QUANTA: Quality of Service Architecture for Native TCP/IP over ATM networks

Sudheer Dharanikota Kurt Maly
Department of Computer Science
Old Dominion University
Norfolk VA-23529
E-mail addresseq:dharas, maly} @cs.odu.edu

Abstract serves the statistical behavior of the application, and it is
consistent with the requested behavidrhe term perfor-

In this paper, we propose a Quality of Service (QoS) ar- mance is a relative term, whichasmeasure of the behavior
chitecture, QUANTA, for an end system protocol suite. Weof an application Thus, an application is said to be per-
use TCP(UDP)/IP over ATM as a testbed to develop the ar- forming predictably when it is in the behavioral range as
chitecture. We measure the application-level QoS in termsapproved by the user. An example to understand these con-
of throughput, delay, round trip time, and loss to identify cepts is given in the following paragraphs.
the base-line performance an application can expect from
such an environment. From the no-load condition we mea-
sure the behavior of these protocols at various data rates
and user submitted data block sizes. We demonstrate the Parameter 2
trade-offs involved in obtaining high throughput, low de-
lays, low round trip time, and zero losses at different data
rates. We use host-load condition experiments to under- (108} 5P, Acceptable variation in
stand the interaction between the CPU-intensive jobs and Parameter 3 QoS parameters
the communication-intensive jobs. We use network-load Acceptableregion ofoperation (ROF) 0P tntervalof opeation
condition experiments to observe interaction between mul- Figure 1. Acceptable ROP for an application
tiple streams of the above two protocol-suites, and its effect Consider aVideo Collaborative(VC) application in
on the application QoS. which audio, and video are sent across the network among a

Given these observations we define the missing compogroup of collaborative users (e.g., a teacher, and students of
nents in the current protocol architectures to provide tighter the class). A user in such an environment requires a set of
control on the QoS guarantees. Components we defingperformance measures (Quality of Service parameters) to be
in QUANTA include, a two-level application to network met to use this application. For example, a user may be in-
QoS translator, protocol tuning components, local feedback terested in the number of frames received per second (FPS),
component, class-based scheduling etc. latency, or delay between the sender and the receiver, for a

) good on-line interaction, and less loss and jitter in terms of
Key Words:Predictable performance, Control parameters, | qqr perception. These requirements deciddrttezval Of
QoS, TCP, UDP, IP, AALS, ATM Operation (IOP)or the application as shown using a Kiviat
diagram in Figure 1. Each axis in the Kiviat diagram repre-
sent a QoS parameter. The QoS marking on these axis range
1. Introduction from the best quality, being the innermost point, to the low-
est quality, being the outermost point. As shown in the fig-

All applications, from complex distributed applications ure, these acceptable deviations creatgyon of operation
such as “Video Collaborative (VC)” application, to simple (ROP) In the diagram, the innermost triangle represent the
point-to-point applications such as “ftp”, expgeedictable best quality the application would expect. This is limited
performance The terms predictability, and performance by factors such as the minimum delay which is introduced
need some explanation in the context of this work. An ap- by the protocol suite processing overhead and the propaga-
plication behaves predictably whére application user ob- tion delay of the signal. The outermost triangle represent

Parameter 1

5
;s For example:
) Parameter 1 Frames/Second
[é:’ Parameter 2 Delay
Parameter 3 Loss

the worst performance an application would accept. We canlator which will transform the requirements of ad : N

say that the application is performing predictably, if it's per- application to network QoS parameters. Section 4 relates
formance measures are within ROP, as defined by the usetthe effects of protocol behavior, host CPU load, and net-
Deviations in IOP manifest themselves differently in differ- work load conditions on the application QoS. We use these
ent applications; in a VC application this may be reflected results to deduct the modifications needed in the new gen-
as a reduction in the number of frames per second (FPS)gration of end-system protocols. A summary of the QoS
and in an ftp application this may be reflected as a reduc-components is in section 5. Conclusions and future work
tion in the throughput. This degradation in the application are presented in the last section.

performance three causesnd-system protocol behavior in
high speed network@SN), the host load conditionand
the network load conditian

In this paper, we investigate the effects of these factors
on an end-to-end application. In the first experiment we run
a test application between two Sparc 10s under no CPU
and network load condition (no-load condition); these re-
sults are used to identify the behavior of the end-system
protocols for different control parameters, and host machine
limitations. In the second set of experiments we load the re-
ceiver side CPU to test its effect on the application behavior.
And, in the third set of experiments, we observe the effect of
network-load on the end-system application behavior. We
show how the resultant degradations result in Quality of
Service (QoS) perturbations in the application. From the
results obtained in the above experiments we identify the
components in the current protocol-suites missing to obtain —_— Application
end-system QoS guarantees.

2. Testbed and protocols

The testbed contains two 16 X 16 port Fore Systems
ASX-100 switches connected in tandem. A SUNsparc 10,
two SUNsparc 2 workstations are connected to each of the
switches. These workstations use Fore Systems SBA-200
ATM cards. The maximum bandwidth between the work-
station and the switch, and between the switches is 100
Mbps. We ran the application both through TCP(UDP)/IP
running over AAL5/ATM, and through AALS5/ATM [5].
When the application runs over TCP(UDP) it uses an end-
to-end ABR (Available Bit Rate) [2] connection, whereas
when it uses direct AAL5 it has the option of selecting ei-
ther a CBR (Constant Bit Rate) or an ABR connection.

RECEIVER

The proposed QoS architecture is independent of the g E E @T?P@, CU;P
testbed machine architectures, excepting the values of tH& upP
bounds imposed on the QoS by the end-system machindﬁ ﬁ E H
architecture’s limitations. Some of the experiments wcﬁmmmrS ﬁf—‘
present in this paper are conducted on both Synoptics Lat- ,mm.Eng;u"tV;H;ﬁ:“ o E Buterwrtow
tisCell 10104 and Fore Systems ASX 100 switches. The P
observations using either switch conform to the results we ~ ——=1"-—----: S22 Applcation bufers *<7 >)

present in this paper, excepting for the maximum through- or TCP/IP buffers

put observed at the application-level due to the differences
in the design of the end-system ATM cards. We adopt to

Fore Systems solution because of the API they provide to :
develop our own application code. %/ \?40':%

As the representative High Speed network we use an 00— ———1 —1I

AAL5

. cells Q3 , cells
ATM LAN, with TCP/IP as the end-system protocol- f”“" oo _ A
suite. For the no-load condition experiments we use Figure 2. Flow of data in an ATM network
TCP(UDP)/IP over AALS/ATM, and direct AALS/ATM. Figure 2 shows the interaction between different proto-

We use UDP/IP over AAL5/ATM only for the first set cols and their individual behavior. Every protocol has some
of experiments and for the remaining experiments use control parameters which can be used to adjust the dynamic
only AALS/ATM directly, as it is equivalent to the above pehavior of the application. In TCP these control parame-
but with lesser protocol overhead. We experiment with ters include, end-to-end variables such as send, receive and
TCP/IP/AALS/ATM (referred to ag CP), and AALS/ATM congestion windows, retransmission timers etc., and algo-
(referred to aslirect) protocols under no-load, various CPU, rithms such as slow start and Nagle’s algorithm. These con-
and network load conditions. trol parameters are maintained on a per-connection basis.
The organization of the paper is as follows: in section 2 They can be used to make an end-to-end connection react to
we present the testbed used for this work, and discuss the&ongestion in the host and the network environments. Un-
relevant background to understand the protocol behavior inlike TCP, UDP does not have elaborate control parameters
different experiments. We discuss, in section 3, the trans-to make its connections lossless. Hence, it depends on the

underlying protocols to behave as lossless as possible. OpQoS degradation to the end-system application user. With
erating System (OS) related parameters such as STREAMS0 many queues and dependencies, the newer generation of
parameters effect the protocol behavior and hence the dythe protocols needs to providetighter controlto be able
namics of the end-user application Quality of Service. In to guarantee application QoS, which is the major consider-
a STREAMS protocol implementation, such as in Solaris ation in this work.

OS, the protocol modules are linked to each other by a set

of incoming and outgoing queues. These queues have lowe fatiAn? ey

(Low Water Mark [LWM]) and higher (High Water Mark B. Application’s versusProtocol’s view of QoS
[HWM]) limit on the amount of data they can store at any o ,) o

time. Once HWM of data are present at the interface queue, . AN application defines theegion of operatiorin terms
STREAMS back pressure algorithms prevents data from en-Of its user-level QoS parameters. The application expects

tering the queue till the accepting module drains data in thet® service provider (both the sending and receiving end-
queue to reach LWM. Refer to [1] for more details. systems, and the network) to provide QoS within this re-

) . gion during its service. The protocol control parameters,

i Bt.Oth .TCP’ c‘?ng L:DP Set?ld their dattg to :cp, WTﬁret no dis- the host-system and the network traffic pose limitations on

inction’Is made between the connections from the o pro-y, application performance. As a first step towards the
tocols. As a result, IP might generate varying delay to dif- application-oriented QoS architectyrare propose a com-
ferent connections and provides unpredictable losses. IP o
does not inform the user Fc))floss of da?a Hence, these IossegOnent which incorporates the knowledge'of t'he protopol
in case of UDP result in loss of application pack’ets In TCP ontrol parameters and translates the application QoS into
[4, 6] losses are observed at the end of one or mc.)re rounda set of protocol control parameter values. The translator

’ sets the end-to-end protocol control parameters and OS de-

th”pnt'mfhs (FIJTS)ti er;:?h\r’v'" rﬁsultt |_rl1_hretrarr115m|?i5|2n ar?t(: Ipendent parameters, and hides the relation between these
ence the reductio oughput. The congestion contro parameters from the application user.

algquthms n TC.:P may not be as helpful as th? qongesnon If we have M different applications andv different
avoidance algorithms such as slow start [9]. This is because

; . protocol suites, the translation component should contain
Zfl_tlaecr;'r%%%tﬁi?ﬁs)fo?k?ggﬁtfa?g_t’?‘;s'\g;%\]'vogﬁ' ;r:ji ‘- M X N translation stubs, to achieve the complete transla-

. g) . tion set. We propose a two-step translator, which translates
based [10] congestion avoidance algorithms [8]. Commin- brop P

gling a high data rate UDP application and a TCP applica- the application QoS into a set of generic QoS parameters

) . . . ; . .~ (such as throughput, loss, delay, RTATfanslatoi), and
tion, as we will observe in the following sections, will spoil : .

) . translates these generic QoS parameters into end-system
the QoS of both the connections on the sending end-system -d d I I |
because of the erratic loss of data in IP protocol-dependent control parameter valug®Transla-

) ' tor). This method calls fod/ + N translation components.

In ourenvironment IP feeds these data to the ATM Adap- Te translation between the application to generic is depen-
tation Layer 5 (AALS). A representation of the data flow gent on the application characteristics. Hendeincreases
through the end-to-end AALSs is given in Figure 2. A User |inearly with the increase in the number of applications. To
data block submitted to AALS (either through TCP/IP, or ¢ontrol A7, we classify applications into different classes
directly to AALS) is segmented into 9148 byte (most of the a5 shown in Figure 7. We group protocols into connection-
time) AALS CSPDUs before queuing @, as showninthe griented protocols (e.x., TCP, TP4), and connectionless pro-
figure. If the user data is not rate controlled then e tocols (e.x., IP, IPX). But the subtle differences between the
might overflow, resulting in the loss of data on the sender protocols (such as TCP &ream-linedprotocol, where as
side itself. These CSPDUs are segmented into 48 Byte cellStp4 maintains the integrityf the protocol data unit) need

and are queued in the ATM layeQ)() to be sent across g pe treated differently as far as it concerns mapping the
the network. If noper ATM connection queuexists,Q QoS onto control parameters.

might overflow if the combined data rates of the applica-
tions are high compared to the number of buffers allocated .
to @Q». Loss of cells might occur on the network if the ap- 4. Study of QoS perturbing factors
plication exceeds the requested bandwidth or if the network on the receiver side of this application, we measure
is congested. On the receive side, the cells are reassembleghroughput, delay, and loss (number of retransmissions in
into a CSPDU by ATM and given to AALS. AALS then as- case of TCP, or the amount of data lost in case of UDP),
sembles these CSPDUs to form a user packet. CSPDUs argnd on the sender side we measure RTT. These parameters
dropped in ATM (atQ;) if one or more cells belongingtoa capture the dynamic behavior of the host, and the network
CSPDU is lost; this loss of CSPDUs results in dropping the (refer to Figure 3)Throughpuis the amount data received
user packet (af)4). per second, which is measured on evéf{/* packet (as
Loss of data anywhere in the queues will reflect as anshown in Figure 3), and averaged over the total commu-

Offered Load 1...N Delivered load

nection. Every50'" packet is sent back to the sender to

time N L
SENDT l T time RECEIVER measure RTT.
Q Lost packets

Reverse connection 4.1. No-load condition experiments

AAL5/ATM
or TCP(UDP)/IP/AALS/ATM or TCP(UDP)/IP/AALS/ATM

We divide the no-load experiments into two sets. In the
L RTT Packts first set, we observe the interaction between the user and
Network dynamics Control loop the end-system protocol suite. We run the test application
ATM backbone (LAN/WAN) .
Figure 3. QoS parameter's significance on TCP/IP and on UDP/IP pr_otocol suites. We present only
: the throughput and the loss (in case of UDP/IP) graphs, be-
cause the delay and RTT graphs are statistically not signif-
icant due to the unpredictable behavior of these protocols
nication time. TheThroughputrequirement of an applica- (as demonstrated below). In the second set of experiments
tion reflects the amount of host, and network buffers oc- we measure the interaction between the application and the
cupied by the application at any given instant of time. In network. This is achieved by running the test application on
ATM-like networks, this parameter is also a measure of the AAL5/ATM. In the process, we also compare these results
amount of bandwidth to be reserved for this application. A with that of TCP/IP running on top of AAL5/ATM.
low maximum observethroughputon a host machine im-
plies system deficiencies such as a lesser number of syste
buffers and host-network interface problems. A counter-
part tothroughputis loss Lossin our work is defined as
the percentage of data lost during the total communication e
time. We identify data lost on the receive side as shown in Wi Sz window =
Figure 3, to calculate the loss percentafess in case of *
TCP, is observed as more number of retransmissions which T
shrinks the TCP congestion window, which in turn reduces * Ji.
the end-to-end throughput. This parameter in case of UDE’, .
or AAL5/ATM connection reflects reduced throughput du¢ - R
to unpredictable loss of dateDelay is the average delay o \/\/ '
incurred for N packets, which is averaged over the total
communication time Delay parameter is a measure of the ol S - 4-0;'0"
gueuing delays in the end-system protocol suite, delay at the Blocksize inbyies
host-network interface, and delay on the network. This pa-
rameter relates to the dynamic behavior of the end-system Figure 4. Effect of TCP control parameters on
protocol suite, such as the TCP-retransmission algorithm. end-to-end application throughput
RTTis the amount of time taken for thé!" packet to reach

the receiver, and back to the sender; the aveRigEis cal- Figure 4 gives the average throughput observed on the re-
culated over the total communication perigil Tgives the cejye side by varying block size. We recorded a maximum
size of the control loop of the application, as shown in Fig- throughput of 30 Mbps at block size of 8192 bytes. Note

ure 3. In ATM-like networksRTTtells the network element ¢ i in throughput for the block sizes of 3072 and 4096.
what sort of trade-offs it can make between responsivenessy phenomenon called “silly window syndrome” (SWS)[7]
buffer size requirements, available bandwidth, and numberiS the reason for this dip. It should be noted that by elimi-

of connections it can support [2]. nating the SWS and increasing the TCP window size (from
In our experimental set-up we use uniform loading be- 8 Kbytes to 32 Kbytes) we can obtain an almost twofold im-
cause our intention is not to provide an analysis of a partic- provementin throughput. As the block size is increased, the
ular applications, but to provide a base-line. We measuredprocessing time per block increases, and hence the through-
throughput as the average over a set of every 50 packetgput decreases. These graphs show that protocol control pa-
and observe the delay for tl3@'" packet. We ran this ex- rameters such as window size, user-submitted block size
periment for 200,000 packets to obtain enough knowledgeand algorithms such as SWS will control the behavior of
about the statistical behavior of the protocol suites at high the end-system application. Hence, this experiment suggest
data rates and determine the average values. In the casthat one of the tasks of thgeneric to network translation
of UDP, we calculated loss of data after evéfy” packet component is to set these control parameters to appropriate
and present loss percentages over the life time of the convalues.

Host dynamics
Forward connection

M11 Throughput

Throughput in Mbps

Loss of data in %

Throughput observed with UDP is high because of the the loss percentage versus block size. Loss rates as high as
smaller processing overhead of the protocol. The UDP ex-27% are observed.
periment is also a good test for identifying buffer limita- Since, loss occurs inside IP, it is left unnoticed by UDP,
tions and other overheads caused by the system. Maximunmand hence UDP cannot inform the user about the reason for
throughput observed on the receiving side is 70 Mbps (Fig-the loss of data. The loss in IP is due to the overflow of
ure 5), but on the sending side it is almost 120 Mbps. This the output data queue, as shown in Figure 2. This is seen
difference is due to heavy loss of data in the transit whenby calculating the number of IP packets dropped during this
there are uneven surges in data transfer rates on the sendirgpnnection (We used Solamsldcommand to get these de-
side (analysis of these losses are presented below). Figtails.). The loss of data in the IP queue allows UDP to ac-
ure 5 shows that by incorporating a rate control algorithm cept data at faster rate from the user. Such a combination
that submits data at regular intervals and by increasing theof queue up and dropping of packets in UDP-IP produce
HWM and LWM at UDP-IP interface, data loss in UDP is erratic time domain delay patterns on the receive side.
drastically reduced while there is no change in the obtained To investigate the the impact that aspect of UDP-IP inter-

throughput. action has on QoS, we incorporated a rate control algorithm
P inside the UDP user program in order to send data at fixed
wih £ & 32K High Water mark @ rate depending on the type of the underlying network:

80

Block size in bytes

e j\ Delay = Allotted Bandwidth in Mbps
©e Y Run forever :
\ SendData(data)
0 S SendData(data)
SubmitDataT oUDP(data)
20 wait(Delay — Timetaken to submit data —

Other Processing time in the run forever loop)

° oy w0 This simple algorithm reduced the loss percentage to al-

* T — most 15% from 27%. The method clearly is not user trans-
as With P& 221 High water mark 12 parent and also is not very accurate. However, were this
20 algorithm incorporated inside the UDP protocol itself on a

per connection basis, we predict that the loss percentage can
be minimized. When other connections are on the same host
S N sharing the output queue of IP, it is difficult to maintain the
N o Py application QoS even with the rate-control.
10 v g = From the data in the throughput and loss experiments we
s , o conclude that a proper QoS architecture needs to include a
resource manager and a local feedback component to isolate
° Btock size in bries the connection, as shown in Figure 7. Although we could
set the initial IOP of an application in TCP using the con-
trol parameters, it is difficult to maintain it with interfering
connections on the host machine. Hence, even for TCP we
need to use the combination of the rate-control, the resource
manager and the local feedback to provide QoS guarantees.

25

20

o

Figure 5. UDP throughput and loss versuswith
and without flow control, and HWM

A steady increase in UDP throughputis shown in Figure
5 until a block size of 8192 bytes. This is due to the no-
processing nature of UDP. UDP submits packets as they are) o
to IP, which in turn segments them as necessary. On the*-1.3 No-load case studies witbirectand TCP connec-
receiving side these segments are reassembled by IP and are tions
submitted to UDP. As the block size increases, the buffers|, ihis section we use different valuestafget offered load

in the system deplete very quickly and UDP blocks until 54 ghserve how QoS measures are effected by the varying
a fresh quota of buffers is available [1]. Hence, there are y4tqc0l control parameters: in particular, we are interested
higher delays at the sender-network interface. in how different classes of applications over direct ATM
412 Loss versus TCP/ATM. The protocol control parameters for the
direct case are the application block size and the requested
Loss of data at high data rates using UDP is due to resourcéandwidth. The bandwidth reserved (and requested) for an
demands on the participating systems and host-network in-application indirectcase is equal to the data rate it attempts
terface rather than any network limitation. Figure 5 presentsto offer(target offered loajl using rate control. In case of

TCP, the TCP window size is set to 32 KBytes and MSS is the requested bandwidth marginally more than the offered
assigned 9148 bytes. load (refer to Table 2).

The no-load tests provide a set of baseline results in se-Case (ii): 10 - 65 Mbps applications
lecting the control parameters to obtain a specific applica- For high data rate applications, the number of interrupts
tion level QoS. For both th&CP anddirectcases we mea- generated on the receive side of the application by the ATM
sure throughput and delay, for td&ectcase we also mea- card are high in the case of using a 1 KByte block size. This
sure loss, and for selected cases of TCP we measure reghenomenon leads to dropping packetsjip if the host
transmissions. In all of these tests, we use a user level ratés not fast enough. Hence the user-letl@bughputgoes
control mechanism to control the amount of data submitteddown (5.34 Mbps for 65 Mbps case) atabsesare high
per second to match the user-requested bandwidth. (83.25% for 65 Mbps case)Delay will also increase be-

Table 1 presents the experimental results obtained undecause of higher queuing delays(at. We also noticed that
no-load conditions for different requested bandwidths, and using our testbed we could not observe throughput more
user data block sizes. In this set of experiments we target tothan65 Mbps which is the host limitation. By increasing
offer the same amount of load as the requested bandwidththe block size to 8 Kbytes we are reducing the number of
We present the receiver side throughput, delay, and RTT (onCSPDUs, and hence the number of interrupts on the receiver
the sender side) for both TCP and direct cases and loss irside, which will reduce the losses to zero.
case of direct connection. Th&", and the5t" columns In Table 2 we present the relation between RTT, delay,
in the table represent the statistics of the sending, and theand losses at different level of target offered load, and re-
receiving AAL5. The first portion of the sender side statis- quested bandwidth. F&5 Mbpscase, highiRTTvalues are
tics represent the number of CSPDUs givetoafter seg- observed when the requested bandwidth is the same as the
menting (if necessary) the user packet. The second portiortarget offered load; this is due to all the resources being al-
of the column represent the actual number of CSPDUs thatlocated for the duplex connection are used by the forward
left 1, and the last represent the percentage of l0&g;in connection (refer to Figure 3) itself. When the requested
Similarly, the first portion in the last column represent the bandwidth is more than the target offered load therRm&
number of CSPDUs assembled by AAL5 before placing the becomes very much less because of the resources avail-
data into(),4, the second portion represents the actual num-able in the reverse direction. Averadelays has increased
ber of CSPDUs passed onto the user, and the last represerts more bandwidth is reserved, because of the increase in
the percentage of CSPDUs lostdh,. An intelligent QoS gueue sizes allocated for this connection. As observed in
architecture can use these data to select appropriate contralase of 8 KByte block size, averadelays reach saturation,
parameters. We selected the requested bandwidth to repreor example 130.10 msec; this is because the leaky bucket
sent different classes of applications. For exanfple; 1.5 rate-control algorithm in ATM is becoming effective.
Mbpsrepresents MPEG-1 compressed video streamland At 65 Mbps the target offered load and the requested
- 65 Mbpsrepresents high data rate applications. Certain bandwidth does not effect thaelay, andRTTfor 1 Kbyte
data are bold-faced in the table to draw reader’s attention toblock size, due ttossesat Q. (buffer overflowy. At 8 Kbyte
those values (explained in the next two subsections). block size because of the zero ditsseghedelayandRTT
Case (i): 0.5 - 1.5 Mbps applications are comparable. These parameters cannot be improved by

For both TCP/ATM and direct ATM cases, providing the increasing the requested bandwidth.
requesteahroughputfor low bandwidth cases is never a In case ofTCP, at low data rates TCP will not encounter
problem. Delay increases as user block size increases inlossesand hence no retransmissions. We use this informa-
the case of direct ATM connection because of the process-ion to calculate the percentage of retransmissions in the
ing overhead. This end-to-end delay is much less in caselossy case 085 Mbpswith 1 KByte block size. We observe
of 1 KByte and 8 KByte block sizes (41.6 msec and 48.9 13% retransmissionswhich is less compared to 83.25%
msec) compared to that of 64 Kbyte block size (128.2 msec)lossesn its counterpart in thdirectcase. At the same time,
because no segmentation and reassembly is done in ALL5TCP adjusts itself to a lower throughput to avoid losses.
Because of the segmentation and reassembly in AAL5 for This shows the self-healing nature of TCP because of its
64 KByte block size, delay increases by almost threefold. elaborate flow control mechanism.

Delay in case of TCP is high compared to that of direct From the above observations we conclude that, the ap-
ATM connections because TCP tries to accumulate MSSplication block size and the requested bandwidth play major
worth of data before sending it to AALS. TCP delay can be role as control parameters in satisfying an application’s re-
reduced by reducing the window size and MSS (if possible). quested QoS. An application usidiject connection should
Thelossof data in the direct ATM case occurs@t due to clearly balance the control parameters to obtain the desired
our user-level rate control which may not supply data at the QoS. Whereas, an application usiigGP need not balance
exact requested raté.osscan be made zero by increasing the control parameters, at the cost of not obtaining tight

bounds on the application QoS. We notice that the max-tion. We use 8 KByte user data blocks with TCP control
imum data rate & CP connection supports is around 45 parameters set to 32 KBytes for the window size, and 9148
Mbps, whereas direct connection supports up to 65 Mbps Bytes for MSS. Fordirect connection, we use a user data
on a Sparc 10 workstation. Hence, with the given configura- block size of 8 Kbytes, and allocate bandwidth equal to the
tion, the combined data rate of dICP applications should target offered load The experiment is run under different
not exceed 45 Mbps, similarly fafirect it should not ex- receive side CPU-load conditions. From Table 3, we make
ceed 65 Mbps. the following observations: In th@.5 - 25 Mbpgange (ir-
These observations lead us to further modify pre- respective of the percentage of the CPU load)dlssesare
posed QoS architecturas shown in Figure 7. mainly at@), because of the inaccurate user-level rate con-
The maximum observable QoS parameters on a system ar¢ol at the sendeDelayusing TCP is still higher compared
bounded by the kernel-resources (such as buffers, and tho that using a direct ATM connection. Ttleroughputis
host machine’s architectural limitations). These values will comparable in both the cases.
define upper bounds on the QoS which can be requested For the65 Mbpscaselossesshift from the send side to
from that host. Therefore, thesource managecompo- the receive side because the application is working in the
nent should consider these host limitations while allocating maximum throughput range for that machine, and even a
resources to multiple connections. slight CPU load leads to loss of datadhy. TCP on the
Thedirectconnection analysis shows the sensitivity of QoS other hand adjusts itself to low#roughputin the process
to network control parameters, for example, we demon- of reducing the number of retransmissions because of the
strated this in Table 2 by showing that zero loss can belosses on the receive side. AALS throughput is still higher
obtained by reserving higher bandwidth than requested.than TCP but this might be a bad option in such cases be-
Hence, to translate the application QoS into different back- cause of random losses. TCP has a belédmycharacteris-
bone network protocol QoS parameters, we neezhd- tics because it dynamically adjusts itself to the lossy behav-
system protocol to network translat@XTranslato). If the ior of the communication path.
application QoS is sent in generic format, we can avoid two- ~ The conclusion from these results is that tesource
level translation at the protocol to network interface. managemeeds to reserve resources on the end-system host
From the loss analysis on the receive side (due to highermachines and should accept feedback from the network in-
number of interrupts), we can conclude that we need to terface component.
provide feedback from the network device to the resource
manager. This information should be communicated to the4.3. Network behavior
other-side of the end-system protocol.
As the number of connections through IP increases the feed- The final component we analyze to determine what is
back becomes complex and even simple rate-control be-needed in a QoS architecture to provide predictable perfor-
comes complicated. This suggests that the control in IPmance is the one which relates to network behavior. The
should be performed on a class-basis rather than on a perfollowing experiment is set to determine the deficiencies in
connection basis. By selecting the classes which can be recTCPand the interaction of CPwith directconnections un-
ognized at the user-level itself, we can reduce the complex-der network-load conditions. We present time domain plots
ity of mapping between classes at different layers. of throughput, and delay of the end-to-end applications. For
a detailed analysis of the network-load experiments refer to
our extended version of this work in [14].

100

4.2. Host behavior experiments

The next set of experiments is to determine the range T
of impact the end-system load has on the ability to main-
tain predictable QoS performance. We study the behavi
of TCP and direct protocol stacks, using host-load condi-
tion. Guru Purulkar et al. [11] reported a study on a SunOif
4.1, in which one of their conclusions was: in a UNIX-like
Operating System a communication-intensive job receives
higher priority over a computation-intensive job because of
Unix’s dispatcher algorithm. In our host-experiments we
obtained similar results but relate them to QoS performance.

80

=

60

put in Mbj

40

[

i

o 20000 40000 60000

mmmmmmmmm

The computation-intensive job is a software de-
compression program of an MPEG-1 stream and the
communication-intensive job is the modified ttcp applica-

Figure 6. One TCP at 45 Mbps, and two direct
at 35 Mbps

We useABRconnections for thdirectcase in this exper- nection. The interface will also interact with an application
iment, the results of which are shown in Figure 6. We set to dynamically adjust its QoS requirements depending on
up aTCP connection between the two SunSparc 10 work- the network, and the host status, using feedback from the
stations, and twalirect connections between the SunSparc service-provider.

2 workstations. Th&CP connection is rate-controlled to
produce 45 Mbps, whereas ttgectconnections are tuned
for 35 Mbps each. Figure 6 gives the throughput values for
the three connections over a period of time. We intention-
ally overload the link between the ATM switches to observe
behavior of the end-system protocols in adverse conditions AN L COVIB) L st

and its effect on the application QoS. [Applicationstub_|... [Applicationstub | [Applcation stab_| .. [Application stab_]

As can be observed from the throughput graph in Figure
6, TCP behaves poorly in combination with the otlalr
rect connections - even though almost 30 Mbps bandwidth
is available. This is because TCP does not obtain the infor-
mation on the residual bandwidth. As a consequence of low ErTransitrs | [epTrenaorz .. [epTranshator
throughput, the average delay for this connection is high till Endystm
thedirectconnections are active. As soon asdrect con- prl ol e T e 509" e
nections are closed@CP picks up at a high data rate, and (e9.TCP) %)
hence lower average delays are also seen. Even at lower %
data rates for thdirectconnectionTCP performs the same ‘ Resaure
way. Thedirect connection on the other hand, works at Class 1 sl Class M sheculr
higher data rates, because it does not have elaborate error- ” %%
recovery. The penalty paid for the higher data rate in the
directconnection is the bursty losses. [tensators | [wrranstorz |

This leads us to the conclusion tirasource allocation
hasto be done on a per-TCP connection basis to obtain max- " 7E ®:/\®é

parameters
imum utilization of the network resources. And the alloca- Networ devees

tion should be adjusted dynamically according to the feed- W
back from the network. These components are incorporated
in the complete architecture shown in Figure 7. NETWORK

Figure 7. End-system QoS architecture

Rate-control algorithm: Both TCP, and UDP require a

.) i connection-based rate-control algorithm to limit the user to
In this section, we present a summary of the high level pepave in its requested QoS. In TCP, this algorithm works

design of the end-system QoS architecture we propose (fepg|ow the window-based retransmission scheme to retain

fer to Figure 7). It is based on the conclusions we have e flavor of the existing TCP. In UDP, rate-control prevents
drawn from the experiments described in the previous sec-, yser from sending at a higher data rate than the agreed-
tions. A gomplete spemﬁca’tlon and the statu's of its im- upon data rate by blocking the application. This scheme
plementation can be found in [12]. The architecture has yaqyces the losses in UDP due to uncontrolled transmission
three main components: application-level, protocol-level, ¢ yata which leads to buffer overflows.
and global components, as shown in Figure 7. Local feedback algorithmsFeedback from the service-
Application-level components provider, such as, from IP to TCP(UDP) or from TCP(UDP)
We divide applications into different classes depending to the application user, serves to change the control parame-
on their QoS requirements. Each class of applications talksters, and in turn retain the user requested QoS. For example,
to its corresponding module in the class-specific interface IP feedback information could be used in UDP to reduce the
module in the application-level component. The QoS re- data rate of an application to avoid further losses in IP.
guirements are translated into a generic set of QoS requireConnection-based monitoringAll the applications with
ments by the generic interface. These generic requirementspecified QoS requirements should conform to the initial
are translated into a set of protocol-related control param-negotiation. A deviation from the negotiation will effect the
eters, using data we presented in the previous section an@ther connections using a common resource pool. Hence,
in [13]. These control parameters are sent to the service-to retain the isolation between the applications, we need to
providing protocol to set the appropriate values for this con- monitor the application to check if it is within its allocated

Protocol-level components

Based mostly on the host, and network behavior experi-
ments, the architecture provides the following modifications
to the end-system protocol architecture:

Class 1 Translator Class M Translator

Generic QoS M:N Translation

(Local feedback)

(340mI8Y BU) LIO0IY %OBGPSEH)

5. Discussion on QoS architecture

resources. This monitoring is effective if it is done closest losses for 1 KByte block sizes at high data rates, relation
to the user application. Hence, we propose to do the moni-between the requested bandwidth and target offered load.
toring on per connection basis at TCP, or UDP. We demonstrated the trade-offs between the QoS parame-
Resource allocationTo avoid the complexity of handling ters with the help of the control parameters, such as obtain-
resources on per connection basis, we provide class-baseihg zero loss, reducing the RTT etc. The proposed QoS sys-
resource allocation. For example, we have real-time, andtem can refer to the tables presented in this paper to select
time-shared classes inside IP. In a real-time class we schedappropriate protocol control parameters to provide an ap-
ule the data to meet dead-lines, where as in a time-sharegblication specified throughput, loss and bounded delay re-
class we are interested to obtain a given throughput. quirements.

Class-based monitoring, and scheduliye provide class- In this paper we report on the experimentation and anal-
based monitoring to avoid overflowing the resources, which ysis phase of QUANTA. Preliminary results demonstrate
effects the QoS of all the applications in that class. The that QUANTA has the potential for a considerable improve-
scheduling algorithms we use in each class of applicationsment over the base-line case. For more details on the design
are different. A scheduling algorithm is dependent on the aspects of QUANTA and these preliminary results refer to
combined knowledge of all the applications in its class. [12].

Global components

When the status of resources changes we need to mainReferences
tain information about all these resources to be able to de-
grade the performance of an application gracefully. This has [1] STREAMS Programmer’s GuideSunSoft Technical Man-
to be done on a global basis. These global components in- __ ual, 1994. o _
clude network feedback, resource control, and global mon- 2 ABR signalling FAQ. ATM forum signalling group discus-

itoring. The network feedback information is used to moni- 3] E'%‘jniﬂieaﬁzgs'w Fendick. The Rate-Based Elow Control

tor the status of the network and react to it in order to reduce Eramework for the Available Bit Rate ATM ServicéEEE
loss, or control delay for an application. Global resource Network Magazingd(2):25-29, March/April 1995.

control is used to allocate resources dynamically to differ- [4] D. Borman, R. Braden, and V. Jacobson. TCP Extensions
ent classes of applications. And, global monitoring is used for High Performance.Request for comments 1328ay

to predict the degradation in the performance of the appli- 1992.

[5] J. Y. L. Boudec. The Asynchronous Transfer Mode: a tu-
torial. Computer Networks and ISDN Syste2#279-309,
1992.

D. Braden and V. Jacobson. TCP extensions for long-delay

cations and inform their class schedulers about modifying
the scheduling parameters of the algorithms.
This QoS architecture is generic enough to work with [6]

a simple link-level protocol like Ethernet protocol, to the paths.Request for comments 1Q2ctober 1988.
complicated protocol such as ATM in a LAN environment. [7] D. D. Clark. Window and Acknowledgment Strategy in
The algorithms we are developing in this architecture are TCP.

generic enough to be incorporated in any transport-level [8] D. Hong and T. Suda. Congestion Control and Prevention
protocols such as TCP or UDP, and network protocols such {]” ﬁTl"gé\'le‘WWks- IEEE Network Magazinepages 10-16,
uly .
as IP. [9] V.Jacobson. Congestion avoidance and conk@M Com-
. puter Communication Review8:314-329, August 1988.
6. Conclusions and Future work [10] H. T. Kung and R. Morris. Credit-Based Flow Control
for ATM Networks. IEEE Network Magazine9d(2):40-56,

In this paper we use an application-oriented approach to March/April 1995. _
propose a QoS architecture for a TCP/IP-like end-system [11] C. Papadopoulos and G. M. Parulkar. Experimental evalu-

. ation of SUNOS IPC and TCP/IP protocol implementation.
protocol-suite. We conducted no-load, host-load, and IEEE/ACM Transactions on Network&(2), April 1993.

network-load condition experiments to identify the miss- 1] p. Sudheer and K. Maly. Design of quanta and evaluation
ing components in the current architecture of TCP/IP. These methodology.Submitted to - IFIP Fifth International work-

missing components include a two-level application to net- shop on Protocols for High Speed Netwqrstober 1996.
work QoS translator, protocol tuning components, local [13] D. Sudheer, K. Maly, and C. M. Overstreet. Performance
feedback component, and class-based scheduling. evaluation of TCP(UDP)/IP over ATM networks. Techni-

We presented the base-line QoS that can be achieved by cal report, Department of Computer Science, Old Dominion
i ; . University, # TR94.23, September 1994.
an a.lppllcatlon n % LA.N enwronment. We compared the be [14] D. Sudheer, K. Maly, C. M. Overstreet, and R. Mukkamala.
havior of an application using TCP(UDP)/IP/AAL5/ATM L , _
d di | ith hei | Missing end-system components: A case-study. Techni-
and direct AALS, '_A‘TM with respect to their contro pgram- cal report, Department of Computer Science, Old Dominion
eters. We identified bottlenecks an unwary user might en- University, # TR95.15, June 1995.

counter, such as, high delay at higher block size, heavy

Common directrelated TCPrelated
Requested| Application ATM AAL5/ATM AAL5/ATM Loss Delay Delay TCP
delivered delivered
bandwidth | Block size | throughput sender receiver in% | on AAL5 | on TCP | throughput
in Mbps in KBytes in Mbps statistics statistics inmsec | inmsec| in Mbps
0.5 1 0.47 12800/12109/5.400 12109/12109/0 | 5.40 41.6 127.2 0.49
8 0.48 1600/1582/1.12 1582/1582/0 1.12 48.9 131.0 0.5
64 0.49 1600/1526/4.62 1526/1526/0 5.00 128.2 131.0 0.51
1.5 1 1.40 12800/12125/5.27] 12125/12125/0 | 5.27 15.36 41.52 1.49
8 1.43 1600/1591/0.56 1591/1591/0 0.56 17.44 43.66 1.49
64 1.44 1600/1544/3.50 1544/1544/0 3.50 41.34 43.6 151
10 1 9.26 12800/11877/7.21] 11877/11877/0 | 7.21 3.04 54 9.45
8 9.33 1600/1561/2.44 1561/1561/0 2.44 2.64 6.5 9.9
64 9.48 1600/1480/7.50 1480/1480/0 7.50 6.45 6.54 10.09
25 1 7.32 12800/12245/4.34f 12245/4132/66.26| 67.72 3.63 4.4 13.47
8 21.89 1600/1488/7.00 1488/1488/0 7.00 1.16 2.82 22.71
64 21.06 1600/1361/14.93 1361/1361/0 15.00 2.26 2.64 24.83
65 1 5.34 12800/12800/0 | 12686/2144/83.10| 83.25 5.34 3.00 15.50
8 62.16 1600/1600/0 1600/1600/0 0.00 0.60 1.42 43.39
64 62.87 1600/1600/0 1600/1600/0 0.00 0.93 1.66 38.75
Table 1. Comparison of direct and TCP appli-
cations under no load condition
directrelated Common directrelated TCPrelated
Targel O feredload 1 Block size | Delivered load RTT | Delay | #Blocks | CSPDUs| Loss | CSPDUs| Retx. %
equested bandwidth
in KBytes | in Mbps (ATM) | inmsec | in msec (ATM) in % (TCP) | inTCP
0.50.5 1 0.47 | 1060.52 39.36 12800 12109 | 5.40 4554 0.00
0.50.7 1 0.49 15.61 | 130.88 0.00
0.5/0.5 8 0.50 | 5672.59 48.9 1600 1600 | 1.12 1600 0.00
0.5/0.7 8 0.49 | 115.39| 129.10 0.00
0.5/1.0 8 0.49 69.70 | 130.10 0.00
65/65 1 5.34 | 305.72 5.50 12800 12800 | 83.25 5144 13.00
65/75 1 7.30 | 270.41 37.52 77.41
65/85 1 7.05 | 251.52 37.36 77.62
65/65 8 62.16 4.26 0.99 1600 1600 | 0.00 1600 0.00
65/75 8 62.59 4.25 1.00 0.00
Table 2. Case analysis directand TCP applica-
tions for different block sizes
Common directrelated TCPrelated
Requested| CPU | AALS delivered AAL5/ATM AAL5/ATM Loss Delay Delay | TCP delivered
load load throughput sender receiver in% | onAAL5 | on TCP throughput
in Mbps in % in Mbps statistics statistics inmsec | in msec in Mbps
0.5 80 0.48 1600/1583/1.06] 1583/1583/0 1.06 49.95 130.99 0.50
15 80 1.44 1600/1594/0.38| 1594/1594/0 0.38 17.75 43.74 1.50
10 80 9.46 1600/1560/2.50| 1560/1560/0 2.50 2.67 6.51 9.98
25 20 21.82 1600/15016.19 1501/1501/0 6.19 1.14 2.78 22.96
40 21.80 1600/15073.81 1507/1507/0 5.81 1.20 2.69 23.61
60 22.03 1600/14946.62 1494/1494/0 6.63 1.20 2.72 22.94
80 25.92 1600/15036.06 1503/1503/0 6.06 1.31 2.63 23.67
65 20 43.50 1600/1600/0 1600/97139.31 | 39.31 2.94 1.49 37.11
40 45.77 1600/1600/0 1600/92042.50 | 42.50 2.87 1.47 36.51
60 49.98 1600/1600/0 | 1600/109587.90 | 37.19 3.07 181 35.85
80 55.97 1600/1600/0 | 1600/122823.25 | 23.25 1.64 1.40 39.73

Table 3. Comparison of direct and TCP appli-
cation at different CPU-loads

