

Fast group management in IGMP

Luigi Rizzo ?

Dip. di Ingegneria dell'Informazione, Universit�a di Pisa
via Diotisalvi 2 { 56126 Pisa (Italy)

email: l.rizzo@iet.unipi.it
http://www.iet.unipi.it/~luigi/

Abstract

The ability to control quickly the expansion/reduction of the multicast distribu-
tion tree is central in some recent proposals for multicast congestion control. At
the lowest level, these operations are controlled by the IGMP protocol. With the
current speci�cation of the protocol, IGMP takes a few seconds to stop distribu-
tion of a group after a request. This reduces the e�ectiveness of congestion control
mechanisms based on this feature.

In this paper we propose a mechanism to make the LEAVE operation act instan-
taneously, basing on prediction techniques similar to those used in processors for
optimizing jump performance. The proposed mechanisms acts on the router side
only, and it is fully compatible with the existing IGMP protocol. An implemen-
tation of the mechanisms described in this paper has been included in the latest
mrouted3.9 sources and is available from the author.

1 Introduction

The IP multicast infrastructure (MBone) has been successfully used in recent
years to support a number of applications, ranging from audio and video
conferences to reliable �le distributions. A signi�cant obstacle to the large scale
deployment of the MBone is the lack of proper congestion control mechanisms
such as those present in TCP. Without such mechanisms, applications cannot
adapt to variable network conditions, and tend to use an uneven share of the
network's capacity. As a consequence, providers and network managers might
choose not to support multicast services in order to eliminate a potential
source of congestion.

? Source code for the modi�ed multicast router discussed in this paper is available
at http://www.iet.unipi.it/~luigi/mrouted/

Article published in Proceedings of Hipparc'98 (1998)

Research on multicast congestion control mechanisms has recently produced
some proposals based on a layered data organization [4,7], and relying on the
dynamic recon�guration of the multicast distribution tree. In these propos-
als, transmission occurs over multiple multicast groups using a layered data
distribution approach, and the ability of multicast routers to start/stop data
forwarding on demand is used to simulate sender's rate adaptation on di�erent
branches of the distribution tree.

For e�ciency and scalability reasons, low level multicast routing protocols [1]
do not keep exact group membership information. As a consequence, even
when the last receiver exits a group, a router can only stop tra�c forwarding
to an interface after a polling phase to determine group membership has timed
out without replies. The e�ect of this polling phase is a general slowdown of
the responsiveness of the rate adaptation mechanism.

In this paper we show how to modify the IGMP protocol (in particular, we
will refer to IGMP version 2 and later, which support the pruning of multi-
cast groups) to speed up the response to group leave requests, and improve,
among other things, the behaviour of layered congestion control mechanisms.
Our proposal is based on the prediction of the poll outcome basing on pre-
vious results, and resembles the branch prediction techniques used in RISC
processors to improve the speed of execution of jump instructions. The mod-
i�cations only a�ect the router side, require very little additional state (a
few bits) per group, and are fully backward compatible with existing IGMP
implementations.

The paper is structured as follows. In Section 2 we briey discuss the operation
of the IGMP protocol and the leave operation in detail. Section 3 describes our
proposal for fast leave operation, and the impact on the robustness of IGMP
to malicious attacks. Section 4 briey reports our initial experience with the
implementation and illustrates future work.

2 The IGMP protocol

One of the tasks of IP multicast routers is to determine the presence, of re-
ceivers for a given multicast group on each interface. This permits to forward
multicast tra�c only where necessary, and to avoid ooding network segments
where there are no receivers interested to a given group. Group membership
information between hosts and routers on local networks is exchanged by
means of the IGMP protocol [1]. Hosts willing to receive tra�c directed to
a multicast group send a membership REPORTmessage, that the router uses to
enable forwarding of the requested group to the local network segment. Period-
ically, routers refresh group membership information by sending membership

2

REQUESTs, and listening for membership REPORTs coming from receivers still
interested in the group. Data forwarding for a group is stopped if a request
times out without any report received.

To avoid feedback storms when the set of (local) receivers for a group is large,
a feedback cancellation technique is implemented in IGMP: hosts interested in
a group do not reply immediately to a request, but schedule the transmission
of a report at a random time after the request, and cancel the scheduled trans-
mission if a report is received (sent by some other host) before the scheduled
time.

2.1 Group leave mechanism

Starting from IGMP version 2, forwarding can be stopped almost \on de-
mand", but not instantaneously, by having a receiver send an explicit LEAVE
message to the router (such messages should only come from the last receiver
who sent a membership reply for the group). The leave message immediately
triggers a membership poll (called last receiver poll), whose outcome deter-
mines whether or not to keep forwarding data for that group. This mechanism
is used by layered congestion control mechanisms such as RLM [4] and RLC [7]
to achieve scalable congestion control with rate adaptation to the di�erent
parts of the multicast distribution tree.

Because of the feedback suppression mechanism (but also because IGMP mes-
sages are not sent reliably), routers do not have exact group membership
information. So, upon arrival of a LEAVE message, the router cannot act im-
mediately to stop forwarding the group, but must wait for the last receiver
poll to timeout before acting. This poll phase has a duration TR, where T
is the interval in which replies are distributed (typically 1 sec) and R is the
\robustness factor" de�ned in the IGMPv2 protocol, i.e. the number of times
a membership request is sent before declaring a timeout (typically R � 2).
The few seconds' delay (leave delay) of the polling phase partly defeats the
purpose of leaving a group for congestion control purposes: because of the de-
lay, after congestion has been detected, unrequested, possibly high bandwidth
tra�c will keep coming in for the duration of the leave delay, aggravating the
congestion situation.

We have shown [7] how the problem can be partly overcome by using some
care in deciding when to join/leave groups, and by adopting large time con-
stants in the congestion control mechanism. But such large time constants
slow down the responsivity of the congestion control mechanism, and reduce
its e�ectiveness. A fast LEAVE phase would then be highly desirable, both for
the e�ectiveness of the congestion control mechanisms, and for the network

3

in general since it would permit better �ltering of useless tra�c, and faster
recovery in case of congestion.

2.2 Last Receiver poll

In order to develop a fast leave phase, we need to optimize the behaviour of
the router in response to a LEAVE request. Ideally, the router could react to
the request by immediately stopping the forwarding the group, and running
a membership poll must to check for and recover from possible errors in the
above action.

Immediate action on a leave request can indeed be very e�ective in the case
of a single receiver for the group in the local network { not an unlikely case
with sparse groups { or when the node sending the request is representative
of the behaviour of the whole set of local receivers. The latter is also not too
far from reality for properly working congestion control mechanisms, such as
RLC. Such mechanisms tend to organize receivers behind the same bottleneck
so that they will take similar decision on whether to join or leave groups. Thus,
the behaviour of any receiver can be used to infer the behaviour of the whole
set of receivers, because:

� all receivers will likely decide to join/leave a group approximately at the
same time;

� one of them will be allowed to send the LEAVE request to the router;
� no other receivers should respond to a membership query after the LEAVE
has been sent.

However, not all applications are likely to achieve such a synchronized be-
haviour among receivers. As a matter of fact, in most current applications
using IP multicast, receivers join/leave a group almost independently of each
other, only driven by the user's action. In such a case, a LEAVE message could
be generated by a random user leaving a group, and immediate action by the
router would cause loss of useful data.

Since multicast data is not forwarded reliably by the network, such losses are
not too worrisome, provided they are rare: either the application can tolerate
them [3], or some higher level mechanism will exist to implement repair ac-
tions [2,6]. But if the router immediately and unconditionally blocks a group
on a LEAVE request, it is possible that the frequency of such events becomes
arbitrarily high, especially in presence of malicious behaviour from nodes try-
ing to implement Denial of Service (DoS) attacks. Such nodes could in fact
continuously send spurious LEAVE messages, thus almost completely disrupt-
ing service. In this respect, the last receiver poll acts a veri�cation mechanism
that prevents such attacks from being successful.

4

3 Implementing a Fast Leave Mechanism

To avoid the problems outlined in the previous section, we have designed
an adaptive mechanism to speed up the leave phase while minimizing the
chance of losing useful data and providing protection against DoS attacks. Our
proposal relies on two small modi�cations to the router side only of the IGMP
protocol. These modi�cations, described in the following, require a minimum
amount (a few bits) of per-group additional state, and are fully compatible
with existing IGMP implementations.

3.1 Last Receiver Poll Prediction

The �rst modi�cation consists in the addition of a prediction mechanism that
allows the router to anticipate the response to a last-receiver poll and act
accordingly.

For each group, the router keeps the history (in the form of a short bit array)
of the outcomes of previous polls. Upon a leave requests, the router starts
a poll, but immediately tries to predict its outcome basing on the recorded
history, as follows:

� When the history reports all timeouts, a new timeout is predicted. The
router then immediately stops forwarding of the group to the local net-
work, and possibly noti�es upstream routers. In case a membership reply
is received, group forwarding is restarted (possibly contacting the upstream
router). Otherwise, no further action is performed at the expiration of the
timeout.

� When at least one of the recent polls resulted in a membership reply, the
router behaves normally, i.e. waits for the end of the poll to decide how to
act.

In both cases, the history is updated by discarding the oldest entry and record-
ing the actual result of the current poll.

The modi�cations to the state diagram of an IGMPv2 router is shown in
Figure 1, while the C pseudo code in Figure 2 almost completely speci�es
the modi�ed router behaviour (further details related to the interaction with
congestion control algorithms will be given in the next Section). In the code,
variable history is part of the (group,interface) state.

5

PRESENT

LAST
RECEIVER

REPLY

LEAVE

= stop forwarding group

= start forwarding group

JOIN
REFRESH
TIMEOUT

TIMEOUT
LAST RECEIVERNO MEMBERS

MEMBERS

Fig. 1. Simpli�ed state diagram for an IGMPv2 router. The grey symbols represent
the additional action performed by our mechanism depending on the prediction.

3.2 Preventing False Membership Reports

There is an inherent race condition in using the pruning mechanism of multi-
cast routers to implement receiver-driven congestion control. When multiple
receivers are on the same network segment, they will decide to stop listening
to a group (and notify the operating system of their decision) at slightly dif-
ferent times, depending on the host's speed and load for each receiver. The
following chain of closely-spaced events could then lead to a false membership
report (see Figure 3):

(1) a receiver on host M detects congestion and stops listening to a group;
(2) host M sends a LEAVE request;
(3) the router immediately sends a membership query;
(4) host M' schedules a membership reply and sends it when the timer ex-

pires;
(5) a receiver on host M' also detects congestion and stops listening to a

group.

This race is unavoidable, and independent of the presence of our prediction
mechanism. Depending on the relative speeds of the receivers, multiple false
membership reports can be generated. The e�ect on IGMP of these false mem-
bership reports is limited to some additional IGMP tra�c on the local net-
work, and possibly some additional load on the multicast router to process
such messages.

When/if mechanisms like RLC become more widely deployed, router load
might become a concern, because join/leave phases will be much more fre-
quent. False membership reports also have a very disrupting e�ect on the
prediction mechanism, because they pollute the history vector and render the

6

#define HISTORY_LEN 3

#define HISTORY_INIT (1<<HISTORY_LEN)

#define HISTORY_MASK (HISTORY_INIT - 1)

...

int history ; /* last bit represents current poll phase */

STATE: no info present, EVENT: join request

history = HISTORY_INIT ;

<behave as specified in IGMPv2>

STATE: Members present, EVENT: receive leave request:

history = (history << 1) & HISTORY_MASK ;

if (history == 0) /* predict timeout */

<notify routing to stop group distribution> ;

<behave as specified in IGMPv2>

STATE: Checking membership, EVENT: last timeout:

if (history != 0) /* timeout was not predicted */

<notify routing stop group distribution> ;

<behave as specified in IGMPv2, except routing notification>

STATE: Checking membership, EVENT: receive report:

if (history == 0) /* timeout was predicted */

<notify routing to restart group distribution> ;

/* do not pollute status on first join */

if (history != HISTORY_INIT)

history |= 1 ; /* record report received */

<behave as specified in IGMPv2>

Fig. 2. C pseudo code for the last receiver poll prediction.

mechanism ine�ective. To reduce the impact of this problem, we decided to
introduce a short delay D between the reception of the leave request and the
generation of the �rst membership query. This gives more time to user pro-
cesses to react to congestion signals, and provide true membership information.
This approach has the advantage of being very simple to implement, and also
to reduce the amount of control messages exchanged on the local side (mem-
bership queries, reports and leaves), and towards the upstream router (prune
and graft messages). The drawback is an additional delay in the recovery from
timeout mispredictions.

The e�ectiveness of the prediction mechanism depends almost entirely on the
speed of response of local receivers compared to the delay D. We should aim
at keeping D as small as possible while making the chance of misprediction
negligible. Unfortunately these parameters are highly variable, and this sug-

7

PROCESS KERNEL

DROP
MEMB.

MEMB.
DROP

ROUTER

1 2

5 3

LEAVE

MEMB.

REPORT

MEMB.

QUERY

4

M’

DECISION

M

TO STOP

RECEIVING

Fig. 3. A possible race condition leading to false membership reports. Depending
on the delays in the two chain of events represented by the thick arrows, the kernel
on M' can see a di�erent sequence of events.

gests that an adaptive mechanism be used to determine the best value for
D.

3.3 Robustness

In order to quantify the impact of errors and the robustness of our proposal
to DoS attacks, consider the case where an attacker tries to disrupt service
by sending LEAVE requests when the history is zero, the history vector is h
bits long, and normal receivers remain in the group for a time TS. T and R
are the parameters used in the LAST RECEIVER poll, and D is the delay
in generating the �rst membership query after a poll (D = T in our imple-
mentation). When the attacker succeeds, causing the the algorithm to make
a misprediction, a membership reply will be generated after an expected time
E[t] = D + T=(N + 1), where N is the number of receivers still interested in
the group. After the misprediction, the history will have non-zero value for
at least Td seconds, with Td = min(h(TR+D); TS), thus the fraction of time
where data can be blocked is

f =
E[t]

Td
�

2

h(R + 1)

This sets an upper bound to the damage that an attacker can do. In practice,
an attacker can only succeed once on long lived sessions where other receivers
do not leave groups for congestion control purposes, and once every h \true"
LEAVE requests in other cases.

8

The choice of the length h of the history has an impact on the chance of errors.
For the reasons mentioned above, h increases the robustness of the algorithm
to errors or attacks, but also increases the time necessary to recover after
a misprediction. We should keep in mind that misprediction can also come
from transient events in congestion control schemes such as RLC, when a new
receiver joins a group where other receivers are already present, and it might
take some amount of time to synchronize with other group members. As a
consequence, we suggest to use small values for h, e.g. 2 or 3, as a reasonable
compromise between robustness and speed.

4 Experience with the implementation

We have implemented the mechanisms described in the previous Section in
the mrouted3.9-beta3 code. The implementation required very minor modi-
�cations to the mrouted code, basically we just needed to introduce a new
variable in the per-group state, and to make those data structures persistent
across join/leave phases. The additional code closely reects the one shown in
Figure 2.

Initial tests have been performed using the modi�ed mrouter with standard
multicast applications such as sdr, vat, vic at the author's site. We have
veri�ed in this way the e�ectiveness of the prediction mechanism in detecting
single or multiple listeners for a group and acting consequently.

We have then built a small test setup comprising two networks connected by
mrouters through a tunnel. RLC instances have been run on the two local
networks, and bandwidth limitations have been enforced on various parts of
the network using the dummynet software [5] developed by the author. Prelim-
inary experience with this setting has also shown a behaviour conforming to
our expectations. These experiments have also given some advice on the set-
ting of time constants in the RLC implementation to improve the interaction
with the IGMP protocol.

4.1 Future work

The mechanisms described in this paper were devised mainly to improve the
behaviour of RLC in presence of rapidly changing network conditions. Initial
experience with the implementation has shown the e�ectiveness of our pro-
posal, although we have not yet performed any large-scale test in the �eld.
Such tests will be the subject of future experiments, although they are very
di�cult to set up on a real network because of the presence of non-pruning
routers and IGMPv1 clients in many parts of the MBone.

9

We are now evaluating the behaviour of the modi�ed IGMP in presence of mul-
tiple implementations of RLC and heterogeneous receivers. A result that we
expect from these experiments is to have an indication of the typical response
speeds of receivers, in order to understand the impact of false membership
reports and the usefulness of implementing adaptive mechanisms for deter-
mining the delay in the generation of membership queries in response to a
leave request.

Acknowledgements

This work has been partly supported by the Ministero dell' Universit�a e
della Ricerca Scienti�ca e Tecnologica (MURST) in the framework of the
Project \Design Methodologies and Tools of High Performance Systems for
Distributed Applications". The author is grateful to Lorenzo Vicisano for his
help on this work, and for discussions on the interactions between IGMP and
RLC. Many thanks to Bill Fenner who answered numerous questions on the
mrouted code.

References

[1] W.Fenner, RFC2236, Internet Group Management Protocol, Version 2, Nov. 1997

[2] S.Floyd, V.Jacobson, C.Liu, S.McCanne, L. Zhang, \A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing,
Scalable Reliable Multicast (SRM)", ACM SIGCOMM 95, available as
ftp://ftp.ee.lbl.gov/papers/srm_sigcomm.ps.Z

[3] V.Hardman, I.Kouvelas, M.A.Sasse, A.Watson: \A packet loss Robust Audio
Tool for use over the Mbone", Research Note RN/96/8, Dept. of Computer
Science, University College London, 1996.

[4] S. McCanne, V. Jacobson, and M. Vetterli, \Receiver-driven Layered Multicast",
SIGCOMM'96, August 1996, Stanford, CA, pp.1-14.

[5] L.Rizzo, Dummynet: a simple approach to the evaluation of network protocols,
ACM Computer Communication Review, Vol.27, n.1, January 1997, pp.31-41.
Source code at http://www.iet.unipi.it/~luigi/ip_dummynet/

[6] L.Rizzo, L.Vicisano, RMDP: an FEC-based Reliable Multicast protocol for
wireless environments, ACM Mobile Computing and Communications Review,
Vol.2, n.2, April 1998

[7] L.Vicisano, L.Rizzo, J.Crowcroft: "TCP-like congestion control for layered
multicast data transfer", Infocom98, S.Francisco, March 1998

10

