton <jacs@gnome.co.uk>

• Chris Timmons <skynyrd@opus.cts.cwu.edu>

• Chris Torek <torek@ee.lbl.gov>

• Christian Gusenbauer <cg@fimp01.fim.uni-linz.ac.at>

• Christian Haury <Christian.Haury@sagem.fr>

• Christoph Robitschko <chmr@edvz.tu-graz.ac.at>

• Choi Jun Ho <junker@jazz.snu.ac.kr>

FreeBSD Handbook 306

• Chuck Hein <chein@cisco.com>

• Conrad Sabatier <conrads@neosoft.com>

• Cornelis van der Laan <nils@guru.ims.uni-stuttgart.de>

• Craig Struble <cstruble@vt.edu>

• Cristian Ferretti <cfs@riemann.mat.puc.cl>

• Curt Mayer <curt@toad.com>

• Dai Ishijima <ishijima@tri.pref.osaka.jp>

• Dan Cross <tenser@spitfire.ecsel.psu.edu>

• Daniel Baker <dbaker@crash.ops.neosoft.com>

• Daniel M. Eischen <deischen@iworks.InterWorks.org>

• Daniel O’Connor <doconnor@gsoft.com.au>

• Danny J. Zerkel <dzerkel@feephi.phofarm.com>

• Dave Bodenstab <imdave@synet.net>

• Dave Burgess <burgess@hrd769.brooks.af.mil>

• Dave Chapeskie <dchapes@zeus.leitch.com>

• Dave Edmondson <davided@sco.com>

• Dave Rivers <rivers@ponds.uucp>

• David A. Bader <dbader@umiacs.umd.edu>

• David Dawes <dawes@physics.su.OZ.AU>

• David Holloway <daveh@gwythaint.tamis.com>

• David Leonard <d@scry.dstc.edu.au>

• Dean Huxley <dean@fsa.ca>

• Dirk Froemberg <dirk@hal.in-berlin.de>

• Dmitry Kohmanyuk <dk@farm.org>

• Don Croyle <croyle@gelemna.ft-wayne.in.us>

• Don Whiteside <whiteside@acm.org>

• Don Yuniskis <dgy@rtd.com>

• Donald Maddox <dmaddox@scsn.net>

• Doug Ambrisko <ambrisko@ambrisko.roble.com>

• Douglas Carmichael <dcarmich@mcs.com>

• Eiji-usagi-MATSUmoto <usagi@clave.gr.jp>

• ELISA Font Project

• Eric A. Griff <eagriff@global2000.net>

• Eric Blood <eblood@cs.unr.edu>

• Eric J. Chet <ejc@bazzle.com>

FreeBSD Handbook 307

• Eric J. Schwertfeger <eric@cybernut.com>

• Francis M J Hsieh <mjhsieh@life.nthu.edu.tw>

• Frank Bartels <knarf@camelot.de>

• Frank Chen Hsiung Chan <frankch@waru.life.nthu.edu.tw>

• Frank Maclachlan <fpm@crash.cts.com>

• Frank Nobis <fn@trinity.radio-do.de>

• FUJIMOTO Kensaku <fujimoto@oscar.elec.waseda.ac.jp>

• FURUSAWA Kazuhisa <furusawa@com.cs.osakafu-u.ac.jp>

• Gary A. Browning <gab10@griffcd.amdahl.com>

• Gary Kline <kline@thought.org>

• Gerard Roudier <groudier@club-internet.fr>

• Ginga Kawaguti <ginga@amalthea.phys.s.u-tokyo.ac.jp>

• Greg Ungerer <gerg@stallion.oz.au>

• Harlan Stenn <Harlan.Stenn@pfcs.com>

• Havard Eidnes <Havard.Eidnes@runit.sintef.no>

• Hideaki Ohmon <ohmon@tom.sfc.keio.ac.jp>

• Hidekazu Kuroki <hidekazu@cs.titech.ac.jp>

• Hidetoshi Shimokawa <simokawa@sat.t.u-tokyo.ac.jp>

• Hideyuki Suzuki <hideyuki@sat.t.u-tokyo.ac.jp>

• Hironori Ikura <hikura@kaisei.org>

• Holger Veit <Holger.Veit@gmd.de>

• Hung-Chi Chu <hcchu@r350.ee.ntu.edu.tw>

• Ian Struble <ian@broken.net>

• Ian Vaudrey <i.vaudrey@bigfoot.com>

• Igor Vinokurov <igor@zynaps.ru>

• Ikuo Nakagawa <ikuo@isl.intec.co.jp>

• IMAMURA Tomoaki <tomoak-i@is.aist-nara.ac.jp>

• Ishii Masahiro

• Issei Suzuki<issei@t-cnet.or.jp>

• Itsuro Saito <saito@miv.t.u-tokyo.ac.jp>

• J. David Lowe <lowe@saturn5.com>

• J. Han <hjh@best.com>

• J.T. Conklin <jtc@cygnus.com>

• James Clark <jjc@jclark.com>

• James da Silva <jds@cs.umd.edu> et al

FreeBSD Handbook 308

• Janusz Kokot <janek@gaja.ipan.lublin.pl>

• Jason Thorpe <thorpej@nas.nasa.gov>

• Javier Martin Rueda <jmrueda@diatel.upm.es>

• Jeff Bartig <jeffb@doit.wisc.edu>

• Jeffrey Wheat <jeff@cetlink.net>

• Jian-Da Li <jdli@csie.NCTU.edu.tw>

• Jim Binkley <jrb@cs.pdx.edu>

• Jim Lowe <james@cs.uwm.edu>

• Jim Wilson <wilson@moria.cygnus.com>

• Jimbo Bahooli <griffin@blackhole.iceworld.org>

• Joao Carlos Mendes Luis <jonny@coppe.ufrj.br>

• Joe "Marcus" Clarke <marcus@miami.edu>

• Joel Sutton <sutton@aardvark.apana.org.au>

• Johann Tonsing <jtonsing@mikom.csir.co.za>

• John Capo <jc@irbs.com>

• John Heidemann <johnh@isi.edu>

• John Perry <perry@vishnu.alias.net>

• John Polstra <jdp@polstra.com>

• John Rochester <jr@cs.mun.ca>

• John Saunders <john@pacer.nlc.net.au>

• Jonathan Hanna <jh@pc-214909.bc.rogers.wave.ca>

• Josef Karthauser <joe@uk.freebsd.org>

• Joseph Stein <joes@seaport.net>

• Josh Gilliam <josh@quick.net>

• Josh Tiefenbach <josh@ican.net>

• Juergen Lock <nox@jelal.hb.north.de>

• Juha Inkari <inkari@cc.hut.fi>

• Julian Assange <proff@suburbia.net>

• Julian Jenkins <kaveman@magna.com.au>

• Julian Stacey <jhs@freebsd.org>

• Junichi Satoh <junichi@jp.freebsd.org>

• Junya WATANABE <junya-w@remus.dti.ne.jp>

• Kapil Chowksey <kchowksey@hss.hns.com>

• Kazuhiko Kiriyama <kiri@kiri.toba-cmt.ac.jp>

• Keith Bostic <bostic@bostic.com>

FreeBSD Handbook 309

• Keith Moore

• Kenneth Monville <desmo@bandwidth.org>

• Kent Vander Velden <graphix@iastate.edu>

• Kirk McKusick <mckusick@mckusick.com>

• Kiroh HARADA <kiroh@kh.rim.or.jp>

• Koichi Sato <copan@ppp.fastnet.or.jp>

• Kostya Lukin <lukin@okbmei.msk.su>

• Kurt Olsen <kurto@tiny.mcs.usu.edu>

• Lars Köller <Lars.Koeller@Uni-Bielefeld.DE>

• Lucas James <Lucas.James@ldjpc.apana.org.au>

• Luigi Rizzo <luigi@iet.unipi.it>

• Makoto MATSUSHITA <matusita@jp.freebsd.org>

• Makoto WATANABE <watanabe@zlab.phys.nagoya-u.ac.jp>

• Manu Iyengar <iyengar@grunthos.pscwa.psca.com>

• Marc Frajola <marc@dev.com>

• Marc Ramirez <mrami@mramirez.sy.yale.edu>

• Marc Slemko <marcs@znep.com>

• Marc van Kempen <wmbfmk@urc.tue.nl>

• Mario Sergio Fujikawa Ferreira <lioux@gns.com.br>

• Mark Huizer <xaa@stack.nl>

• Mark J. Taylor <mtaylor@cybernet.com>

• Mark Krentel <krentel@rice.edu>

• Mark Tinguely <tinguely@plains.nodak.edu>
<tinguely@hookie.cs.ndsu.NoDak.edu>

• Martin Birgmeier

• Martti Kuparinen <erakupa@kk.etx.ericsson.se>

• Masachika ISHIZUKA <ishizuka@isis.min.ntt.jp>

• Mats Lofkvist <mal@algonet.se>

• Matt Bartley <mbartley@lear35.cytex.com>

• Matt Thomas <thomas@lkg.dec.com>

• Matt White <mwhite+@CMU.EDU>

• Matthew N. Dodd <winter@jurai.net>

• Matthew Stein <matt@bdd.net>

• Maurice Castro <maurice@planet.serc.rmit.edu.au>

• Michael Butschky <butsch@computi.erols.com>

• Michael Elbel <me@FreeBSD.ORG>

FreeBSD Handbook 310

• Michael Searle <searle@longacre.demon.co.uk>

• Miguel Angel Sagreras <msagre@cactus.fi.uba.ar>

• Mikael Hybsch <micke@dynas.se>

• Mikhail Teterin <mi@aldan.ziplink.net>

• Mike McGaughey <mmcg@cs.monash.edu.au>

• Mike Peck <mike@binghamton.edu>

• Ming-I Hseh <PA@FreeBSD.ee.Ntu.edu.TW>

• MITA Yoshio <mita@jp.FreeBSD.ORG>

• MOROHOSHI Akihiko <moro@race.u-tokyo.ac.jp>

• Motoyuki Kasahara <m-hasahr@sra.co.jp>

• Murray Stokely <murray@cdrom.com>

• NAKAMURA Kazushi <nkazushi@highway.or.jp>

• Naoki Hamada <nao@tom-yam.or.jp>

• Narvi <narvi@haldjas.folklore.ee>

• NIIMI Satoshi <sa2c@and.or.jp>

• Nick Sayer <nsayer@quack.kfu.com>

• Nicolas Souchu <Nicolas.Souchu@prism.uvsq.fr>

• Nisha Talagala <nisha@cs.berkeley.edu>

• Nobuhiro Yasutomi <nobu@psrc.isac.co.jp>

• Nobuyuki Koganemaru <kogane@kces.koganemaru.co.jp>

• Noritaka Ishizumi <graphite@jp.FreeBSD.ORG>

• Oliver Fromme <oliver.fromme@heim3.tu-clausthal.de>

• Oliver Laumann <net@informatik.uni-bremen.de>

• Oliver Oberdorf <oly@world.std.com>

• Paul Fox <pgf@foxharp.boston.ma.us>

• Paul Kranenburg <pk@cs.few.eur.nl>

• Paul Mackerras <paulus@cs.anu.edu.au>

• Paulo Menezes <paulo@isr.uc.pt>

• Paul T. Root <proot@horton.iaces.com>

• Pedro Giffuni <giffunip@asme.org>

• Pedro A M Vazquez <vazquez@IQM.Unicamp.BR>

• Peter Cornelius <pc@inr.fzk.de>

• Peter Haight <peterh@prognet.com>

• Peter Stubbs <PETERS@staidan.qld.edu.au>

• Pierre Beyssac <bp@fasterix.freenix.org>

FreeBSD Handbook 311

• Phil Maker <pjm@cs.ntu.edu.au>

• R. Kym Horsell

• Randall Hopper <rhh@stealth.ct.picker.com>

• Richard Hwang <rhwang@bigpanda.com>

• Richard Seaman, Jr. <dick@tar.com>

• Richard Stallman <rms@gnu.ai.mit.edu>

• Richard Wiwatowski <rjwiwat@adelaide.on.net>

• Rob Mallory <rmallory@csusb.edu>

• Rob Shady <rls@id.net>

• Rob Snow <rsnow@txdirect.net>

• Robert Sanders <rsanders@mindspring.com>

• Robert Withrow <witr@rwwa.com>

• Ronald Kuehn <kuehn@rz.tu-clausthal.de>

• Roland Jesse <jesse@cs.uni-magdeburg.de>

• Ruslan Shevchenko <rssh@cki.ipri.kiev.ua>

• Samuel Lam <skl@ScalableNetwork.com>

• Sander Vesik <sander@haldjas.folklore.ee>

• Sandro Sigala <ssigala@globalnet.it>

• Sascha Blank <blank@fox.uni-trier.de>

• Sascha Wildner <swildner@channelz.GUN.de>

• Satoshi Taoka <taoka@infonets.hiroshima-u.ac.jp>

• Scott Blachowicz <scott.blachowicz@seaslug.org>

• Scott A. Kenney <saken@rmta.ml.org>

• Serge V. Vakulenko <vak@zebub.msk.su>

• Sheldon Hearn <axl@iafrica.com>

• Shigeyuki FUKUSHIMA <shige@kuis.kyoto-u.ac.jp>

• Simon Marlow <simonm@dcs.gla.ac.uk>

• Slaven Rezic (Tomic) <eserte@cs.tu-berlin.de>

• Soren Dayton <csdayton@midway.uchicago.edu>

• Soren Dossing <sauber@netcom.com>

• Stefan Moeding <moeding@bn.DeTeMobil.de>

• Stephane Legrand <stephane@lituus.fr>

• Stephen J. Roznowski <sjr@home.net>

• Steve Gerakines <steve2@genesis.tiac.net>

• Steven G. Kargl <kargl@troutmask.apl.washington.edu>

FreeBSD Handbook 312

• Suzuki Yoshiaki <zensyo@ann.tama.kawasaki.jp>

• Tadashi Kumano <kumano@strl.nhk.or.jp>

• Taguchi Takeshi <taguchi@tohoku.iij.ad.jp>

• Takashi Uozu <j1594016@ed.kagu.sut.ac.jp>

• Takayuki Ariga <a00821@cc.hc.keio.ac.jp>

• Ted Faber <faber@ISI.EDU>

• Terry Lambert <terry@lambert.org>

• Terry Lee <terry@uivlsi.csl.uiuc.edu>

• Tetsuya Furukawa <tetsuya@secom-sis.co.jp>

• Theo Deraadt <deraadt@fsa.ca>

• Thomas König <Thomas.Koenig@ciw.uni-karlsruhe.de>

• IDór -∂ur Ívarsson <totii@est.is>

• Tim Kientzle <kientzle@netcom.com>

• Tim Wilkinson <tim@sarc.city.ac.uk>

• Tom Samplonius <tom@misery.sdf.com>

• Torbjorn Granlund <tege@matematik.su.se>

• Toshihiro Kanda <candy@fct.kgc.co.jp>

• Tr efor S. <trefor@flevel.co.uk>

• Ville Eerola <ve@sci.fi>

• Werner Griessl <werner@btp1da.phy.uni-bayreuth.de>

• Wes Santee <wsantee@wsantee.oz.net>

• Wilko Bulte <wilko@yedi.iaf.nl>

• Wolfgang Stanglmeier <wolf@kintaro.cologne.de>

• Wu Ching-hong <woju@FreeBSD.ee.Ntu.edu.TW>

• Yen-Shuo Su <yssu@CCCA.NCTU.edu.tw>

• Yoshiaki Uchikawa <yoshiaki@kt.rim.or.jp>

• Yoshiro Mihira <sanpei@yy.cs.keio.ac.jp>

• Yukihiro Nakai <nakai@technologist.com>

• Yuval Yarom <yval@cs.huji.ac.il>

• Yves Fonk <yves@cpcoup5.tn.tudelft.nl>

19.6 386BSD Patch Kit Patch Contributors
(in alphabetical order by first name):

• Adam Glass <glass@postgres.berkeley.edu>

• Adrian Hall <adrian@ibmpcug.co.uk>

• Andrey A. Chernov <ache@astral.msk.su>

FreeBSD Handbook 313

• Andrew Herbert <andrew@werple.apana.org.au>

• Andrew Moore <alm@netcom.com>

• Andy Valencia <ajv@csd.mot.com> <jtk@netcom.com>

• Arne Henrik Juul <arnej@Lise.Unit.NO>

• Bakul Shah <bvs@bitblocks.com>

• Barry Lustig <barry@ictv.com>

• Bob Wilcox <bob@obiwan.uucp>

• Branko Lankester

• Brett Lymn <blymn@mulga.awadi.com.AU>

• Charles Hannum <mycroft@ai.mit.edu>

• Chris G. Demetriou <cgd@postgres.berkeley.edu>

• Chris Torek <torek@ee.lbl.gov>

• Christoph Robitschko <chmr@edvz.tu-graz.ac.at>

• Daniel Poirot <poirot@aio.jsc.nasa.gov>

• Dave Burgess <burgess@hrd769.brooks.af.mil>

• Dave Rivers <rivers@ponds.uucp>

• David Dawes <dawes@physics.su.OZ.AU>

• David Greenman <davidg@Root.COM>

• Eric J. Haug <ejh@slustl.slu.edu>

• Felix Gaehtgens <felix@escape.vsse.in-berlin.de>

• Frank Maclachlan <fpm@crash.cts.com>

• Gary A. Browning <gab10@griffcd.amdahl.com>

• Gary Howland <gary@hotlava.com>

• Geoff Rehmet <csgr@alpha.ru.ac.za>

• Goran Hammarback <goran@astro.uu.se>

• Guido van Rooij <guido@gvr.win.tue.nl>

• Guy Harris <guy@auspex.com>

• Havard Eidnes <Havard.Eidnes@runit.sintef.no>

• Herb Peyerl <hpeyerl@novatel.cuc.ab.ca>

• Holger Veit <Holger.Veit@gmd.de>

• Ishii Masahiro, R. Kym Horsell

• J.T. Conklin <jtc@cygnus.com>

• Jagane D Sundar < jagane@netcom.com >

• James Clark <jjc@jclark.com>

• James Jegers <jimj@miller.cs.uwm.edu>

FreeBSD Handbook 314

• James W. Dolter

• James da Silva <jds@cs.umd.edu> et al

• Jay Fenlason <hack@datacube.com>

• Jim Wilson <wilson@moria.cygnus.com>

• Jörg Lohse <lohse@tech7.informatik.uni-hamburg.de>

• Jörg Wunsch <joerg_wunsch@uriah.heep.sax.de>

• John Dyson - <formerly dyson@ref.tfs.com>

• John Woods <jfw@eddie.mit.edu>

• Jordan K. Hubbard <jkh@whisker.hubbard.ie>

• Julian Elischer <julian@dialix.oz.au>

• Julian Stacey <jhs@freebsd.org>

• Karl Lehenbauer <karl@NeoSoft.com> <karl@one.neosoft.com>

• Keith Bostic <bostic@toe.CS.Berkeley.EDU>

• Ken Hughes

• Kent Talarico <kent@shipwreck.tsoft.net>

• Kevin Lahey <kml%rokkaku.UUCP@mathcs.emory.edu>
<kml@mosquito.cis.ufl.edu>

• Marc Frajola <marc@dev.com>

• Mark Tinguely <tinguely@plains.nodak.edu>
<tinguely@hookie.cs.ndsu.NoDak.edu>

• Martin Renters <martin@tdc.on.ca>

• Michael Clay <mclay@weareb.org>

• Michael Galassi <nerd@percival.rain.com>

• Mike Durkin <mdurkin@tsoft.sf-bay.org>

• Naoki Hamada <nao@tom-yam.or.jp>

• Nate Williams <nate@bsd.coe.montana.edu>

• Nick Handel <nhandel@NeoSoft.com> <nick@madhouse.neosoft.com>

• Pace Willisson <pace@blitz.com>

• Paul Kranenburg <pk@cs.few.eur.nl>

• Paul Mackerras <paulus@cs.anu.edu.au>

• Paul Popelka <paulp@uts.amdahl.com>

• Peter da Silva <peter@NeoSoft.com>

• Phil Sutherland <philsuth@mycroft.dialix.oz.au>

• Poul-Henning Kamp<phk@FreeBSD.ORG>

• Ralf Friedl <friedl@informatik.uni-kl.de>

• Rick Macklem <root@snowhite.cis.uoguelph.ca>

FreeBSD Handbook 315

• Robert D. Thrush <rd@phoenix.aii.com>

• Rodney W. Grimes <rgrimes@cdrom.com>

• Sascha Wildner <swildner@channelz.GUN.de>

• Scott Burris <scott@pita.cns.ucla.edu>

• Scott Reynolds <scott@clmqt.marquette.mi.us>

• Sean Eric Fagan <sef@kithrup.com>

• Simon J Gerraty <sjg@melb.bull.oz.au> <sjg@zen.void.oz.au>

• Stephen McKay <syssgm@devetir.qld.gov.au>

• Terry Lambert <terry@icarus.weber.edu>

• Terry Lee <terry@uivlsi.csl.uiuc.edu>

• Tor Egge <Tor.Egge@idi.ntnu.no>

• Warren Toomey <wkt@csadfa.cs.adfa.oz.au>

• Wiljo Heinen <wiljo@freeside.ki.open.de>

• William Jolitz <withheld>

• Wolfgang Solfrank <ws@tools.de>

• Wolfgang Stanglmeier <wolf@dentaro.GUN.de>

• Yuval Yarom <yval@cs.huji.ac.il>

FreeBSD Handbook 316

20. Source Tree Guidelines and Policies
"

Contributed by Poul-Henning Kamp <phk@FreeBSD.ORG>.

This chapter documents various guidelines and policies in force for the FreeBSD source tree.

20.1 MAINTAINER on Makefiles
"

June 1996.

If a particular portion of the FreeBSD distribution is being maintained by a person or group of
persons, they can communicate this fact to the world by adding a

MAINTAINER= email-addresses

line to the makefiles covering this portion of the source tree.

The semantics of this are as follows:

The maintainer owns and is responsible for that code. This means that he is responsible for fixing
bugs and answer problem reports pertaining to that piece of the code, and in the case of con-
tributed software, for tracking new versions, as appropriate.

Changes to directories which have a maintainer defined shall be sent to the maintainer for review
before being committed. Only if the maintainer does not respond for an unacceptable period of
time, to several emails, will it be acceptable to commit changes without review by the maintainer.
However, it is suggested that you try and have the changes reviewed by someone else if at all
possible.

It is of course not acceptable to add a person or group as maintainer unless they agree to assume
this duty. On the other hand it doesn’t have to be a committer and it can easily be a group of
people.

20.2 Contributed Software
June 1996.

Some parts of the FreeBSD distribution consist of software that is actively being maintained out-
side the FreeBSD project. For historical reasons, we call this contributed software. Some examples
are perl, gcc and patch.

Over the last couple of years, various methods have been used in dealing with this type of soft-
ware and all have some number of advantages and drawbacks. No clear winner has emerged.

Since this is the case, after some debate one of these methods has been selected as the "official"
method and will be required for future imports of software of this kind. Furthermore, it is
strongly suggested that existing contributed software converge on this model over time, as it has
significant advantages over the old method, including the ability to easily obtain diffs relative to
the "official" versions of the source by everyone (even without cvs access). This will make it sig-
nificantly easier to return changes to the primary developers of the contributed software.

Ultimately, however, it comes down to the people actually doing the work. If using this model is
particularly unsuited to the package being dealt with, exceptions to these rules may be granted
only with the approval of the core team and with the general consensus of the other developers.
The ability to maintain the package in the future will be a key issue in the decisions.

The Tcl embedded programming language will be used as example of how this model works:

src/contrib/tcl

contains the source as distributed by the maintainers of this package. Parts that are entirely not

FreeBSD Handbook 317

applicable for FreeBSD can be removed. In the case of Tcl, the "mac", "win" and "compat" subdi-
rectories were eliminated before the import

src/lib/libtcl

contains only a "bmake style" Makefile that uses the standard bsd.lib.mk makefile rules to pro-
duce the library and install the documentation.

src/usr.bin/tclsh

contains only a bmake style Makefile which will produce and install the "tclsh" program and its
associated man-pages using the standard bsd.prog.mk rules.

src/tools/tools/tcl_bmake

contains a couple of shell-scripts that can be of help when the tcl software needs updating. These
are not part of the built or installed software.

The important thing here is that the "src/contrib/tcl" directory is created according to the rules: It
is supposed to contain the sources as distributed (on a proper CVS vendor-branch) with as few
FreeBSD-specific changes as possible. The ’easy-import’ tool on freefall will assist in doing the
import, but if there are any doubts on how to go about it, it is imperative that you ask first and
not blunder ahead and hope it "works out". CVS is not forgiving of import accidents and a fair
amount of effort is required to back out major mistakes.

Because of some unfortunate design limitations with CVS’s vendor branches, it is required that
"official" patches from the vendor be applied to the original distributed sources and the result re-
imported onto the vendor branch again. Official patches should never be patched into the
FreeBSD checked out version and "committed", as this destroys the vendor branch coherency and
makes importing future versions rather difficult as there will be conflicts.

Since many packages contain files that are meant for compatibility with other architectures and
environments that FreeBSD, it is permissible to remove parts of the distribution tree that are of no
interest to FreeBSD in order to save space. Files containing copyright notices and release-note
kind of information applicable to the remaining files shall not be removed.

If it seems easier, the "bmake" makefiles can be produced from the dist tree automatically by
some utility, something which would hopefully make it even easier to upgrade to a new version.
If this is done, be sure to check in such utilities (as necessary) in the src/tools directory along with
the port itself so that it is available to future maintainers.

In the src/contrib/tcl level directory, a file called FREEBSD-upgrade should be added and it
should states things like:

• Which files have been left out

• Where the original distribution was obtained from and/or the official master site.

• Where to send patches back to the original authors

• Perhaps an overview of the FreeBSD-specific changes that have been made.

However, please do not import FREEBSD-upgrade with the contributed source. Rather you
should ‘‘cvs add FREEBSD-upgrade ; cvs ci’’ after the initial import. Example wording from
‘‘src/contrib/cpio’’ is below:

FreeBSD Handbook 318

This directory contains virgin sources of the original distribution files
on a "vendor" branch. Do not, under any circumstances, attempt to upgrade
the files in this directory via patches and a cvs commit. New versions or
official-patch versions must be imported.

For the import of GNU cpio 2.4.2, the following files were removed:

INSTALL cpio.info mkdir.c
Makefile.in cpio.texi mkinstalldirs

To upgrade to a newer version of cpio, when it is available:
1. Unpack the new version into an empty directory.

[Do not make ANY changes to the files.]

2. Remove the files listed above and any others that don’t apply to
FreeBSD.

3. Use the command:
cvs import -m ’Virgin import of GNU cpio v<version>’ \

src/contrib/cpio GNU v<version>

For example, to do the import of version 2.4.2, I typed:
cvs import -m ’Virgin import of GNU v2.4.2’ \

src/contrib/cpio GNU v2.4.2

4. Follow the instructions printed out in step 3 to resolve any
conflicts between local FreeBSD changes and the newer version.

Do not, under any circumstances, deviate from this procedure.

To make local changes to cpio, simply patch and commit to the main
branch (aka HEAD). Never make local changes on the GNU branch.

All local changes should be submitted to "cpio@gnu.ai.mit.edu" for
inclusion in the next vendor release.

obrien@freebsd.org - 30 March 1997

20.3 Shared Libraries
"

Contributed by Satoshi Asami <asami@FreeBSD.ORG>, Peter Wemm <peter@FreeBSD.ORG> ,
and David O’Brien <obrien@FreeBSD.ORG> .

9 December 1996.

If you are adding shared library support to a port or other piece of software that doesn’t have
one, the version numbers should follow these rules. Generally, the resulting numbers will have
nothing to do with the release version of the software.

The three principles of shared library building are:

• Start from 1.0

• If there is a change that is backwards compatible, bump minor number

• If there is an incompatible change, bump major number

For instance, added functions and bugfixes result in the minor version number being bumped,
while deleted functions, changed function call syntax etc. will force the major version number to
change.

Stick to version numbers of the form major.minor (x.y). Our dynamic linker does not handle ver-
sion numbers of the form x.y.z well. Any version number after the ‘‘y’’ (ie. the third digit) is

FreeBSD Handbook 319

totally ignored when comparing shared lib version numbers to decide which library to link with.
Given two shared libraries that differ only in the ‘micro’ revision, ld.so will link with the higher
one. Ie: if you link with libfoo.so.3.3.3, the linker only records 3.3 in the headers, and will link
with anything starting with libfoo.so.3.(anything >= 3).(highest available).

Note that ld.so will always use the highest "minor" revision. Ie: it will use libc.so.2.2 in preference
to libc.so.2.0, even if the program was initially linked with libc.so.2.0.

For non-port libraries, it is also our policy to change the shared library version number only once
between releases. When you make a change to a system library that requires the version number
to be bumped, check the Makefile’s commit logs. It is the responsibility of the committer to
ensure that the first such change since the release will result in the shared library version number
in the Makefile to be updated, and any subsequent changes will not.

FreeBSD Handbook 320

21. Adding New Kernel Configuration Options
Contributed by Jörg Wunsch <joerg@FreeBSD.ORG>

Note: You should be familiar with the section about kernel configuration (section 5., page 35) before
reading here.

21.1 What’s a Kernel Option, Anyway?
The use of kernel options is basically described in the kernel configuration (section 5.3, page 36)
section. There’s also an explanation of ‘‘historic’’ and ‘‘new-style’’ options. The ultimate goal is
to eventually turn all the supported options in the kernel into new-style ones, so for people who
correctly did a make depend in their kernel compile directory after running config(8) , the
build process will automatically pick up modified options, and only recompile those files where it
is necessary. Wiping out the old compile directory on each run of config(8) as it is still done
now can then be eliminated again.

Basically, a kernel option is nothing else than the definition of a C preprocessor macro for the ker-
nel compilation process. To make the build truly optional, the corresponding part of the kernel
source (or kernel .h file) must be written with the option concept in mind, i. e. the default must
have been made overridable by the config option. This is usually done with something like:

#ifndef THIS_OPTION
#define THIS_OPTION (some_default_value)
#endif /* THIS_OPTION */

This way, an administrator mentioning another value for the option in his config file will take the
default out of effect, and replace it with his new value. Clearly, the new value will be substituted
into the source code during the preprocessor run, so it must be a valid C expression in whatever
context the default value would have been used.

It is also possible to create value-less options that simply enable or disable a particular piece of
code by embracing it in

#ifdef THAT_OPTION

[your code here]

#endif

Simply mentioning THAT_OPTIONin the config file (with or without any value) will then turn on
the corresponding piece of code.

People familiar with the C language will immediately recognize that everything could be counted
as a ‘‘config option’’ where there is at least a single #ifdef referencing it... However, it’s
unlikely that many people would put

options notyet,notdef

in their config file, and then wonder why the kernel compilation falls over. :-)

Clearly, using arbitrary names for the options makes it very hard to track their usage throughout
the kernel source tree. That is the rationale behind the new-style option scheme, where each
option goes into a separate .h file in the kernel compile directory, which is by convention named
opt_ foo.h. This way, the usual Makefile dependencies could be applied, and make can determine
what needs to be recompiled once an option has been changed.

The old-style option mechanism still has one advantage for local options or maybe experimental
options that have a short anticipated lifetime: since it is easy to add a new #ifdef to the kernel
source, this has already made it a kernel config option. In this case, the administrator using such
an option is responsible himself for knowing about its implications (and maybe manually forcing
the recompilation of parts of his kernel). Once the transition of all supported options has been
done, config(8) will warn whenever an unsupported option appears in the config file, but it

FreeBSD Handbook 321

will nevertheless include it into the kernel Makefile.

21.2 Now What Do I Have to Do for it?
First, edit sys/conf/options (or sys/i386/conf/options. <arch>, e. g.
sys/i386/conf/options.i386), and select an opt_ foo.h file where your new option would
best go into.

If there is already something that comes close to the purpose of the new option, pick this. For
example, options modifying the overall behaviour of the SCSI subsystem can go into
opt_scsi.h . By default, simply mentioning an option in the appropriate option file, say FOO,
implies its value will go into the corresponding file opt_foo.h . This can be overridden on the
right-hand side of a rule by specifying another filename.

If there is no opt_ foo.h already available for the intended new option, invent a new name. Make
it meaningful, and comment the new section in the options[.<arch>] file. config(8) will
automagically pick up the change, and create that file next time it is run. Most options should go
in a header file by themselves..

Packing too many options into a single opt_ foo.h will cause too many kernel files to be rebuilt
when one of the options has been changed in the config file.

Finally, find out which kernel files depend on the new option. Unless you have just invented
your option, and it does not exist anywhere yet,

find /usr/src/sys -name type f | xargs fgrep NEW_OPTION

is your friend in finding them. Go and edit all those files, and add

#include "opt_foo.h"

on top, before all the #include <xxx.h> stuff. This sequence is most important as the options
could override defaults from the regular include files, if the defaults are of the form

#ifndef NEW_OPTION
#define NEW_OPTION (something)
#endif

in the regular header.

Adding an option that overrides something in a system header file (i. e., a file sitting in
/usr/include/sys/) is almost always a mistake. opt_ foo.h cannot be included into those files
since it would break the headers more seriously, but if it is not included, then places that include
it may get an inconsistent value for the option. Yes, there are precedents for this right now, but
that does not make them more correct.

FreeBSD Handbook 322

22. Kernel Debugging
Contributed by Paul Richards <paul@FreeBSD.ORG> and Jörg Wunsch <joerg@FreeBSD.ORG>

22.1 Debugging a Kernel Crash Dump with KGDB
Here are some instructions for getting kernel debugging working on a crash dump. They assume
that you have enough swap space for a crash dump. If you have multiple swap partitions and
the first one is too small to hold the dump, you can configure your kernel to use an alternate
dump device (in the config kernel line), or you can specify an alternate using the dumpon(8)
command. Dumps to non-swap devices, tapes for example, are currently not supported. Config
your kernel using config -g . See Kernel Configuration (section 5., page 35) for details on config-
uring the FreeBSD kernel.

Use the dumpon(8) command to tell the kernel where to dump to (note that this will have to be
done after configuring the partition in question as swap space via swapon(8)). This is normally
arranged via /etc/rc.conf and /etc/rc . Alternatively, you can hard-code the dump device
via the ‘dump’ clause in the ‘config’ line of your kernel config file. This is deprecated and should
be used only if you want a crash dump from a kernel that crashes during booting.

Note: In the following, the term ‘kgdb ’ refers to gdb run in ‘kernel debug mode’. This can be
accomplished by either starting the gdb with the option -k , or by linking and starting it under
the name kgdb . This is not being done by default, however, and the idea is basically deprecated
since the GNU folks do not like their tools to behave differently when called by another name.
This feature may well be discontinued in further releases.

When the kernel has been built make a copy of it, say kernel.debug , and then run strip -d
on the original. Install the original as normal. You may also install the unstripped kernel, but
symbol table lookup time for some programs will drastically increase, and since the whole kernel
is loaded entirely at boot time and cannot be swapped out later, several megabytes of physical
memory will be wasted.

If you are testing a new kernel, for example by typing the new kernel’s name at the boot prompt,
but need to boot a different one in order to get your system up and running again, boot it only
into single user state using the -s flag at the boot prompt, and then perform the following steps:

fsck -p
mount -a -t ufs # so your file system for /var/crash is writable
savecore -N /kernel.panicked /var/crash
exit # ...to multi-user

This instructs savecore(8) to use another kernel for symbol name extraction. It would other-
wise default to the currently running kernel and most likely not do anything at all since the crash
dump and the kernel symbols differ.

Now, after a crash dump, go to /sys/compile/WHATEVER and run kgdb . From kgdb do:

symbol-file kernel.debug
exec-file /var/crash/kernel.0
core-file /var/crash/vmcore.0

and voila, you can debug the crash dump using the kernel sources just like you can for any other
program.

Here is a script log of a kgdb session illustrating the procedure. Long lines have been folded to
improve readability, and the lines are numbered for reference. Despite this, it is a real-world
error trace taken during the development of the pcvt console driver.

FreeBSD Handbook 323

1:Script started on Fri Dec 30 23:15:22 1994
2:uriah # cd /sys/compile/URIAH
3:uriah # kgdb kernel /var/crash/vmcore.1
4:Reading symbol data from /usr/src/sys/compile/URIAH/kernel...done.
5:IdlePTD 1f3000
6:panic: because you said to!
7:current pcb at 1e3f70
8:Reading in symbols for ../../i386/i386/machdep.c...done.
9:(kgdb) where

10:#0 boot (arghowto=256) (../../i386/i386/machdep.c line 767)
11:#1 0xf0115159 in panic ()
12:#2 0xf01955bd in diediedie () (../../i386/i386/machdep.c line 698)
13:#3 0xf010185e in db_fncall ()
14:#4 0xf0101586 in db_command (-266509132, -266509516, -267381073)
15:#5 0xf0101711 in db_command_loop ()
16:#6 0xf01040a0 in db_trap ()
17:#7 0xf0192976 in kdb_trap (12, 0, -272630436, -266743723)
18:#8 0xf019d2eb in trap_fatal (...)
19:#9 0xf019ce60 in trap_pfault (...)
20:#10 0xf019cb2f in trap (...)
21:#11 0xf01932a1 in exception:calltrap ()
22:#12 0xf0191503 in cnopen (...)
23:#13 0xf0132c34 in spec_open ()
24:#14 0xf012d014 in vn_open ()
25:#15 0xf012a183 in open ()
26:#16 0xf019d4eb in syscall (...)
27:(kgdb) up 10
28:Reading in symbols for ../../i386/i386/trap.c...done.
29:#10 0xf019cb2f in trap (frame={tf_es = -260440048, tf_ds = 16, tf_\
30:edi = 3072, tf_esi = -266445372, tf_ebp = -272630356, tf_isp = -27\
31:2630396, tf_ebx = -266427884, tf_edx = 12, tf_ecx = -266427884, tf\
32:_eax = 64772224, tf_trapno = 12, tf_err = -272695296, tf_eip = -26\
33:6672343, tf_cs = -266469368, tf_eflags = 66066, tf_esp = 3072, tf_\
34:ss = -266427884}) (../../i386/i386/trap.c line 283)
35:283 (void) trap_pfault(&frame, FALSE);
36:(kgdb) frame frame->tf_ebp frame->tf_eip
37:Reading in symbols for ../../i386/isa/pcvt/pcvt_drv.c...done.
38:#0 0xf01ae729 in pcopen (dev=3072, flag=3, mode=8192, p=(struct p\
39:roc *) 0xf07c0c00) (../../i386/isa/pcvt/pcvt_drv.c line 403)
40:403 return ((*linesw[tp->t_line].l_open)(dev, tp));
41:(kgdb) list
42:398
43:399 tp->t_state |= TS_CARR_ON;
44:400 tp->t_cflag |= CLOCAL; /* cannot be a modem (:-) */
45:401
46:402 #if PCVT_NETBSD || (PCVT_FREEBSD >= 200)
47:403 return ((*linesw[tp->t_line].l_open)(dev, tp));
48:404 #else
49:405 return ((*linesw[tp->t_line].l_open)(dev, tp, flag));
50:406 #endif /* PCVT_NETBSD || (PCVT_FREEBSD >= 200) */
51:407 }
52:(kgdb) print tp
53:Reading in symbols for ../../i386/i386/cons.c...done.
54:$1 = (struct tty *) 0x1bae
55:(kgdb) print tp->t_line
56:$2 = 1767990816
57:(kgdb) up
58:#1 0xf0191503 in cnopen (dev=0x00000000, flag=3, mode=8192, p=(st\
59:ruct proc *) 0xf07c0c00) (../../i386/i386/cons.c line 126)
60: return ((*cdevsw[major(dev)].d_open)(dev, flag, mode, p));
61:(kgdb) up
62:#2 0xf0132c34 in spec_open ()
63:(kgdb) up
64:#3 0xf012d014 in vn_open ()
65:(kgdb) up

FreeBSD Handbook 324

66:#4 0xf012a183 in open ()
67:(kgdb) up
68:#5 0xf019d4eb in syscall (frame={tf_es = 39, tf_ds = 39, tf_edi =\
69: 2158592, tf_esi = 0, tf_ebp = -272638436, tf_isp = -272629788, tf\
70:_ebx = 7086, tf_edx = 1, tf_ecx = 0, tf_eax = 5, tf_trapno = 582, \
71:tf_err = 582, tf_eip = 75749, tf_cs = 31, tf_eflags = 582, tf_esp \
72:= -272638456, tf_ss = 39}) (../../i386/i386/trap.c line 673)
73:673 error = (*callp->sy_call)(p, args, rval);
74:(kgdb) up
75:Initial frame selected; you cannot go up.
76:(kgdb) quit
77:uriah # exit
78:exit
79:
80:Script done on Fri Dec 30 23:18:04 1994

Comments to the above script:

line 6:
This is a dump taken from within DDB (see below), hence the panic comment
‘‘because you said to!’’, and a rather long stack trace; the initial reason for going into
DDB has been a page fault trap though.

line 20:
This is the location of function trap() in the stack trace.

line 36:
Force usage of a new stack frame; this is no longer necessary now. The stack frames
are supposed to point to the right locations now, even in case of a trap. (I do not
have a new core dump handy <g>, my kernel has not panicked for a rather long
time.) From looking at the code in source line 403, there is a high probability that
either the pointer access for ‘‘tp’’ was messed up, or the array access was out of
bounds.

line 52:
The pointer looks suspicious, but happens to be a valid address.

line 56:
However, it obviously points to garbage, so we have found our error! (For those
unfamiliar with that particular piece of code: tp->t_line refers to the line disci-
pline of the console device here, which must be a rather small integer number.)

22.2 Post-mor tem Analysis of a Dump
What do you do if a kernel dumped core but you did not expect it, and it is therefore not com-
piled using config -g ? Not everything is lost here. Do not panic!

Of course, you still need to enable crash dumps. See above on the options you have to specify in
order to do this.

Go to your kernel compile directory, and edit the line containing COPTFLAGS?=-O. Add the -g
option there (but do not change anything on the level of optimization). If you do already know
roughly the probable location of the failing piece of code (e.g., the pcvt driver in the example
above), remove all the object files for this code. Rebuild the kernel. Due to the time stamp change
on the Makefile, there will be some other object files rebuild, for example trap.o . With a bit of
luck, the added -g option will not change anything for the generated code, so you will finally get
a new kernel with similar code to the faulting one but some debugging symbols. You should at
least verify the old and new sizes with the size(1) command. If there is a mismatch, you proba-
bly need to give up here.

FreeBSD Handbook 325

Go and examine the dump as described above. The debugging symbols might be incomplete for
some places, as can be seen in the stack trace in the example above where some functions are dis-
played without line numbers and argument lists. If you need more debugging symbols, remove
the appropriate object files and repeat the kgdb session until you know enough.

All this is not guaranteed to work, but it will do it fine in most cases.

22.3 On-line Kernel Debugging Using DDB
While kgdb as an offline debugger provides a very high level of user interface, there are some
things it cannot do. The most important ones being breakpointing and single-stepping kernel
code.

If you need to do low-level debugging on your kernel, there is an on-line debugger available
called DDB. It allows to setting breakpoints, single-steping kernel functions, examining and
changing kernel variables, etc. However, it cannot access kernel source files, and only has access
to the global and static symbols, not to the full debug information like kgdb .

To configure your kernel to include DDB, add the option line

options DDB

to your config file, and rebuild. (See Kernel Configuration (section 5., page 35) for details on config-
uring the FreeBSD kernel. Note that if you have an older version of the boot blocks, your debug-
ger symbols might not be loaded at all. Update the boot blocks; the recent ones load the DDB
symbols automagically.)

Once your DDB kernel is running, there are several ways to enter DDB. The first, and earliest
way is to type the boot flag -d right at the boot prompt. The kernel will start up in debug mode
and enter DDB prior to any device probing. Hence you can even debug the device probe/attach
functions.

The second scenario is a hot-key on the keyboard, usually Ctrl-Alt-ESC. For syscons, this can be
remapped; some of the distributed maps do this, so watch out. There is an option available for
serial consoles that allows the use of a serial line BREAK on the console line to enter DDB
(‘‘options BREAK_TO_DEBUGGER’’ in the kernel config file). It is not the default since there are
a lot of crappy serial adapters around that gratuitously generate a BREAK condition, for example
when pulling the cable.

The third way is that any panic condition will branch to DDB if the kernel is configured to use it.
For this reason, it is not wise to configure a kernel with DDB for a machine running unattended.

The DDB commands roughly resemble some gdb commands. The first thing you probably need
to do is to set a breakpoint:

b function-name
b address

Numbers are taken hexadecimal by default, but to make them distinct from symbol names; hex-
adecimal numbers starting with the letters a-f need to be preceded with 0x (this is optional for
other numbers). Simple expressions are allowed, for example: function-name + 0x103 .

To continue the operation of an interrupted kernel, simply type

c

To get a stack trace, use

trace

Note that when entering DDB via a hot-key, the kernel is currently servicing an interrupt, so the

FreeBSD Handbook 326

stack trace might be not of much use for you.

If you want to remove a breakpoint, use

del
del address-expression

The first form will be accepted immediately after a breakpoint hit, and deletes the current break-
point. The second form can remove any breakpoint, but you need to specify the exact address;
this can be obtained from

show b

To single-step the kernel, try

s

This will step into functions, but you can make DDB trace them until the matching return state-
ment is reached by

n

Note: this is different from gdb ’s ‘next’ statement; it is like gdb ’s ‘finish’.

To examine data from memory, use (for example):

x/wx 0xf0133fe0,40
x/hd db_symtab_space
x/bc termbuf,10
x/s stringbuf

for word/halfword/byte access, and hexadecimal/decimal/character/ string display. The num-
ber after the comma is the object count. To display the next 0x10 items, simply use

x ,10

Similarly, use

x/ia foofunc,10

to disassemble the first 0x10 instructions of foofunc , and display them along with their offset
from the beginning of foofunc .

To modify memory, use the write command:

w/b termbuf 0xa 0xb 0
w/w 0xf0010030 0 0

The command modifier (b/h/w) specifies the size of the data to be written, the first following
expression is the address to write to and the remainder is interpreted as data to write to succes-
sive memory locations.

If you need to know the current registers, use

show reg

Alternatively, you can display a single register value by e.g.

p $eax

FreeBSD Handbook 327

and modify it by

set $eax new-value

Should you need to call some kernel functions from DDB, simply say

call func(arg1, arg2, ...)

The return value will be printed.

For a ps(1) style summary of all running processes, use

ps

Now you have now examined why your kernel failed, and you wish to reboot. Remember that,
depending on the severity of previous malfunctioning, not all parts of the kernel might still be
working as expected. Perform one of the following actions to shut down and reboot your system:

call diediedie()

This will cause your kernel to dump core and reboot, so you can later analyze the core on a
higher level with kgdb. This command usually must be followed by another ‘continue ’ state-
ment. There is now an alias for this: ‘panic ’.

call boot(0)

might be a good way to cleanly shut down the running system, sync() all disks, and finally
reboot. As long as the disk and file system interfaces of the kernel are not damaged, this might be
a good way for an almost clean shutdown.

call cpu_reset()

is the final way out of disaster and almost the same as hitting the Big Red Button.

If you need a short command summary, simply type

help

However, it is highly recommended to have a printed copy of the ddb(4) manual page ready for
a debugging session. Remember that it is hard to read the on-line manual while single-stepping
the kernel.

22.4 On-line Kernel Debugging Using Remote GDB
This feature has been supported since FreeBSD 2.2, and it’s actually a very neat one.

GDB has already supported remote debugging for a long time. This is done using a very simple
protocol along a serial line. Unlike the other methods described above, you will need two
machines for doing this. One is the host providing the debugging environment, including all the
sources, and a copy of the kernel binary with all the symbols in it, and the other one is the target
machine that simply runs a similar copy of the very same kernel (but stripped of the debugging
information).

You should configure the kernel in question with config -g , include DDB into the configura-
tion, and compile it as usual. This gives a large blurb of a binary, due to the debugging informa-
tion. Copy this kernel to the target machine, strip the debugging symbols off with strip -x ,
and boot it using the -d boot option. Connect the first serial line of the target machine to any
serial line of the debugging host. Now, on the debugging machine, go to the compile directory of
the target kernel, and start gdb:

FreeBSD Handbook 328

% gdb -k kernel
GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.16 (i386-unknown-freebsd),
Copyright 1996 Free Software Foundation, Inc...
(kgdb)

Initialize the remote debugging session (assuming the first serial port is being used) by:

(kgdb) target remote /dev/cuaa0

Now, on the target host (the one that entered DDB right before even starting the device probe),
type:

Debugger("Boot flags requested debugger")
Stopped at Debugger+0x35: movb $0, edata+0x51bc
db> gdb

DDB will respond with:

Next trap will enter GDB remote protocol mode

Every time you type ‘‘gdb’’, the mode will be toggled between remote GDB and local DDB. In
order to force a next trap immediately, simply type ‘‘s’’ (step). Your hosting GDB will now gain
control over the target kernel:

Remote debugging using /dev/cuaa0
Debugger (msg=0xf01b0383 "Boot flags requested debugger")

at ../../i386/i386/db_interface.c:257
(kgdb)

You can use this session almost as any other GDB session, including full access to the source, run-
ning it in gud-mode inside an Emacs window (which gives you an automatic source code display
in another Emacs window) etc.

Remote GDB can also be used to debug LKMs. First build the LKM with debugging symbols:

cd /usr/src/lkm/linux
make clean; make COPTS=-g

Then install this version of the module on the target machine, load it and use modstat to find
out where it was loaded:

linux
modstat
Type Id Off Loadaddr Size Info Rev Module Name
EXEC 0 4 f5109000 001c f510f010 1 linux_mod

Take the load address of the module and add 0x20 (probably to account for the a.out header).
This is the address that the module code was relocated to. Use the add-symbol-file com-
mand in GDB to tell the debugger about the module:

(kgdb) add-symbol-file /usr/src/lkm/linux/linux_mod.o 0xf5109020
add symbol table from file "/usr/src/lkm/linux/linux_mod.o" at
text_addr = 0xf5109020?
(y or n) y
(kgdb)

You now have access to all the symbols in the LKM.

22.5 Debugging a Console Driver
Since you need a console driver to run DDB on, things are more complicated if the console driver
itself is failing. You might remember the use of a serial console (either with modified boot blocks,
or by specifying -h at the Boot: prompt), and hook up a standard terminal onto your first serial
port. DDB works on any configured console driver, of course also on a serial console.

FreeBSD Handbook 329

23. Linux Emulation
Contributed by Brian N. Handy <handy@sxt4.physics.montana.edu> and Rich Murphey
<rich@FreeBSD.ORG>

23.1 How to Install the Linux Emulator
Linux emulation in FreeBSD has reached a point where it is possible to run a large fraction of
Linux binaries in both a.out and ELF format. The linux emulation in the 2.1-STABLE branch is
capable of running Linux DOOM and Mathematica; the version present in FreeBSD-2.2-RELEASE
is vastly more capable and runs all these as well as Quake, Abuse, IDL, netrek for Linux and a
whole host of other programs.

There are some Linux-specific operating system features that are not supported on FreeBSD.
Linux binaries will not work on FreeBSD if they use the Linux /proc filesystem (which is differ-
ent from the optional FreeBSD /proc filesystem) or i386-specific calls, such as enabling virtual
8086 mode.

To tell whether your kernel is configured for Linux compatibility simply run any Linux binary. If
it prints the error message

linux-executable: Exec format error. Wrong Architecture.

then you do not have linux compatibility support and you need to configure and install a new
kernel.

Depending on which version of FreeBSD you are running, how you get Linux-emulation up will
vary slightly:

23.1.1 Installing Linux Emulation in 2.1-STABLE

The GENERIC kernel in 2.1-STABLE is not configured for linux compatibility so you must recon-
figure your kernel for it. There are two ways to do this: 1. linking the emulator statically in the
kernel itself and 2. configuring your kernel to dynamically load the linux loadable kernel module
(LKM).

To enable the emulator, add the following to your configuration file (c.f. /sys/i386/conf/LINT):

options COMPAT_LINUX

If you want to run doom or other applications that need shared memory, also add the following.

options SYSVSHM

The linux system calls require 4.3BSD system call compatibility. So make sure you have the fol-
lowing.

options "COMPAT_43"

If you prefer to statically link the emulator in the kernel rather than use the loadable kernel mod-
ule (LKM), then add

options LINUX

Then run config and install the new kernel as described in the kernel configuration (section 5., page
35) section.

If you decide to use the LKM you must also install the loadable module. A mismatch of versions
between the kernel and loadable module can cause the kernel to crash, so the safest thing to do is
to reinstall the LKM when you install the kernel.

FreeBSD Handbook 330

% cd /usr/src/lkm/linux
% make all install

Once you have installed the kernel and the LKM, you can invoke ‘linux’ as root to load the LKM.

% linux
Linux emulator installed
Module loaded as ID 0
%

To see whether the LKM is loaded, run ‘modstat’.

% modstat
Type Id Off Loadaddr Size Info Rev Module Name
EXEC 0 3 f0baf000 0018 f0bb4000 1 linux_emulator
%

You can cause the LKM to be loaded when the system boots in either of two ways. In FreeBSD
2.2.1-RELEASE and 2.1-STABLE enable it in /etc/sysconfig

linux=YES

by changing it from NO to YES. FreeBSD 2.1 RELEASE and earlier do not have such a line and
on those you will need to edit /etc/rc.local to add the following line.

linux

23.1.2 Installing Linux Emulation in 2.2.2-RELEASE and later

It is no longer necessary to specify ‘‘options LINUX’’ or ‘‘options COMPAT_LINUX’’. Linux
emulation is done with an LKM (‘‘Loadable Kernel Module’’) so it can be installed on the fly
without having to reboot. You will need the following things in your startup files, however:

1. In /etc/rc.conf, you need the following line:

linux_enable=YES

2. This, in turn, triggers the following action in /etc/rc.i386:

Start the Linux binary emulation if requested.
if ["X${linux_enable}" = X"YES"]; then

echo -n ’ linux’; linux > /dev/null 2>&1
fi

If you want to verify it is running, modstat will do that:

% modstat
Type Id Off Loadaddr Size Info Rev Module Name
EXEC 0 4 f09e6000 001c f09ec010 1 linux_mod
%

However, there have been reports that this fails on some 2.2-RELEASE and later systems. If for
some reason you cannot load the linux LKM, then statically link the emulator in the kernel by
adding

options LINUX

to your kernel config file. Then run config and install the new kernel as described in the kernel
configuration (section 5., page 35) section.

FreeBSD Handbook 331

23.1.3 Installing Linux Runtime Libraries

23.1.3.1 Installing using the linux_lib port

Most linux applications use shared libraries, so you are still not done until you install the shared
libraries. It is possible to do this by hand, however, it is vastly simpler to just grab the linux_lib
port:

% cd /usr/ports-current/emulators/linux_lib
% make all install

and you should have a working linux emulator. Legend (and the mail archives :-) seems to hold
that Linux emulation works best with linux binaries linked against the ZMAGIC libraries;
QMAGIC libraries (such as those used in Slackware V2.0) may tend to give the Linuxulator heart-
burn. As of this writing (March 1996) ELF emulation is still in the formulative stages but seems
to work pretty well. Also, expect some programs to complain about incorrect minor versions. In
general this does not seem to be a problem.

23.1.3.2 Installing libraries manually

If you do not have the ‘‘ports’’ distribution, you can install the libraries by hand instead. You will
need the Linux shared libraries that the program depends on and the runtime linker. Also, you
will need to create a "shadow root" directory, /compat/linux, for Linux libraries on your FreeBSD
system. Any shared libraries opened by Linux programs run under FreeBSD will look in this tree
first. So, if a Linux program loads, for example, /lib/libc.so, FreeBSD will first try to open /com-
pat/linux/lib/libc.so, and if that does not exist then it will try /lib/libc.so. Shared libraries
should be installed in the shadow tree /compat/linux/lib rather than the paths that the Linux
ld.so reports.

FreeBSD-2.2-RELEASE and later works slightly differently with respect to /compat/linux. On
-CURRENT, all files, not just libraries, are searched for from the ‘‘shadow root’’ /compat/linux.

Generally, you will need to look for the shared libraries that Linux binaries depend on only the
first few times that you install a Linux program on your FreeBSD system. After a while, you will
have a sufficient set of Linux shared libraries on your system to be able to run newly imported
Linux binaries without any extra work.

23.1.3.3 How to install additional shared libraries

What if you install the linux_lib port and your application still complains about missing shared
libraries? How do you know which shared libraries Linux binaries need, and where to get them?
Basically, there are 2 possibilities (when following these instructions: you will need to be root on
your FreeBSD system to do the necessary installation steps).

If you have access to a Linux system, see what shared libraries it needs, and copy them to your
FreeBSD system. Example: you have just ftp’ed the Linux binary of Doom. Put it on the Linux
system you have access to, and check which shared libraries it needs by running ‘ldd lin-
uxxdoom’:

% ldd linuxxdoom
libXt.so.3 (DLL Jump 3.1) => /usr/X11/lib/libXt.so.3.1.0
libX11.so.3 (DLL Jump 3.1) => /usr/X11/lib/libX11.so.3.1.0
libc.so.4 (DLL Jump 4.5pl26) => /lib/libc.so.4.6.29

You would need to get all the files from the last column, and put them under /compat/linux,
with the names in the first column as symbolic links pointing to them. This means you eventually
have these files on your FreeBSD system:

FreeBSD Handbook 332

/compat/linux/usr/X11/lib/libXt.so.3.1.0
/compat/linux/usr/X11/lib/libXt.so.3 -> libXt.so.3.1.0
/compat/linux/usr/X11/lib/libX11.so.3.1.0
/compat/linux/usr/X11/lib/libX11.so.3 -> libX11.so.3.1.0
/compat/linux/lib/libc.so.4.6.29
/compat/linux/lib/libc.so.4 -> libc.so.4.6.29

Note that if you already have a Linux shared library with a matching major revision number to
the first column of the ’ldd’ output, you will not need to copy the file named in the last column to
your system, the one you already have should work. It is advisable to copy the shared library
anyway if it is a newer version, though. You can remove the old one, as long as you make the
symbolic link point to the new one. So, if you have these libraries on your system:

/compat/linux/lib/libc.so.4.6.27
/compat/linux/lib/libc.so.4 -> libc.so.4.6.27

and you find a new binary that claims to require a later version according to the output of ldd:

libc.so.4 (DLL Jump 4.5pl26) -> libc.so.4.6.29

If it is only one or two versions out of date in the in the trailing digit then do not worry about
copying /lib/libc.so.4.6.29 too, because the program should work fine with the slightly older ver-
sion. However, if you like you can decide to replace the libc.so anyway, and that should leave
you with:

/compat/linux/lib/libc.so.4.6.29
/compat/linux/lib/libc.so.4 -> libc.so.4.6.29

Please note that the symbolic link mechanism is only needed for Linux binaries. The FreeBSD
runtime linker takes care of looking for matching major revision numbers itself and you do not
need to worry about it.

23.1.3.4 Configuring the ld.so -- for FreeBSD 2.2-RELEASE only

This section applies only to FreeBSD 2.2-RELEASE and later. Those running 2.1-STABLE should
skip this section.

Finally, if you run FreeBSD 2.2-RELEASE you must make sure that you have the Linux runtime
linker and its config files on your system. You should copy these files from the Linux system to
their appropriate place on your FreeBSD system (to the /compat/linux tree):

/compat/linux/lib/ld.so
/compat/linux/etc/ld.so.config

If you do not have access to a Linux system, you should get the extra files you need from various
ftp sites. Information on where to look for the various files is appended below. For now, let us
assume you know where to get the files.

Retrieve the following files (all from the same ftp site to avoid any version mismatches), and
install them under /compat/linux (i.e. /foo/bar is installed as /compat/linux/foo/bar):

/sbin/ldconfig
/usr/bin/ldd
/lib/libc.so.x.y.z
/lib/ld.so

ldconfig and ldd do not necessarily need to be under /compat/linux; you can install them else-
where in the system too. Just make sure they do not conflict with their FreeBSD counterparts. A
good idea would be to install them in /usr/local/bin as ldconfig-linux and ldd-linux.

Create the file /compat/linux/etc/ld.so.conf, containing the directories in which the Linux run-
time linker should look for shared libs. It is a plain text file, containing a directory name on each
line. /lib and /usr/lib are standard, you could add the following:

/usr/X11/lib
/usr/local/lib

FreeBSD Handbook 333

When a linux binary opens a library such as /lib/libc.so the emulator maps the name to /com-
pat/linux/lib/libc.so internally. All linux libraries should be installed under /compat/linux
(e.g. /compat/linux/lib/libc.so, /compat/linux/usr/X11/lib/libX11.so, etc.) in order for the
emulator to find them.

Those running FreeBSD 2.2-RELEASE should run the Linux ldconfig program.

% cd /compat/linux/lib
% /compat/linux/sbin/ldconfig

Ldconfig is statically linked, so it does not need any shared libraries to run. It creates the file
/compat/linux/etc/ld.so.cache which contains the names of all the shared libraries and should
be rerun to recreate this file whenever you install additional shared libraries.

On 2.1-STABLE do not install /compat/linux/etc/ld.so.cache or run ldconfig; in 2.1-STABLE the
syscalls are implemented differently and ldconfig is not needed or used.

You should now be set up for Linux binaries which only need a shared libc. You can test this by
running the Linux ldd on itself. Supposing that you have it installed as ldd-linux, it should pro-
duce something like:

% ldd-linux ‘which ldd-linux‘
libc.so.4 (DLL Jump 4.5pl26) => /lib/libc.so.4.6.29

This being done, you are ready to install new Linux binaries. Whenever you install a new Linux
program, you should check if it needs shared libraries, and if so, whether you have them installed
in the /compat/linux tree. To do this, you run the Linux version ldd on the new program, and
watch its output. ldd (see also the manual page for ldd(1)) will print a list of shared libraries that
the program depends on, in the form majorname (jumpversion) => fullname.

If it prints "not found" instead of fullname it means that you need an extra library. The library
needed is shown in majorname and will be of the form libXXXX.so.N. You will need to find a
libXXXX.so.N.mm on a Linux ftp site, and install it on your system. The XXXX (name) and N
(major revision number) should match; the minor number(s) mm are less important, though it is
advised to take the most recent version.

23.1.4 Configuring the host name resolver

If DNS does not work or you get the messages

resolv+: "bind" is an invalid keyword
resolv+: "hosts" is an invalid keyword

then you need to configure a /compat/linux/etc/host.conf file containing:

order hosts, bind
multi on

where the order here specifies that /etc/hosts is searched first and DNS is searched second.
When /compat/linux/etc/host.conf is not installed linux applications find FreeBSD’s
/etc/host.conf and complain about the incompatible FreeBSD syntax. You should remove ‘bind,’
if you have not configured a name-server using the /etc/resolv.conf file.

Lastly, those who run 2.1-STABLE need to set an the RESOLV_HOST_CONF environment vari-
able so that applications will know how to search the host tables. If you run FreeBSD
2.2-RELEASE, you can skip this. For the /bin/csh shell use:

setenv RESOLV_HOST_CONF /compat/linux/etc/host.conf

For /bin/sh use:

RESOLV_HOST_CONF=/compat/linux/etc/host.conf; export RESOLV_HOST_CONF

FreeBSD Handbook 334

23.1.5 Finding the necessary files

Note: the information below is valid as of the time this document was written, but certain details
such as names of ftp sites, directories and distribution names may have changed by the time you
read this.

Linux is distributed by several groups that make their own set of binaries that they distribute.
Each distribution has its own name, like ‘‘Slackware’’ or ‘‘Yggdrasil’’. The distributions are avail-
able on a lot of ftp sites. Sometimes the files are unpacked, and you can get the individual files
you need, but mostly they are stored in distribution sets, usually consisting of subdirectories with
gzipped tar files in them. The primary ftp sites for the distributions are:

sunsite.unc.edu:/pub/Linux/distributions
tsx-11.mit.edu:/pub/linux/distributions

Some European mirrors:

ftp.luth.se:/pub/linux/distributions
ftp.demon.co.uk:/pub/linux/distributions
src.doc.ic.ac.uk:/packages/linux/distributions

For simplicity, let us concentrate on Slackware here. This distribution consists of a number of sub-
directories, containing separate packages. Normally, they are controlled by an install program,
but you can retrieve files "by hand" too. First of all, you will need to look in the "contents" subdir
of the distribution. You will find a lot of small text files here describing the contents of the sepa-
rate packages. The fastest way to look something up is to retrieve all the files in the contents sub-
directory, and grep through them for the file you need. Here is an example of a list of files that
you might need, and in which contents-file you will find it by grepping through them:

Library Package
ld.so ldso
ldconfig ldso
ldd ldso
libc.so.4 shlibs
libX11.so.6.0 xf_lib
libXt.so.6.0 xf_lib
libX11.so.3 oldlibs
libXt.so.3 oldlibs

So, in this case, you will need the packages ldso, shlibs, xf_lib and oldlibs. In each of the con-
tents-files for these packages, look for a line saying ‘‘PACKAGE LOCATION’’, it will tell you on
which ‘disk’ the package is, in our case it will tell us in which subdirectory we need to look. For
our example, we would find the following locations:

Package Location
ldso diska2
shlibs diska2
oldlibs diskx6
xf_lib diskx9

The locations called ‘‘diskXX’’ refer to the ‘‘slakware/XX’’ subdirectories of the distribution, oth-
ers may be found in the ‘‘contrib’’ subdirectory. In this case, we could now retrieve the packages
we need by retrieving the following files (relative to the root of the Slackware distribution tree):

slakware/a2/ldso.tgz
slakware/a2/shlibs.tgz
slakware/x6/oldlibs/tgz
slakware/x9/xf_lib.tgz

Extract the files from these gzipped tarfiles in your /compat/linux directory (possibly omitting or
afterwards removing files you do not need), and you are done.

FreeBSD Handbook 335

See also:

ftp.freebsd.org:pub/FreeBSD/2.0.5-RELEASE/xperimnt/linux-emu/README

/usr/src/sys/i386/ibcs2/README.iBCS2

23.2 How to Install Mathematica on FreeBSD
Contributed by Rich Murphey <rich@FreeBSD.ORG> and Chuck Robey
<chuckr@glue.umd.edu>

This document shows how to install the Linux binary distribution of Mathematica 2.2 on FreeBSD
2.1.

Mathematica supports Linux but not FreeBSD as it stands. So once you have configured your
system for Linux compatibility you have most of what you need to run Mathematica.

For those who already have the student edition of Mathematica for DOS the cost of upgrading to
the Linux version at the time this was written, March 1996, was $45.00. It can be ordered directly
from Wolfram at (217) 398-6500 and paid for by credit card.

23.2.1 Unpacking the Mathematica distribution

The binaries are currently distributed by Wolfram on CDROM. The CDROM has about a dozen
tar files, each of which is a binary distribution for one of the supported architectures. The one for
Linux is named LINUX.TAR. You can, for example, unpack this into /usr/local/Mathematica:

% cd /usr/local
% mkdir Mathematica
% cd Mathematica
% tar -xvf /cdrom/LINUX.TAR

23.2.2 Obtaining your Mathematica Password

Before you can run Mathematica you will have to obtain a password from Wolfram that corre-
sponds to your ‘machine ID.’

Once you have installed the linux compatibility runtime libraries and unpacked the mathematica
you can obtain the ‘machine ID’ by running the program ‘mathinfo’ in the Install directory.

% cd /usr/local/Mathematica/Install
% mathinfo
LINUX: ’ioctl’ fd=5, typ=0x89(), num=0x27 not implemented
richc.isdn.bcm.tmc.edu 9845-03452-90255
%

So, for example, the ‘machine ID’ of ‘richc’ is ‘9845-03452-90255’. You can ignore the message
about the ioctl that is not implemented. It will not prevent Mathematica from running in any
way and you can safely ignore it, though you will see the message every time you run Mathemat-
ica.

When you register with Wolfram, either by email, phone or fax, you will give them the ’machine
ID’ and they will respond with a corresponding password consisting of groups of numbers. You
need to add them both along with the machine name and license number in your mathpass file.

You can do this by invoking:

% cd /usr/local/Mathematica/Install
% math.install

It will ask you to enter your license number and the Wolfram supplied password. If you get them
mixed up or for some reason the math.install fails, that is OK; you can simply edit the file ’math-
pass’ in this same directory to correct the info manually.

FreeBSD Handbook 336

After getting past the password, math.install will ask you if you accept the install defaults pro-
vided, or if you want to use your own. If you are like us and distrust all install programs, you
probably want to specify the actual directories. Beware. Although the math.install program asks
you to specify directories, it will not create them for you, so you should perhaps have a second
window open with another shell so that you can create them before you give them to the install
program. Or, if it fails, you can create the directories and then restart the math.install program.
The directories we chose to create beforehand and specify to math.install were:

/usr/local/Mathematica/bin for binaries
/usr/local/Mathematica/man/man1 for man pages
/usr/local/Mathematica/lib/X11 for the XKeysymb file

You can also tell it to use /tmp/math.record for the system record file, where it puts logs of ses-
sions. After this math.install will continue on to unpacking things and placing everything where
it should go.

The Mathematica Notebook feature is included separately, as the X Front End, and you have to
install it separately. To get the X Front End stuff correctly installed, cd into the /usr/local/Math-
ematica/FrontEnd directory and execute the ./xfe.install shell script. You will have to tell it
where to put things, but you do not have to create any directories because it will use the same
directories that had been created for math.install. When it finishes, there should be a new shell
script in /usr/local/Mathematica/bin called "mathematica".

Lastly, you need to modify each of the shell scripts that Mathematica has installed. At the begin-
ning of every shell script in /usr/local/Mathematica/bin add the following line:

XKEYSYMDB=/usr/local/Mathematica/lib/X11/XKeysymDB; export XKEYSYMDB

This tells Mathematica were to find its own version of the key mapping file XKeysymDB. With-
out this you will get pages of error messages about missing key mappings.

On 2.1-STABLE you need to add the following as well:

RESOLV_HOST_CONF=/compat/linux/etc/host.conf; export RESOLV_HOST_CONF

This tells Mathematica to use the linux version of host.conf. This file has a different syntax from
FreeBSD’s host.conf, so you will get an error message about /etc/host.conf if you leave this out.

You might also want to modify your /etc/manpath.config file to read the new man directory, and
you may need to edit your ˜/.cshrc file to add /usr/local/Mathematica/bin to your path.

That is about all it takes. With this you should be able to type "mathematica" and get a really slick
looking Mathematica Notebook screen up. Mathematica has included the Motif user interfaces,
but it is compiled in statically, so you do not need the Motif libraries. Good luck doing this your-
self!

23.2.3 Bugs

The Notebook front end is known to hang sometimes when reading notebook files with an error
messages similar to:

File .../Untitled-1.mb appears to be broken for OMPR.257.0

We have not found the cause for this, but it only affects the Notebook’s X Window front end, not
the mathematica engine itself. So the command line interface invoked by ’math’ is unaffected by
this bug.

FreeBSD Handbook 337

23.2.4 Acknowledgments

A well-deserved thanks should go to Søren Schmidt <sos@FreeBSD.ORG> and Peter Wemm
<peter@FreeBSD.ORG> who made linux emulation what it is today, and Michael Smith who
drove these two guys like dogs to get it to the point where it runs Linux binaries better than
linux! :-)

FreeBSD Handbook 338

24. FreeBSD Internals
24.1 The FreeBSD Booting Process
Contributed by Poul-Henning Kamp <phk@FreeBSD.ORG>. v1.1, April 26th.

Booting FreeBSD is essentially a three step process: load the kernel, determine the root filesystem
and initialize user-land things. This leads to some interesting possibilities shown below.

24.1.1 Loading a kernel

We presently have three basic mechanisms for loading the kernel as described below: they all
pass some information to the kernel to help the kernel decide what to do next.

Biosboot
Biosboot is our ‘‘bootblocks’’. It consists of two files which will be installed in the
first 8Kbytes of the floppy or hard-disk slice to be booted from.

Biosboot can load a kernel from a FreeBSD filesystem.

Dosboot
Dosboot was written by DI. Christian Gusenbauer, and is unfortunately at this time
one of the few pieces of code that will not compile under FreeBSD itself because it is
written for Microsoft compilers.

Dosboot will boot the kernel from a MS-DOS file or from a FreeBSD filesystem par-
tition on the disk. It attempts to negotiate with the various and strange kinds of
memory manglers that lurk in high memory on MS/DOS systems and usually wins
them for its case.

Netboot
Netboot will try to find a supported Ethernet card, and use BOOTP, TFTP and NFS
to find a kernel file to boot.

24.1.2 Determine the root filesystem

Once the kernel is loaded and the boot-code jumps to it, the kernel will initialize itself, trying to
determine what hardware is present and so on; it then needs to find a root filesystem.

Presently we support the following types of root filesystems:

UFS
This is the most normal type of root filesystem. It can reside on a floppy or on hard
disk.

MSDOS
While this is technically possible, it is not particular useful because of the ‘‘FAT’’
filesystem’s inability to deal with links, device nodes and other such ‘‘UNIXisms’’.

MFS
This is actually a UFS filesystem which has been compiled into the kernel. That
means that the kernel does not really need any hard disks, floppies or other hard-
ware to function.

CD9660
This is for using a CD-ROM as root filesystem.

NFS
This is for using a fileserver as root filesystem, basically making it a diskless
machine.

FreeBSD Handbook 339

24.1.3 Initialize user-land things

To get the user-land going, the kernel, when it has finished initialization, will create a process
with ‘‘pid == 1 ’’ and execute a program on the root filesystem; this program is normally
‘‘/sbin/init ’’.

You can substitute any program for /sbin/init, as long as you keep in mind that:

there is no stdin/out/err unless you open it yourself. If you exit, the machine panics. Signal han-
dling is special for ‘‘pid == 1 ’’.

An example of this is the ‘‘/stand/sysinstall ’’ program on the installation floppy.

24.1.4 Interesting combinations

Boot a kernel with a MFS in it with a special /sbin/init which...

A -- Using DOS

• mounts your C: as /C:

• Attaches C:/freebsd.fs on /dev/vn0

• mounts /dev/vn0 as /rootfs

• makes symlinks

/rootfs/bin -> /bin

/rootfs/etc -> /etc

/rootfs/sbin -> /sbin

(etc...)

Now you are running FreeBSD without repartitioning your hard disk...

B -- Using NFS
NFS mounts your server:˜you/FreeBSD as /nfs , chroots to /nfs and executes
/sbin/init there

Now you are running FreeBSD diskless, even though you do not control the NFS
server...

C -- Start an X-server
Now you have an X-terminal, which is better than that dingy X-under-windows-so-
slow-you-can-see-what-it-does thing that your boss insist is better than forking out
money on hardware.

D -- Using a tape
Takes a copy of /dev/rwd0 and writes it to a remote tape station or fileserver.

Now you finally get that backup you should have made a year ago...

E -- Acts as a firewall/web-server/what do I know...
This is particularly interesting since you can boot from a write- protected floppy,
but still write to your root filesystem...

24.2 PC Memor y Utilization
Contributed by Jörg Wunsch <joerg@FreeBSD.ORG> .

16 Apr 1995.

FreeBSD Handbook 340

A short description of how FreeBSD uses memory on the i386 platform

The boot sector will be loaded at 0:0x7c00 , and relocates itself immediately to 0x7c0:0 . (This
is nothing magic, just an adjustment for the %cs selector, done by an ljmp .)

It then loads the first 15 sectors at 0x10000 (segment BOOTSEG in the biosboot Makefile), and
sets up the stack to work below 0x1fff0 . After this, it jumps to the entry of boot2 within that
code. I.e., it jumps over itself and the (dummy) partition table, and it is going to adjust the %cs
selector---we are still in 16-bit mode there.

boot2 asks for the boot file, and examines the a.out header. It masks the file entry point (usually
0xf0100000) by 0x00ffffff , and loads the file there. Hence the usual load point is 1 MB
(0x00100000). During load, the boot code toggles back and forth between real and protected
mode, to use the BIOS in real mode.

The boot code itself uses segment selectors 0x18 and 0x20 for %cs and %ds/%es in protected
mode, and 0x28 to jump back into real mode. The kernel is finally started with %cs 0x08 and
%ds/%es/%ss 0x10 , which refer to dummy descriptors covering the entire address space.

The kernel will be started at its load point. Since it has been linked for another (high) address, it
will have to execute PIC until the page table and page directory stuff is setup properly, at which
point paging will be enabled and the kernel will finally run at the address for which it was
linked.

Contributed by David Greenman <davidg@FreeBSD.ORG> .

16 Apr 1995.

The physical pages immediately following the kernel BSS contain proc0’s page directory, page
tables, and upages. Some time later when the VM system is initialized, the physical memory
between 0x1000-0x9ffff and the physical memory after the kernel (text+data+bss+proc0
stuff+other misc) is made available in the form of general VM pages and added to the global free
page list.

24.3 DMA: What it Is and How it Works
Copyright © 1995,1997 Frank Durda IV <uhclem@FreeBSD.ORG>, All Rights Reserved.

10 December 1996. Last Update 8 October 1997.

Direct Memory Access (DMA) is a method of allowing data to be moved from one location to
another in a computer without intervention from the central processor (CPU).

The way that the DMA function is implemented varies between computer architectures, so this
discussion will limit itself to the implementation and workings of the DMA subsystem on the
IBM Personal Computer (PC), the IBM PC/AT and all of its successors and clones.

The PC DMA subsystem is based on the Intel 8237 DMA controller. The 8237 contains four DMA
channels that can be programmed independently and any one of the channels may be active at
any moment. These channels are numbered 0, 1, 2 and 3. Starting with the PC/AT, IBM added a
second 8237 chip, and numbered those channels 4, 5, 6 and 7.

The original DMA controller (0, 1, 2 and 3) moves one byte in each transfer. The second DMA
controller (4, 5, 6, and 7) moves 16-bits from two adjacent memory locations in each transfer, with
the first byte always coming from an even-numbered address. The two controllers are identical
components and the difference in transfer size is caused by the way the second controller is wired
into the system.

The 8237 has two electrical signals for each channel, named DRQ and -DACK. There are addi-
tional signals with the names HRQ (Hold Request), HLDA (Hold Acknowledge), -EOP (End of
Process), and the bus control signals -MEMR (Memory Read), -MEMW (Memory Write), -IOR

FreeBSD Handbook 341

(I/O Read), and -IOW (I/O Write).

The 8237 DMA is known as a ‘‘fly-by’’ DMA controller. This means that the data being moved
from one location to another does not pass through the DMA chip and is not stored in the DMA
chip. Subsequently, the DMA can only transfer data between an I/O port and a memory address,
but not between two I/O ports or two memory locations.

Note: The 8237 does allow two channels to be connected together
to allow memory-to-memory DMA operations in a non-‘‘fly-by’’
mode, but nobody in the PC industry uses this scarce resource
this way since it is faster to move data between memory loca-
tions using the CPU.

In the PC architecture, each DMA channel is normally activated only when the hardware that
uses a given DMA channel requests a transfer by asserting the DRQ line for that channel.

24.3.1 A Sample DMA transfer

Here is an example of the steps that occur to cause and perform a DMA transfer. In this example,
the floppy disk controller (FDC) has just read a byte from a diskette and wants the DMA to place
it in memory at location 0x00123456. The process begins by the FDC asserting the DRQ2 signal
(the DRQ line for DMA channel 2) to alert the DMA controller.

The DMA controller will note that the DRQ2 signal is asserted. The DMA controller will then
make sure that DMA channel 2 has been programmed and is unmasked (enabled). The DMA
controller also makes sure that none of the other DMA channels are active or want to be active
and have a higher priority. Once these checks are complete, the DMA asks the CPU to release the
bus so that the DMA may use the bus. The DMA requests the bus by asserting the HRQ signal
which goes to the CPU.

The CPU detects the HRQ signal, and will complete executing the current instruction. Once the
processor has reached a state where it can release the bus, it will. Now all of the signals normally
generated by the CPU (-MEMR, -MEMW, -IOR, -IOW and a few others) are placed in a tri-stated
condition (neither high or low) and then the CPU asserts the HLDA signal which tells the DMA
controller that it is now in charge of the bus.

Depending on the processor, the CPU may be able to execute a few additional instructions now
that it no longer has the bus, but the CPU will eventually have to wait when it reaches an instruc-
tion that must read something from memory that is not in the internal processor cache or
pipeline.

Now that the DMA ‘‘is in charge’’, the DMA activates its -MEMR, -MEMW, -IOR, -IOW output
signals, and the address outputs from the DMA are set to 0x3456, which will be used to direct the
byte that is about to transferred to a specific memory location.

The DMA will then let the device that requested the DMA transfer know that the transfer is com-
mencing. This is done by asserting the -DACK signal, or in the case of the floppy disk controller,
-DACK2 is asserted.

The floppy disk controller is now responsible for placing the byte to be transferred on the bus
Data lines. Unless the floppy controller needs more time to get the data byte on the bus (and if
the peripheral does need more time it alerts the DMA via the READY signal), the DMA will wait
one DMA clock, and then de-assert the -MEMW and -IOR signals so that the memory will latch
and store the byte that was on the bus, and the FDC will know that the byte has been transferred.

Since the DMA cycle only transfers a single byte at a time, the FDC now drops the DRQ2 signal,
so the DMA knows that it is no longer needed. The DMA will de-assert the -DACK2 signal, so
that the FDC knows it must stop placing data on the bus.

The DMA will now check to see if any of the other DMA channels have any work to do. If none
of the channels have their DRQ lines asserted, the DMA controller has completed its work and

FreeBSD Handbook 342

will now tri-state the -MEMR, -MEMW, -IOR, -IOW and address signals.

Finally, the DMA will de-assert the HRQ signal. The CPU sees this, and de-asserts the HOLDA
signal. Now the CPU activates its -MEMR, -MEMW, -IOR, -IOW and address lines, and it
resumes executing instructions and accessing main memory and the peripherals.

For a typical floppy disk sector, the above process is repeated 512 times, once for each byte. Each
time a byte is transferred, the address register in the DMA is incremented and the counter in the
DMA that shows how many bytes are to be transferred is decremented.

When the counter reaches zero, the DMA asserts the EOP signal, which indicates that the counter
has reached zero and no more data will be transferred until the DMA controller is reprogrammed
by the CPU. This event is also called the Terminal Count (TC). There is only one EOP signal, and
since only DMA channel can be active at any instant, the DMA channel that is currently active
must be the DMA channel that just completed its task.

If a peripheral wants to generate an interrupt when the transfer of a buffer is complete, it can test
for its -DACKn signal and the EOP signal both being asserted at the same time. When that hap-
pens, it means the DMA will not transfer any more information for that peripheral without inter-
vention by the CPU. The peripheral can then assert one of the interrupt signals to get the proces-
sors’ attention. In the PC architecture, the DMA chip itself is not capable of generating an inter-
rupt. The peripheral and its associated hardware is responsible for generating any interrupt that
occurs. Subsequently, it is possible to have a peripheral that uses DMA but does not use inter-
rupts.

It is important to understand that although the CPU always releases the bus to the DMA when
the DMA makes the request, this action is invisible to both applications and the operating sys-
tems, except for slight changes in the amount of time the processor takes to execute instructions
when the DMA is active. Subsequently, the processor must poll the peripheral, poll the registers
in the DMA chip, or receive an interrupt from the peripheral to know for certain when a DMA
transfer has completed.

24.3.2 DMA Pa ge Registers and 16Meg address space limitations

You may have noticed earlier that instead of the DMA setting the address lines to 0x00123456 as
we said earlier, the DMA only set 0x3456. The reason for this takes a bit of explaining.

When the original IBM PC was designed, IBM elected to use both DMA and interrupt controller
chips that were designed for use with the 8085, an 8-bit processor with an address space of 16 bits
(64K). Since the IBM PC supported more than 64K of memory, something had to be done to
allow the DMA to read or write memory locations above the 64K mark. What IBM did to solve
this problem was to add an external data latch for each DMA channel that holds the upper bits of
the address to be read to or written from. Whenever a DMA channel is active, the contents of that
latch are written to the address bus and kept there until the DMA operation for the channel ends.
IBM called these latches ‘‘Page Registers’’.

So for our example above, the DMA would put the 0x3456 part of the address on the bus, and the
Page Register for DMA channel 2 would put 0x0012xxxx on the bus. Together, these two values
form the complete address in memory that is to be accessed.

Because the Page Register latch is independent of the DMA chip, the area of memory to be read
or written must not span a 64K physical boundary. For example, if the DMA accesses memory
location 0xffff, after that transfer the DMA will then increment the address register and the DMA
will access the next byte at location 0x0000, not 0x10000. The results of letting this happen are
probably not intended.

FreeBSD Handbook 343

Note: ‘‘Physical’’ 64K boundaries should not be confused with
8086-mode 64K ‘‘Segments’’, which are created by mathematically
adding a segment register with an offset register. Page Regis-
ters have no address overlap and are mathematically OR-ed
together.

To further complicate matters, the external DMA address latches on the PC/AT hold only eight
bits, so that gives us 8+16=24 bits, which means that the DMA can only point at memory loca-
tions between 0 and 16Meg. For newer computers that allow more than 16Meg of memory, the
standard PC-compatible DMA cannot access memory locations above 16Meg.

To get around this restriction, operating systems will reserve a RAM buffer in an area below
16Meg that also does not span a physical 64K boundary. Then the DMA will be programmed to
transfer data from the peripheral and into that buffer. Once the DMA has moved the data into
this buffer, the operating system will then copy the data from the buffer to the address where the
data is really supposed to be stored.

When writing data from an address above 16Meg to a DMA-based peripheral, the data must be
first copied from where it resides into a buffer located below 16Meg, and then the DMA can copy
the data from the buffer to the hardware. In FreeBSD, these reserved buffers are called ‘‘Bounce
Buffers’’. In the MS-DOS world, they are sometimes called ‘‘Smart Buffers’’.

Note: A new implementation of the 8237, called the 82374,
allows 16 bits of page register to be specified, allows access
to the entire 32 bit address space, without the use of bounce
buffers.

24.3.3 DMA Operational Modes and Settings

The 8237 DMA can be operated in several modes. The main ones are:

Single
A single byte (or word) is transferred. The DMA must release and re-acquire the
bus for each additional byte. This is commonly-used by devices that cannot transfer
the entire block of data immediately. The peripheral will request the DMA each
time it is ready for another transfer.

The standard PC-compatible floppy disk controller (NEC 765) only has a one-byte
buffer, so it uses this mode.

Block/Demand
Once the DMA acquires the system bus, an entire block of data is transferred, up to
a maximum of 64K. If the peripheral needs additional time, it can assert the
READY signal to suspend the transfer briefly. READY should not be used exces-
sively, and for slow peripheral transfers, the Single Transfer Mode should be used
instead.

The difference between Block and Demand is that once a Block transfer is started, it
runs until the transfer count reaches zero. DRQ only needs to be asserted until
-DACK is asserted. Demand Mode will transfer one more bytes until DRQ is de-
asserted, at which point the DMA suspends the transfer and releases the bus back to
the CPU. When DRQ is asserted later, the transfer resumes where it was sus-
pended.

Older hard disk controllers used Demand Mode until CPU speeds increased to the
point that it was more efficient to transfer the data using the CPU, particularly if the
memory locations used in the transfer were above the 16Meg mark.

FreeBSD Handbook 344

Cascade
This mechanism allows a DMA channel to request the bus, but then the attached
peripheral device is responsible for placing the addressing information on the bus
instead of the DMA. This is also used to implement a technique known as ‘‘Bus
Mastering’’.

When a DMA channel in Cascade Mode receives control of the bus, the DMA does
not place addresses and I/O control signals on the bus like the DMA normally does
when it is active. Instead, the DMA only asserts the -DACK signal for the active
DMA channel.

At this point it is up to the peripheral connected to that DMA channel to provide
address and bus control signals. The peripheral has complete control over the sys-
tem bus, and can do reads and/or writes to any address below 16Meg. When the
peripheral is finished with the bus, it de-asserts the DRQ line, and the DMA con-
troller can then return control to the CPU or to some other DMA channel.

Cascade Mode can be used to chain multiple DMA controllers together, and this is
exactly what DMA Channel 4 is used for in the PC architecture. When a peripheral
requests the bus on DMA channels 0, 1, 2 or 3, the slave DMA controller asserts
HLDREQ, but this wire is actually connected to DRQ4 on the primary DMA con-
troller instead of to the CPU. The primary DMA controller, thinking it has work to
do on Channel 4, requests the bus from the CPU using HLDREQ signal. Once the
CPU grants the bus to the primary DMA controller, -DACK4 is asserted, and that
wire is actually connected to the HLDA signal on the slave DMA controller. The
slave DMA controller then transfers data for the DMA channel that requested it (0,
1, 2 or 3), or the slave DMA may grant the bus to a peripheral that wants to perform
its own bus-mastering, such as a SCSI controller.

Because of this wiring arrangement, only DMA channels 0, 1, 2, 3, 5, 6 and 7 are
usable with peripherals on PC/AT systems.

Note: DMA channel 0 was reserved for refresh opera-
tions in early IBM PC computers, but is generally
available for use by peripherals in modern systems.

When a peripheral is performing Bus Mastering, it is important that the peripheral
transmit data to or from memory constantly while it holds the system bus. If the
peripheral cannot do this, it must release the bus frequently so that the system can
perform refresh operations on main memory.

The Dynamic RAM used in all PCs for main memory must be accessed frequently
to keep the bits stored in the components "charged". Dynamic RAM essentially con-
sists of millions of capacitors with each one holding one bit of data. These capaci-
tors are charged with power to represent a "1" or drained to represent a "0". Because
all capacitors leak, power must be added at regular intervals to keep the "1" values
intact. The RAM chips actually handle the task of pumping power back into all of
the appropriate locations in RAM, but they must be told when to do it by the rest of
the computer so that the refresh activity won’t interfere with the computer wanting
to access RAM normally. If the computer is unable to refresh memory, the contents
of memory will become corrupted in just a few milliseconds.

Since memory read and write cycles ‘‘count’’ as refresh cycles (a dynamic RAM
refresh cycle is actually an incomplete memory read cycle), as long as the peripheral
controller continues reading or writing data to sequential memory locations, that
action will refresh all of memory.

Bus-mastering is found in some SCSI host interfaces and other high-performance
peripheral controllers.

FreeBSD Handbook 345

Autoinitialize
This mode causes the DMA to perform Byte, Block or Demand transfers, but when
the DMA transfer counter reaches zero, the counter and address are set back to
where they were when the DMA channel was originally programmed. This means
that as long as the peripheral requests transfers, they will be granted. It is up to the
CPU to move new data into the fixed buffer ahead of where the DMA is about to
transfer it when doing output operations, and read new data out of the buffer
behind where the DMA is writing when doing input operations.

This technique is frequently used on audio devices that have small or no hardware
‘‘sample’’ buffers. There is additional CPU overhead to manage this ‘‘circular’’
buffer, but in some cases this may be the only way to eliminate the latency that
occurs when the DMA counter reaches zero and the DMA stops transfers until it is
reprogrammed.

24.3.4 Programming the DMA

The DMA channel that is to be programmed should always be ‘‘masked’’ before loading any set-
tings. This is because the hardware might unexpectedly assert the DRQ for that channel, and the
DMA might respond, even though not all of the parameters have been loaded or updated.

Once masked, the host must specify the direction of the transfer (memory-to-I/O or I/O-to-mem-
ory), what mode of DMA operation is to be used for the transfer (Single, Block, Demand, Cas-
cade, etc), and finally the address and length of the transfer are loaded. The length that is loaded
is one less than the amount you expect the DMA to transfer. The LSB and MSB of the address
and length are written to the same 8-bit I/O port, so another port must be written to first to guar-
antee that the DMA accepts the first byte as the LSB and the second byte as the MSB of the length
and address.

Then, be sure to update the Page Register, which is external to the DMA and is accessed through
a different set of I/O ports.

Once all the settings are ready, the DMA channel can be un-masked. That DMA channel is now
considered to be ‘‘armed’’, and will respond when the DRQ line for that channel is asserted.

Refer to a hardware data book for precise programming details for the 8237. You will also need
to refer to the I/O port map for the PC system, which describes where the DMA and Page Regis-
ter ports are located. A complete port map table is located below.

24.3.5 DMA Port Map

All systems based on the IBM-PC and PC/AT have the DMA hardware located at the same I/O
ports. The complete list is provided below. Ports assigned to DMA Controller #2 are undefined
on non-AT designs.

24.3.5.1 0x00 - 0x1f DMA Controller #1 (Channels 0, 1, 2 and 3)

DMA Address and Count Registers

FreeBSD Handbook 346

0x00 write Channel 0 starting address
0x00 read Channel 0 current address
0x01 write Channel 0 starting word count
0x01 read Channel 0 remaining word count

0x02 write Channel 1 starting address
0x02 read Channel 1 current address
0x03 write Channel 1 starting word count
0x03 read Channel 1 remaining word count

0x04 write Channel 2 starting address
0x04 read Channel 2 current address
0x05 write Channel 2 starting word count
0x05 read Channel 2 remaining word count

0x06 write Channel 3 starting address
0x06 read Channel 3 current address
0x07 write Channel 3 starting word count
0x07 read Channel 3 remaining word count

DMA Command Registers

0x08 write Command Register
0x08 read Status Register
0x09 write Request Register
0x09 read -
0x0a write Single Mask Register Bit
0x0a read -
0x0b write Mode Register
0x0b read -
0x0c write Clear LSB/MSB Flip-Flop
0x0c read -
0x0d write Master Clear/Reset
0x0d read Temporary Register (not available on newer versions)
0x0e write Clear Mask Register
0x0e read -
0x0f write Write All Mask Register Bits
0x0f read Read All Mask Register Bits (only in Intel 82374)

24.3.5.2 0xc0 - 0xdf DMA Controller #2 (Channels 4, 5, 6 and 7)

DMA Address and Count Registers

0xc0 write Channel 4 starting address
0xc0 read Channel 4 current address
0xc2 write Channel 4 starting word count
0xc2 read Channel 4 remaining word count

0xc4 write Channel 5 starting address
0xc4 read Channel 5 current address
0xc6 write Channel 5 starting word count
0xc6 read Channel 5 remaining word count

0xc8 write Channel 6 starting address
0xc8 read Channel 6 current address
0xca write Channel 6 starting word count
0xca read Channel 6 remaining word count

0xcc write Channel 7 starting address
0xcc read Channel 7 current address
0xce write Channel 7 starting word count
0xce read Channel 7 remaining word count

DMA Command Registers

FreeBSD Handbook 347

0xd0 write Command Register
0xd0 read Status Register
0xd2 write Request Register
0xd2 read -
0xd4 write Single Mask Register Bit
0xd4 read -
0xd6 write Mode Register
0xd6 read -
0xd8 write Clear LSB/MSB Flip-Flop
0xd8 read -
0xda write Master Clear/Reset
0xda read Temporary Register (not present in Intel 82374)
0xdc write Clear Mask Register
0xdc read -
0xde write Write All Mask Register Bits
0xdf read Read All Mask Register Bits (only in Intel 82374)

24.3.5.3 0x80 - 0x9f DMA Pag e Registers

0x87 r/w Channel 0 Low byte (23-16) page Register
0x83 r/w Channel 1 Low byte (23-16) page Register
0x81 r/w Channel 2 Low byte (23-16) page Register
0x82 r/w Channel 3 Low byte (23-16) page Register

0x8b r/w Channel 5 Low byte (23-16) page Register
0x89 r/w Channel 6 Low byte (23-16) page Register
0x8a r/w Channel 7 Low byte (23-16) page Register
0x8f r/w Low byte page Refresh

24.3.5.4 0x400 - 0x4ff 82374 Enhanced DMA Registers

The Intel 82374 EISA System Component (ESC) was introduced in early 1996 and includes a
DMA controller that provides a superset of 8237 functionality as well as other PC-compatible core
peripheral components in a single package. This chip is targeted at both EISA and PCI platforms,
and provides modern DMA features like scatter-gather, ring buffers as well as direct access by the
system DMA to all 32 bits of address space.

If these features are used, code should also be included to provide similar functionality in the pre-
vious 16 years worth of PC-compatible computers. For compatibility reasons, some of the 82374
registers must be programmed after programming the traditional 8237 registers for each transfer.
Writing to a traditional 8237 register forces the contents of some of the 82374 enhanced registers
to zero to provide backward software compatibility.

FreeBSD Handbook 348

0x401 r/w Channel 0 High byte (bits 23-16) word count
0x403 r/w Channel 1 High byte (bits 23-16) word count
0x405 r/w Channel 2 High byte (bits 23-16) word count
0x407 r/w Channel 3 High byte (bits 23-16) word count
0x4c6 r/w Channel 5 High byte (bits 23-16) word count
0x4ca r/w Channel 6 High byte (bits 23-16) word count
0x4ce r/w Channel 7 High byte (bits 23-16) word count

0x487 r/w Channel 0 High byte (bits 31-24) page Register
0x483 r/w Channel 1 High byte (bits 31-24) page Register
0x481 r/w Channel 2 High byte (bits 31-24) page Register
0x482 r/w Channel 3 High byte (bits 31-24) page Register
0x48b r/w Channel 5 High byte (bits 31-24) page Register
0x489 r/w Channel 6 High byte (bits 31-24) page Register
0x48a r/w Channel 6 High byte (bits 31-24) page Register
0x48f r/w High byte page Refresh

0x4e0 r/w Channel 0 Stop Register (bits 7-2)
0x4e1 r/w Channel 0 Stop Register (bits 15-8)
0x4e2 r/w Channel 0 Stop Register (bits 23-16)
0x4e4 r/w Channel 1 Stop Register (bits 7-2)
0x4e5 r/w Channel 1 Stop Register (bits 15-8)
0x4e6 r/w Channel 1 Stop Register (bits 23-16)
0x4e8 r/w Channel 2 Stop Register (bits 7-2)
0x4e9 r/w Channel 2 Stop Register (bits 15-8)
0x4ea r/w Channel 2 Stop Register (bits 23-16)
0x4ec r/w Channel 3 Stop Register (bits 7-2)
0x4ed r/w Channel 3 Stop Register (bits 15-8)
0x4ee r/w Channel 3 Stop Register (bits 23-16)
0x4f4 r/w Channel 5 Stop Register (bits 7-2)
0x4f5 r/w Channel 5 Stop Register (bits 15-8)
0x4f6 r/w Channel 5 Stop Register (bits 23-16)
0x4f8 r/w Channel 6 Stop Register (bits 7-2)
0x4f9 r/w Channel 6 Stop Register (bits 15-8)
0x4fa r/w Channel 6 Stop Register (bits 23-16)
0x4fc r/w Channel 7 Stop Register (bits 7-2)
0x4fd r/w Channel 7 Stop Register (bits 15-8)
0x4fe r/w Channel 7 Stop Register (bits 23-16)

0x40a write Channels 0-3 Chaining Mode Register
0x40a read Channel Interrupt Status Register
0x4d4 write Channels 4-7 Chaining Mode Register
0x4d4 read Chaining Mode Status
0x40c read Chain Buffer Expiration Control Register

0x410 write Channel 0 Scatter-Gather Command Register
0x411 write Channel 1 Scatter-Gather Command Register
0x412 write Channel 2 Scatter-Gather Command Register
0x413 write Channel 3 Scatter-Gather Command Register
0x415 write Channel 5 Scatter-Gather Command Register
0x416 write Channel 6 Scatter-Gather Command Register
0x417 write Channel 7 Scatter-Gather Command Register

0x418 read Channel 0 Scatter-Gather Status Register
0x419 read Channel 1 Scatter-Gather Status Register
0x41a read Channel 2 Scatter-Gather Status Register
0x41b read Channel 3 Scatter-Gather Status Register
0x41d read Channel 5 Scatter-Gather Status Register
0x41e read Channel 5 Scatter-Gather Status Register
0x41f read Channel 7 Scatter-Gather Status Register

0x420-0x423 r/w Channel 0 Scatter-Gather Descriptor Table Pointer Register
0x424-0x427 r/w Channel 1 Scatter-Gather Descriptor Table Pointer Register
0x428-0x42b r/w Channel 2 Scatter-Gather Descriptor Table Pointer Register
0x42c-0x42f r/w Channel 3 Scatter-Gather Descriptor Table Pointer Register

FreeBSD Handbook 349

0x434-0x437 r/w Channel 5 Scatter-Gather Descriptor Table Pointer Register
0x438-0x43b r/w Channel 6 Scatter-Gather Descriptor Table Pointer Register
0x43c-0x43f r/w Channel 7 Scatter-Gather Descriptor Table Pointer Register

FreeBSD Handbook 350

Part V

Appendices

FreeBSD Handbook 352

• ftp://ftp.au.FreeBSD.ORG/pub/FreeBSD78

• ftp://ftp2.au.FreeBSD.ORG/pub/FreeBSD79

• ftp://ftp3.au.FreeBSD.ORG/pub/FreeBSD80

• ftp://ftp4.au.FreeBSD.ORG/pub/FreeBSD81

Brazil" In case of problems, please contact the hostmaster82 for this domain.

• ftp://ftp.br.FreeBSD.ORG/pub/FreeBSD83

• ftp://ftp2.br.FreeBSD.ORG/pub/FreeBSD84

• ftp://ftp3.br.FreeBSD.ORG/pub/FreeBSD85

• ftp://ftp4.br.FreeBSD.ORG/pub/FreeBSD86

• ftp://ftp5.br.FreeBSD.ORG/pub/FreeBSD87

• ftp://ftp6.br.FreeBSD.ORG/pub/FreeBSD88

• ftp://ftp7.br.FreeBSD.ORG/pub/FreeBSD89

Canada" In case of problems, please contact the hostmaster90 for this domain.

• ftp://ftp.ca.FreeBSD.ORG/pub/FreeBSD91

Czech Republic"

• ftp://sunsite.mff.cuni.cz/OS/FreeBSD92

Contact: jj@sunsite.mff.cuni.cz93 .

78. <URL:ftp://ftp.au.FreeBSD.ORG/pub/FreeBSD>

79. <URL:ftp://ftp2.au.FreeBSD.ORG/pub/FreeBSD>

80. <URL:ftp://ftp3.au.FreeBSD.ORG/pub/FreeBSD>

81. <URL:ftp://ftp4.au.FreeBSD.ORG/pub/FreeBSD>

82. <URL:mailto:hostmaster@br.FreeBSD.ORG>

83. <URL:ftp://ftp.br.FreeBSD.ORG/pub/FreeBSD>

84. <URL:ftp://ftp2.br.FreeBSD.ORG/pub/FreeBSD>

85. <URL:ftp://ftp3.br.FreeBSD.ORG/pub/FreeBSD>

86. <URL:ftp://ftp4.br.FreeBSD.ORG/pub/FreeBSD>

87. <URL:ftp://ftp5.br.FreeBSD.ORG/pub/FreeBSD>

88. <URL:ftp://ftp6.br.FreeBSD.ORG/pub/FreeBSD>

89. <URL:ftp://ftp7.br.FreeBSD.ORG/pub/FreeBSD>

90. <URL:mailto:hostmaster@ca.FreeBSD.ORG>

91. <URL:ftp://ftp.ca.FreeBSD.ORG/pub/FreeBSD>

92. <URL:ftp://sunsite.mff.cuni.cz/OS/FreeBSD>

93. <URL:mailto:jj@sunsite.mff.cuni.cz>

FreeBSD Handbook 353

Denmark" In case of problems, please contact the hostmaster94 for this domain.

• ftp://ftp.dk.freeBSD.ORG/pub/FreeBSD95

Estonia" In case of problems, please contact the hostmaster96 for this domain.

• ftp://ftp.ee.freebsd.ORG/pub/FreeBSD97

Finland" In case of problems, please contact the hostmaster98 for this domain.

• ftp://ftp.fi.freebsd.ORG/pub/FreeBSD99

France"

• ftp://ftp.ibp.fr/pub/FreeBSD100

Contact: Remy.Card@ibp.fr101 .

Germany" In case of problems, please contact the hostmaster102 for this domain.

• ftp://ftp.de.FreeBSD.ORG/pub/FreeBSD103

• ftp://ftp2.de.FreeBSD.ORG/pub/FreeBSD104

• ftp://ftp3.de.FreeBSD.ORG/pub/FreeBSD105

• ftp://ftp4.de.FreeBSD.ORG/pub/FreeBSD106

• ftp://ftp5.de.FreeBSD.ORG/pub/FreeBSD107

• ftp://ftp6.de.FreeBSD.ORG/pub/FreeBSD108

94. <URL:mailto:hostmaster@dk.FreeBSD.ORG>

95. <URL:ftp://ftp.dk.freeBSD.ORG/pub/FreeBSD>

96. <URL:mailto:hostmaster@ee.FreeBSD.ORG>

97. <URL:ftp://ftp.ee.freebsd.ORG/pub/FreeBSD>

98. <URL:mailto:hostmaster@fi.FreeBSD.ORG>

99. <URL:ftp://ftp.fi.freebsd.ORG/pub/FreeBSD>

100. <URL:ftp://ftp.ibp.fr/pub/FreeBSD>

101. <URL:mailto:Remy.Card@ibp.fr>

102. <URL:mailto:hostmaster@de.FreeBSD.ORG>

103. <URL:ftp://ftp.de.FreeBSD.ORG/pub/FreeBSD>

104. <URL:ftp://ftp2.de.FreeBSD.ORG/pub/FreeBSD>

105. <URL:ftp://ftp3.de.FreeBSD.ORG/pub/FreeBSD>

106. <URL:ftp://ftp4.de.FreeBSD.ORG/pub/FreeBSD>

107. <URL:ftp://ftp5.de.FreeBSD.ORG/pub/FreeBSD>

108. <URL:ftp://ftp6.de.FreeBSD.ORG/pub/FreeBSD>

FreeBSD Handbook 354

• ftp://ftp7.de.FreeBSD.ORG/pub/FreeBSD109

Hong Kong"

• ftp://ftp.hk.super.net/pub/FreeBSD110

Contact: ftp-admin@HK.Super.NET111 .

Ireland" In case of problems, please contact the hostmaster112 for this domain.

• ftp://ftp.ie.FreeBSD.ORG/pub/FreeBSD113

Israel" In case of problems, please contact the hostmaster114 for this domain.

• ftp://ftp.il.FreeBSD.ORG/pub/FreeBSD115

• ftp://ftp2.il.FreeBSD.ORG/pub/FreeBSD116

Japan" In case of problems, please contact the hostmaster117 for this domain.

• ftp://ftp.jp.FreeBSD.ORG/pub/FreeBSD118

• ftp://ftp2.jp.FreeBSD.ORG/pub/FreeBSD119

• ftp://ftp3.jp.FreeBSD.ORG/pub/FreeBSD120

• ftp://ftp4.jp.FreeBSD.ORG/pub/FreeBSD121

• ftp://ftp5.jp.FreeBSD.ORG/pub/FreeBSD122

• ftp://ftp6.jp.FreeBSD.ORG/pub/FreeBSD123

109. <URL:ftp://ftp7.de.FreeBSD.ORG/pub/FreeBSD>

110. <URL:ftp://ftp.hk.super.net/pub/FreeBSD>

111. <URL:mailto:ftp-admin@HK.Super.NET>

112. <URL:mailto:hostmaster@ie.FreeBSD.ORG>

113. <URL:ftp://ftp.ie.FreeBSD.ORG/pub/FreeBSD>

114. <URL:mailto:hostmaster@il.FreeBSD.ORG>

115. <URL:ftp://ftp.il.FreeBSD.ORG/pub/FreeBSD>

116. <URL:ftp://ftp2.il.FreeBSD.ORG/pub/FreeBSD>

117. <URL:mailto:hostmaster@jp.FreeBSD.ORG>

118. <URL:ftp://ftp.jp.FreeBSD.ORG/pub/FreeBSD>

119. <URL:ftp://ftp2.jp.FreeBSD.ORG/pub/FreeBSD>

120. <URL:ftp://ftp3.jp.FreeBSD.ORG/pub/FreeBSD>

121. <URL:ftp://ftp4.jp.FreeBSD.ORG/pub/FreeBSD>

122. <URL:ftp://ftp5.jp.FreeBSD.ORG/pub/FreeBSD>

123. <URL:ftp://ftp6.jp.FreeBSD.ORG/pub/FreeBSD>

FreeBSD Handbook 355

Korea" In case of problems, please contact the hostmaster124 for this domain.

• ftp://ftp.kr.FreeBSD.ORG/pub/FreeBSD125

• ftp://ftp2.kr.FreeBSD.ORG/pub/FreeBSD126

Netherlands" In case of problems, please contact the hostmaster127 for this domain.

• ftp://ftp.nl.freebsd.ORG/pub/FreeBSD128

Poland" In case of problems, please contact the hostmaster129 for this domain.

• ftp://ftp.pl.freebsd.ORG/pub/FreeBSD130

Portugal" In case of problems, please contact the hostmaster131 for this domain.

• ftp://ftp.pt.freebsd.org/pub/FreeBSD132

• ftp://ftp2.pt.freebsd.org/pub/FreeBSD133

Russia" In case of problems, please contact the hostmaster134 for this domain.

• ftp://ftp.ru.freebsd.org/pub/FreeBSD135

• ftp://ftp2.ru.freebsd.org/pub/FreeBSD136

• ftp://ftp3.ru.freebsd.org/pub/FreeBSD137

• ftp://ftp4.ru.freebsd.org/pub/FreeBSD138

124. <URL:mailto:hostmaster@kr.FreeBSD.ORG>

125. <URL:ftp://ftp.kr.FreeBSD.ORG/pub/FreeBSD>

126. <URL:ftp://ftp2.kr.FreeBSD.ORG/pub/FreeBSD>

127. <URL:mailto:hostmaster@nl.FreeBSD.ORG>

128. <URL:ftp://ftp.nl.freebsd.ORG/pub/FreeBSD>

129. <URL:mailto:hostmaster@pl.FreeBSD.ORG>

130. <URL:ftp://ftp.pl.freebsd.ORG/pub/FreeBSD>

131. <URL:mailto:hostmaster@pt.FreeBSD.ORG>

132. <URL:ftp://ftp.pt.freebsd.org/pub/FreeBSD>

133. <URL:ftp://ftp2.pt.freebsd.org/pub/FreeBSD>

134. <URL:mailto:hostmaster@ru.FreeBSD.ORG>

135. <URL:ftp://ftp.ru.freebsd.org/pub/FreeBSD>

136. <URL:ftp://ftp2.ru.freebsd.org/pub/FreeBSD>

137. <URL:ftp://ftp3.ru.freebsd.org/pub/FreeBSD>

138. <URL:ftp://ftp4.ru.freebsd.org/pub/FreeBSD>

FreeBSD Handbook 356

South Africa" In case of problems, please contact the hostmaster139 for this domain.

• ftp://ftp.za.FreeBSD.ORG/pub/FreeBSD140

• ftp://ftp2.za.FreeBSD.ORG/pub/FreeBSD141

• ftp://ftp3.za.FreeBSD.ORG/pub/FreeBSD142

Slovak Republic" In case of problems, please contact the hostmaster143 for this
domain.

• ftp://ftp.sk.freebsd.ORG/pub/FreeBSD144

Slovenia" In case of problems, please contact the hostmaster145 for this domain.

• ftp://ftp.si.freebsd.ORG/pub/FreeBSD146

Sweden" In case of problems, please contact the hostmaster147 for this domain.

• ftp://ftp.se.freebsd.ORG/pub/FreeBSD148

Taiwan" In case of problems, please contact the hostmaster149 for this domain.

• ftp://ftp.tw.FreeBSD.ORG/pub/FreeBSD150

• ftp://ftp2.tw.FreeBSD.ORG/pub/FreeBSD151

• ftp://ftp3.tw.FreeBSD.ORG/pub/FreeBSD152

139. <URL:mailto:hostmaster@za.FreeBSD.ORG>

140. <URL:ftp://ftp.za.FreeBSD.ORG/pub/FreeBSD>

141. <URL:ftp://ftp2.za.FreeBSD.ORG/pub/FreeBSD>

142. <URL:ftp://ftp3.za.FreeBSD.ORG/FreeBSD>

143. <URL:mailto:hostmaster@sk.FreeBSD.ORG>

144. <URL:ftp://ftp.sk.freebsd.ORG/pub/FreeBSD>

145. <URL:mailto:hostmaster@si.FreeBSD.ORG>

146. <URL:ftp://ftp.si.freebsd.ORG/pub/FreeBSD>

147. <URL:mailto:hostmaster@se.FreeBSD.ORG>

148. <URL:ftp://ftp.se.freebsd.ORG/pub/FreeBSD>

149. <URL:mailto:hostmaster@tw.FreeBSD.ORG>

150. <URL:ftp://ftp.tw.FreeBSD.ORG/pub/FreeBSD>

151. <URL:ftp://ftp2.tw.FreeBSD.ORG/pub/FreeBSD>

152. <URL:ftp://ftp3.tw.FreeBSD.ORG/pub/FreeBSD>

FreeBSD Handbook 357

Thailand"

• ftp://ftp.nectec.or.th/pub/FreeBSD153

Contact: ftpadmin@ftp.nectec.or.th154 .

Ukraine"

• ftp://ftp.ua.FreeBSD.ORG/pub/FreeBSD155

Contact: archer@lucky.net156 .

UK" In case of problems, please contact the hostmaster157 for this domain.

• ftp://ftp.uk.FreeBSD.ORG/pub/FreeBSD158

• ftp://ftp2.uk.FreeBSD.ORG/pub/FreeBSD159

• ftp://ftp3.uk.FreeBSD.ORG/pub/FreeBSD160

• ftp://ftp4.uk.FreeBSD.ORG/pub/FreeBSD161

USA" In case of problems, please contact the hostmaster162 for this domain.

• ftp://ftp.FreeBSD.ORG/pub/FreeBSD163

• ftp://ftp2.FreeBSD.ORG/pub/FreeBSD164

• ftp://ftp3.FreeBSD.ORG/pub/FreeBSD165

• ftp://ftp4.FreeBSD.ORG/pub/FreeBSD166

• ftp://ftp5.FreeBSD.ORG/pub/FreeBSD167

153. <URL:ftp://ftp.nectec.or.th/pub/FreeBSD>

154. <URL:mailto:ftpadmin@ftp.nectec.or.th>

155. <URL:ftp://ftp.ua.FreeBSD.ORG/pub/FreeBSD>

156. <URL:mailto:archer@lucky.net>

157. <URL:mailto:hostmaster@uk.FreeBSD.ORG>

158. <URL:ftp://ftp.uk.FreeBSD.ORG/pub/FreeBSD>

159. <URL:ftp://ftp2.uk.FreeBSD.ORG/pub/FreeBSD>

160. <URL:ftp://ftp3.uk.FreeBSD.ORG/pub/FreeBSD>

161. <URL:ftp://ftp4.uk.FreeBSD.ORG/pub/FreeBSD>

162. <URL:mailto:hostmaster@FreeBSD.ORG>

163. <URL:ftp://ftp.FreeBSD.ORG/pub/FreeBSD>

164. <URL:ftp://ftp2.FreeBSD.ORG/pub/FreeBSD>

165. <URL:ftp://ftp3.FreeBSD.ORG/pub/FreeBSD>

166. <URL:ftp://ftp4.FreeBSD.ORG/pub/FreeBSD>

167. <URL:ftp://ftp5.FreeBSD.ORG/pub/FreeBSD>

FreeBSD Handbook 358

• ftp://ftp6.FreeBSD.ORG/pub/FreeBSD168

The latest versions of export-restricted code for FreeBSD (2.0C or later) (eBones and secure) are
being made available at the following locations. If you are outside the U.S. or Canada, please get
secure (DES) and eBones (Kerberos) from one of the following foreign distribution sites:

South Africa
Hostmaster169 for this domain.

• ftp://ftp.internat.FreeBSD.ORG/pub/FreeBSD170

• ftp://ftp2.internat.FreeBSD.ORG/pub/FreeBSD171

Brazil
Hostmaster172 for this domain.

• ftp://ftp.br.FreeBSD.ORG/pub/FreeBSD173

Finland

• ftp://nic.funet.fi/pub/unix/FreeBSD/eurocrypt174

Contact: count@nic.funet.fi175 .

25.3 CTM Sites
CTM (section 18.3.2, page 260)/FreeBSD is available via anonymous FTP from the following mir-
ror sites. If you choose to obtain CTM via anonymous FTP, please try to use a site near you.

In case of problems, please contact Poul-Henning Kamp <phk@FreeBSD.ORG>.

California, Bay Area, official source

• ftp://ftp.freebsd.org/pub/FreeBSD/CTM176

Germany, Trier

• ftp://ftp.uni-trier.de/pub/unix/systems/BSD/FreeBSD/CTM177

South Africa, backup server for old deltas

• ftp://ftp.internat.freebsd.org/pub/FreeBSD/CTM178

168. <URL:ftp://ftp6.FreeBSD.ORG/pub/FreeBSD>

169. <URL:mailto:hostmaster@internat.FreeBSD.ORG>

170. <URL:ftp://ftp.internat.FreeBSD.ORG/pub/FreeBSD>

171. <URL:ftp://ftp2.internat.FreeBSD.ORG/pub/FreeBSD>

172. <URL:mailto:hostmaster@br.FreeBSD.ORG>

173. <URL:ftp://ftp.br.FreeBSD.ORG/pub/FreeBSD>

174. <URL:ftp://nic.funet.fi/pub/unix/FreeBSD/eurocrypt>

175. <URL:mailto:count@nic.funet.fi>

176. <URL:ftp://ftp.freebsd.org/pub/FreeBSD/CTM>

177. <URL:ftp://ftp.uni-trier.de/pub/unix/systems/BSD/FreeBSD/CTM>

178. <URL:ftp://ftp.internat.freebsd.org/pub/FreeBSD/CTM>

FreeBSD Handbook 359

Taiwan/R.O.C, Chiayi

• ftp://ctm.tw.freebsd.org/pub/FreeBSD/CTM179

• ftp://ctm2.tw.freebsd.org/pub/FreeBSD/CTM180

• ftp://ctm3.tw.freebsd.org/pub/freebsd/CTM181

If you did not find a mirror near to you or the mirror is incomplete, try FTP search182 at
http://ftpsearch.ntnu.no/ftpsearch183 . FTP search is a great free archie server in Trondheim,
Norway.

25.4 CVSup Sites
CVSup (section 18.3.3, page 263) servers for FreeBSD are running at the following sites:

Argentina

• cvsup.ar.FreeBSD.ORG (maintainer184)

Australia

• cvsup.au.FreeBSD.ORG (maintainer185)

Brazil

• cvsup.br.FreeBSD.ORG (maintainer186)

Canada

• cvsup.ca.FreeBSD.ORG (maintainer187)

Denmark

• cvsup.dk.FreeBSD.ORG (maintainer188)

Estonia

• cvsup.ee.FreeBSD.ORG (maintainer189)

Finland

• cvsup.fi.FreeBSD.ORG (maintainer190)

Germany

179. <URL:ftp://ctm.tw.freebsd.org/pub/FreeBSD/CTM>

180. <URL:ftp://ctm2.tw.freebsd.org/pub/FreeBSD/CTM>

181. <URL:ftp://ctm3.tw.freebsd.org/pub/freebsd/CTM>

182. <URL:http://ftpsearch.ntnu.no/>

183. <URL:http://ftpsearch.ntnu.no/ftpsearch/>

184. <URL:mailto:msagre@cactus.fi.uba.ar>

185. <URL:mailto:dawes@physics.usyd.edu.au>

186. <URL:mailto:cvsup@cvsup.br.freebsd.org>

187. <URL:mailto:james@ican.net>

188. <URL:mailto:jesper@skriver.dk>

189. <URL:mailto:taavi@uninet.ee>

190. <URL:mailto:count@key.sms.fi>

FreeBSD Handbook 360

• cvsup.de.FreeBSD.ORG (maintainer191)

• cvsup2.de.FreeBSD.ORG (maintainer192)

• cvsup3.de.FreeBSD.ORG (maintainer193)

Iceland

• cvsup.is.FreeBSD.ORG (maintainer194)

Japan

• cvsup.jp.FreeBSD.ORG (maintainer195)

• cvsup2.jp.FreeBSD.ORG (maintainer196)

Netherlands

• cvsup.nl.FreeBSD.ORG (maintainer197)

Norway

• cvsup.no.FreeBSD.ORG (maintainer198)

Russia

• cvsup.ru.FreeBSD.ORG (maintainer199)

Slovak Republic

• cvsup.sk.FreeBSD.ORG (maintainer200)

South Africa

• cvsup.za.FreeBSD.ORG (maintainer201)

• cvsup2.za.FreeBSD.ORG (maintainer202)

Taiwan

• cvsup.tw.FreeBSD.ORG (maintainer203)

Ukraine

191. <URL:mailto:wosch@freebsd.org>

192. <URL:mailto:petzi@freebsd.org>

193. <URL:mailto:ag@leo.org>

194. <URL:mailto:adam@veda.is>

195. <URL:mailto:simokawa@sat.t.u-tokyo.ac.jp>

196. <URL:mailto:max@FreeBSD.ORG>

197. <URL:mailto:xaa@stack.nl>

198. <URL:mailto:Tor.Egge@idt.ntnu.no>

199. <URL:mailto:mishania@demos.su>

200. <URL:mailto:tps@tps.sk>

201. <URL:mailto:markm@FreeBSD.ORG>

202. <URL:mailto:markm@FreeBSD.ORG>

203. <URL:mailto:jdli@freebsd.csie.nctu.edu.tw>

FreeBSD Handbook 361

• cvsup2.ua.FreeBSD.ORG (maintainer204)

United Kingdom

• cvsup.uk.FreeBSD.ORG (maintainer205)

USA

• cvsup.FreeBSD.ORG (maintainer206)

• cvsup2.FreeBSD.ORG (maintainer207)

• cvsup3.FreeBSD.ORG (maintainer208)

The export-restricted code for FreeBSD (eBones and secure) is available via CVSup at the follow-
ing international repository. Please use this site to get the export-restricted code, if you are out-
side the USA or Canada.

South Africa

• cvsup.internat.FreeBSD.ORG (maintainer209)

The FreeBSD Mozilla210 repository is available from the following CVSup sites.

California

• mozilla.FreeBSD.ORG (maintainer211)

Germany

• cvsup.de.FreeBSD.ORG (maintainer212)

Russia

• mozilla.ru.freebsd.org (maintainer213)

The following CVSup site is especially designed for CTM (section 18.3.2, page 260) users. Unlike
the other CVSup mirrors, it is kept up-to-date by CTM. That means if you CVSup cvs-all with
release=cvs from this site, you get a version of the repository (including the inevitable
.ctm_status

FreeBSD Handbook 362

files, the timestamps at this mirror site are not the same as those at other mirror sites. Switching
between this site and other sites is not recommended. It will work correctly, but will be some-
what inefficient.

Germany

• ctm.FreeBSD.ORG (maintainer214)

214. <URL:mailto:blank@fox.uni-trier.de>

FreeBSD Handbook 363

26. Bibliography
While the manual pages provide the definitive reference for individual pieces of the FreeBSD
operating system, they are notorious for not illustrating how to put the pieces together to make
the whole operating system run smoothly. For this, there is no substitute for a good book on
UNIX system administration and a good users’ manual.

26.1 Books & Magazines Specific to FreeBSD
International books & Magazines:

• Using FreeBSD (in Chinese).

• FreeBSD for PC 98’ers (in Japanese), published by SHUWA System Co, LTD. ISBN
4-87966-468-5 C3055 P2900E.

• FreeBSD (in Japanese), published by CUTT. ISBN 4-906391-22-2 C3055 P2400E.

• Complete Introduction to FreeBSD (in Japanese), published by Shoeisha Co., Ltd. ISBN
4-88135-473-6 P3600E.

• Personal UNIX Starter Kit FreeBSD (in Japanese), published by ASCII. ISBN 4-7561-1733-3
P3000E.

• FreeBSD Handbook (Japanese translation), published by ASCII. ISBN 4-7561-1580-2
P3800E.

English language books & Magazines:

• The Complete FreeBSD, published by Walnut Creek CDROM.

26.2 Users’ Guides
• Computer Systems Research Group, UC Berkeley. 4.4BSD User’s Reference Manual. O’Reilly

& Associates, Inc., 1994.

ISBN 1-56592-075-9

• Computer Systems Research Group, UC Berkeley. 4.4BSD User’s Supplementary Documents.
O’Reilly & Associates, Inc., 1994.

ISBN 1-56592-076-7

• UNIX in a Nutshell. O’Reilly & Associates, Inc., 1990.

ISBN 093717520X

• Mui, Linda. What You Need To Know When You Can’t Find Your UNIX System Administrator.
O’Reilly & Associates, Inc., 1995.

ISBN 1-56592-104-6

• Ohio State University has written a UNIX Introductory Course which is available online in
HTML and postscript format.

26.3 Administrators’ Guides
• Albitz, Paul and Liu, Cricket. DNS and BIND, 2nd Ed. O’Reilly & Associates, Inc., 1997.

ISBN 1-56592-236-0

FreeBSD Handbook 364

• Computer Systems Research Group, UC Berkeley. 4.4BSD System Manager’s Manual.
O’Reilly & Associates, Inc., 1994.

ISBN 1-56592-080-5

• Costales, Brian, et al. Sendmail, 2nd Ed. O’Reilly & Associates, Inc., 1997.

ISBN 1-56592-222-0

• Frisch, Æleen. Essential System Administration, 2nd Ed. O’Reilly & Associates, Inc., 1995.
ISBN 1-56592-127-5

• Hunt, Craig. TCP/IP Network Administration. O’Reilly & Associates, Inc., 1992.

ISBN 0-937175-82-X

• Nemeth, Evi. UNIX System Administration Handbook. 2nd ed. Prentice Hall, 1995.

ISBN 0131510517

• Stern, Hal Managing NFS and NIS O’Reilly & Associates, Inc., 1991.

ISBN 0-937175-75-7

26.4 Programmers’ Guides
• Asente, Paul. X Window System Toolkit. Digital Press.

ISBN 1-55558-051-3

• Computer Systems Research Group, UC Berkeley. 4.4BSD Programmer’s Reference Manual.
O’Reilly & Associates, Inc., 1994.

ISBN 1-56592-078-3

• Computer Systems Research Group, UC Berkeley. 4.4BSD Programmer’s Supplementary Doc-
uments. O’Reilly & Associates, Inc., 1994.

ISBN 1-56592-079-1

• Ellis, Margaret A. and Stroustrup, Bjarne. The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

ISBN 0-201-51459-1

• Harbison, Samuel P. and Steele, Guy L. Jr. C: A Reference Manual. 4rd ed. Prentice Hall,
1995.
ISBN 0-13-326224-3

• Kernighan, Brian and Dennis M. Ritchie. The C Programming Language.. PTR Prentice Hall,
1988.

ISBN 0-13-110362-9

• Lehey, Greg. Port UNIX Software. O’Reilly & Associates, Inc., 1995.

ISBN 1-56592-126-7

• Plauger, P. J. The Standard C Library. Prentice Hall, 1992.

ISBN 0-13-131509-9

FreeBSD Handbook 365

• Stevens, W. Richard. Advanced Programming in the UNIX Environment. Reading, Mass. :
Addison-Wesley, 1992

ISBN 0-201-56317-7

• Stevens, W. Richard. UNIX Network Programming. PTR Prentice Hall, 1990.

ISBN 0-13-949876-1

• Wells, Bill. "Writing Serial Drivers for UNIX". Dr. Dobb’s Journal. 19(15), December 1994.
pp68-71, 97-99.

26.5 Operating System Internals
• Andleigh, Prabhat K. UNIX System Architecture. Prentice-Hall, Inc., 1990.

ISBN 0-13-949843-5

• Jolitz, William. "Porting UNIX to the 386". Dr. Dobb’s Journal. January 1991-July 1992.

• Leffler, Samuel J., Marshall Kirk McKusick, Michael J Karels and John Quarterman The
Design and Implementation of the 4.3BSD UNIX Operating System. Reading, Mass. : Addison-
Wesley, 1989.

ISBN 0-201-06196-1

• Leffler, Samuel J., Marshall Kirk McKusick, The Design and Implementation of the 4.3BSD
UNIX Operating System: Answer Book. Reading, Mass. : Addison-Wesley, 1991.

ISBN 0-201-54629-9

• McKusick, Marshall Kirk, Keith Bostic, Michael J Karels, and John Quarterman. The Design
and Implementation of the 4.4BSD Operating System. Reading, Mass. : Addison-Wesley, 1996.

ISBN 0-201-54979-4

• Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The Protocols. Reading, Mass. : Addison-
Wesley, 1996.

ISBN 0-201-63346-9

• Stevens, W. Richard. TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP and the
UNIX Domain Protocols. Reading, Mass. : Addison-Wesley, 1996.

ISBN 0-201-63495-3

• Vahalia, Uresh. UNIX Internals -- The New Frontiers. Prentice Hall, 1996.

ISBN 0-13-101908-2

• Wright, Gary R. and W. Richard Stevens. TCP/IP Illustrated, Volume 2: The Implementation.
Reading, Mass. : Addison-Wesley, 1995.

ISBN 0-201-63354-X

26.6 Security Reference
• Cheswick, William R. and Steven M. Bellovin. Firewalls and Internal Security: Repelling the

Wily Hacker. Reading, Mass. : Addison-Wesley, 1995.

ISBN 0-201-63357-4

FreeBSD Handbook 366

• Garfinkel, Simson and Gene Spafford. Practical UNIX Security. 2nd Ed. O’Reilly & Associ-
ates, Inc., 1996.

ISBN 1-56592-148-8

• Garfinkel, Simson. PGP Pretty Good Privacy O’Reilly & Associates, Inc., 1995.

ISBN 1-56592-098-8

26.7 Hardware Reference
• Anderson, Don and Tom Shanley. Pentium Processor System Architecture. 2nd ed. Reading,

Mass. : Addison-Wesley, 1995.

ISBN 0-201-40992-5

• Ferraro, Richard F. Programmer’s Guide to the EGA, VGA, and Super VGA Cards. 3rd ed.
Reading, Mass. : Addison-Wesley, 1995.

ISBN 0-201-62490-7

• Shanley, Tom. 80486 System Architecture. 3rd ed. Reading, Mass. : Addison-Wesley, 1995.
ISBN 0-201-40994-1

• Shanley, Tom. ISA System Architecture. 3rd ed. Reading, Mass. : Addison-Wesley, 1995.

ISBN 0-201-40996-8

• Shanley, Tom. PCI System Architecture. 3rd ed. Reading, Mass. : Addison-Wesley, 1995.
ISBN 0-201-40993-3

• Van Gilluwe, Frank. The Undocumented PC. Reading, Mass: Addison-Wesley Pub. Co., 1994.

ISBN 0-201-62277-7

26.8 UNIX Histor y
• Lion, John Lion’s Commentary on UNIX, 6th Ed. With Source Code. ITP Media Group, 1996.

ISBN 1573980137

• Raymond, Eric s. The New Hacker’s Dictonary, 3rd edition. MIT Press, 1996.

ISBN 0-262-68092-0

Also known as the Jargon File

• Salus, Peter H. A quarter century of UNIX. Addison-Wesley Publishing Company, Inc., 1994.

ISBN 0-201-54777-5

• Simon Garfinkel, Daniel Weise, Steven Strassmann. The UNIX-HATERS Handbook. IDG
Books Worldwide, Inc., 1994.

ISBN 1-56884-203-1

• Don Libes, Sandy Ressler Life with UNIX - special edition. Prentice-Hall, Inc., 1989.

ISBN 0-13-536657-7

FreeBSD Handbook 367

• The BSD family tree. 1997.

http://www.de.freebsd.org/de/ftp/unix-stammbaum or local215 on a FreeBSD-current
machine.

• The BSD Release Announcements collection. 1997.

http://www.de.FreeBSD.ORG/de/ftp/releases/

• Networked Computer Science Technical Reports Library.

http://www.ncstrl.org/

26.9 Magazines and Journals
• The C/C++ Users Journal. R&D Publications Inc. ISSN 1075-2838

• Sys Admin - The Journal for UNIX System Administrators Miller Freeman, Inc., ISSN 1061-2688

215. <URL:file:/usr/share/misc/bsd-family-tree>

FreeBSD Handbook 368

27. Resources on the Internet
Contributed by Jordan K. Hubbard <jkh@FreeBSD.ORG>.

The rapid pace of FreeBSD progress makes print media impractical as a means of following the
latest developments. Electronic resources are the best, if not often the only, way stay informed of
the latest advances. Since FreeBSD is a volunteer effort, the user community itself also generally
serves as a ‘technical support department’ of sorts, with electronic mail and USENET news being
the most effective way of reaching that community.

The most important points of contact with the FreeBSD user community are outlined below. If
you are aware of other resources not mentioned here, please send them to the FreeBSD documen-
tation project mailing list <freebsd-doc@FreeBSD.ORG> so that they may also be included.

27.1 Mailing lists
Though many of the FreeBSD development members read USENET, we cannot always guarantee
that we will get to your questions in a timely fashion (or at all) if you post them only to one of the
comp.unix.bsd.freebsd.* groups. By addressing your questions to the appropriate mailing list
you will reach both us and a concentrated FreeBSD audience, invariably assuring a better (or at
least faster) response.

The charters for the various lists are given at the bottom of this document. Please read the char-
ter before joining or sending mail to any list. Most of our list subscribers now receive many
hundreds of FreeBSD related messages every day, and by setting down charters and rules for
proper use we are striving to keep the signal-to-noise ratio of the lists high. To do less would see
the mailing lists ultimately fail as an effective communications medium for the project.

Archives are kept for all of the mailing lists and can be searched using the FreeBSD World Wide
Web server216 . The keyword searchable archive offers an excellent way of finding answers to fre-
quently asked questions and should be consulted before posting a question.

27.1.1 List summar y

General lists: The following are general lists which anyone is free to join:

List Purpose
--
freebsd-advocacy FreeBSD Evangelism
freebsd-announce Important events and project milestones
freebsd-bugs Bug reports
freebsd-chat Non-technical items related to the FreeBSD community
freebsd-current Discussion concerning the use of FreeBSD-current
freebsd-stable Discussion concerning the use of FreeBSD-stable
freebsd-isp Issues for Internet Service Providers using FreeBSD
freebsd-jobs FreeBSD employment and consulting opportunities
freebsd-questions User questions

Technical lists: The following lists are for technical discussion. You should read the charter for
each list carefully before joining or sending mail to one as there are firm guidelines for their use
and content.

216. <URL:http://www.FreeBSD.ORG/search.html>

FreeBSD Handbook 369

List Purpose
--
freebsd-afs Porting AFS to FreeBSD
freebsd-alpha Porting FreeBSD to the Alpha
freebsd-doc The FreeBSD Documentation project
freebsd-database Discussing database use and developement under FreeBSD
freebsd-emulation Emulation of other systems such as Linux/DOS/Windows
freebsd-fs Filesystems
freebsd-hackers General technical discussion
freebsd-hardware General discussion of hardware for running FreeBSD
freebsd-isdn ISDN developers
freebsd-java Java developers and people porting JDKs to FreeBSD
freebsd-mobile Discussions about mobile computing
freebsd-multimedia Multimedia discussion
freebsd-mozilla Porting mozilla to FreeBSD
freebsd-net Networking discussion and TCP/IP source code
freebsd-platforms Concerning ports to non-Intel architecture platforms
freebsd-ports Discussion of the ports collection
freebsd-scsi The SCSI subsystem
freebsd-security Security issues
freebsd-smp Design discussions for [A]Symmetric MultiProcessing
freebsd-sparc Porting FreeBSD to Sparc systems.
freebsd-tokenring Support Token Ring in FreeBSD

Limited lists: The following lists require approval from core@FreeBSD.ORG217 to join, though
anyone is free to send messages to them which fall within the scope of their charters. It is also a
good idea establish a presence in the technical lists before asking to join one of these limited lists.

List Purpose
--
freebsd-admin Administrative issues
freebsd-arch Architecture and design discussions
freebsd-core FreeBSD core team
freebsd-hubs People running mirror sites (infrastructural support)
freebsd-install Installation development
freebsd-security-notifications Security notifications
freebsd-user-groups User group coordination

CVS lists: The following lists are for people interested in seeing the log messages for changes to
various areas of the source tree. They are Read-Only lists and should not have mail sent to them.

List name Source area Area Description (source for)
--
cvs-CVSROOT /usr/src/[A-Z]* Top level /usr/src file changes
cvs-all /usr/src All changes to the tree (superset)
cvs-bin /usr/src/bin System binaries
cvs-etc /usr/src/etc System files
cvs-games /usr/src/games Games
cvs-gnu /usr/src/gnu GPL’d utilities
cvs-include /usr/src/include Include files
cvs-kerberosIV /usr/src/kerberosIV Kerberos encryption code
cvs-lib /usr/src/lib System libraries
cvs-libexec /usr/src/libexec System binaries
cvs-ports /usr/ports Ported software
cvs-sbin /usr/src/sbin System binaries
cvs-share /usr/src/share System shared files
cvs-sys /usr/src/sys Kernel
cvs-usrbin /usr/src/usr.bin Use binaries
cvs-usrsbin /usr/src/usr.sbin System binaries

217. <URL:mailto:core@freebsd.org>

FreeBSD Handbook 370

27.1.2 How to subscribe

All mailing lists live on FreeBSD.ORG, so to post to a given list you simply mail to list-
name@FreeBSD.ORG. It will then be redistributed to mailing list members world-wide.

To subscribe to a list, send mail to <majordomo@FreeBSD.ORG> and include

subscribe <listname> [<optional address>]

In the body of your message. For example, to subscribe yourself to freebsd-announce, you’d do:

% mail majordomo@FreeBSD.ORG
subscribe freebsd-announce
^D

If you want to subscribe yourself under a different name, or submit a subscription request for a
local mailing list (note: this is more efficient if you have several interested parties at one site, and
highly appreciated by us!), you would do something like:

% mail majordomo@FreeBSD.ORG
subscribe freebsd-announce local-announce@somesite.com
^D

Finally, it is also possible to unsubscribe yourself from a list, get a list of other list members or see
the list of mailing lists again by sending other types of control messages to majordomo. For a
complete list of available commands, do this:

% mail majordomo@FreeBSD.ORG
help
^D

Again, we would like to request that you keep discussion in the technical mailing lists on a tech-
nical track. If you are only interested in the "high points" then it is suggested that you join
freebsd-announce, which is intended only for infrequent traffic.

27.1.3 List char ters

AllFreeBSD mailing lists have certain basic rules which must be adhered to by anyone using
them. Failure to comply with these guidelines will result in two (2) written warnings from the
FreeBSD Postmaster218 , after which, on a third offense, the poster will removed from all FreeBSD
mailing lists and filtered from further posting to them. We regret that such rules and measures
are necessary at all, but today’s Internet is a pretty harsh environment, it would seem, and many
fail to appreciate just how fragile some of its mechanisms are.

Rules of the road:

• The topic of any posting should adhere to the basic charter of the list it is posted to, e.g. if
the list is about technical issues then your posting should contain technical discussion.
Ongoing irrelevant chatter or flaming only detracts from the value of the mailing list for
everyone on it and will not be tolerated. For free-form discussion on no particular topic, the
freebsd-chat219 mailing list is freely available and should be used instead.

• No posting should be made to more than 2 mailing lists, and only to 2 when a clear and
obvious need to post to both lists exists. For most lists, there is already a great deal of sub-
scriber overlap and except for the most esoteric mixes (say "-stable & -scsi"), there really is
no reason to post to more than one list at a time. If a message is sent to you in such a way

218. <URL:mailto:postmaster@freebsd.org>

219. <URL:mailto:freebsd-chat@freebsd.org>

FreeBSD Handbook 371

that multiple mailing lists appear on the Cc line then the cc line should also be trimmed
before sending it out again. You are still responsible for your own cross-postings, no matter
who the originator might have been.

• Personal attacks and profanity (in the context of an argument) are not allowed, and that
includes users and developers alike. Gross breaches of netiquette, like excerpting or repost-
ing private mail when permission to do so was not and would not be forthcoming, are
frowned upon but not specifically enforced. However, there are also very few cases where
such content would fit within the charter of a list and it would therefore probably rate a
warning (or ban) on that basis alone.

• Advertising of non-FreeBSD related products or services is strictly prohibited and will
result in an immediate ban if it is clear that the offender is advertising by spam.

Individual list charters:

FREEBSD-AFS
Andrew File System

This list is for discussion on porting and using AFS from CMU/Transarc

FREEBSD-ADMIN
Administrative issues

This list is purely for discussion of freebsd.org related issues and to report problems
or abuse of project resources. It is a closed list, though anyone may report a prob-
lem (with our systems!) to it.

FREEBSD-ANNOUNCE
Important events / milestones

This is the mailing list for people interested only in occasional announcements of
significant freebsd events. This includes announcements about snapshots and other
releases. It contains announcements of new FreeBSD capabilities. It may contain
calls for volunteers etc. This is a low volume, strictly moderated mailing list.

FREEBSD-ARCH
Architecture and design discussions

This is the mailing list for people discussing FreeBSD architectural issues. It is a
closed list, and not for general subscription.

FREEBSD-BUGS
Bug reports

This is the mailing list for reporting bugs in FreeBSD Whenever possible, bugs
should be submitted using the "send-pr(1)" command or the WEB interface220 to it.

FREEBSD-CHAT
Non technical items related to the FreeBSD community

This list contains the overflow from the other lists about non-technical, social infor-
mation. It includes discussion about whether Jordan looks like a toon ferret or not,
whether or not to type in capitals, who is drinking too much coffee, where the best
beer is brewed, who is brewing beer in their basement, and so on. Occasional
announcements of important events (such as upcoming parties, weddings, births,
new jobs, etc) can be made to the technical lists, but the follow ups should be

220. <URL:http://www.freebsd.org/send-pr.html>

FreeBSD Handbook 372

directed to this -chat list.

FREEBSD-CORE
FreeBSD core team

This is an internal mailing list for use by the core members. Messages can be sent to
it when a serious FreeBSD-related matter requires arbitration or high-level scrutiny.

FREEBSD-CURRENT
Discussions about the use of FreeBSD-current
This is the mailing list for users of freebsd-current. It includes warnings about new
features coming out in -current that will affect the users, and instructions on steps
that must be taken to remain -current. Anyone running "current" must subscribe to
this list. This is a technical mailing list for which strictly technical content is
expected.

FREEBSD-CURRENT-DIGEST
Discussions about the use of FreeBSD-current
This is the digest version of the freebsd-current mailing list. The digest consists of
all messages sent to freebsd-current bundled together and mailed out as a single
message. The average digest size is about 40kB. This list is Read-Only and should
not be posted to.

FREEBSD-STABLE
Discussions about the use of FreeBSD-stable
This is the mailing list for users of freebsd-stable. It includes warnings about new
features coming out in -stable that will affect the users, and instructions on steps
that must be taken to remain -stable. Anyone running ‘‘stable’’ should subscribe to
this list. This is a technical mailing list for which strictly technical content is
expected.

FREEBSD-DOC
Documentation project

This mailing list belongs to the FreeBSD Doc Project and is for the discussion of doc-
umentation related issues and projects.

FREEBSD-FS
Filesystems

Discussions concerning FreeBSD filesystems. This is a technical mailing list for
which strictly technical content is expected.

FREEBSD-ISDN
ISDN Communications

This is the mailing list for people discussing the development of ISDN support for
FreeBSD.

FREEBSD-JAVA
Java Development

This is the mailing list for people discussing the development of significant Java
applications for FreeBSD and the porting and maintenance of JDKs.

FREEBSD-HACKERS
Technical discussions

This is a forum for technical discussions related to FreeBSD. This is the primary

FreeBSD Handbook 373

technical mailing list. It is for individuals actively working on FreeBSD, to bring up
problems or discuss alternative solutions. Individuals interested in following the
technical discussion are also welcome. This is a technical mailing list for which
strictly technical content is expected.

FREEBSD-HACKERS-DIGEST
Technical discussions
This is the digest version of the freebsd-hackers mailing list. The digest consists of
all messages sent to freebsd-hackers bundled together and mailed out as a single
message. The average digest size is about 40kB. This list is Read-Only and should
not be posted to.

FREEBSD-HARDWARE
General discussion of FreeBSD hardware
General discussion about the types of hardware that FreeBSD runs on, various
problems and suggestions concerning what to buy or avoid.

FREEBSD-INSTALL
Installation discussion

This mailing list is for discussing FreeBSD installation development for the future
releases and is closed.

FREEBSD-ISP
Issues for Internet Service Providers

This mailing list is for discussing topics relevant to Internet Service Providers (ISPs)
using FreeBSD. This is a technical mailing list for which strictly technical content is
expected.

FREEBSD-MULTIMEDIA
Multimedia discussions

This is a forum about multimedia applications using FreeBSD. Discussion center
around multimedia applications, their installation, their development and their sup-
port within FreeBSD This is a technical mailing list for which strictly technical con-
tent is expected.

FREEBSD-PLATFORMS
Porting to Non-Intel platforms
Cross-platform freebsd issues, general discussion and proposals for non-Intel
FreeBSD ports. This is a technical mailing list for which strictly technical content is
expected.

FREEBSD-PORTS
Discussion of "ports"

Discussions concerning FreeBSD’s "ports collection" (/usr/ports), proposed ports,
modifications to ports collection infrastructure and general coordination efforts.
This is a technical mailing list for which strictly technical content is expected.

FREEBSD-QUESTIONS
User questions

This is the mailing list for questions about FreeBSD. You should not send "how to"
questions to the technical lists unless you consider the question to be pretty techni-
cal.

FreeBSD Handbook 374

FREEBSD-QUESTIONS-DIGEST
User questions

This is the digest version of the freebsd-questions mailing list. The digest consists
of all messages sent to freebsd-questions bundled together and mailed out as a sin-
gle message. The average digest size is about 40kB.

FREEBSD-SCSI
SCSI subsystem

This is the mailing list for people working on the scsi subsystem for FreeBSD. This
is a technical mailing list for which strictly technical content is expected.

FREEBSD-SECURITY
Security issues

FreeBSD computer security issues (DES, Kerberos, known security holes and fixes,
etc). This is a technical mailing list for which strictly technical content is expected.

FREEBSD-SECURITY-NOTIFICATIONS
Security Notifications

Notifications of FreeBSD security problems and fixes. This is not a discussion list.
The discussion list is FreeBSD-security.

FREEBSD-USER-GROUPS
User Group Coordination List

This is the mailing list for the coordinators from each of the local area Users Groups
to discuss matters with each other and a designated individual from the Core Team.
This mail list should be limited to meeting synopsis and coordination of projects
that span User Groups. It is a closed list.

27.2 Usenet newsgroups
In addition to two FreeBSD specific newsgroups, there are many others in which FreeBSD is dis-
cussed or are otherwise relevant to FreeBSD users. Keyword searchable archives221 are available
for some of these newsgroups from courtesy of Warren Toomey <wkt@cs.adfa.oz.au> .

27.2.1 BSD specific newsgroups

• comp.unix.bsd.freebsd.announce222

• comp.unix.bsd.freebsd.misc223

27.2.2 Other Unix newsgroups of interest

• comp.unix224

• comp.unix.questions225

221. <URL:http://minnie.cs.adfa.oz.au/BSD-info/bsdnews search.html>

222. <URL:news:comp.unix.bsd.freebsd.announce>

223. <URL:news:comp.unix.bsd.freebsd.misc>

224. <URL:news:comp.unix>

225. <URL:news:comp.unix.questions>

FreeBSD Handbook 375

• comp.unix.admin226

• comp.unix.programmer227

• comp.unix.shell228

• comp.unix.user-friendly229

• comp.security.unix230

• comp.sources.unix231

• comp.unix.advocacy232

• comp.unix.misc233

• comp.os.386bsd.announc234

• comp.os.386bsd.app235

• comp.os.386bsd.bugs236

• comp.os.386bsd.development237

• comp.os.386bsd.misc238

• comp.os.386bsd.questions239

• comp.bugs.4bsd240

• comp.bugs.4bsd.ucb-fixes241

• comp.unix.bsd242

27.2.3 X Window System

226. <URL:news:comp.unix.admin>

227. <URL:news:comp.unix.programmer>

228. <URL:news:comp.unix.shell>

229. <URL:news:comp.unix.user-friendly>

230. <URL:news:comp.security.unix>

231. <URL:news:comp.sources.unix>

232. <URL:news:comp.unix.advocacy>

233. <URL:news:comp.unix.misc>

234. <URL:news:comp.os.386bsd.announc>

235. <URL:news:comp.os.386bsd.app>

236. <URL:news:comp.os.386bsd.bugs>

237. <URL:news:comp.os.386bsd.development>

238. <URL:news:comp.os.386bsd.misc>

239. <URL:news:comp.os.386bsd.questions>

240. <URL:news:comp.bugs.4bsd>

241. <URL:news:comp.bugs.4bsd.ucb-fixes>

242. <URL:news:comp.unix.bsd>

FreeBSD Handbook 376

• comp.windows.x.i386unix243

• comp.windows.x244

• comp.windows.x.apps245

• comp.windows.x.announce246

• comp.windows.x.intrinsics247

• comp.windows.x.motif248

• comp.windows.x.pex249

• comp.emulators.ms-windows.wine250

27.3 World Wide Web servers
• <URL:http://www.FreeBSD.ORG/> - Central Server.

• <URL:http://www.au.freebsd.org/FreeBSD/> - Australia.

• <URL:http://www.br.freebsd.org/> - Brazil.

• <URL:http://www.ca.freebsd.org/> - Canada.

• <URL:http://sunsite.mff.cuni.cz/www.freebsd.org/> - Czech Republic.

• <URL:http://sunsite.auc.dk/www.freebsd.org/> - Denmark.

• <URL:http://www.ee.freebsd.org/> - Estonia.

• <URL:http://www.fi.freebsd.org/> - Finland.

• <URL:http://www.de.freebsd.org/> - Germany.

• <URL:http://www.ie.freebsd.org/> - Ireland.

• <URL:http://www.jp.freebsd.org/> - Japan.

• <URL:http://www.kr.freebsd.org/> - Korea.

• <URL:http://www.nl.freebsd.org/> - Netherlands.

• <URL:http://www.pt.freebsd.org/> - Portugal.

• <URL:http://www.se.freebsd.org/www.freebsd.org/> - Sweden.

• <URL:http://www.tw.freebsd.org/freebsd.html> - Taiwan.

• <URL:http://www2.ua.freebsd.org/> - Ukraine.

243. <URL:news:comp.windows.x.i386unix>

244. <URL:news:comp.windows.x>

245. <URL:news:comp.windows.x.apps>

246. <URL:news:comp.windows.x.announce>

247. <URL:news:comp.windows.x.intrinsics>

248. <URL:news:comp.windows.x.motif>

249. <URL:news:comp.windows.x.pex>

250. <URL:news:comp.emulators.ms-windows.wine>

FreeBSD Handbook 377

28. FreeBSD Project Staff
The FreeBSD Project is managed and operated by the following groups of people:

28.1 The FreeBSD Core Team
The FreeBSD core team constitutes the project’s ‘‘Board of Directors’’, responsible for deciding the
project’s overall goals and direction as well as managing specific areas (section 28.4, page 381) of
the FreeBSD project landscape.

(in alphabetical order by last name):

• Satoshi Asami <asami@FreeBSD.ORG>

• Jonathan M. Bresler <jmb@FreeBSD.ORG>

• Andrey A. Chernov <ache@FreeBSD.ORG>

• John Dyson <dyson@FreeBSD.ORG>

• Bruce Evans <bde@FreeBSD.ORG>

• Justin T. Gibbs <gibbs@FreeBSD.ORG>

• David Greenman <davidg@FreeBSD.ORG>

• Jordan K. Hubbard <jkh@FreeBSD.ORG>

• Poul-Henning Kamp <phk@FreeBSD.ORG>

• Rich Murphey <rich@FreeBSD.ORG>

• Gary Palmer <gpalmer@FreeBSD.ORG>

• John Polstra <jdp@FreeBSD.ORG>

• Guido van Rooij <guido@FreeBSD.ORG>

• Søren Schmidt <sos@FreeBSD.ORG>

• Peter Wemm <peter@FreeBSD.ORG>

• Garrett Wollman <wollman@FreeBSD.ORG>

• Jörg Wunsch <joerg@FreeBSD.ORG>

28.2 The FreeBSD Developers
These are the people who have commit privileges and do the engineering work on the FreeBSD
source tree. All core team members and most FreeBSD Documentation project personnel are also
developers.

• Ugen J.S.Antsilevich <ugen@FreeBSD.ORG>

• Ade Barkah <mbarkah@FreeBSD.ORG>

• Stefan Bethke <stb@FreeBSD.ORG>

• Pierre Beyssac <pb@fasterix.freenix.org>

• John Birrell <jb@cimlogic.com.au>

• Torsten Blum <torstenb@FreeBSD.ORG>

• Donald Burr <dburr@FreeBSD.ORG>

• Daniel O’Callaghan <danny@FreeBSD.ORG>

FreeBSD Handbook 378

• Philippe Charnier <charnier@FreeBSD.ORG>

• Kenjiro Cho <kjc@FreeBSD.ORG>

• Gary Clark II <gclarkii@FreeBSD.ORG>

• Martin Cracauer <cracauer@FreeBSD.ORG>

• Adam David <adam@FreeBSD.ORG>

• Peter Dufault <dufault@FreeBSD.ORG>

• Frank Durda IV <uhclem@FreeBSD.ORG>

• Tor Egge <tegge@FreeBSD.ORG>

• Eivind Eklund <perhaps@yes.no>

• Julian Elischer <julian@FreeBSD.ORG>

• Ralf S. Engelschall <rse@FreeBSD.ORG>

• Stefan Esser <se@FreeBSD.ORG>

• Sean Eric Fagan <sef@FreeBSD.ORG>

• Bill Fenner <fenner@FreeBSD.ORG>

• John Fieber <jfieber@FreeBSD.ORG>

• James FitzGibbon <james@nexis.net>

• Lars Fredriksen <lars@FreeBSD.ORG>

• Marc G. Fournier <scrappy@FreeBSD.ORG>

• Thomas Gellekum <tg@FreeBSD.ORG>

• Brandon Gillespie <brandon@FreeBSD.ORG>

• Thomas Graichen <graichen@FreeBSD.ORG>

• Joe Greco <jgreco@FreeBSD.ORG>

• Rodney Grimes <rgrimes@FreeBSD.ORG>

• John-Mark Gurney <jmg@FreeBSD.ORG>

• Hiroyuki HANAI <hanai@FreeBSD.ORG>

• Amancio Hasty <ahasty@FreeBSD.ORG>

• John Hay <jhay@FreeBSD.ORG>

• Wolfgang Helbig <helbig@FreeBSD.ORG>

• Eric L. Hernes <erich@FreeBSD.ORG>

• Tatsumi Hosokawa <hosokawa@FreeBSD.ORG>

• Jeffrey Hsu <hsu@FreeBSD.ORG>

• Matthew Hunt <mph@FreeBSD.ORG>

• Jun-ichiro Itoh <itojun@itojun.org>

• Gary Jennejohn <gj@FreeBSD.ORG>

• Nate Johnson <nsj@FreeBSD.ORG>

FreeBSD Handbook 379

• Takenori KATO <kato@FreeBSD.ORG>

• Andreas Klemm <andreas@FreeBSD.ORG>

• Joseph Koshy <jkoshy@FreeBSD.ORG>

• Jun Kuriyama <kuriyama@FreeBSD.ORG>

• Warner Losh <imp@FreeBSD.ORG>

• Scott Mace <smace@FreeBSD.ORG>

• Stephen McKay <mckay@FreeBSD.ORG>

• Jonathan Lemon <jlemon@FreeBSD.ORG>

• Ted Mittelstaedt <tedm@FreeBSD.ORG>

• Atsushi Murai <amurai@FreeBSD.ORG>

• Mark Murray <markm@FreeBSD.ORG>

• Masafumi NAKANE <max@FreeBSD.ORG>

• Alex Nash <alex@freebsd.org>

• Robert Nordier <rnordier@FreeBSD.ORG>

• David Nugent <davidn@blaze.net.au>

• David O’Brien <obrien@FreeBSD.ORG>

• L Jonas Olsson <ljo@FreeBSD.ORG>

• Steve Passe <fsmp@FreeBSD.ORG>

• Sujal Patel <smpatel@FreeBSD.ORG>

• Bill Paul <wpaul@FreeBSD.ORG>

• Joshua Peck Macdonald <jmacd@FreeBSD.ORG>

• Steve Price <steve@FreeBSD.ORG>

• Mike Pritchard <mpp@FreeBSD.ORG>

• Doug Rabson <dfr@FreeBSD.ORG>

• James Raynard <jraynard@freebsd.org>

• Darren Reed <darrenr@FreeBSD.ORG>

• Geoff Rehmet <csgr@FreeBSD.ORG>

• Martin Renters <martin@FreeBSD.ORG>

• Paul Richards <paul@FreeBSD.ORG>

• Ollivier Robert <roberto@FreeBSD.ORG>

• Chuck Robey <chuckr@FreeBSD.ORG>

• Dima Ruban <dima@FreeBSD.ORG>

• Wolfram Schneider <wosch@FreeBSD.ORG>

• Andreas Schulz <ats@FreeBSD.ORG>

• Justin Seger <jseger@freebsd.org>

FreeBSD Handbook 380

• Vanilla I. Shu <vanilla@FreeBSD.ORG>

• Michael Smith <msmith@FreeBSD.ORG>

• Dag-Erling C. Smørgrav <des@FreeBSD.ORG>

• Brian Somers <brian@FreeBSD.ORG>

• Gene Stark <stark@FreeBSD.ORG>

• Karl Strickland <karl@FreeBSD.ORG>

• Dmitrij Tejblum <dt@FreeBSD.ORG>

• Chris Timmons <cwt@FreeBSD.ORG>

• Paul Traina <pst@FreeBSD.ORG>

• Tim Vanderhoek <hoek@FreeBSD.ORG>

• Steven Wallace <swallace@FreeBSD.ORG>

• Nate Williams <nate@FreeBSD.ORG>

• Kazutaka YOKOTA <yokota@FreeBSD.ORG>

• Jean-Marc Zucconi <jmz@FreeBSD.ORG>

28.3 The FreeBSD Documentation Project
"

The FreeBSD Documentation Project is responsible for a number of different services, each service
being run by an individual and his deputies (if any):

Documentation Project Manager
John Fieber <jfieber@FreeBSD.ORG>

Webmaster
Ade Barkah <mbarkah@FreeBSD.ORG>

Deputy: Paul Richards <paul@FreeBSD.ORG>

Handbook & FAQ Editor
FAQ Maintainer <faq@freebsd.org>

Build Engineer
Paul Richards <paul@FreeBSD.ORG>

Deputy: Dave Cornejo <dave@FreeBSD.ORG>

Mirror Manager
Ulf Zimmermann <ulf@FreeBSD.ORG>

Deputy: John Cavanaugh <john@FreeBSD.ORG>

News Editor
Nate Johnson <nsj@FreeBSD.ORG>

Deputy: John Cavanaugh <john@FreeBSD.ORG>

Gallery and Commercial Editor
Nate Johnson <nsj@FreeBSD.ORG>

Deputy: Charles A. Wimmer <cawimm@FreeBSD.ORG>

Style Police & Art Director
Dave Cornejo <dave@FreeBSD.ORG>

FreeBSD Handbook 381

Deputy: Chris Watson <opsys@open-systems.net>

Database Engineer
Mark Mayo <mark@vmunix.com>

Deputy: Martin Cracauer <cracauer@FreeBSD.ORG>

CGI Engineer
Martin Cracauer <cracauer@FreeBSD.ORG>

Deputy: Stefan Bethke <stb@FreeBSD.ORG>

Bottle Washing
Nate Johnson <nsj@FreeBSD.ORG>

Drying plates: Nik Clayton <nik@FreeBSD.ORG>

28.4 Who Is Responsible for What
Principal Architect

David Greenman <davidg@FreeBSD.ORG>

Documentation Project Manager
John Fieber <jfieber@FreeBSD.ORG>

Internationalization
Andrey A. Chernov <ache@FreeBSD.ORG>

Networking
Garrett Wollman <wollman@FreeBSD.ORG>

Postmaster
Jonathan M. Bresler <jmb@FreeBSD.ORG>

Release Coordinator
Jordan K. Hubbard <jkh@FreeBSD.ORG>

Public Relations & Corporate Liaison
Jordan K. Hubbard <jkh@FreeBSD.ORG>

Security Officer
Guido van Rooij <guido@FreeBSD.ORG>

Source Repository Managers
Principal: Peter Wemm <peter@FreeBSD.ORG>

Assistant: John Polstra <jdp@FreeBSD.ORG>

International (Crypto): Mark Murray <markm@FreeBSD.ORG>

Ports Manager
Satoshi Asami <asami@FreeBSD.ORG>

XFree86 Project, Inc. Liaison
Rich Murphey <rich@FreeBSD.ORG>

Usenet Support
Jörg Wunsch <joerg@FreeBSD.ORG>

GNATS Administrator
Poul-Henning Kamp <phk@FreeBSD.ORG> and Steve Price
<steve@FreeBSD.ORG>

FreeBSD Handbook 382

29. PGP keys
In case you need to verify a signature or send encrypted email to one of the officers or core team
members a number of keys are provided here for your convenience.

29.1 Officers
29.1.1 FreeBSD Security Officer <security-officer@freebsd.org>

"

FreeBSD Security Officer <security-officer@freebsd.org>
Fingerprint = 41 08 4E BB DB 41 60 71 F9 E5 0E 98 73 AF 3F 11

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.3i

mQCNAzF7MY4AAAEEAK7qBgPuBejER5HQbQlsOldk3ZVWXlRj54raz3IbuAUrDrQL
h3g57T9QY++f3Mot2LAf5lDJbsMfWrtwPrPwCCFRYQd6XH778a+l4ju5axyjrt/L
Ciw9RrOC+WaPv3lIdLuqYge2QRC1LvKACIPNbIcgbnLeRGLovFUuHi5z0oilAAUR
tDdGcmVlQlNEIFNlY3VyaXR5IE9mZmljZXIgPHNlY3VyaXR5LW9mZmljZXJAZnJl
ZWJzZC5vcmc+iQCVAwUQMX6yrOJgpPLZnQjrAQHyowQA1Nv2AY8vJIrdp2ttV6RU
tZBYnI7gTO3sFC2bhIHsCvfVU3JphfqWQ7AnTXcD2yPjGcchUfc/EcL1tSlqW4y7
PMP4GHZp9vHog1NAsgLC9Y1P/1cOeuhZ0pDpZZ5zxTo6TQcCBjQA6KhiBFP4TJql
3olFfPBh3B/Tu3dqmEbSWpuJAJUDBRAxez3C9RVb+45ULV0BAak8A/9JIG/jRJaz
QbKom6wMw852C/Z0qBLJy7KdN30099zMjQYeC9PnlkZ0USjQ4TSpC8UerYv6IfhV
nNY6gyF2Hx4CbEFlopnfA1c4yxtXKti1kSN6wBy/ki3SmqtfDhPQ4Q31p63cSe5A
3aoHcjvWuqPLpW4ba2uHVKGP3g7SSt6AOYkAlQMFEDF8mz0ff6kIA1j8vQEBmZcD
/REaUPDRx6qr1XRQlMs6pfgNKEwnKmcUzQLCvKBnYYGmD5ydPLxCPSFnPcPthaUb
5zVgMTjfjS2fkEiRrua4duGRgqN4xY7VRAsIQeMSITBOZeBZZf2oa9Ntidr5PumS
9uQ9bvdfWMpsemk2MaRG9BSoy5Wvy8VxROYYUwpT8Cf2iQCVAwUQMXsyqWtaZ42B
sqd5AQHKjAQAvolI30Nyu3IyTfNeCb/DvOe9tlOn/o+VUDNJiE/PuBe1s2Y94a/P
BfcohpKC2kza3NiW6lLTp00OWQsuu0QAPc02vYOyseZWy4y3Phnw60pWzLcFdemT
0GiYS5Xm1o9nAhPFciybn9j1q8UadIlIq0wbqWgdInBT8YI/l4f5sf6JAJUDBRAx
ezKXVS4eLnPSiKUBAc5OBACIXTlKqQC3B53qt7bNMV46m81fuw1PhKaJEI033mCD
ovzyEFFQeOyRXeu25Jg9Bq0Sn37ynISucHSmt2tUD5W0+p1MUGyTqnfqejMUWBzO
v4Xhp6a8RtDdUMBOTtro16iulGiRrCKxzVgEl4i+9Z0ZiE6BWlg5AetoF5n3mGk1
lw==
=ipyA
-----END PGP PUBLIC KEY BLOCK-----

29.1.2 Warner Losh

"

FreeBSD Handbook 383

Warner Losh <imp@village.org>
aka <imp@freebsd.org>

Fingerprint = D4 31 FD B9 F7 90 17 E8 37 C5 E7 7F CF A6 C1 B9
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.2

mQCNAzDzTiAAAAEEAK8D7KWEbVFUrmlqhUEnAvphNIqHEbqqT8s+c5f5c2uHtlcH
V4mV2TlUaDSVBN4+/D70oHmZc4IgiQwMPCWRrSezg9z/MaKlWhaslc8YT6Xc1q+o
EP/fAdKUrq49H0QQbkQk6Ks5wKW6v9AOvdmsS6ZJEcet6d9G4dxynu/2qPVhAAUR
tCBNLiBXYXJuZXIgTG9zaCA8aW1wQHZpbGxhZ2Uub3JnPokAlQMFEDM/SK1VLh4u
c9KIpQEBFPsD/1n0YuuUPvD4CismZ9bx9M84y5sxLolgFEfP9Ux196ZSeaPpkA0g
C9YX/IyIy5VHh3372SDWN5iVSDYPwtCmZziwIV2YxzPtZw0nUu82P/Fn8ynlCSWB
5povLZmgrWijTJdnUWI0ApVBUTQoiW5MyrNN51H3HLWXGoXMgQFZXKWYiQCVAwUQ
MzmhkfUVW/uOVC1dAQG3+AP/T1HL/5EYF0ij0yQmNTzt1cLt0b1e3N3zN/wPFFWs
BfrQ+nsv1zw7cEgxLtktk73wBGM9jUIdJu8phgLtl5a0m9UjBq5oxrJaNJr6UTxN
a+sFkapTLT1g84UFUO/+8qRB12v+hZr2WeXMYjHAFUT18mp3xwjW9DUV+2fW1Wag
YDKJAJUDBRAzOYK1s1pi61mfMj0BARBbA/930CHswOF0HIr+4YYUs1ejDnZ2J3zn
icTZhl9uAfEQq++Xor1x476j67Z9fESxyHltUxCmwxsJ1uOJRwzjyEoMlyFrIN4C
dE0C8g8BF+sRTt7VLURLERvlBvFrVZueXSnXvmMoWFnqpSpt3EmN6TNaLe8Cm87a
k6EvQy0dpnkPKokAlQMFEDD9Lorccp7v9qj1YQEBrRUD/3N4cCMWjzsIFp2Vh9y+
RzUrblyF84tJyA7Rr1p+A7dxf7je3Zx5QMEXosWL1WGnS5vC9YH2WZwv6sCU61gU
rSy9z8KHlBEHh+Z6fdRMrjd9byPf+n3cktT0NhS23oXB1ZhNZcB2KKhVPlNctMqO
3gTYx+Nlo6xqjR+J2NnBYU8p
=7fQV
-----END PGP PUBLIC KEY BLOCK-----

29.2 Core Team members
29.2.1 Satoshi Asami

"

Satoshi Asami <asami@cs.berkeley.edu>
aka <asami@FreeBSD.ORG>

Fingerprint = EB 3C 68 9E FB 6C EB 3F DB 2E 0F 10 8F CE 79 CA

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.2

mQCNAzPVyoQAAAEEAL7W+kipxB171Z4SVyyL9skaA7hG3eRsSOWk7lfvfUBLtPog
f3OKwrApoc/jwLf4+Qpdzv5DLEt/6Hd/clskhJ+q1gMNHyZ5ABmUxrTRRNvJMTrb
3fPU3oZj7sL/MyiFaT1zF8EaMP/iS2ZtcFsbYOqGeA8E/58uk4NA0SoeCNiJAAUR
tCVTYXRvc2hpIEFzYW1pIDxhc2FtaUBjcy5iZXJrZWxleS5lZHU+iQCVAwUQM/AT
+EqGN2HYnOMZAQF11QP/eSXb2FuTb1yX5yoo1Im8YnIk1SEgCGbyEbOMMBznVNDy
5g2TAD0ofLxPxy5Vodjg8rf+lfMVtO5amUH6aNcORXRncE83T10JmeM6JEp0T6jw
zOHKz8jRzygYLBayGsNIJ4BGxa4LeaGxJpO1ZEvRlNkPH/YEXK5oQmq9/DlrtYOJ
AEUDBRAz42JT8ng6GBbVvu0BAU8nAYCsJ8PiJpRUGlrz6rxjX8hqM1v3vqFHLcG+
G52nVMBSy+RZBgzsYIPwI5EZtWAKb22JAJUDBRAz4QBWdbtuOHaj97EBAaQPA/46
+NLUp+Wubl90JoonoXocwAg88tvAUVSzsxPXj0lvypAiSI2AJKsmn+5PuQ+/IoQy
lywRsxiQ5GD7C72SZ1yw2WI9DWFeAi+qa4b8n9fcLYrnHpyCY+zxEpu4pam8FJ7H
JocEUZz5HRoKKOLHErzXDiuTkkm72b1glmCqAQvnB4kAlQMFEDPZ3gyDQNEqHgjY
iQEBFfUEALu2C0uo+1Z7C5+xshWRYY5xNCzK20O6bANVJ+CO2fih96KhwsMof3lw
fDso5HJSwgFd8WT/sR+Wwzz6BAE5UtgsQq5GcsdYQuGI1yIlCYUpDp5sgswNm+OA
bX5a+r4F/ZJqrqT1J56Mer0VVsNfe5nIRsjd/rnFAFVfjcQtaQmjiQCVAwUQM9uV
mcdm8Q+/vPRJAQELHgP9GqNiMpLQlZig17fDnCJ73P0e5t/hRLFehZDlmEI2TK7j
Yeqbw078nZgyyuljZ7YsbstRIsWVCxobX5eH1kX+hIxuUqCAkCsWUY4abG89kHJr
XGQn6X1CX7xbZ+b6b9jLK+bJKFcLSfyqR3M2eCyscSiZYkWKQ5l3FYvbUzkeb6K0
IVNhdG9zaGkgQXNhbWkgPGFzYW1pQEZyZWVCU0QuT1JHPg==
=39SC
-----END PGP PUBLIC KEY BLOCK-----

29.2.2 Jonathan M. Bresler

"

FreeBSD Handbook 384

Jonathan M. Bresler <jmb@FreeBSD.org>
Key fingerprint = 31 57 41 56 06 C1 40 13 C5 1C E3 E5 DC 62 0E FB

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.2

mQCNAzG2GToAAAEEANI6+4SJAAgBpl53XcfEr1M9wZyBqC0tzpie7Zm4vhv3hO8s
o5BizSbcJheQimQiZAY4OnlrCpPxijMFSaihshs/VMAz1qbisUYAMqwGEO/T4QIB
nWNo0Q/qOniLMxUrxS1RpeW5vbghErHBKUX9GVhxbiVfbwc4wAHbXdKX5jjdAAUR
tCVKb25hdGhhbiBNLiBCcmVzbGVyIDxqbWJARnJlZUJTRC5PUkc+iQCVAwUQNA3x
ffUVW/uOVC1dAQHGdAQAgsnYklBtVUdGuQwXB3bYp9omTD7CVD0aibVrz+lXiPDh
aTVkOC1uhEwL59+R8VdpAnEDMobdZDA/ihCc+6/FW/eE0uyrWZzb5Ng9V1MfC6HI
+sXpeXPy585Z56ewadV2yY9rvzcwmmUNHmAXT/5O0S2AWB0EJZ+cewTrokSTVVOJ
AJUDBRA0C3EoVS4eLnPSiKUBASb+A/95g6w9DDPRGDlbsl4pN1BlSPKrmDQPRK1X
C3bddDY2HNelSNhzp2FYD0WoN1re1vMJV0oaaJHwv7wjbe3+SYEX/IdmtfzI0MbZ
Q/uPybPJOxi2ud6C6J+mEGJN9iBCnsaCz8CETuC9gR1mtxsxySUj9mk0fxKfdP6S
3QDrv6CQ1IkAlQMFEDKsi9CzWmLrWZ8yPQEBduUD/RhV4Qa89rYls9vtIFm6XBjZ
8mW37FYxeqIxg3ZrIyTMlghsOPV0f7zymCCWPRGKOLePRiGo0ZCEkDTYiM9tnwQI
09rmPWJb50yfTSZXjHx6+Hcm6O6BCmDFloo0Mxo6n9pvMH/TmmqHxCsAV+p8XEWy
rMZvwVSynMxmJd17Y5HLtBNKb25hdGhhbiBNLiBCcmVzbGVyiQCVAwUQMbYtYQHb
XdKX5jjdAQHEHwP/fEaQoTi7zKD1U/5kW2YPIBUyMTpLiO9QOr4stYjJvhHh4Ejw
fGvMIhbFrPKtxSNH1s3m4jAXKXiQBDCz17IIzL4n8dlunxNGE5MHcsmpWzggyIg4
zbPqPOcg4gLFEWsEkr2o0akwzIGa3tbCvC+ITaX/rdlWV1jaQjTqSNyPZBM=
=RV56
-----END PGP PUBLIC KEY BLOCK-----

29.2.3 Andrey A. Chernov

"

FreeBSD Handbook 385

Andrey A. Chernov <ache@FreeBSD.org>
aka <ache@nagual.pp.ru>

Key fingerprint = 33 03 9F 48 33 7B 4A 15 63 48 88 0A C4 97 FD 49

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.3ia

mQCNAiqUMGQAAAEEAPGhcD6A2Buey5LYz0sphDLpVgOZc/bb9UHAbaGKUAGXmafs
Dcb2HnsuYGgX/zrQXuCi/wIGtXcZWB97APtKOhFsZnPinDR5n/dde/mw9FnuhwqD
m+rKSL1HlN0z/Msa5y7g16760wHhSR6NoBSEG5wQAHIMMq7Q0uJgpPLZnQjrAAUT
tCVBbmRyZXkgQS4gQ2hlcm5vdiA8YWNoZUBuYWd1YWwucHAucnU+iQCVAwUQM2Ez
u+JgpPLZnQjrAQEyugP8DPnS8ixJ5OeuYgPFQf5sy6l+LrB6hyaS+lgsUPahWjNY
cnaDmfda/q/BV5d4+y5rlQe/pjnYG7/yQuAR3jhlXz8XDrqlBOnW9AtYjDt5rMfJ
aGFTGXAPGZ6k6zQZE0/YurT8ia3qjvuZm3Fw4NJrHRx7ETHRvVJDvxA6Ggsvmr20
JEFuZHJleSBBLiBDaGVybm92IDxhY2hlQEZyZWVCU0Qub3JnPokAlQMFEDR5uVbi
YKTy2Z0I6wEBLgED/2mn+hw4/3peLx0Sb9LNx//NfCCkVefSf2G9Qwhx6dvwbX7h
mFca97h7BQN4GubU1Z5Ffs6TeamSBrotBYGmOCwvJ6S9WigF9YHQIQ3B4LEjskAt
pcjU583y42zM11kkvEuQU2Gde61daIylJyOxsgpjSWpkxq50fgY2kLMfgl/ftCZB
bmRyZXkgQS4gQ2hlcm5vdiA8YWNoZUBuaWV0enNjaGUubmV0PokAlQMFEDR5svDi
YKTy2Z0I6wEBOTQD/0OTCAXIjuak363mjERvzSkVsNtIH9hA1l0w6Z95+iH0fHrW
xXKT0vBZE0y0Em+S3cotLL0bMmVE3F3D3GyxhBVmgzjyx0NYNoiQjYdi+6g/PV30
Cn4vOO6hBBpSyI6vY6qGNqcsawuRtHNvK/53MpOfKwSlICEBYQimcZhkci+EtCJB
bmRyZXkgQS4gQ2hlcm5vdiA8YWNoZUBuYWd1YWwucnU+iQCVAwUQMcm5HeJgpPLZ
nQjrAQHwvQP9GdmAf1gdcuayHEgNkc11macPH11cwWjYjzA2YoecFMGV7iqKK8QY
rr1MjbGXf8DAG8Ubfm0QbI8Lj8iG3NgqIru0c72UuHGSn/APfGGG0AtPX5UK/k7B
gI0Ca2po6NA5nrSp8tDsdEz/4gyea84RXl2prtTf5Jj07hflbRstGXK0MkFuZHJl
eSBBLiBDaGVybm92LCBCbGFjayBNYWdlIDxhY2hlQGFzdHJhbC5tc2suc3U+iQCV
AwUQMCsAo5/rGryoL8h3AQHq1QQAidyNFqA9hvrmMcjpY7csJVFlGvj574Wj4GPa
o3pZeuQaMBmsWqaXLYnWU/Aldb6kTz6+nRcQX50zFH0THSPfApwEW7yybSTI5apJ
mWT3qhKN2vmLNg2yNzhqLTzHLD1lH3i1pfQq8WevrNfjLUco5S/VuekTma/osnzC
Cw7fQzCJAJUDBRAwKvwoa1pnjYGyp3kBARihBACoXr3qfG65hFCyKJISmjOvaoGr
anxUIkeDS0yQdTHzhQ+dwB1OhhK15E0Nwr0MKajLMm90n6+Zdb5y/FIjpPriu8dI
rlHrWZlewa88eEDM+Q/NxT1iYg+HaKDAE171jmLpSpCL0MiJtO0i36L3ekVD7Hv8
vffOZHPSHirIzJOZTYkAlQMFEDAau6zFLUdtDb+QbQEBQX8D/AxwkYeFaYxZYMFO
DHIvSk23hAsjCmUA2Uil1FeWAusb+o8xRfPDc7TnosrIifJqbF5+fcHCG5VSTGlh
Bhd18YWUeabf/h9O2BsQX55yWRuB2x3diJ1xI/VVdG+rxlMCmE4ZR1Tl9x+Mtun9
KqKVpB39VlkCBYQ3hlgNt/TJUY4riQCVAwUQMBHMmyJRltlmbQBRAQFQkwP/YC3a
hs3ZMMoriOlt3ZxGNUUPTF7rIER3j+c7mqGG46dEnDB5sUrkzacpoLX5sj1tGR3b
vz9a4vmk1Av3KFNNvrZZ3/BZFGpq3mCTiAC9zsyNYQ8L0AfGIUO5goCIjqwOTNQI
AOpNsJ5S+nMAkQB4YmmNlI6GTb3D18zfhPZ6uciJAJUCBRAwD0sl4uW74fteFRkB
AWsAA/9NYqBRBKbmltQDpyK4+jBAYjkXBJmARFXKJYTlnTgOHMpZqoVyW96xnaa5
MzxEiu7ZWm5oL10QDIp1krkBP2KcmvfSMMHb5aGCCQc2/P8NlfXAuHtNGzYiI0UA
Iwi8ih/S1liVfvnqF9uV3d3koE7VsQ9OA4Qo0ZL2ggW+/gEaYIkAlQMFEDAOz6qx
/IyHe3rl4QEBIvYD/jIr8Xqo/2I5gncghSeFR01n0vELFIvaF4cHofGzyzBpYsfA
+6pgFI1IM+LUF3kbUkAY/2uSf9U5ECcaMCTWCwVgJVO+oG075SHEM4buhrzutZiM
1dTyTaepaPpTyRMUUx9ZMMYJs7sbqLId1eDwrJxUPhrBNvf/w2W2sYHSY8cdiQCV
AwUQMAzqgHcdkq6JcsfBAQGTxwQAtgeLFi2rhSOdllpDXUwz+SS6bEjFTWgRsWFM
y9QnOcqryw7LyuFmWein4jasjY033JsODfWQPiPVNA3UEnXVg9+n8AvNMPO8JkRv
Cn1eNg0VaJy9J368uArio93agd2Yf/R5r+QEuPjIssVk8hdcy/luEhSiXWf6bLMV
HEA0J+OJAJUDBRAwDUi+4mCk8tmdCOsBAatBBACHB+qtW880seRCDZLjl/bT1b14
5po60U7u6a3PEBkY0NA72tWDQuRPF/Cn/0+VdFNxQUsgkrbwaJWOoi0KQsvlOm3R
rsxKbn9uvEKLxExyKH3pxp76kvz/lEWwEeKvBK+84Pb1lzpG3W7u2XDfi3VQPTi3
5SZMAHc6C0Ct/mjNlYkAlQMFEDAMrPD7wj+NsTMUOQEBJckD/ik4WsZzm2qOx9Fw
erGq7Zwchc+Jq1YeN5PxpzqSf4AG7+7dFIn+oe6X2FcIzgbYY+IfmgJIHEVjDHH5
+uAXyb6l4iKc89eQawO3t88pfHLJWbTzmnvgz2cMrxt94HRvgkHfvcpGEgbyldq6
EB33OunazFcfZFRIcXk1sfyLDvYE
=1ahV
-----END PGP PUBLIC KEY BLOCK-----

29.2.4 Jordan K. Hubbard

"

FreeBSD Handbook 386

Jordan K. Hubbard <jkh@FreeBSD.org>
Fingerprint = 3C F2 27 7E 4A 6C 09 0A 4B C9 47 CD 4F 4D 0B 20

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.2i

mQCNAzFjX0IAAAEEAML+nm9/kDNPp43ZUZGjYkm2QLtoC1Wxr8JulZXqk7qmhYcQ
jvX+fyoriJ6/7ZlnLe2oG5j9tZOnRLPvMaz0g9CpW6Dz3nkXrNPkmOFV9B8D94Mk
tyFeRJFqnkCuqBj6D+H8FtBwEeeTecSh2tJ0bZZTXnAMhxeOdvUVW/uOVC1dAAUR
tCNKb3JkYW4gSy4gSHViYmFyZCA8amtoQEZyZWVCU0Qub3JnPokAlQMFEDF75D1r
WmeNgbKneQEBXtcD+gJIv8JzZRKlDZyTCQanK8iRgE+zMhxptI0kDObaGxT1BrpY
4/EPyiUN10G4k2Jb+DOc8Lg2xDQ3xmvgipFf9NMNV/ThaEuZ3wA31I6tW/arQEqB
Tp8u6T3v20m62t7Afo9HaoE6MBpHQUk2TilxgAd5P57sporL3pgW9YojIO9ziQCV
AwUQMXyV2h9/qQgDWPy9AQEMfgP/RmbSg2WlesATUQ4WuanjcdREduKPyfQatrXD
2xt+jg9X78dTyiNN1YvLqvT6msfs04MKSC0hA2mou6ozw8Xak+1QmP0fBOZKp9pP
8szO188Do9ByzJPvHF1eXT7jFMOXVq8ZIl9iwjxcIDLzlxOz49DC7LO6AT+LKQk7
UGeP+lqJAJUDBRAxe+UG9RVb+45ULV0BAXZ9A/9F9gLpGukVNkeOjaqxQdJGTS+a
xh/Abk0c/nKhAEyxpAl5JyQ3ifYk6BHhPvlTi9LrZoXGA8sk/eU4eRTZVzvGEC4G
+xsavlE/xzku8855QTLPpkCunUpQeu1wzaIrUUE6Zjh05imFbJYyQOBgTFpuqWsC
rsUpl+2mr8IGIxG5rA==
=LW9i
-----END PGP PUBLIC KEY BLOCK-----

29.2.5 Poul-Henning Kamp

"

Poul-Henning Kamp <phk@FreeBSD.org>
Fingerprint = A3 F3 88 28 2F 9B 99 A2 49 F4 E2 FA 5A 78 8B 3E

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.3ia

mQCNAzAdpMIAAAEEALHDgrFUwhZtb7PbXg3upELoDVEUPFRwnmpJH1rRqyROUGcI
ooVe7u+FQlIs5OsXK8ECs/5Wpe2UrZSzHvjwBYOND5H42YtI5UULZLRCo5bFfTVA
K9Rpo5icfTsYihrzU2nmnycwFMk+jYXyT/ZDYWDP/BM9iLjj0x9/qQgDWPy9AAUR
tCNQb3VsLUhlbm5pbmcgS2FtcCA8cGhrQEZyZWVCU0Qub3JnPokAlQMFEDMGK9qz
WmLrWZ8yPQEB4iED/18bQVhV2gUYFSxIUTaUtO2HVPi7GRpSzmXoTfS+FJyRR0ED
zTqTHstoBe2PeWgTsOf9cUub5UKcJkRQp7VrJv4Kncyuq7pX69a+QMveCzuUwAur
nDbt/emOL6NU8g9Uk50QuOuipb5rULQLRRoF5TkViy/VES83ERXdYQ9Ml3fWiQCV
AwUQMX6NfWtaZ42Bsqd5AQEKsgP+L+uLz95dRdEmnZ+omrO+tYZM/0jHU7i8yC5q
H0gguKOCljI4liR7NkqKONUJWYtfsTB81d9iSosBZRrTx6i/hB8l8kOB975n/f9S
hftFwmjLYCNMFlDM4j0kySvMV20UZjAyv9BeE51VWlIZ5n/oeSuzul3Znow02tF/
zVnInJiJAJUDBRAxfJXn9RVb+45ULV0BAXJ8A/9K6NT6VLZZC5q3g7bBk5DWuzBS
3oK2Ebww6xzsD2R9edltoz1J3GPngK0CWpHh4kw5iTaRWoC2YJYRNG6icnGvlMAl
1/urqQHJVhxATINm8oljDKsj1RBJ6VKBzNbCJIHTVpX0AJoqUQX2Idi8goFr0fAm
7cD2CBb1JhoAdzEfO4kAlQMFEDFLHlwff6kIA1j8vQEBj5MD/1hA8hJdhpL7mvQj
rTAIn6Ldr08Lr1lqTaKSBMdCL3suGlW0Sw/dIBgicPDhgxLahT3DVfGiIst32FSl
xmWY7wine80X4TZkJ9Hiw3Mpqtjl92j6zHNq0ZZE+CceNubpEdYLDqokAIMPdWlo
WPHZcPxCs5PKI5udseFYF2gQAjI2iQCVAwUQMTlDoO9huekR1Y7VAQGy+AP/Rzp+
UGtJavbSiPx5EnXOXxkA/+ulXQgQG9vdkWwewkvxDNOzHW3KkUWCGtPtIMENznbF
j3QlYB+USIaf1ogvlD5EdXGPDfTINpE8CX2WXzajfgYFpYETDzduwjoWDZfEN9zZ
fQqQS62VgAReOIz3k9BL708z/+WUO0++RLGCmImJAJUDBRAw5q8kAPLZCeu7G0EB
AT3bBACwo+r9TgbiSyyU5cZpq5KgGT1c7eUHXjtxKmtrXD1nFNJ6j7x2DM2XGe6B
YOfDWbFq4UkEAyAeXviuuUP4enQu1v2g7JGXeuI8bRM519pLdPzDq/DnbA4rNStn
/SkH7awMfNSplcFuE6rc5ezVkw17eOHzDrYmwsFavL9gxZEycg==
=Q45T
-----END PGP PUBLIC KEY BLOCK-----

29.2.6 Rich Murphey

"

FreeBSD Handbook 387

Rich Murphey <rich@FreeBSD.org>
fingerprint = AF A0 60 C4 84 D6 0C 73 D1 EF C0 E9 9D 21 DB E4

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.2

mQCNAy97V+MAAAEEALiNM3FCwm3qrCe81E20UOSlNclOWfZHNAyOyj1ahHeINvo1
FBF2Gd5Lbj0y8SLMno5yJ6P4F4r+x3jwHZrzAIwMs/lxDXRtB0VeVWnlj6a3Rezs
wbfaTeSVyh5JohEcKdoYiMG5wjATOwK/NAwIPthB1RzRjnEeer3HI3ZYNEOpAAUR
tCRSaWNoIE11cnBoZXkgPHJpY2hAbGFtcHJleS51dG1iLmVkdT6JAJUDBRAve15W
vccjdlg0Q6kBAZTZBACcNd/LiVnMFURPrO4pVRn1sVQeokVX7izeWQ7siE31Iy7g
Sb97WRLEYDi686osaGfsuKNA87Rm+q5F+jxeUV4w4szoqp60gGvCbD0KCB2hWraP
/2s2qdVAxhfcoTin/Qp1ZWvXxFF7imGA/IjYIfB42VkaRYu6BwLEm3YAGfGcSw==
=QoiM
-----END PGP PUBLIC KEY BLOCK-----

29.2.7 John Polstra

"

John D. Polstra <jdp@polstra.com>
Fingerprint = 54 3A 90 59 6B A4 9D 61 BF 1D 03 09 35 8D F6 0D

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.2

mQCNAzMElMEAAAEEALizp6ZW9QifQgWoFmG3cXhzQ1+Gt+a4S1adC/TdHdBvw1M/
I6Ok7TC0dKF8blW3VRgeHo4F3XhGn+n9MqIdboh4HJC5Iiy63m98sVLJSwyGO4oM
dkEGyyCLxqP6h/DU/tzNBdqFzetGtYvU4ftt3RO0a506cr2CHcdm8Q+/vPRJAAUR
tCFKb2huIEQuIFBvbHN0cmEgPGpkcEBwb2xzdHJhLmNvbT6JAJUDBRAzBNBE9RVb
+45ULV0BAWgiA/0WWO3+c3qlptPCHJ3DFm6gG/qNKsY94agL/mHOr0fxMP5l2qKX
O6a1bWkvGoYq0EwoKGFfn0QeHiCl6jVi3CdBX+W7bObMcoi+foqZ6zluOWBC1Jdk
WQ5/DeqQGYXqbYjqO8voCScTAPge3XlMwVpMZTv24u+nYxtLkE0ZcwtY9IkAlQMF
EDMEt/DHZvEPv7z0SQEBXh8D/2egM5ckIRpGz9kcFTDClgdWWtlgwC1iI2p9gEhq
aufy+FUJlZS4GSQLWB0BlrTmDC9HuyQ+KZqKFRbVZLyzkH7WFs4zDmwQryLV5wkN
C4BRRBXZfWy8s4+zT2WQD1aPO+ZsgRauYLkJgTvXTPU2JCN62Nsd8R7bJS5tuHEm
7HGmiQCVAwUQMwSvHB9/qQgDWPy9AQFAhAQAgJ1AlbKITrEoJ0+pLIsov3eQ348m
SVHEBGIkU3Xznjr8NzT9aYtq4TIzt8jplqP3QoV1ka1yYpZf0NjvfZ+ffYp/sIaU
wPbEpgtmHnVWJAebMbNs/Ad1w8GDvxEt9IaCbMJGZnHmfnEqOBIxF7VBDPHHoJxM
V31K/PIoYsHAy5w=
=cHFa
-----END PGP PUBLIC KEY BLOCK-----

29.2.8 Guido van Rooij

"

FreeBSD Handbook 388

Guido van Rooij <guido@gvr.win.tue.nl>
Fingerprint = 16 79 09 F3 C0 E4 28 A7 32 62 FA F6 60 31 C0 ED

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.2

mQCNAzGeO84AAAEEAKKAY91Na//DXwlUusr9GVESSlVwVP6DyH1wcZXhfN1fyZHq
SwhMCEdHYoojQds+VqD1iiZQvv1RLByBgj622PDAPN4+Z49HjGs7YbZsUNuQqPPU
wRPpP6ty69x1hPKq1sQIB5MS4radpCM+4wbZbhxv7l4rP3RWUbNaYutZnzI9AAUR
tCZHdWlkbyB2YW4gUm9vaWogPGd1aWRvQGd2ci53aW4udHVlLm5sPokAlQMFEDMG
Hcgff6kIA1j8vQEBbYgD/jm9xHuUuY+iXDkOzpCXBYACYEZDV913MjtyBAmaVqYo
Rh5HFimkGXe+rCo78Aau0hc57fFMTsJqnuWEqVt3GRq28hSK1FOZ7ni9/XibHcmN
rt2yugl3hYpClijo4nrDL1NxibbamkGW/vFGcljS0jqXz6NDVbGx5Oo7HBByxByz
iQCVAwUQMhmtVjt/x7zOdmsfAQFuVQQApsVUTigT5YWjQA9Nd5Z0+a/oVtZpyw5Z
OljLJP3vqJdMa6TidhfcatjHbFTve5x1dmjFgMX/MQTd8zf/+Xccy/PX4+lnKNpP
eSf1Y4aK+E8KHmBGd6GzX6CIboyGYLS9e3kGnN06F2AQtaLyJFgQ71wRaGuyKmQG
FwTn7jiKb1aJAJUDBRAyEOLXPt3iN6QQUSEBATwQA/9jqu0Nbk154+Pn+9mJX/YT
fYR2UqK/5FKCqgL5Nt/Deg2re0zMD1f8F9Dj6vuAAxq8hnOkIHKlWolMjkRKkzJi
mSPEWl3AuHJ31k948J8it4f8kq/o44usIA2KKVMlI63Q/rmNdfWCyiYQEVGcRbTm
GTdZIHYCOgV5dOo4ebFqgYkAlQMFEDIE1nMEJn15jgpJ0QEBW6kEAKqN8XSgzTqf
CrxFXT07MlHhfdbKUTNUoboxCGCLNW05vf1A8F5fdE5i14LiwkldWIzPxWD+Sa3L
fNPCfCZTaCiyGcLyTzVfBHA18MBAOOX6JiTpdcm22jLGUWBf/aJK3yz/nfbWntd/
LRHysIdVp29lP5BF+J9/Lzbb/9LxP1taiQCVAwUQMgRXZ44CzbsJWQz9AQFf7gP/
Qa2FS5S6RYKG3rYanWADVe/ikFV2lxuM1azlWbsmljXvKVWGe6cV693nS5lGGAjx
lbd2ADwXjlkNhv45HLWFm9PEveO9Jjr6tMuXVt8N2pxiX+1PLUN9CtphTIU7Yfjn
s6ryZZfwGHSfIxNGi5ua2SoXhg0svaYnxHxXmOtH24iJAJUDBRAyAkpV8qaAEa3W
TBkBARfQBAC+S3kbulEAN3SI7/A+A/dtl9DfZezT9C4SRBGsl2clQFMGIXmMQ/7v
7lLXrKQ7U2zVbgNfU8smw5h2vBIL6f1PyexSmc3mz9JY4er8KeZpcf6H0rSkHl+i
d7TF0GvuTdNPFO8hc9En+GG6QHOqbkB4NRZ6cwtfwUMhk2FHXBnjF4kAlQMFEDH5
FFukUJAsCdPmTQEBe74EAMBsxDnbD9cuI5MfF/QeTNEG4BIVUZtAkDme4Eg7zvsP
d3DeJKCGeNjiCWYrRTCGwaCWzMQk+/+MOmdkI6Oml+AIurJLoHceHS9jP1izdP7f
N2jkdeJSBsixunbQWtUElSgOQQ4iF5kqwBhxtOfEP/L9QsoydRMR1yB6WPD75H7V
iQCVAwUQMZ9YNGtaZ42Bsqd5AQH0PAQAhpVlAc3ZM/KOTywBSh8zWKVlSk3q/zGn
k7hJmFThnlhH1723+WmXE8aAPJi+VXOWJUFQgwELJ6R8jSU2qvk2m1VWyYSqRKvc
VRQMqT2wjss0GE1Ngg7tMrkRHT0il7E2xxIb8vMrIwmdkbTfYqBUhhGnsWPHZHq7
MoA1/b+rK7CJAJUDBRAxnvXh3IDyptUyfLkBAYTDA/4mEKlIP/EUX2Zmxgrd/JQB
hqcQlkTrBAaDOnOqe/4oewMKR7yaMpztYhJs97i03Vu3fgoLhDspE55ooEeHj0r4
cOdiWfYDsjSFUYSPNVhW4OSruMA3c29ynMqNHD7hpr3rcCPUi7J2RncocOcCjjK2
BQb/9IAUNeK4C9gPxMEZLokAlQMFEDGeO86zWmLrWZ8yPQEBEEID/2fPEUrSX3Yk
j5TJPFZ9MNX0lEo7AHYjnJgEbNI4pYm6C3PnMlsYfCSQDHuXmRQHAOWSdwOLvCkN
F8eDaF3M6u0urgeVJ+KVUnTz2+LZoZs12XSZKCte0HxjbvPpWMTTrYyimGezH79C
mgDVjsHaYOx3EXF0nnDmtXurGioEmW1J
=mSvM
-----END PGP PUBLIC KEY BLOCK-----

29.2.9 Peter Wemm

"

FreeBSD Handbook 389

Peter Wemm <peter@FreeBSD.org>
aka <peter@spinner.dialix.com>
aka <peter@haywire.dialix.com>
aka <peter@perth.dialix.oz.au>

Key fingerprint = 47 05 04 CA 4C EE F8 93 F6 DB 02 92 6D F5 58 8A

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.3ia

mQCNAy9/FJwAAAEEALxs9dE9tFd0Ru1TXdq301KfEoe5uYKKuldHRBOacG2Wny6/
W3Ill57hOi2+xmq5X/mHkapywxvy4cyLdt31i4GEKDvxpDvEzAYcy2n9dIup/eg2
kEhRBX9G5k/LKM4NQsRIieaIEGGgCZRm0lINqw495aZYrPpO4EqGN2HYnOMZAAUT
tCVQZXRlciBXZW1tIDxwZXRlckBoYXl3aXJlLmRpYWxpeC5jb20+iQCVAwUQMwWT
cXW7bjh2o/exAQEFkQP+LIx5zKlYp1uR24xGApMFNrNtjh+iDIWnxxb2M2Kb6x4G
9z6OmbUCoDTGrX9SSL2Usm2RD0BZfyv9D9QRWC2TSOPkPRqQgIycc11vgbLolJJN
eixqsxlFeKLGEx9eRQCCbo3dQIUjc2yaOe484QamhsK1nL5xpoNWI1P9zIOpDiGJ
AJUDBRAxsRPqSoY3Ydic4xkBAbWLA/9q1Fdnnk4unpGQsG31Qbtr4AzaQD5m/JHI
4gRmSmbj6luJMgNG3fpO06Gd/Z7uxyCJB8pTst2a8C/ljOYZxWT+5uSzkQXeMi5c
YcI1sZbUpkHtmqPW623hr1PB3ZLA1TIcTbQW+NzJsxQ1Pc6XG9fGkT9WXQW3Xhet
AP+juVTAhLQlUGV0ZXIgV2VtbSA8cGV0ZXJAcGVydGguZGlhbGl4Lm96LmF1PokA
lQMFEDGxFCFKhjdh2JzjGQEB6XkD/2HOwfuFrnQUtdwFPUkgtEqNeSr64jQ3Maz8
xgEtbaw/ym1PbhbCk311UWQq4+izZE2xktHTFClJfaMnxVIfboPyuiSF99KHiWnf
/Gspet0S7m/+RXIwZi1qSqvAanxMiA7kKgFSCmchzas8TQcyyXHtn/gl9v0khJkb
/fv3R20btB5QZXRlciBXZW1tIDxwZXRlckBGcmVlQlNELm9yZz6JAJUDBRAxsRJd
SoY3Ydic4xkBAZJUA/4i/NWHz5LIH/R4IF/3V3LleFyMFr5EPFY0/4mcv2v+ju9g
brOEM/xd4LlPrx1XqPeZ74JQ6K9mHR64RhKR7ZJJ9A+12yr5dVqihe911KyLKab9
4qZUHYi36WQu2VtLGnw/t8Jg44fQSzbBF5q9iTzcfNOYhRkSD3BdDrC3llywO7Ql
UGV0ZXIgV2VtbSA8cGV0ZXJAc3Bpbm5lci5kaWFsaXguY29tPokAlQMFEDGxEi1K
hjdh2JzjGQEBdA4EAKmNFlj8RF9HQsoI3UabnvYqAWN5wCwEB4u+Zf8zq6OHic23
TzoK1SPlmSdBE1dXXQGS6aiDkLT+xOdeewNs7nfUIcH/DBjSuklAOJzKliXPQW7E
kuKNwy4eq5bl+j3HB27i+WBXhn6OaNNQY674LGaR41EGq44Wo5ATcIicig/z
=gv+h
-----END PGP PUBLIC KEY BLOCK-----

29.2.10 Jörg Wunsch

"

FreeBSD Handbook 390

Type Bits/KeyID Date User ID
pub 1024/76A3F7B1 1996/04/27 Joerg Wunsch <joerg_wunsch@uriah.heep.sax.de>

Key fingerprint = DC 47 E6 E4 FF A6 E9 8F 93 21 E0 7D F9 12 D6 4E
Joerg Wunsch <joerg_wunsch@interface-business.de>
Joerg Wunsch <j@uriah.heep.sax.de>
Joerg Wunsch <j@interface-business.de>

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.3ia

mQCNAzGCFeAAAAEEAKmRBU2Nvc7nZy1Ouid61HunA/5hF4O91cXm71/KPaT7dskz
q5sFXvPJPpawwvqHPHfEbAK42ZaywyFp59L1GaYj87Pda+PlAYRJyY2DJl5/7JPe
ziq+7B8MdvbX6D526sdmcR+jPXPbHznASjkx9DPmK+7TgFujyXW7bjh2o/exAAUR
tC1Kb2VyZyBXdW5zY2ggPGpvZXJnX3d1bnNjaEB1cmlhaC5oZWVwLnNheC5kZT6J
AJUDBRA0FFkBs1pi61mfMj0BAfDCA/oCfkjrhvRwRCpSL8klJ1YDoUJdmw+v4nJc
pw3OpYXbwKOPLClsE7K3KCQscHel7auf91nrekAwbrXv9Clp0TegYeAQNjw5vZ9f
L6UZ5l3fH8E2GGA7+kqgNWs1KxAnG5GdUvJ9viyrWm8dqWRGo+loDWlZ12L2OgAD
fp7jVZTI1okAlQMFEDQPrLoff6kIA1j8vQEB2XQEAK/+SsQPCT/X4RB/PBbxUr28
GpGJMn3AafAaA3plYw3nb4ONbqEw9tJtofAn4UeGraiWw8nHYR2DAzoAjR6OzuX3
TtUV+57BIzrTPHcNkb6h8fPuHU+dFzR+LNoPaGJsFeov6w+Ug6qS9wa5FGDAgaRo
LHSyBxcRVoCbOEaS5S5EiQCVAwUQM5BktWVgqaw0+fnVAQGKPwP+OiWho3Zm2GKp
lEjiZ5zx3y8upzb+r1Qutb08jr2Ewja04hLg0fCrt6Ad3DoVqxe4POghIpmHM4O4
tcW92THQil70CLzfCxtfUc6eDzoP3krD1/Gwpm2hGrmYA9b/ez9+r2vKBbnUhPmC
glx5pf1IzHU9R2XyQz9Xu7FI2baOSZqJAJUDBRAyCIWZdbtuOHaj97EBAVMzA/41
VIph36l+yO9WGKkEB+NYbYOz2W/kyi74kXLvLdTXcRYFaCSZORSsQKPGNMrPZUoL
oAKxE25AoCgl5towqr/sCcu0A0MMvJddUvlQ2T+ylSpGmWchqoXCN7FdGyxrZ5zz
xzLIvtcio6kaHd76XxyJpltCASupdD53nEtxnu8sRrQxSm9lcmcgV3Vuc2NoIDxq
b2VyZ193dW5zY2hAaW50ZXJmYWNlLWJ1c2luZXNzLmRlPokAlQMFEDIIhfR1u244
dqP3sQEBWoID/RhBm+qtW+hu2fqAj9d8CVgEKJugrxZIpXuCKFvO+bCgQtogt9EX
+TJh4s8UUdcFkyEIu8CT2C3Rrr1grvckfxvrTgzSzvtYyv1072X3GkVY+SlUMBMA
rdl1qNW23oT7Q558ajnsaL065XJ5m7HacgTTikiofYG8i1s7TrsEeq6PtCJKb2Vy
ZyBXdW5zY2ggPGpAdXJpYWguaGVlcC5zYXguZGU+iQCVAwUQMaS91D4gHQUlG9CZ
AQGYOwQAhPpiobK3d/fz+jWrbQgjkoO+j39glYGXb22+6iuEprFRs/ufKYtjljNT
NK3B4DWSkyIPawcuO4Lotijp6jke2bsjFSSashGWcsJlpnwsv7EeFItT3oWTTTQQ
ItPbtNyLW6M6xB+jLGtaAvJqfOlzgO9BLfHuA2LY+WvbVW447SWJAJUDBRAxqWRs
dbtuOHaj97EBAXDBA/49rzZB5akkTSbt/gNd38OJgC+H8N5da25vV9dD3KoAvXfW
fw7OxIsxvQ/Ab+rJmukrrWxPdsC+1WU1+1rGa4PvJp/VJRDes2awGrn+iO7/cQoS
IVziC27JpcbvjLvLVcBIiy1yT/RvJ+87a3jPRHt3VFGcpFh4KykxxSNiyGygl4kA
lQMFEDGCUB31FVv7jlQtXQEB5KgD/iIJZe5lFkPr2B/Cr7BKMVBot1/JSu05NsHg
JZ3uK15w4mVtNPZcFi/dKbn+qRM6LKDFe/GF0HZD/ZD1FJt8yQjzF2w340B+F2GG
EOwnClqZDtEAqnIBzM/ECQQqH+6Bi8gpkFZrFgg5eON7ikqmusDnOlYStM/CBfgp
SbR8kDmFtCZKb2VyZyBXdW5zY2ggPGpAaW50ZXJmYWNlLWJ1c2luZXNzLmRlPokA
lQMFEDHioSdlYKmsNPn51QEByz8D/10uMrwP7MdaXnptd1XNFhpaAPYTVAOcaKlY
OGI/LLR9PiU3FbqXO+7INhaxFjBxa0Tw/p4au5Lq1+Mx81edHniJZNS8tz3I3goi
jIC3+jn2gnVAWnK5UZUTUVUn/JLVk/oSaIJNIMMDaw4J9xPVVkb+Fh1A+XqtPsVa
YESrNp0+iQCVAwUQMwXkzcdm8Q+/vPRJAQEA4QQAgNNX1HFgXrMetDb+w6yEGQDk
JCDAY9b6mA2HNeKLQAhsoZl4HwA1+iuQaCgo3lyFC+1Sf097OUTs74z5X1vCedqV
oFw9CxI3xuctt3pJCbbN68flOlnq0WdYouWWGlFwLlh5PEy//VtwX9lqgsizlhzi
t+fX6BT4BgKi5baDhrWJAJUDBRAyCKveD9eCJxX4hUkBAebMA/9mRPy6K6i7TX2R
jUKSl2p5oYrXPk12Zsw4ijuktslxzQhOCyMSCGK2UEC4UM9MXp1H1JZQxN/DcfnM
7VaUt+Ve0wZ6DC9gBSHJ1hKVxHe5XTj26mIr4rcXNy2XEDMK9QsnBxIAZnBVTjSO
LdhqqSMp3ULLOpBlRL2RYrqi27IXr4kAlQMFEDGpbnd1u244dqP3sQEBJnQD/RVS
Azgf4uorv3fpbosI0LE3LUufAYGBSJNJnskeKyudZkNkI5zGGDwVneH/cSkKT4OR
ooeqcTBxKeMaMuXPVl30QahgNwWjfuTvl5OZ8orsQGGWIn5FhqYXsKkjEGxIOBOf
vvlVQ0UbcR0N2+5F6Mb5GqrXZpIesn7jFJpkQKPU
=97h7
-----END PGP PUBLIC KEY BLOCK-----

FreeBSD Handbook 391

CONTENTS

1. Introduction ... 3
1.1 FreeBSD in a Nutshell ... 3
1.2 A Brief History of FreeBSD ... 5
1.3 FreeBSD Project Goals ... 6
1.4 The FreeBSD Development Model .. 6
1.5 About the Current Release ... 8

2. Installing FreeBSD .. 10
2.1 Supported Configurations .. 12

2.1.1 Disk Controllers 12
2.1.2 Ethernet cards 13
2.1.3 Miscellaneous devices 14

2.2 Preparing for the Installation ... 15
2.2.1 Before installing from CDROM 15
2.2.2 Before installing from Floppy 16
2.2.3 Before installing from a MS-DOS partition 16
2.2.4 Before installing from QIC/SCSI Tape 17
2.2.5 Before installing over a network 17

2.3 Installing FreeBSD ... 19
2.4 MS-DOS User’s Questions and Answers ... 20

3. Unix Basics ... 21
3.1 The Online Manual .. 21
3.2 GNU Info Files ... 22

4. Installing Applications: The Ports collection .. 23
4.1 Why Have a Ports Collection? ... 23
4.2 How Does the Ports Collection Work? ... 23
4.3 Getting a FreeBSD Port ... 25

4.3.1 Compiling ports from CDROM 25
4.3.2 Compiling ports from the Internet 26

4.4 Skeletons ... 27
4.4.1 Makefile 27
4.4.2 The files directory 28
4.4.3 The patches directory 28
4.4.4 The pkg directory 28

4.5 What to do when a port does not work. ... 28
4.6 I Want to Make a Port! ... 28
4.7 Some Questions and Answers ... 28

5. Configuring the FreeBSD Kernel .. 35
5.1 Why Build a Custom Kernel? ... 35
5.2 Building and Installing a Custom Kernel ... 35
5.3 The Configuration File .. 36

5.3.1 Mandatory Keywords 37
5.3.2 General Options 38
5.3.3 Filesystem Options 39
5.3.4 Basic Controllers and Devices 40
5.3.5 SCSI Device Support 41
5.3.6 Console, Bus Mouse, and X Server Support 42
5.3.7 Serial and Parallel Ports 43

i

5.3.8 Networking 43
5.3.9 Sound cards 45
5.3.10 Pseudo-devices 47
5.3.11 Joystick, PC Speaker, Miscellaneous 47

5.4 Making Device Nodes ... 48
5.5 If Something Goes Wrong ... 48

6. Security ... 50
6.1 DES, MD5, and Crypt .. 50

6.1.1 Recognizing your ‘crypt’ mechanism 50
6.2 S/Key ... 51

6.2.1 Secure connection initialization 52
6.2.2 Insecure connection initialization 52
6.2.3 Diversion: a login prompt 53
6.2.4 Generating a single one-time password 53
6.2.5 Generating multiple one-time passwords 53
6.2.6 Restricting use of UNIX passwords 54

6.3 Kerberos .. 54
6.3.1 Creating the initial database 55
6.3.2 Making it all run 56
6.3.3 Creating the server file 57
6.3.4 Populating the database 58
6.3.5 Testing it all out 58
6.3.6 Adding su privileges 59
6.3.7 Using other commands 60

6.4 Firewalls .. 61
6.4.1 What is a firewall? 61
6.4.2 What does IPFW allow me to do? 62
6.4.3 Enabling IPFW on FreeBSD 63
6.4.4 Configuring IPFW 63
6.4.5 Example commands for ipfw 66
6.4.6 Building a packet filtering firewall 67

7. Printing ... 69
7.1 What the Spooler Does .. 69
7.2 Why You Should Use the Spooler ... 69
7.3 Setting Up the Spooling System .. 69
7.4 Simple Printer Setup .. 70

7.4.1 Hardware Setup 70
7.4.2 Software Setup 71

7.5 Using Printers ... 83
7.5.1 Printing Jobs 83
7.5.2 Checking Jobs 84
7.5.3 Removing Jobs 85
7.5.4 Beyond Plain Text: Printing Options 86
7.5.5 Administrating Printers 88

7.6 Advanced Printer Setup .. 89
7.6.1 Filters 89
7.6.2 Header Pages 100
7.6.3 Networked Printing 106
7.6.4 Restricting Printer Usage 108
7.6.5 Accounting for Printer Usage 112

7.7 Alternatives to the Standard Spooler .. 115
7.8 Acknowledgments ... 115

ii

8. Disks .. 116
8.1 Using sysinstall .. 116
8.2 Using command line utilities .. 117

8.2.1 * Using Slices 117
8.2.2 Dedicated 117

8.3 * Non-traditional Drives .. 117
8.3.1 * Zip Drives 117
8.3.2 * Jazz Drives 117
8.3.3 * Sequest Drives 117

9. Backups ... 118
9.1 * What about backups to floppies? .. 118
9.2 Tape Media ... 118

9.2.1 4mm (DDS: Digital Data Storage) 118
9.2.2 8mm (Exabyte) 118
9.2.3 QIC 119
9.2.4 * Mini-Cartridge 119
9.2.5 DLT 119
9.2.6 Using a new tape for the first time 119

9.3 Backup Programs .. 120
9.3.1 Dump and Restore 120
9.3.2 Tar 120
9.3.3 Cpio 120
9.3.4 Pax 121
9.3.5 Amanda 121
9.3.6 Do nothing 121
9.3.7 Which Backup Program is Best? 121
9.3.8 Emergency Restore Procedure 121

10. Disk Quotas ... 126
10.1 Configuring Your System to Enable Disk Quotas ... 126
10.2 Setting Quota Limits .. 127
10.3 Checking Quota Limits and Disk Usage .. 128
10.4 * Quotas over NFS ... 128

11. The X Window System ... 129

12. PC Hardware compatibility .. 130
12.1 Resources on the Internet ... 130
12.2 Sample Configurations .. 130

12.2.1 Jordan’s Picks 130
12.3 Core/Processing ... 133

12.3.1 Motherboards, busses, and chipsets 133
12.3.2 CPUs/FPUs 134
12.3.3 * Memory 135
12.3.4 * BIOS 135

12.4 Input/Output Devices .. 135
12.4.1 * Video cards 135
12.4.2 * Sound cards 135
12.4.3 Serial ports and multiport cards 135
12.4.4 * Parallel ports 153
12.4.5 * Modems 153
12.4.6 * Network cards 153
12.4.7 * Keyboards 153
12.4.8 * Mice 153

iii

12.4.9 * Other 153
12.5 Storage Devices .. 153

12.5.1 Using ESDI hard disks 154
12.5.2 What is SCSI? 158
12.5.3 * Disk/tape controllers 170
12.5.4 Hard drives 170
12.5.5 Tape drives 171
12.5.6 CD-ROM drives 182
12.5.7 * Other 182

12.6 * Other ... 182
12.6.1 * PCMCIA 182

13. Localization .. 183
13.1 Russian Language (KOI8-R encoding) ... 183

13.1.1 Console Setup 183
13.1.2 Locale Setup 183
13.1.3 Printer Setup 185
13.1.4 MSDOS FS and Russian file names 185
13.1.5 X Window Setup 185

13.2 German Language (ISO 8859-1) ... 186

14. Serial Communications .. 188
14.1 Serial Basics ... 188
14.2 Terminals ... 188

14.2.1 Uses and Types of Terminals 188
14.2.2 Cables and Ports 189
14.2.3 Configuration 191
14.2.4 Debugging your connection 193

14.3 Dialin Service .. 194
14.3.1 Prerequisites 194
14.3.2 Quick Overview 196
14.3.3 Kernel Configuration 196
14.3.4 Device Special Files 197
14.3.5 Configuration Files 198
14.3.6 Modem Settings 201
14.3.7 Tr oubleshooting 202
14.3.8 Acknowledgments 203

14.4 Dialout Service ... 204
14.4.1 Why cannot I run tip or cu? 204
14.4.2 My stock Hayes modem is not supported, what can I do? 204
14.4.3 How am I expected to enter these AT commands? 204
14.4.4 The @ sign for the pn capability does not work! 205
14.4.5 How can I dial a phone number on the command line? 205
14.4.6 Do I have to type in the bps rate every time I do that? 205
14.4.7 I access a number of hosts through a terminal server. 205
14.4.8 Can tip try more than one line for each site? 206
14.4.9 Why do I have to hit CTRL+P twice to send CTRL+P once? 206
14.4.10 Suddenly everything I type is in UPPER CASE?? 206
14.4.11 How can I do file transfers with tip? 206
14.4.12 How can I run zmodem with tip? 207

15. PPP and SLIP ... 208
15.1 Setting up User PPP ... 208

15.1.1 Before you start 208

iv

15.1.2 Building a ppp ready kernel 209
15.1.3 Check the tun device 209
15.1.4 Name Resolution Configuration 210
15.1.5 PPP Configuration 211
15.1.6 Final system configuration 218
15.1.7 Summary 219
15.1.8 Acknowledgments 219

15.2 Setting up Kernel PPP ... 219
15.2.1 Working as a PPP client 220
15.2.2 Working as a PPP server 222

15.3 Setting up a SLIP Client .. 226
15.3.1 Things you have to do only once 226
15.3.2 Making a SLIP connection 227
15.3.3 How to shutdown the connection 228
15.3.4 Tr oubleshooting 228

15.4 Setting up a SLIP Server ... 228
15.4.1 Prerequisites 229
15.4.2 Quick Overview 229
15.4.3 Kernel Configuration 230
15.4.4 Sliplogin Configuration 230
15.4.5 Routing Considerations 233
15.4.6 Acknowledgments 235

16. Advanced Networking .. 236
16.1 Gateways and Routes .. 236

16.1.1 An example 236
16.1.2 Default routes 237
16.1.3 Dual homed hosts 238
16.1.4 Routing propagation 238
16.1.5 Tr oubleshooting 239

16.2 NFS ... 239
16.3 Diskless Operation ... 240

16.3.1 Setup Instructions 240
16.3.2 Using Shared / and /usr filesystems 242
16.3.3 Compiling netboot for specific setups 242

16.4 ISDN .. 242
16.4.1 ISDN Cards 242
16.4.2 ISDN Terminal Adapters 243
16.4.3 Standalone ISDN Bridges/Routers 244

17. Electronic Mail ... 246
17.1 Basic Information ... 246

17.1.1 User program 246
17.1.2 Mailhost Server Daemon 246
17.1.3 DNS - Name Service 246
17.1.4 POP Servers 246

17.2 Configuration ... 247
17.2.1 Basic 247
17.2.2 Mail for your Domain (Network). 248
17.2.3 Setting up UUCP. 248

17.3 FAQ .. 250
17.3.1 Why do I have to use the FQDN for hosts on my site? 250
17.3.2 Sendmail says ‘‘mail loops back to myself’’ 251
17.3.3 How can I do E-Mail with a dialup PPP host? 251

v

18. The Cutting Edge: FreeBSD-current and FreeBSD-stable ... 254
18.1 Staying Current with FreeBSD ... 254

18.1.1 What is FreeBSD-current? 254
18.1.2 Who needs FreeBSD-current? 254
18.1.3 What is FreeBSD-current NOT? 254
18.1.4 Using FreeBSD-current 254

18.2 Staying Stable with FreeBSD .. 256
18.2.1 What is FreeBSD-stable? 256
18.2.2 Who needs FreeBSD-stable? 256
18.2.3 Using FreeBSD-stable 256

18.3 Synchronizing Source Trees over the Internet ... 257
18.3.1 Anonymous CVS 258
18.3.2 CTM 260
18.3.3 CVSup 263

18.4 Using make world to rebuild your system .. 272

19. Contributing to FreeBSD .. 273
19.1 What Is Needed .. 273

19.1.1 High priority tasks 273
19.1.2 Medium priority tasks 274
19.1.3 Low priority tasks 275
19.1.4 Smaller tasks 276

19.2 How to Contribute ... 277
19.2.1 Bug reports and general commentary 277
19.2.2 Changes to the documentation 277
19.2.3 Changes to existing source code 277
19.2.4 New code or major value-added packages 278
19.2.5 Porting an existing piece of free software 279
19.2.6 Money, Hardware or Internet access 300

19.3 Donors Gallery ... 301
19.4 Derived Software Contributors ... 304
19.5 Additional FreeBSD Contributors ... 304
19.6 386BSD Patch Kit Patch Contributors ... 312

20. Source Tree Guidelines and Policies .. 316
20.1 MAINTAINER on Makefiles .. 316
20.2 Contributed Software .. 316
20.3 Shared Libraries ... 318

21. Adding New Kernel Configuration Options .. 320
21.1 What’s a Kernel Option, Anyway? .. 320
21.2 Now What Do I Have to Do for it? .. 321

22. Kernel Debugging ... 322
22.1 Debugging a Kernel Crash Dump with KGDB ... 322
22.2 Post-mortem Analysis of a Dump ... 324
22.3 On-line Kernel Debugging Using DDB .. 325
22.4 On-line Kernel Debugging Using Remote GDB .. 327
22.5 Debugging a Console Driver .. 328

23. Linux Emulation ... 329
23.1 How to Install the Linux Emulator ... 329

23.1.1 Installing Linux Emulation in 2.1-STABLE 329
23.1.2 Installing Linux Emulation in 2.2.2-RELEASE and later 330
23.1.3 Installing Linux Runtime Libraries 331

vi

23.1.4 Configuring the host name resolver 333
23.1.5 Finding the necessary files 334

23.2 How to Install Mathematica on FreeBSD ... 335
23.2.1 Unpacking the Mathematica distribution 335
23.2.2 Obtaining your Mathematica Password 335
23.2.3 Bugs 336
23.2.4 Acknowledgments 337

24. FreeBSD Internals ... 338
24.1 The FreeBSD Booting Process .. 338

24.1.1 Loading a kernel 338
24.1.2 Determine the root filesystem 338
24.1.3 Initialize user-land things 339
24.1.4 Interesting combinations 339

24.2 PC Memory Utilization ... 339
24.3 DMA: What it Is and How it Works .. 340

24.3.1 A Sample DMA transfer 341
24.3.2 DMA Page Registers and 16Meg address space limitations 342
24.3.3 DMA Operational Modes and Settings 343
24.3.4 Programming the DMA 345
24.3.5 DMA Port Map 345

25. Obtaining FreeBSD ... 351
25.1 CD-ROM Publishers .. 351
25.2 FTP Sites .. 351
25.3 CTM Sites .. 358
25.4 CVSup Sites .. 359

26. Bibliography .. 363
26.1 Books & Magazines Specific to FreeBSD .. 363
26.2 Users’ Guides .. 363
26.3 Administrators’ Guides .. 363
26.4 Programmers’ Guides ... 364
26.5 Operating System Internals .. 365
26.6 Security Reference .. 365
26.7 Hardware Reference .. 366
26.8 UNIX History ... 366
26.9 Magazines and Journals .. 367

27. Resources on the Internet .. 368
27.1 Mailing lists .. 368

27.1.1 List summary 368
27.1.2 How to subscribe 370
27.1.3 List charters 370

27.2 Usenet newsgroups ... 374
27.2.1 BSD specific newsgroups 374
27.2.2 Other Unix newsgroups of interest 374
27.2.3 X Window System 375

27.3 World Wide Web servers ... 376

28. FreeBSD Project Staff .. 377
28.1 The FreeBSD Core Team ... 377
28.2 The FreeBSD Developers .. 377
28.3 The FreeBSD Documentation Project .. 380
28.4 Who Is Responsible for What ... 381

vii

29. PGP keys .. 382
29.1 Officers ... 382

29.1.1 FreeBSD Security Officer <security-officer@freebsd.org> 382
29.1.2 Warner Losh 382

29.2 Core Team members .. 383
29.2.1 Satoshi Asami 383
29.2.2 Jonathan M. Bresler 383
29.2.3 Andrey A. Chernov 384
29.2.4 Jordan K. Hubbard 385
29.2.5 Poul-Henning Kamp 386
29.2.6 Rich Murphey 386
29.2.7 John Polstra 387
29.2.8 Guido van Rooij 387
29.2.9 Peter Wemm 388
29.2.10 Jörg Wunsch 389

viii

