
QUANTA: Quality of ServiceArchitecture for Native TCP/IP over ATM networks

Sudheer Dharanikota Kurt Maly
Department of Computer Science

Old Dominion University
Norfolk VA-23529

E-mail addresses:fdharas, malyg@cs.odu.edu

Abstract

In this paper, we propose a Quality of Service (QoS) ar-
chitecture, QUANTA, for an end system protocol suite. We
use TCP(UDP)/IP over ATM as a testbed to develop the ar-
chitecture. We measure the application-level QoS in terms
of throughput, delay, round trip time, and loss to identify
the base-line performance an application can expect from
such an environment. From the no-load condition we mea-
sure the behavior of these protocols at various data rates
and user submitted data block sizes. We demonstrate the
trade-offs involved in obtaining high throughput, low de-
lays, low round trip time, and zero losses at different data
rates. We use host-load condition experiments to under-
stand the interaction between the CPU-intensive jobs and
the communication-intensive jobs. We use network-load
condition experiments to observe interaction between mul-
tiple streams of the above two protocol-suites, and its effect
on the application QoS.

Given these observations we define the missing compo-
nents in the current protocol architectures to provide tighter
control on the QoS guarantees. Components we define
in QUANTA include, a two-level application to network
QoS translator, protocol tuning components, local feedback
component, class-based scheduling etc.

Key Words:Predictable performance, Control parameters,
QoS, TCP, UDP, IP, AAL5, ATM

1. Introduction

All applications, from complex distributed applications
such as “Video Collaborative (VC)” application, to simple
point-to-point applications such as “ftp”, expectpredictable
performance. The terms predictability, and performance
need some explanation in the context of this work. An ap-
plication behaves predictably whenthe application user ob-

serves the statistical behavior of the application, and it is
consistent with the requested behavior. The term perfor-
mance is a relative term, which isa measure of the behavior
of an application. Thus, an application is said to be per-
forming predictably when it is in the behavioral range as
approved by the user. An example to understand these con-
cepts is given in the following paragraphs.

Parameter 2

Parameter 1

Parameter 3

Parameter 3 Loss

Parameter 1 Frames/Second

Parameter 2 Delay

δ P
2 P2δ

For example:

Be
st

 to
 w

or
st

Acceptable region of operation (ROP)

(IOP)

IOP Interval of operation

Acceptable variation in

QoS parameters

Figure 1. Acceptable ROP for an application

Consider aVideo Collaborative(VC) application in
which audio, and video are sent across the network among a
group of collaborative users (e.g., a teacher, and students of
the class). A user in such an environment requires a set of
performance measures (Quality of Service parameters) to be
met to use this application. For example, a user may be in-
terested in the number of frames received per second (FPS),
latency, or delay between the sender and the receiver, for a
good on-line interaction, and less loss and jitter in terms of
user perception. These requirements decide theInterval Of
Operation (IOP)for the application as shown using a Kiviat
diagram in Figure 1. Each axis in the Kiviat diagram repre-
sent a QoS parameter. The QoS marking on these axis range
from the best quality, being the innermost point, to the low-
est quality, being the outermost point. As shown in the fig-
ure, these acceptable deviations create aregion of operation
(ROP). In the diagram, the innermost triangle represent the
best quality the application would expect. This is limited
by factors such as the minimum delay which is introduced
by the protocol suite processing overhead and the propaga-
tion delay of the signal. The outermost triangle represent

the worst performance an application would accept. We can
say that the application is performing predictably, if it’s per-
formance measures are within ROP, as defined by the user.
Deviations in IOP manifest themselves differently in differ-
ent applications; in a VC application this may be reflected
as a reduction in the number of frames per second (FPS),
and in an ftp application this may be reflected as a reduc-
tion in the throughput. This degradation in the application
performance three causes:end-system protocol behavior in
high speed networks(HSN), the host load condition, and
the network load condition.

In this paper, we investigate the effects of these factors
on an end-to-end application. In the first experiment we run
a test application between two Sparc 10s under no CPU,
and network load condition (no-load condition); these re-
sults are used to identify the behavior of the end-system
protocols for different control parameters, and host machine
limitations. In the second set of experiments we load the re-
ceiver side CPU to test its effect on the application behavior.
And, in the third set of experiments, we observe the effect of
network-load on the end-system application behavior. We
show how the resultant degradations result in Quality of
Service (QoS) perturbations in the application. From the
results obtained in the above experiments we identify the
components in the current protocol-suites missing to obtain
end-system QoS guarantees.

The proposed QoS architecture is independent of the
testbed machine architectures, excepting the values of the
bounds imposed on the QoS by the end-system machine
architecture’s limitations. Some of the experiments we
present in this paper are conducted on both Synoptics Lat-
tisCell 10104 and Fore Systems ASX 100 switches. The
observations using either switch conform to the results we
present in this paper, excepting for the maximum through-
put observed at the application-level due to the differences
in the design of the end-system ATM cards. We adopt to
Fore Systems solution because of the API they provide to
develop our own application code.

As the representative High Speed network we use an
ATM LAN, with TCP/IP as the end-system protocol-
suite. For the no-load condition experiments we use
TCP(UDP)/IP over AAL5/ATM, and direct AAL5/ATM.
We use UDP/IP over AAL5/ATM only for the first set
of experiments and for the remaining experiments use
only AAL5/ATM directly, as it is equivalent to the above
but with lesser protocol overhead. We experiment with
TCP/IP/AAL5/ATM (referred to asTCP), and AAL5/ATM
(referred to asdirect) protocols under no-load, various CPU,
and network load conditions.

The organization of the paper is as follows: in section 2
we present the testbed used for this work, and discuss the
relevant background to understand the protocol behavior in
different experiments. We discuss, in section 3, the trans-

lator which will transform the requirements of anM : N

application to network QoS parameters. Section 4 relates
the effects of protocol behavior, host CPU load, and net-
work load conditions on the application QoS. We use these
results to deduct the modifications needed in the new gen-
eration of end-system protocols. A summary of the QoS
components is in section 5. Conclusions and future work
are presented in the last section.

2. Testbed and protocols

The testbed contains two 16 X 16 port Fore Systems
ASX-100 switches connected in tandem. A SUNsparc 10,
two SUNsparc 2 workstations are connected to each of the
switches. These workstations use Fore Systems SBA-200
ATM cards. The maximum bandwidth between the work-
station and the switch, and between the switches is 100
Mbps. We ran the application both through TCP(UDP)/IP
running over AAL5/ATM, and through AAL5/ATM [5].
When the application runs over TCP(UDP) it uses an end-
to-end ABR (Available Bit Rate) [2] connection, whereas
when it uses direct AAL5 it has the option of selecting ei-
ther a CBR (Constant Bit Rate) or an ABR connection.

 ..

Application buffers

AAL5

CSPDUs

ATM cells

ATM

 ..

ATM cells

CSPDUs
Q1

Q2
Q3

Q4

or TCP/IP buffers

RECEIVER

IP

TCP UDP

UDPTCP

Control
parameters

Buffer overflow
IP

Application
SENDER

from IP output queue Buffer overflow
from IP input queue

Figure 2. Flow of data in an ATM network

Figure 2 shows the interaction between different proto-
cols and their individual behavior. Every protocol has some
control parameters which can be used to adjust the dynamic
behavior of the application. In TCP these control parame-
ters include, end-to-end variables such as send, receive and
congestion windows, retransmission timers etc., and algo-
rithms such as slow start and Nagle’s algorithm. These con-
trol parameters are maintained on a per-connection basis.
They can be used to make an end-to-end connection react to
congestion in the host and the network environments. Un-
like TCP, UDP does not have elaborate control parameters
to make its connections lossless. Hence, it depends on the

underlying protocols to behave as lossless as possible. Op-
erating System (OS) related parameters such as STREAMS
parameters effect the protocol behavior and hence the dy-
namics of the end-user application Quality of Service. In
a STREAMS protocol implementation, such as in Solaris
OS, the protocol modules are linked to each other by a set
of incoming and outgoing queues. These queues have lower
(Low Water Mark [LWM]) and higher (High Water Mark
[HWM]) limit on the amount of data they can store at any
time. Once HWM of data are present at the interface queue,
STREAMS back pressure algorithms prevents data from en-
tering the queue till the accepting module drains data in the
queue to reach LWM. Refer to [1] for more details.

Both TCP, and UDP send their data to IP, where no dis-
tinction is made between the connections from the two pro-
tocols. As a result, IP might generate varying delay to dif-
ferent connections and provides unpredictable losses. IP
does not inform the user of loss of data. Hence, these losses
in case of UDP result in loss of application packets. In TCP
[4, 6] losses are observed at the end of one or more round
trip times (RTTs), which will result in retransmission and
hence the reduction in throughput. The congestion control
algorithms in TCP may not be as helpful as the congestion
avoidance algorithms such as slow start [9]. This is because
of the highlatency X bandwidth on ATM networks. The
ATM community is looking at rate-based [3], and credit-
based [10] congestion avoidance algorithms [8]. Commin-
gling a high data rate UDP application and a TCP applica-
tion, as we will observe in the following sections, will spoil
the QoS of both the connections on the sending end-system
because of the erratic loss of data in IP.

In our environment IP feeds these data to the ATM Adap-
tation Layer 5 (AAL5). A representation of the data flow
through the end-to-end AAL5s is given in Figure 2. A user
data block submitted to AAL5 (either through TCP/IP, or
directly to AAL5) is segmented into 9148 byte (most of the
time) AAL5 CSPDUs before queuing inQ1 as shown in the
figure. If the user data is not rate controlled then theQ1

might overflow, resulting in the loss of data on the sender
side itself. These CSPDUs are segmented into 48 Byte cells
and are queued in the ATM layer (Q2) to be sent across
the network. If noper ATM connection queuesexists,Q2

might overflow if the combined data rates of the applica-
tions are high compared to the number of buffers allocated
to Q2. Loss of cells might occur on the network if the ap-
plication exceeds the requested bandwidth or if the network
is congested. On the receive side, the cells are reassembled
into a CSPDU by ATM and given to AAL5. AAL5 then as-
sembles these CSPDUs to form a user packet. CSPDUs are
dropped in ATM (atQ3) if one or more cells belonging to a
CSPDU is lost; this loss of CSPDUs results in dropping the
user packet (atQ4).

Loss of data anywhere in the queues will reflect as an

QoS degradation to the end-system application user. With
so many queues and dependencies, the newer generation of
the protocols needs to provide atighter control to be able
to guarantee application QoS, which is the major consider-
ation in this work.

3. Application’s versusProtocol’s view of QoS

An application defines theregion of operationin terms
of its user-level QoS parameters. The application expects
the service provider (both the sending and receiving end-
systems, and the network) to provide QoS within this re-
gion during its service. The protocol control parameters,
the host-system and the network traffic pose limitations on
the application performance. As a first step towards the
application-oriented QoS architecture, we propose a com-
ponent which incorporates the knowledge of the protocol
control parameters and translates the application QoS into
a set of protocol control parameter values. The translator
sets the end-to-end protocol control parameters and OS de-
pendent parameters, and hides the relation between these
parameters from the application user.

If we haveM different applications andN different
protocol suites, the translation component should contain
M X N translation stubs, to achieve the complete transla-
tion set. We propose a two-step translator, which translates
the application QoS into a set of generic QoS parameters
(such as throughput, loss, delay, RTT [ATranslator]), and
translates these generic QoS parameters into end-system
protocol-dependent control parameter values (EPTransla-
tor). This method calls forM + N translation components.
The translation between the application to generic is depen-
dent on the application characteristics. Hence,M increases
linearly with the increase in the number of applications. To
controlM , we classify applications into different classes
as shown in Figure 7. We group protocols into connection-
oriented protocols (e.x., TCP, TP4), and connectionless pro-
tocols (e.x., IP, IPX). But the subtle differences between the
protocols (such as TCP isstream-linedprotocol, where as
TP4maintains the integrityof the protocol data unit) need
to be treated differently as far as it concerns mapping the
QoS onto control parameters.

4. Study of QoS perturbing factors

On the receiver side of this application, we measure
throughput, delay, and loss (number of retransmissions in
case of TCP, or the amount of data lost in case of UDP),
and on the sender side we measure RTT. These parameters
capture the dynamic behavior of the host, and the network
(refer to Figure 3).Throughputis the amount data received
per second, which is measured on everyN th packet (as
shown in Figure 3), and averaged over the total commu-

RECEIVER

RTT Packets

ATM backbone (LAN/WAN)
Control loop

Forward connection

Reverse connection

Host dynamics

Network dynamics

AAL5/ATM

Offered Load
1 N.....

time

.....
1 N.....

time

Delivered load

Lost packets

.....

SENDER

AAL5/ATM
or TCP(UDP)/IP/AAL5/ATMor TCP(UDP)/IP/AAL5/ATM

Figure 3. QoS parameter’s significance

nication time. TheThroughputrequirement of an applica-
tion reflects the amount of host, and network buffers oc-
cupied by the application at any given instant of time. In
ATM-like networks, this parameter is also a measure of the
amount of bandwidth to be reserved for this application. A
low maximum observedthroughputon a host machine im-
plies system deficiencies such as a lesser number of system
buffers and host-network interface problems. A counter-
part to throughputis loss. Lossin our work is defined as
the percentage of data lost during the total communication
time. We identify data lost on the receive side as shown in
Figure 3, to calculate the loss percentage.Loss, in case of
TCP, is observed as more number of retransmissions which
shrinks the TCP congestion window, which in turn reduces
the end-to-end throughput. This parameter in case of UDP,
or AAL5/ATM connection reflects reduced throughput due
to unpredictable loss of data.Delay is the average delay
incurred forN packets, which is averaged over the total
communication time.Delayparameter is a measure of the
queuing delays in the end-system protocol suite, delay at the
host-network interface, and delay on the network. This pa-
rameter relates to the dynamic behavior of the end-system
protocol suite, such as the TCP-retransmission algorithm.
RTTis the amount of time taken for theN th packet to reach
the receiver, and back to the sender; the averageRTTis cal-
culated over the total communication period.RTTgives the
size of the control loop of the application, as shown in Fig-
ure 3. In ATM-like networks,RTTtells the network element
what sort of trade-offs it can make between responsiveness,
buffer size requirements, available bandwidth, and number
of connections it can support [2].

In our experimental set-up we use uniform loading be-
cause our intention is not to provide an analysis of a partic-
ular applications, but to provide a base-line. We measured
throughput as the average over a set of every 50 packets
and observe the delay for the50th packet. We ran this ex-
periment for 200,000 packets to obtain enough knowledge
about the statistical behavior of the protocol suites at high
data rates and determine the average values. In the case
of UDP, we calculated loss of data after every50th packet
and present loss percentages over the life time of the con-

nection. Every50th packet is sent back to the sender to
measure RTT.

4.1. No-load condition experiments

We divide the no-load experiments into two sets. In the
first set, we observe the interaction between the user and
the end-system protocol suite. We run the test application
on TCP/IP and on UDP/IP protocol suites. We present only
the throughput and the loss (in case of UDP/IP) graphs, be-
cause the delay and RTT graphs are statistically not signif-
icant due to the unpredictable behavior of these protocols
(as demonstrated below). In the second set of experiments
we measure the interaction between the application and the
network. This is achieved by running the test application on
AAL5/ATM. In the process, we also compare these results
with that of TCP/IP running on top of AAL5/ATM.

4.1.1 Throughput

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

Th
ro

ug
hp

ut
 in

 M
bp

s

Block size in bytes

With SWS
Without SWS

With 32k window

Figure 4. Effect of TCP control parameters on
end-to-end application throughput

Figure 4 gives the average throughput observed on the re-
ceive side by varying block size. We recorded a maximum
throughput of 30 Mbps at block size of 8192 bytes. Note
the dip in throughput for the block sizes of 3072 and 4096.
A phenomenon called “silly window syndrome” (SWS)[7]
is the reason for this dip. It should be noted that by elimi-
nating the SWS and increasing the TCP window size (from
8 Kbytes to 32 Kbytes) we can obtain an almost twofold im-
provement in throughput. As the block size is increased, the
processing time per block increases, and hence the through-
put decreases. These graphs show that protocol control pa-
rameters such as window size, user-submitted block size
and algorithms such as SWS will control the behavior of
the end-system application. Hence, this experiment suggest
that one of the tasks of thegeneric to network translation
component is to set these control parameters to appropriate
values.

Throughput observed with UDP is high because of the
smaller processing overhead of the protocol. The UDP ex-
periment is also a good test for identifying buffer limita-
tions and other overheads caused by the system. Maximum
throughput observed on the receiving side is 70 Mbps (Fig-
ure 5), but on the sending side it is almost 120 Mbps. This
difference is due to heavy loss of data in the transit when
there are uneven surges in data transfer rates on the sending
side (analysis of these losses are presented below). Fig-
ure 5 shows that by incorporating a rate control algorithm
that submits data at regular intervals and by increasing the
HWM and LWM at UDP-IP interface, data loss in UDP is
drastically reduced while there is no change in the obtained
throughput.

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

Th
ro

ug
hp

ut
 in

 M
bp

s

Block size in bytes

No Flow Control
With Flow Control

With FC & 32k High water mark

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

Lo
ss

 o
f d

at
a

in
%

Block size in bytes

No Flow Control
With Flow Control

With FC & 32k High water mark

Figure 5. UDP throughput and loss versuswith
and without flow control, and HWM

A steady increase in UDP throughput is shown in Figure
5 until a block size of 8192 bytes. This is due to the no-
processing nature of UDP. UDP submits packets as they are
to IP, which in turn segments them as necessary. On the
receiving side these segments are reassembled by IP and are
submitted to UDP. As the block size increases, the buffers
in the system deplete very quickly and UDP blocks until
a fresh quota of buffers is available [1]. Hence, there are
higher delays at the sender-network interface.

4.1.2 Loss

Loss of data at high data rates using UDP is due to resource
demands on the participating systems and host-network in-
terface rather than any network limitation. Figure 5 presents

the loss percentage versus block size. Loss rates as high as
27% are observed.

Since, loss occurs inside IP, it is left unnoticed by UDP,
and hence UDP cannot inform the user about the reason for
the loss of data. The loss in IP is due to the overflow of
the output data queue, as shown in Figure 2. This is seen
by calculating the number of IP packets dropped during this
connection (We used Solarisnddcommand to get these de-
tails.). The loss of data in the IP queue allows UDP to ac-
cept data at faster rate from the user. Such a combination
of queue up and dropping of packets in UDP-IP produce
erratic time domain delay patterns on the receive side.

To investigate the the impact that aspect of UDP-IP inter-
action has on QoS, we incorporated a rate control algorithm
inside the UDP user program in order to send data at fixed
rate depending on the type of the underlying network:

Delay = Block size in bytes
Allotted Bandwidth in Mbps

Run forever :
SendData(data)

SendData(data)
SubmitDataToUDP (data)

wait(Delay � T imetaken to submit data �

Other Processing time in the runforever loop)

This simple algorithm reduced the loss percentage to al-
most 15% from 27%. The method clearly is not user trans-
parent and also is not very accurate. However, were this
algorithm incorporated inside the UDP protocol itself on a
per connection basis, we predict that the loss percentage can
be minimized. When other connections are on the same host
sharing the output queue of IP, it is difficult to maintain the
application QoS even with the rate-control.

From the data in the throughput and loss experiments we
conclude that a proper QoS architecture needs to include a
resource manager and a local feedback component to isolate
the connection, as shown in Figure 7. Although we could
set the initial IOP of an application in TCP using the con-
trol parameters, it is difficult to maintain it with interfering
connections on the host machine. Hence, even for TCP we
need to use the combination of the rate-control, the resource
manager and the local feedback to provide QoS guarantees.

4.1.3 No-load case studies withdirectand TCPconnec-
tions

In this section we use different values oftarget offered load,
and observe how QoS measures are effected by the varying
protocol control parameters; in particular, we are interested
in how different classes of applications over direct ATM
versus TCP/ATM. The protocol control parameters for the
direct case are the application block size and the requested
bandwidth. The bandwidth reserved (and requested) for an
application indirectcase is equal to the data rate it attempts
to offer(target offered load) using rate control. In case of

TCP, the TCP window size is set to 32 KBytes and MSS is
assigned 9148 bytes.

The no-load tests provide a set of baseline results in se-
lecting the control parameters to obtain a specific applica-
tion level QoS. For both theTCPanddirect cases we mea-
sure throughput and delay, for thedirect case we also mea-
sure loss, and for selected cases of TCP we measure re-
transmissions. In all of these tests, we use a user level rate
control mechanism to control the amount of data submitted
per second to match the user-requested bandwidth.

Table 1 presents the experimental results obtained under
no-load conditions for different requested bandwidths, and
user data block sizes. In this set of experiments we target to
offer the same amount of load as the requested bandwidth.
We present the receiver side throughput, delay, and RTT (on
the sender side) for both TCP and direct cases and loss in
case of direct connection. The4th, and the5th columns
in the table represent the statistics of the sending, and the
receiving AAL5. The first portion of the sender side statis-
tics represent the number of CSPDUs given toQ1 after seg-
menting (if necessary) the user packet. The second portion
of the column represent the actual number of CSPDUs that
left Q1, and the last represent the percentage of loss inQ1.
Similarly, the first portion in the last column represent the
number of CSPDUs assembled by AAL5 before placing the
data intoQ4, the second portion represents the actual num-
ber of CSPDUs passed onto the user, and the last represent
the percentage of CSPDUs lost inQ4. An intelligent QoS
architecture can use these data to select appropriate control
parameters. We selected the requested bandwidth to repre-
sent different classes of applications. For example,0.5 - 1.5
Mbpsrepresents MPEG-1 compressed video stream, and10
- 65 Mbpsrepresents high data rate applications. Certain
data are bold-faced in the table to draw reader’s attention to
those values (explained in the next two subsections).
Case (i): 0.5 - 1.5 Mbps applications

For both TCP/ATM and direct ATM cases, providing the
requestedthroughputfor low bandwidth cases is never a
problem. Delay increases as user block size increases in
the case of direct ATM connection because of the process-
ing overhead. This end-to-end delay is much less in case
of 1 KByte and 8 KByte block sizes (41.6 msec and 48.9
msec) compared to that of 64 Kbyte block size (128.2 msec)
because no segmentation and reassembly is done in ALL5.
Because of the segmentation and reassembly in AAL5 for
64 KByte block size, delay increases by almost threefold.
Delay in case of TCP is high compared to that of direct
ATM connections because TCP tries to accumulate MSS
worth of data before sending it to AAL5. TCP delay can be
reduced by reducing the window size and MSS (if possible).
Thelossof data in the direct ATM case occurs atQ1 due to
our user-level rate control which may not supply data at the
exact requested rate.Losscan be made zero by increasing

the requested bandwidth marginally more than the offered
load (refer to Table 2).
Case (ii): 10 - 65 Mbps applications

For high data rate applications, the number of interrupts
generated on the receive side of the application by the ATM
card are high in the case of using a 1 KByte block size. This
phenomenon leads to dropping packets inQ4 if the host
is not fast enough. Hence the user-levelthroughputgoes
down (5.34 Mbps for 65 Mbps case) andlossesare high
(83.25% for 65 Mbps case).Delay will also increase be-
cause of higher queuing delays atQ4. We also noticed that
using our testbed we could not observe throughput more
than65 Mbps, which is the host limitation. By increasing
the block size to 8 Kbytes we are reducing the number of
CSPDUs, and hence the number of interrupts on the receiver
side, which will reduce the losses to zero.

In Table 2 we present the relation between RTT, delay,
and losses at different level of target offered load, and re-
quested bandwidth. For0.5 Mbpscase, highRTTvalues are
observed when the requested bandwidth is the same as the
target offered load; this is due to all the resources being al-
located for the duplex connection are used by the forward
connection (refer to Figure 3) itself. When the requested
bandwidth is more than the target offered load then theRTT
becomes very much less because of the resources avail-
able in the reverse direction. Averagedelays has increased
as more bandwidth is reserved, because of the increase in
queue sizes allocated for this connection. As observed in
case of 8 KByte block size, averagedelays reach saturation,
for example 130.10 msec; this is because the leaky bucket
rate-control algorithm in ATM is becoming effective.

At 65 Mbps, the target offered load and the requested
bandwidth does not effect thedelay, andRTT for 1 Kbyte
block size, due tolossesatQ4 (buffer overflow). At 8 Kbyte
block size because of the zero datalossesthedelayandRTT
are comparable. These parameters cannot be improved by
increasing the requested bandwidth.

In case ofTCP, at low data rates TCP will not encounter
lossesand hence no retransmissions. We use this informa-
tion to calculate the percentage of retransmissions in the
lossy case of65 Mbpswith 1 KByte block size. We observe
13% retransmissions, which is less compared to 83.25%
lossesin its counterpart in thedirectcase. At the same time,
TCP adjusts itself to a lower throughput to avoid losses.
This shows the self-healing nature of TCP because of its
elaborate flow control mechanism.

From the above observations we conclude that, the ap-
plication block size and the requested bandwidth play major
role as control parameters in satisfying an application’s re-
quested QoS. An application usingdirectconnection should
clearly balance the control parameters to obtain the desired
QoS. Whereas, an application usingTCPneed not balance
the control parameters, at the cost of not obtaining tight

bounds on the application QoS. We notice that the max-
imum data rate aTCP connection supports is around 45
Mbps, whereas adirect connection supports up to 65 Mbps
on a Sparc 10 workstation. Hence, with the given configura-
tion, the combined data rate of allTCPapplications should
not exceed 45 Mbps, similarly fordirect it should not ex-
ceed 65 Mbps.

These observations lead us to further modify thepro-
posed QoS architecture, as shown in Figure 7.
The maximum observable QoS parameters on a system are
bounded by the kernel-resources (such as buffers, and the
host machine’s architectural limitations). These values will
define upper bounds on the QoS which can be requested
from that host. Therefore, theresource managercompo-
nent should consider these host limitations while allocating
resources to multiple connections.
Thedirectconnection analysis shows the sensitivity of QoS
to network control parameters, for example, we demon-
strated this in Table 2 by showing that zero loss can be
obtained by reserving higher bandwidth than requested.
Hence, to translate the application QoS into different back-
bone network protocol QoS parameters, we need aend-
system protocol to network translator(NTranslator). If the
application QoS is sent in generic format, we can avoid two-
level translation at the protocol to network interface.
From the loss analysis on the receive side (due to higher
number of interrupts), we can conclude that we need to
provide feedback from the network device to the resource
manager. This information should be communicated to the
other-side of the end-system protocol.
As the number of connections through IP increases the feed-
back becomes complex and even simple rate-control be-
comes complicated. This suggests that the control in IP
should be performed on a class-basis rather than on a per-
connection basis. By selecting the classes which can be rec-
ognized at the user-level itself, we can reduce the complex-
ity of mapping between classes at different layers.

4.2. Host behavior experiments

The next set of experiments is to determine the range
of impact the end-system load has on the ability to main-
tain predictable QoS performance. We study the behavior
ofTCP and direct protocol stacks, using host-load condi-
tion. Guru Purulkar et al. [11] reported a study on a SunOS
4.1, in which one of their conclusions was: in a UNIX-like
Operating System a communication-intensive job receives
higher priority over a computation-intensive job because of
Unix’s dispatcher algorithm. In our host-experiments we
obtained similar results but relate them to QoS performance.

The computation-intensive job is a software de-
compression program of an MPEG-1 stream and the
communication-intensive job is the modified ttcp applica-

tion. We use 8 KByte user data blocks with TCP control
parameters set to 32 KBytes for the window size, and 9148
Bytes for MSS. Fordirect connection, we use a user data
block size of 8 Kbytes, and allocate bandwidth equal to the
target offered load. The experiment is run under different
receive side CPU-load conditions. From Table 3, we make
the following observations: In the0.5 - 25 Mbpsrange (ir-
respective of the percentage of the CPU load) thelossesare
mainly atQ1 because of the inaccurate user-level rate con-
trol at the sender.Delayusing TCP is still higher compared
to that using a direct ATM connection. Thethroughputis
comparable in both the cases.

For the65 Mbpscaselossesshift from the send side to
the receive side because the application is working in the
maximum throughput range for that machine, and even a
slight CPU load leads to loss of data inQ4. TCP on the
other hand adjusts itself to lowerthroughputin the process
of reducing the number of retransmissions because of the
losses on the receive side. AAL5 throughput is still higher
than TCP but this might be a bad option in such cases be-
cause of random losses. TCP has a betterdelaycharacteris-
tics because it dynamically adjusts itself to the lossy behav-
ior of the communication path.

The conclusion from these results is that theresource
managerneeds to reserve resources on the end-system host
machines and should accept feedback from the network in-
terface component.

4.3. Network behavior

The final component we analyze to determine what is
needed in a QoS architecture to provide predictable perfor-
mance is the one which relates to network behavior. The
following experiment is set to determine the deficiencies in
TCPand the interaction ofTCPwith directconnections un-
der network-load conditions. We present time domain plots
of throughput, and delay of the end-to-end applications. For
a detailed analysis of the network-load experiments refer to
our extended version of this work in [14].

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

Th
ro

ug
hp

ut
 in

 M
bp

s

Time (msec)

Sparc 2 direct
Sparc 2 direct

Sparc 10 direct

Figure 6. One TCP at 45 Mbps, and two direct
at 35 Mbps

We useABRconnections for thedirectcase in this exper-
iment, the results of which are shown in Figure 6. We set
up aTCP connection between the two SunSparc 10 work-
stations, and twodirect connections between the SunSparc
2 workstations. TheTCP connection is rate-controlled to
produce 45 Mbps, whereas thedirectconnections are tuned
for 35 Mbps each. Figure 6 gives the throughput values for
the three connections over a period of time. We intention-
ally overload the link between the ATM switches to observe
behavior of the end-system protocols in adverse conditions
and its effect on the application QoS.

As can be observed from the throughput graph in Figure
6, TCP behaves poorly in combination with the otherdi-
rect connections - even though almost 30 Mbps bandwidth
is available. This is because TCP does not obtain the infor-
mation on the residual bandwidth. As a consequence of low
throughput, the average delay for this connection is high till
thedirectconnections are active. As soon as thedirectcon-
nections are closedTCP picks up at a high data rate, and
hence lower average delays are also seen. Even at lower
data rates for thedirectconnection,TCPperforms the same
way. Thedirect connection on the other hand, works at
higher data rates, because it does not have elaborate error-
recovery. The penalty paid for the higher data rate in the
directconnection is the bursty losses.

This leads us to the conclusion thatresource allocation
has to be done on a per-TCP connection basis to obtain max-
imum utilization of the network resources. And the alloca-
tion should be adjusted dynamically according to the feed-
back from the network. These components are incorporated
in the complete architecture shown in Figure 7.

5. Discussion on QoS architecture

In this section, we present a summary of the high level
design of the end-system QoS architecture we propose (re-
fer to Figure 7). It is based on the conclusions we have
drawn from the experiments described in the previous sec-
tions. A complete specification and the status of its im-
plementation can be found in [12]. The architecture has
three main components: application-level, protocol-level,
and global components, as shown in Figure 7.

Application-level components
We divide applications into different classes depending

on their QoS requirements. Each class of applications talks
to its corresponding module in the class-specific interface
module in the application-level component. The QoS re-
quirements are translated into a generic set of QoS require-
ments by the generic interface. These generic requirements
are translated into a set of protocol-related control param-
eters, using data we presented in the previous section and
in [13]. These control parameters are sent to the service-
providing protocol to set the appropriate values for this con-

nection. The interface will also interact with an application
to dynamically adjust its QoS requirements depending on
the network, and the host status, using feedback from the
service-provider.

Protocol-level components
Based mostly on the host, and network behavior experi-

ments, the architecture provides the following modifications
to the end-system protocol architecture:

(e.g. UDP)

Manager

(Rate-control)

Resource

NTranslator 1 NTranslator 2

Network deivces

(AAL5, AAL3, FDDI)

Network protocol control
parameters

End-system
protocol control parameters

Class M schedulerClass 1 scheduler

(e.g. TCP)

IP

Application 1 (e.g. Video)
Application 2 (e.g. Audio)

...Application stub Application stub

Class 1 Translator

...Application stub Application stub

.... Class M Translator

...

Generic QoS M:N Translation

NETWORK

(Feedback from
 the netw

ork)

(L
oc

al
 fe

ed
ba

ck
)

EPTranslator 1 EPTranslator 2 EPTranslator N

Figure 7. End-system QoS architecture

Rate-control algorithm: Both TCP, and UDP require a
connection-based rate-control algorithm to limit the user to
behave in its requested QoS. In TCP, this algorithm works
below the window-based retransmission scheme to retain
the flavor of the existing TCP. In UDP, rate-control prevents
a user from sending at a higher data rate than the agreed-
upon data rate by blocking the application. This scheme
reduces the losses in UDP due to uncontrolled transmission
of data which leads to buffer overflows.
Local feedback algorithms:Feedback from the service-
provider, such as, from IP to TCP(UDP) or from TCP(UDP)
to the application user, serves to change the control parame-
ters, and in turn retain the user requested QoS. For example,
IP feedback information could be used in UDP to reduce the
data rate of an application to avoid further losses in IP.
Connection-based monitoring:All the applications with
specified QoS requirements should conform to the initial
negotiation. A deviation from the negotiation will effect the
other connections using a common resource pool. Hence,
to retain the isolation between the applications, we need to
monitor the application to check if it is within its allocated

resources. This monitoring is effective if it is done closest
to the user application. Hence, we propose to do the moni-
toring on per connection basis at TCP, or UDP.
Resource allocation:To avoid the complexity of handling
resources on per connection basis, we provide class-based
resource allocation. For example, we have real-time, and
time-shared classes inside IP. In a real-time class we sched-
ule the data to meet dead-lines, where as in a time-shared
class we are interested to obtain a given throughput.
Class-based monitoring, and scheduling:We provide class-
based monitoring to avoid overflowing the resources, which
effects the QoS of all the applications in that class. The
scheduling algorithms we use in each class of applications
are different. A scheduling algorithm is dependent on the
combined knowledge of all the applications in its class.

Global components
When the status of resources changes we need to main-

tain information about all these resources to be able to de-
grade the performance of an application gracefully. This has
to be done on a global basis. These global components in-
clude network feedback, resource control, and global mon-
itoring. The network feedback information is used to moni-
tor the status of the network and react to it in order to reduce
loss, or control delay for an application. Global resource
control is used to allocate resources dynamically to differ-
ent classes of applications. And, global monitoring is used
to predict the degradation in the performance of the appli-
cations and inform their class schedulers about modifying
the scheduling parameters of the algorithms.

This QoS architecture is generic enough to work with
a simple link-level protocol like Ethernet protocol, to the
complicated protocol such as ATM in a LAN environment.
The algorithms we are developing in this architecture are
generic enough to be incorporated in any transport-level
protocols such as TCP or UDP, and network protocols such
as IP.

6. Conclusions and Future work

In this paper we use an application-oriented approach to
propose a QoS architecture for a TCP/IP-like end-system
protocol-suite. We conducted no-load, host-load, and
network-load condition experiments to identify the miss-
ing components in the current architecture of TCP/IP. These
missing components include a two-level application to net-
work QoS translator, protocol tuning components, local
feedback component, and class-based scheduling.

We presented the base-line QoS that can be achieved by
an application in a LAN environment. We compared the be-
havior of an application using TCP(UDP)/IP/AAL5/ATM
and direct AAL5/ATM with respect to their control param-
eters. We identified bottlenecks an unwary user might en-
counter, such as, high delay at higher block size, heavy

losses for 1 KByte block sizes at high data rates, relation
between the requested bandwidth and target offered load.
We demonstrated the trade-offs between the QoS parame-
ters with the help of the control parameters, such as obtain-
ing zero loss, reducing the RTT etc. The proposed QoS sys-
tem can refer to the tables presented in this paper to select
appropriate protocol control parameters to provide an ap-
plication specified throughput, loss and bounded delay re-
quirements.

In this paper we report on the experimentation and anal-
ysis phase of QUANTA. Preliminary results demonstrate
that QUANTA has the potential for a considerable improve-
ment over the base-line case. For more details on the design
aspects of QUANTA and these preliminary results refer to
[12].

References

[1] STREAMS Programmer’s Guide. SunSoft Technical Man-
ual, 1994.

[2] ABR signalling FAQ. ATM forum signalling group discus-
sions, June 1995.

[3] F. Bonomi and K. W. Fendick. The Rate-Based Flow Control
Framework for the Available Bit Rate ATM Service.IEEE
Network Magazine, 9(2):25–29, March/April 1995.

[4] D. Borman, R. Braden, and V. Jacobson. TCP Extensions
for High Performance.Request for comments 1323, May
1992.

[5] J. Y. L. Boudec. The Asynchronous Transfer Mode: a tu-
torial. Computer Networks and ISDN Systems, 24:279–309,
1992.

[6] D. Braden and V. Jacobson. TCP extensions for long-delay
paths.Request for comments 1072, October 1988.

[7] D. D. Clark. Window and Acknowledgment Strategy in
TCP.

[8] D. Hong and T. Suda. Congestion Control and Prevention
in ATM Networks. IEEE Network Magazine, pages 10–16,
July 1991.

[9] V. Jacobson. Congestion avoidance and control.ACM Com-
puter Communication Review, 18:314–329, August 1988.

[10] H. T. Kung and R. Morris. Credit-Based Flow Control
for ATM Networks. IEEE Network Magazine, 9(2):40–56,
March/April 1995.

[11] C. Papadopoulos and G. M. Parulkar. Experimental evalu-
ation of SUNOS IPC and TCP/IP protocol implementation.
IEEE/ACM Transactions on Networks, 1(2), April 1993.

[12] D. Sudheer and K. Maly. Design of quanta and evaluation
methodology.Submitted to - IFIP Fifth International work-
shop on Protocols for High Speed Networks, October 1996.

[13] D. Sudheer, K. Maly, and C. M. Overstreet. Performance
evaluation of TCP(UDP)/IP over ATM networks. Techni-
cal report, Department of Computer Science, Old Dominion
University, # TR94 23, September 1994.

[14] D. Sudheer, K. Maly, C. M. Overstreet, and R. Mukkamala.
Missing end-system components: A case-study. Techni-
cal report, Department of Computer Science, Old Dominion
University, # TR95 15, June 1995.

Common direct related TCPrelated
Requested Application ATM AAL5/ATM AAL5/ATM Loss Delay Delay TCP

delivered delivered
bandwidth Block size throughput sender receiver in % on AAL5 on TCP throughput
in Mbps in KBytes in Mbps statistics statistics in msec in msec in Mbps

0.5 1 0.47 12800/12109/5.40 12109/12109/0 5.40 41.6 127.2 0.49
8 0.48 1600/1582/1.12 1582/1582/0 1.12 48.9 131.0 0.5
64 0.49 1600/1526/4.62 1526/1526/0 5.00 128.2 131.0 0.51

1.5 1 1.40 12800/12125/5.27 12125/12125/0 5.27 15.36 41.52 1.49
8 1.43 1600/1591/0.56 1591/1591/0 0.56 17.44 43.66 1.49
64 1.44 1600/1544/3.50 1544/1544/0 3.50 41.34 43.6 1.51

10 1 9.26 12800/11877/7.21 11877/11877/0 7.21 3.04 5.4 9.45
8 9.33 1600/1561/2.44 1561/1561/0 2.44 2.64 6.5 9.9
64 9.48 1600/1480/7.50 1480/1480/0 7.50 6.45 6.54 10.09

25 1 7.32 12800/12245/4.34 12245/4132/66.26 67.72 3.63 4.4 13.47
8 21.89 1600/1488/7.00 1488/1488/0 7.00 1.16 2.82 22.71
64 21.06 1600/1361/14.93 1361/1361/0 15.00 2.26 2.64 24.83

65 1 5.34 12800/12800/0 12686/2144/83.10 83.25 5.34 3.00 15.50
8 62.16 1600/1600/0 1600/1600/0 0.00 0.60 1.42 43.39
64 62.87 1600/1600/0 1600/1600/0 0.00 0.93 1.66 38.75

Table 1. Comparison of direct and TCP appli-
cations under no load condition

direct related Common direct related TCPrelated
Target Offered load
Requested bandwidth

Block size Delivered load RTT Delay # Blocks CSPDUs Loss CSPDUs Retx. %
in KBytes in Mbps (ATM) in msec in msec (ATM) in % (TCP) in TCP

0.5/0.5 1 0.47 1060.52 39.36 12800 12109 5.40 4554 0.00
0.5/0.7 1 0.49 15.61 130.88 0.00
0.5/0.5 8 0.50 5672.59 48.9 1600 1600 1.12 1600 0.00
0.5/0.7 8 0.49 115.39 129.10 0.00
0.5/1.0 8 0.49 69.70 130.10 0.00

65/65 1 5.34 305.72 5.50 12800 12800 83.25 5144 13.00
65/75 1 7.30 270.41 37.52 77.41
65/85 1 7.05 251.52 37.36 77.62
65/65 8 62.16 4.26 0.99 1600 1600 0.00 1600 0.00
65/75 8 62.59 4.25 1.00 0.00

Table 2. Case analysis direct and TCPapplica-
tions for different block sizes

Common direct related TCPrelated
Requested CPU AAL5 delivered AAL5/ATM AAL5/ATM Loss Delay Delay TCP delivered

load load throughput sender receiver in % on AAL5 on TCP throughput
in Mbps in % in Mbps statistics statistics in msec in msec in Mbps

0.5 80 0.48 1600/1583/1.06 1583/1583/0 1.06 49.95 130.99 0.50
1.5 80 1.44 1600/1594/0.38 1594/1594/0 0.38 17.75 43.74 1.50

10 80 9.46 1600/1560/2.50 1560/1560/0 2.50 2.67 6.51 9.98
25 20 21.82 1600/1501/6.19 1501/1501/0 6.19 1.14 2.78 22.96

40 21.80 1600/1507/5.81 1507/1507/0 5.81 1.20 2.69 23.61
60 22.03 1600/1494/6.62 1494/1494/0 6.63 1.20 2.72 22.94
80 25.92 1600/1503/6.06 1503/1503/0 6.06 1.31 2.63 23.67

65 20 43.50 1600/1600/0 1600/971/39.31 39.31 2.94 1.49 37.11
40 45.77 1600/1600/0 1600/920/42.50 42.50 2.87 1.47 36.51
60 49.98 1600/1600/0 1600/1095/37.90 37.19 3.07 1.81 35.85
80 55.97 1600/1600/0 1600/1228/23.25 23.25 1.64 1.40 39.73

Table 3. Comparison of direct and TCP appli-
cation at different CPU-loads

